williamr@2: //======================================================================= williamr@2: // Copyright 2000 University of Notre Dame. williamr@2: // Authors: Jeremy G. Siek, Andrew Lumsdaine, Lie-Quan Lee williamr@2: // williamr@2: // Distributed under the Boost Software License, Version 1.0. (See williamr@2: // accompanying file LICENSE_1_0.txt or copy at williamr@2: // http://www.boost.org/LICENSE_1_0.txt) williamr@2: //======================================================================= williamr@2: williamr@2: #ifndef BOOST_EDGE_CONNECTIVITY williamr@2: #define BOOST_EDGE_CONNECTIVITY williamr@2: williamr@2: // WARNING: not-yet fully tested! williamr@2: williamr@2: #include williamr@2: #include williamr@2: #include williamr@2: #include williamr@2: #include williamr@2: williamr@2: namespace boost { williamr@2: williamr@2: namespace detail { williamr@2: williamr@2: template williamr@2: inline williamr@2: std::pair::vertex_descriptor, williamr@2: typename graph_traits::degree_size_type> williamr@2: min_degree_vertex(Graph& g) williamr@2: { williamr@2: typedef graph_traits Traits; williamr@2: typename Traits::vertex_descriptor p; williamr@2: typedef typename Traits::degree_size_type size_type; williamr@2: size_type delta = (std::numeric_limits::max)(); williamr@2: williamr@2: typename Traits::vertex_iterator i, iend; williamr@2: for (tie(i, iend) = vertices(g); i != iend; ++i) williamr@2: if (degree(*i, g) < delta) { williamr@2: delta = degree(*i, g); williamr@2: p = *i; williamr@2: } williamr@2: return std::make_pair(p, delta); williamr@2: } williamr@2: williamr@2: template williamr@2: void neighbors(const Graph& g, williamr@2: typename graph_traits::vertex_descriptor u, williamr@2: OutputIterator result) williamr@2: { williamr@2: typename graph_traits::adjacency_iterator ai, aend; williamr@2: for (tie(ai, aend) = adjacent_vertices(u, g); ai != aend; ++ai) williamr@2: *result++ = *ai; williamr@2: } williamr@2: williamr@2: template williamr@2: void neighbors(const Graph& g, williamr@2: VertexIterator first, VertexIterator last, williamr@2: OutputIterator result) williamr@2: { williamr@2: for (; first != last; ++first) williamr@2: neighbors(g, *first, result); williamr@2: } williamr@2: williamr@2: } // namespace detail williamr@2: williamr@2: // O(m n) williamr@2: template williamr@2: typename graph_traits::degree_size_type williamr@2: edge_connectivity(VertexListGraph& g, OutputIterator disconnecting_set) williamr@2: { williamr@2: //------------------------------------------------------------------------- williamr@2: // Type Definitions williamr@2: typedef graph_traits Traits; williamr@2: typedef typename Traits::vertex_iterator vertex_iterator; williamr@2: typedef typename Traits::edge_iterator edge_iterator; williamr@2: typedef typename Traits::out_edge_iterator out_edge_iterator; williamr@2: typedef typename Traits::vertex_descriptor vertex_descriptor; williamr@2: typedef typename Traits::degree_size_type degree_size_type; williamr@2: typedef color_traits Color; williamr@2: williamr@2: typedef adjacency_list_traits Tr; williamr@2: typedef typename Tr::edge_descriptor Tr_edge_desc; williamr@2: typedef adjacency_list > > > williamr@2: FlowGraph; williamr@2: typedef typename graph_traits::edge_descriptor edge_descriptor; williamr@2: williamr@2: //------------------------------------------------------------------------- williamr@2: // Variable Declarations williamr@2: vertex_descriptor u, v, p, k; williamr@2: edge_descriptor e1, e2; williamr@2: bool inserted; williamr@2: vertex_iterator vi, vi_end; williamr@2: edge_iterator ei, ei_end; williamr@2: degree_size_type delta, alpha_star, alpha_S_k; williamr@2: std::set S, neighbor_S; williamr@2: std::vector S_star, non_neighbor_S; williamr@2: std::vector color(num_vertices(g)); williamr@2: std::vector pred(num_vertices(g)); williamr@2: williamr@2: //------------------------------------------------------------------------- williamr@2: // Create a network flow graph out of the undirected graph williamr@2: FlowGraph flow_g(num_vertices(g)); williamr@2: williamr@2: typename property_map::type williamr@2: cap = get(edge_capacity, flow_g); williamr@2: typename property_map::type williamr@2: res_cap = get(edge_residual_capacity, flow_g); williamr@2: typename property_map::type williamr@2: rev_edge = get(edge_reverse, flow_g); williamr@2: williamr@2: for (tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) { williamr@2: u = source(*ei, g), v = target(*ei, g); williamr@2: tie(e1, inserted) = add_edge(u, v, flow_g); williamr@2: cap[e1] = 1; williamr@2: tie(e2, inserted) = add_edge(v, u, flow_g); williamr@2: cap[e2] = 1; // not sure about this williamr@2: rev_edge[e1] = e2; williamr@2: rev_edge[e2] = e1; williamr@2: } williamr@2: williamr@2: //------------------------------------------------------------------------- williamr@2: // The Algorithm williamr@2: williamr@2: tie(p, delta) = detail::min_degree_vertex(g); williamr@2: S_star.push_back(p); williamr@2: alpha_star = delta; williamr@2: S.insert(p); williamr@2: neighbor_S.insert(p); williamr@2: detail::neighbors(g, S.begin(), S.end(), williamr@2: std::inserter(neighbor_S, neighbor_S.begin())); williamr@2: williamr@2: std::set_difference(vertices(g).first, vertices(g).second, williamr@2: neighbor_S.begin(), neighbor_S.end(), williamr@2: std::back_inserter(non_neighbor_S)); williamr@2: williamr@2: while (!non_neighbor_S.empty()) { // at most n - 1 times williamr@2: k = non_neighbor_S.front(); williamr@2: williamr@2: alpha_S_k = edmunds_karp_max_flow williamr@2: (flow_g, p, k, cap, res_cap, rev_edge, &color[0], &pred[0]); williamr@2: williamr@2: if (alpha_S_k < alpha_star) { williamr@2: alpha_star = alpha_S_k; williamr@2: S_star.clear(); williamr@2: for (tie(vi, vi_end) = vertices(flow_g); vi != vi_end; ++vi) williamr@2: if (color[*vi] != Color::white()) williamr@2: S_star.push_back(*vi); williamr@2: } williamr@2: S.insert(k); williamr@2: neighbor_S.insert(k); williamr@2: detail::neighbors(g, k, std::inserter(neighbor_S, neighbor_S.begin())); williamr@2: non_neighbor_S.clear(); williamr@2: std::set_difference(vertices(g).first, vertices(g).second, williamr@2: neighbor_S.begin(), neighbor_S.end(), williamr@2: std::back_inserter(non_neighbor_S)); williamr@2: } williamr@2: //------------------------------------------------------------------------- williamr@2: // Compute edges of the cut [S*, ~S*] williamr@2: std::vector in_S_star(num_vertices(g), false); williamr@2: typename std::vector::iterator si; williamr@2: for (si = S_star.begin(); si != S_star.end(); ++si) williamr@2: in_S_star[*si] = true; williamr@2: williamr@2: degree_size_type c = 0; williamr@2: for (si = S_star.begin(); si != S_star.end(); ++si) { williamr@2: out_edge_iterator ei, ei_end; williamr@2: for (tie(ei, ei_end) = out_edges(*si, g); ei != ei_end; ++ei) williamr@2: if (!in_S_star[target(*ei, g)]) { williamr@2: *disconnecting_set++ = *ei; williamr@2: ++c; williamr@2: } williamr@2: } williamr@2: return c; williamr@2: } williamr@2: williamr@2: } // namespace boost williamr@2: williamr@2: #endif // BOOST_EDGE_CONNECTIVITY