epoc32/include/stdapis/boost/graph/edge_connectivity.hpp
author William Roberts <williamr@symbian.org>
Tue, 16 Mar 2010 16:12:26 +0000
branchSymbian2
changeset 2 2fe1408b6811
permissions -rw-r--r--
Final list of Symbian^2 public API header files
williamr@2
     1
//=======================================================================
williamr@2
     2
// Copyright 2000 University of Notre Dame.
williamr@2
     3
// Authors: Jeremy G. Siek, Andrew Lumsdaine, Lie-Quan Lee
williamr@2
     4
//
williamr@2
     5
// Distributed under the Boost Software License, Version 1.0. (See
williamr@2
     6
// accompanying file LICENSE_1_0.txt or copy at
williamr@2
     7
// http://www.boost.org/LICENSE_1_0.txt)
williamr@2
     8
//=======================================================================
williamr@2
     9
williamr@2
    10
#ifndef BOOST_EDGE_CONNECTIVITY
williamr@2
    11
#define BOOST_EDGE_CONNECTIVITY
williamr@2
    12
williamr@2
    13
// WARNING: not-yet fully tested!
williamr@2
    14
williamr@2
    15
#include <boost/config.hpp>
williamr@2
    16
#include <vector>
williamr@2
    17
#include <set>
williamr@2
    18
#include <algorithm>
williamr@2
    19
#include <boost/graph/edmunds_karp_max_flow.hpp>
williamr@2
    20
williamr@2
    21
namespace boost {
williamr@2
    22
williamr@2
    23
  namespace detail {
williamr@2
    24
williamr@2
    25
    template <class Graph>
williamr@2
    26
    inline
williamr@2
    27
    std::pair<typename graph_traits<Graph>::vertex_descriptor,
williamr@2
    28
              typename graph_traits<Graph>::degree_size_type>
williamr@2
    29
    min_degree_vertex(Graph& g)
williamr@2
    30
    {
williamr@2
    31
      typedef graph_traits<Graph> Traits;
williamr@2
    32
      typename Traits::vertex_descriptor p;
williamr@2
    33
      typedef typename Traits::degree_size_type size_type;
williamr@2
    34
      size_type delta = (std::numeric_limits<size_type>::max)();
williamr@2
    35
williamr@2
    36
      typename Traits::vertex_iterator i, iend;
williamr@2
    37
      for (tie(i, iend) = vertices(g); i != iend; ++i)
williamr@2
    38
        if (degree(*i, g) < delta) {
williamr@2
    39
          delta = degree(*i, g);
williamr@2
    40
          p = *i;
williamr@2
    41
        }
williamr@2
    42
      return std::make_pair(p, delta);
williamr@2
    43
    }
williamr@2
    44
williamr@2
    45
    template <class Graph, class OutputIterator>
williamr@2
    46
    void neighbors(const Graph& g, 
williamr@2
    47
                   typename graph_traits<Graph>::vertex_descriptor u,
williamr@2
    48
                   OutputIterator result)
williamr@2
    49
    {
williamr@2
    50
      typename graph_traits<Graph>::adjacency_iterator ai, aend;
williamr@2
    51
      for (tie(ai, aend) = adjacent_vertices(u, g); ai != aend; ++ai)
williamr@2
    52
        *result++ = *ai;
williamr@2
    53
    }
williamr@2
    54
williamr@2
    55
    template <class Graph, class VertexIterator, class OutputIterator>
williamr@2
    56
    void neighbors(const Graph& g, 
williamr@2
    57
                   VertexIterator first, VertexIterator last,
williamr@2
    58
                   OutputIterator result)
williamr@2
    59
    {
williamr@2
    60
      for (; first != last; ++first)
williamr@2
    61
        neighbors(g, *first, result);
williamr@2
    62
    }
williamr@2
    63
williamr@2
    64
  } // namespace detail
williamr@2
    65
williamr@2
    66
  // O(m n)
williamr@2
    67
  template <class VertexListGraph, class OutputIterator>
williamr@2
    68
  typename graph_traits<VertexListGraph>::degree_size_type
williamr@2
    69
  edge_connectivity(VertexListGraph& g, OutputIterator disconnecting_set)
williamr@2
    70
  {
williamr@2
    71
    //-------------------------------------------------------------------------
williamr@2
    72
    // Type Definitions
williamr@2
    73
    typedef graph_traits<VertexListGraph> Traits;
williamr@2
    74
    typedef typename Traits::vertex_iterator vertex_iterator;
williamr@2
    75
    typedef typename Traits::edge_iterator edge_iterator;
williamr@2
    76
    typedef typename Traits::out_edge_iterator out_edge_iterator;
williamr@2
    77
    typedef typename Traits::vertex_descriptor vertex_descriptor;
williamr@2
    78
    typedef typename Traits::degree_size_type degree_size_type;
williamr@2
    79
    typedef color_traits<default_color_type> Color;
williamr@2
    80
williamr@2
    81
    typedef adjacency_list_traits<vecS, vecS, directedS> Tr;
williamr@2
    82
    typedef typename Tr::edge_descriptor Tr_edge_desc;
williamr@2
    83
    typedef adjacency_list<vecS, vecS, directedS, no_property, 
williamr@2
    84
      property<edge_capacity_t, degree_size_type,
williamr@2
    85
        property<edge_residual_capacity_t, degree_size_type,
williamr@2
    86
          property<edge_reverse_t, Tr_edge_desc> > > > 
williamr@2
    87
      FlowGraph;
williamr@2
    88
    typedef typename graph_traits<FlowGraph>::edge_descriptor edge_descriptor;
williamr@2
    89
williamr@2
    90
    //-------------------------------------------------------------------------
williamr@2
    91
    // Variable Declarations
williamr@2
    92
    vertex_descriptor u, v, p, k;
williamr@2
    93
    edge_descriptor e1, e2;
williamr@2
    94
    bool inserted;
williamr@2
    95
    vertex_iterator vi, vi_end;
williamr@2
    96
    edge_iterator ei, ei_end;
williamr@2
    97
    degree_size_type delta, alpha_star, alpha_S_k;
williamr@2
    98
    std::set<vertex_descriptor> S, neighbor_S;
williamr@2
    99
    std::vector<vertex_descriptor> S_star, non_neighbor_S;
williamr@2
   100
    std::vector<default_color_type> color(num_vertices(g));
williamr@2
   101
    std::vector<edge_descriptor> pred(num_vertices(g));
williamr@2
   102
williamr@2
   103
    //-------------------------------------------------------------------------
williamr@2
   104
    // Create a network flow graph out of the undirected graph
williamr@2
   105
    FlowGraph flow_g(num_vertices(g));
williamr@2
   106
williamr@2
   107
    typename property_map<FlowGraph, edge_capacity_t>::type
williamr@2
   108
      cap = get(edge_capacity, flow_g);
williamr@2
   109
    typename property_map<FlowGraph, edge_residual_capacity_t>::type
williamr@2
   110
      res_cap = get(edge_residual_capacity, flow_g);
williamr@2
   111
    typename property_map<FlowGraph, edge_reverse_t>::type
williamr@2
   112
      rev_edge = get(edge_reverse, flow_g);
williamr@2
   113
williamr@2
   114
    for (tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) {
williamr@2
   115
      u = source(*ei, g), v = target(*ei, g);
williamr@2
   116
      tie(e1, inserted) = add_edge(u, v, flow_g);
williamr@2
   117
      cap[e1] = 1;
williamr@2
   118
      tie(e2, inserted) = add_edge(v, u, flow_g);
williamr@2
   119
      cap[e2] = 1; // not sure about this
williamr@2
   120
      rev_edge[e1] = e2;
williamr@2
   121
      rev_edge[e2] = e1;
williamr@2
   122
    }
williamr@2
   123
williamr@2
   124
    //-------------------------------------------------------------------------
williamr@2
   125
    // The Algorithm
williamr@2
   126
williamr@2
   127
    tie(p, delta) = detail::min_degree_vertex(g);
williamr@2
   128
    S_star.push_back(p);
williamr@2
   129
    alpha_star = delta;
williamr@2
   130
    S.insert(p);
williamr@2
   131
    neighbor_S.insert(p);
williamr@2
   132
    detail::neighbors(g, S.begin(), S.end(), 
williamr@2
   133
                      std::inserter(neighbor_S, neighbor_S.begin()));
williamr@2
   134
williamr@2
   135
    std::set_difference(vertices(g).first, vertices(g).second,
williamr@2
   136
                        neighbor_S.begin(), neighbor_S.end(),
williamr@2
   137
                        std::back_inserter(non_neighbor_S));
williamr@2
   138
williamr@2
   139
    while (!non_neighbor_S.empty()) { // at most n - 1 times
williamr@2
   140
      k = non_neighbor_S.front();
williamr@2
   141
williamr@2
   142
      alpha_S_k = edmunds_karp_max_flow
williamr@2
   143
        (flow_g, p, k, cap, res_cap, rev_edge, &color[0], &pred[0]);
williamr@2
   144
williamr@2
   145
      if (alpha_S_k < alpha_star) {
williamr@2
   146
        alpha_star = alpha_S_k;
williamr@2
   147
        S_star.clear();
williamr@2
   148
        for (tie(vi, vi_end) = vertices(flow_g); vi != vi_end; ++vi)
williamr@2
   149
          if (color[*vi] != Color::white())
williamr@2
   150
            S_star.push_back(*vi);
williamr@2
   151
      }
williamr@2
   152
      S.insert(k);
williamr@2
   153
      neighbor_S.insert(k);
williamr@2
   154
      detail::neighbors(g, k, std::inserter(neighbor_S, neighbor_S.begin()));
williamr@2
   155
      non_neighbor_S.clear();
williamr@2
   156
      std::set_difference(vertices(g).first, vertices(g).second,
williamr@2
   157
                          neighbor_S.begin(), neighbor_S.end(),
williamr@2
   158
                          std::back_inserter(non_neighbor_S));
williamr@2
   159
    }
williamr@2
   160
    //-------------------------------------------------------------------------
williamr@2
   161
    // Compute edges of the cut [S*, ~S*]
williamr@2
   162
    std::vector<bool> in_S_star(num_vertices(g), false);
williamr@2
   163
    typename std::vector<vertex_descriptor>::iterator si;
williamr@2
   164
    for (si = S_star.begin(); si != S_star.end(); ++si)
williamr@2
   165
      in_S_star[*si] = true;
williamr@2
   166
williamr@2
   167
    degree_size_type c = 0;
williamr@2
   168
    for (si = S_star.begin(); si != S_star.end(); ++si) {
williamr@2
   169
      out_edge_iterator ei, ei_end;
williamr@2
   170
      for (tie(ei, ei_end) = out_edges(*si, g); ei != ei_end; ++ei)
williamr@2
   171
        if (!in_S_star[target(*ei, g)]) {
williamr@2
   172
          *disconnecting_set++ = *ei;
williamr@2
   173
          ++c;
williamr@2
   174
        }
williamr@2
   175
    }
williamr@2
   176
    return c;
williamr@2
   177
  }
williamr@2
   178
williamr@2
   179
} // namespace boost
williamr@2
   180
williamr@2
   181
#endif // BOOST_EDGE_CONNECTIVITY