epoc32/include/stdapis/boost/graph/edge_connectivity.hpp
branchSymbian2
changeset 2 2fe1408b6811
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/epoc32/include/stdapis/boost/graph/edge_connectivity.hpp	Tue Mar 16 16:12:26 2010 +0000
     1.3 @@ -0,0 +1,181 @@
     1.4 +//=======================================================================
     1.5 +// Copyright 2000 University of Notre Dame.
     1.6 +// Authors: Jeremy G. Siek, Andrew Lumsdaine, Lie-Quan Lee
     1.7 +//
     1.8 +// Distributed under the Boost Software License, Version 1.0. (See
     1.9 +// accompanying file LICENSE_1_0.txt or copy at
    1.10 +// http://www.boost.org/LICENSE_1_0.txt)
    1.11 +//=======================================================================
    1.12 +
    1.13 +#ifndef BOOST_EDGE_CONNECTIVITY
    1.14 +#define BOOST_EDGE_CONNECTIVITY
    1.15 +
    1.16 +// WARNING: not-yet fully tested!
    1.17 +
    1.18 +#include <boost/config.hpp>
    1.19 +#include <vector>
    1.20 +#include <set>
    1.21 +#include <algorithm>
    1.22 +#include <boost/graph/edmunds_karp_max_flow.hpp>
    1.23 +
    1.24 +namespace boost {
    1.25 +
    1.26 +  namespace detail {
    1.27 +
    1.28 +    template <class Graph>
    1.29 +    inline
    1.30 +    std::pair<typename graph_traits<Graph>::vertex_descriptor,
    1.31 +              typename graph_traits<Graph>::degree_size_type>
    1.32 +    min_degree_vertex(Graph& g)
    1.33 +    {
    1.34 +      typedef graph_traits<Graph> Traits;
    1.35 +      typename Traits::vertex_descriptor p;
    1.36 +      typedef typename Traits::degree_size_type size_type;
    1.37 +      size_type delta = (std::numeric_limits<size_type>::max)();
    1.38 +
    1.39 +      typename Traits::vertex_iterator i, iend;
    1.40 +      for (tie(i, iend) = vertices(g); i != iend; ++i)
    1.41 +        if (degree(*i, g) < delta) {
    1.42 +          delta = degree(*i, g);
    1.43 +          p = *i;
    1.44 +        }
    1.45 +      return std::make_pair(p, delta);
    1.46 +    }
    1.47 +
    1.48 +    template <class Graph, class OutputIterator>
    1.49 +    void neighbors(const Graph& g, 
    1.50 +                   typename graph_traits<Graph>::vertex_descriptor u,
    1.51 +                   OutputIterator result)
    1.52 +    {
    1.53 +      typename graph_traits<Graph>::adjacency_iterator ai, aend;
    1.54 +      for (tie(ai, aend) = adjacent_vertices(u, g); ai != aend; ++ai)
    1.55 +        *result++ = *ai;
    1.56 +    }
    1.57 +
    1.58 +    template <class Graph, class VertexIterator, class OutputIterator>
    1.59 +    void neighbors(const Graph& g, 
    1.60 +                   VertexIterator first, VertexIterator last,
    1.61 +                   OutputIterator result)
    1.62 +    {
    1.63 +      for (; first != last; ++first)
    1.64 +        neighbors(g, *first, result);
    1.65 +    }
    1.66 +
    1.67 +  } // namespace detail
    1.68 +
    1.69 +  // O(m n)
    1.70 +  template <class VertexListGraph, class OutputIterator>
    1.71 +  typename graph_traits<VertexListGraph>::degree_size_type
    1.72 +  edge_connectivity(VertexListGraph& g, OutputIterator disconnecting_set)
    1.73 +  {
    1.74 +    //-------------------------------------------------------------------------
    1.75 +    // Type Definitions
    1.76 +    typedef graph_traits<VertexListGraph> Traits;
    1.77 +    typedef typename Traits::vertex_iterator vertex_iterator;
    1.78 +    typedef typename Traits::edge_iterator edge_iterator;
    1.79 +    typedef typename Traits::out_edge_iterator out_edge_iterator;
    1.80 +    typedef typename Traits::vertex_descriptor vertex_descriptor;
    1.81 +    typedef typename Traits::degree_size_type degree_size_type;
    1.82 +    typedef color_traits<default_color_type> Color;
    1.83 +
    1.84 +    typedef adjacency_list_traits<vecS, vecS, directedS> Tr;
    1.85 +    typedef typename Tr::edge_descriptor Tr_edge_desc;
    1.86 +    typedef adjacency_list<vecS, vecS, directedS, no_property, 
    1.87 +      property<edge_capacity_t, degree_size_type,
    1.88 +        property<edge_residual_capacity_t, degree_size_type,
    1.89 +          property<edge_reverse_t, Tr_edge_desc> > > > 
    1.90 +      FlowGraph;
    1.91 +    typedef typename graph_traits<FlowGraph>::edge_descriptor edge_descriptor;
    1.92 +
    1.93 +    //-------------------------------------------------------------------------
    1.94 +    // Variable Declarations
    1.95 +    vertex_descriptor u, v, p, k;
    1.96 +    edge_descriptor e1, e2;
    1.97 +    bool inserted;
    1.98 +    vertex_iterator vi, vi_end;
    1.99 +    edge_iterator ei, ei_end;
   1.100 +    degree_size_type delta, alpha_star, alpha_S_k;
   1.101 +    std::set<vertex_descriptor> S, neighbor_S;
   1.102 +    std::vector<vertex_descriptor> S_star, non_neighbor_S;
   1.103 +    std::vector<default_color_type> color(num_vertices(g));
   1.104 +    std::vector<edge_descriptor> pred(num_vertices(g));
   1.105 +
   1.106 +    //-------------------------------------------------------------------------
   1.107 +    // Create a network flow graph out of the undirected graph
   1.108 +    FlowGraph flow_g(num_vertices(g));
   1.109 +
   1.110 +    typename property_map<FlowGraph, edge_capacity_t>::type
   1.111 +      cap = get(edge_capacity, flow_g);
   1.112 +    typename property_map<FlowGraph, edge_residual_capacity_t>::type
   1.113 +      res_cap = get(edge_residual_capacity, flow_g);
   1.114 +    typename property_map<FlowGraph, edge_reverse_t>::type
   1.115 +      rev_edge = get(edge_reverse, flow_g);
   1.116 +
   1.117 +    for (tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) {
   1.118 +      u = source(*ei, g), v = target(*ei, g);
   1.119 +      tie(e1, inserted) = add_edge(u, v, flow_g);
   1.120 +      cap[e1] = 1;
   1.121 +      tie(e2, inserted) = add_edge(v, u, flow_g);
   1.122 +      cap[e2] = 1; // not sure about this
   1.123 +      rev_edge[e1] = e2;
   1.124 +      rev_edge[e2] = e1;
   1.125 +    }
   1.126 +
   1.127 +    //-------------------------------------------------------------------------
   1.128 +    // The Algorithm
   1.129 +
   1.130 +    tie(p, delta) = detail::min_degree_vertex(g);
   1.131 +    S_star.push_back(p);
   1.132 +    alpha_star = delta;
   1.133 +    S.insert(p);
   1.134 +    neighbor_S.insert(p);
   1.135 +    detail::neighbors(g, S.begin(), S.end(), 
   1.136 +                      std::inserter(neighbor_S, neighbor_S.begin()));
   1.137 +
   1.138 +    std::set_difference(vertices(g).first, vertices(g).second,
   1.139 +                        neighbor_S.begin(), neighbor_S.end(),
   1.140 +                        std::back_inserter(non_neighbor_S));
   1.141 +
   1.142 +    while (!non_neighbor_S.empty()) { // at most n - 1 times
   1.143 +      k = non_neighbor_S.front();
   1.144 +
   1.145 +      alpha_S_k = edmunds_karp_max_flow
   1.146 +        (flow_g, p, k, cap, res_cap, rev_edge, &color[0], &pred[0]);
   1.147 +
   1.148 +      if (alpha_S_k < alpha_star) {
   1.149 +        alpha_star = alpha_S_k;
   1.150 +        S_star.clear();
   1.151 +        for (tie(vi, vi_end) = vertices(flow_g); vi != vi_end; ++vi)
   1.152 +          if (color[*vi] != Color::white())
   1.153 +            S_star.push_back(*vi);
   1.154 +      }
   1.155 +      S.insert(k);
   1.156 +      neighbor_S.insert(k);
   1.157 +      detail::neighbors(g, k, std::inserter(neighbor_S, neighbor_S.begin()));
   1.158 +      non_neighbor_S.clear();
   1.159 +      std::set_difference(vertices(g).first, vertices(g).second,
   1.160 +                          neighbor_S.begin(), neighbor_S.end(),
   1.161 +                          std::back_inserter(non_neighbor_S));
   1.162 +    }
   1.163 +    //-------------------------------------------------------------------------
   1.164 +    // Compute edges of the cut [S*, ~S*]
   1.165 +    std::vector<bool> in_S_star(num_vertices(g), false);
   1.166 +    typename std::vector<vertex_descriptor>::iterator si;
   1.167 +    for (si = S_star.begin(); si != S_star.end(); ++si)
   1.168 +      in_S_star[*si] = true;
   1.169 +
   1.170 +    degree_size_type c = 0;
   1.171 +    for (si = S_star.begin(); si != S_star.end(); ++si) {
   1.172 +      out_edge_iterator ei, ei_end;
   1.173 +      for (tie(ei, ei_end) = out_edges(*si, g); ei != ei_end; ++ei)
   1.174 +        if (!in_S_star[target(*ei, g)]) {
   1.175 +          *disconnecting_set++ = *ei;
   1.176 +          ++c;
   1.177 +        }
   1.178 +    }
   1.179 +    return c;
   1.180 +  }
   1.181 +
   1.182 +} // namespace boost
   1.183 +
   1.184 +#endif // BOOST_EDGE_CONNECTIVITY