1 //=======================================================================
2 // Copyright 2000 University of Notre Dame.
3 // Authors: Jeremy G. Siek, Andrew Lumsdaine, Lie-Quan Lee
5 // Distributed under the Boost Software License, Version 1.0. (See
6 // accompanying file LICENSE_1_0.txt or copy at
7 // http://www.boost.org/LICENSE_1_0.txt)
8 //=======================================================================
10 #ifndef BOOST_EDGE_CONNECTIVITY
11 #define BOOST_EDGE_CONNECTIVITY
13 // WARNING: not-yet fully tested!
15 #include <boost/config.hpp>
19 #include <boost/graph/edmunds_karp_max_flow.hpp>
25 template <class Graph>
27 std::pair<typename graph_traits<Graph>::vertex_descriptor,
28 typename graph_traits<Graph>::degree_size_type>
29 min_degree_vertex(Graph& g)
31 typedef graph_traits<Graph> Traits;
32 typename Traits::vertex_descriptor p;
33 typedef typename Traits::degree_size_type size_type;
34 size_type delta = (std::numeric_limits<size_type>::max)();
36 typename Traits::vertex_iterator i, iend;
37 for (tie(i, iend) = vertices(g); i != iend; ++i)
38 if (degree(*i, g) < delta) {
39 delta = degree(*i, g);
42 return std::make_pair(p, delta);
45 template <class Graph, class OutputIterator>
46 void neighbors(const Graph& g,
47 typename graph_traits<Graph>::vertex_descriptor u,
48 OutputIterator result)
50 typename graph_traits<Graph>::adjacency_iterator ai, aend;
51 for (tie(ai, aend) = adjacent_vertices(u, g); ai != aend; ++ai)
55 template <class Graph, class VertexIterator, class OutputIterator>
56 void neighbors(const Graph& g,
57 VertexIterator first, VertexIterator last,
58 OutputIterator result)
60 for (; first != last; ++first)
61 neighbors(g, *first, result);
67 template <class VertexListGraph, class OutputIterator>
68 typename graph_traits<VertexListGraph>::degree_size_type
69 edge_connectivity(VertexListGraph& g, OutputIterator disconnecting_set)
71 //-------------------------------------------------------------------------
73 typedef graph_traits<VertexListGraph> Traits;
74 typedef typename Traits::vertex_iterator vertex_iterator;
75 typedef typename Traits::edge_iterator edge_iterator;
76 typedef typename Traits::out_edge_iterator out_edge_iterator;
77 typedef typename Traits::vertex_descriptor vertex_descriptor;
78 typedef typename Traits::degree_size_type degree_size_type;
79 typedef color_traits<default_color_type> Color;
81 typedef adjacency_list_traits<vecS, vecS, directedS> Tr;
82 typedef typename Tr::edge_descriptor Tr_edge_desc;
83 typedef adjacency_list<vecS, vecS, directedS, no_property,
84 property<edge_capacity_t, degree_size_type,
85 property<edge_residual_capacity_t, degree_size_type,
86 property<edge_reverse_t, Tr_edge_desc> > > >
88 typedef typename graph_traits<FlowGraph>::edge_descriptor edge_descriptor;
90 //-------------------------------------------------------------------------
91 // Variable Declarations
92 vertex_descriptor u, v, p, k;
93 edge_descriptor e1, e2;
95 vertex_iterator vi, vi_end;
96 edge_iterator ei, ei_end;
97 degree_size_type delta, alpha_star, alpha_S_k;
98 std::set<vertex_descriptor> S, neighbor_S;
99 std::vector<vertex_descriptor> S_star, non_neighbor_S;
100 std::vector<default_color_type> color(num_vertices(g));
101 std::vector<edge_descriptor> pred(num_vertices(g));
103 //-------------------------------------------------------------------------
104 // Create a network flow graph out of the undirected graph
105 FlowGraph flow_g(num_vertices(g));
107 typename property_map<FlowGraph, edge_capacity_t>::type
108 cap = get(edge_capacity, flow_g);
109 typename property_map<FlowGraph, edge_residual_capacity_t>::type
110 res_cap = get(edge_residual_capacity, flow_g);
111 typename property_map<FlowGraph, edge_reverse_t>::type
112 rev_edge = get(edge_reverse, flow_g);
114 for (tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) {
115 u = source(*ei, g), v = target(*ei, g);
116 tie(e1, inserted) = add_edge(u, v, flow_g);
118 tie(e2, inserted) = add_edge(v, u, flow_g);
119 cap[e2] = 1; // not sure about this
124 //-------------------------------------------------------------------------
127 tie(p, delta) = detail::min_degree_vertex(g);
131 neighbor_S.insert(p);
132 detail::neighbors(g, S.begin(), S.end(),
133 std::inserter(neighbor_S, neighbor_S.begin()));
135 std::set_difference(vertices(g).first, vertices(g).second,
136 neighbor_S.begin(), neighbor_S.end(),
137 std::back_inserter(non_neighbor_S));
139 while (!non_neighbor_S.empty()) { // at most n - 1 times
140 k = non_neighbor_S.front();
142 alpha_S_k = edmunds_karp_max_flow
143 (flow_g, p, k, cap, res_cap, rev_edge, &color[0], &pred[0]);
145 if (alpha_S_k < alpha_star) {
146 alpha_star = alpha_S_k;
148 for (tie(vi, vi_end) = vertices(flow_g); vi != vi_end; ++vi)
149 if (color[*vi] != Color::white())
150 S_star.push_back(*vi);
153 neighbor_S.insert(k);
154 detail::neighbors(g, k, std::inserter(neighbor_S, neighbor_S.begin()));
155 non_neighbor_S.clear();
156 std::set_difference(vertices(g).first, vertices(g).second,
157 neighbor_S.begin(), neighbor_S.end(),
158 std::back_inserter(non_neighbor_S));
160 //-------------------------------------------------------------------------
161 // Compute edges of the cut [S*, ~S*]
162 std::vector<bool> in_S_star(num_vertices(g), false);
163 typename std::vector<vertex_descriptor>::iterator si;
164 for (si = S_star.begin(); si != S_star.end(); ++si)
165 in_S_star[*si] = true;
167 degree_size_type c = 0;
168 for (si = S_star.begin(); si != S_star.end(); ++si) {
169 out_edge_iterator ei, ei_end;
170 for (tie(ei, ei_end) = out_edges(*si, g); ei != ei_end; ++ei)
171 if (!in_S_star[target(*ei, g)]) {
172 *disconnecting_set++ = *ei;
181 #endif // BOOST_EDGE_CONNECTIVITY