os/persistentdata/persistentstorage/sqlite3api/SQLite/mutex_unix.c
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
sl@0
     1
/*
sl@0
     2
** 2007 August 28
sl@0
     3
**
sl@0
     4
** The author disclaims copyright to this source code.  In place of
sl@0
     5
** a legal notice, here is a blessing:
sl@0
     6
**
sl@0
     7
**    May you do good and not evil.
sl@0
     8
**    May you find forgiveness for yourself and forgive others.
sl@0
     9
**    May you share freely, never taking more than you give.
sl@0
    10
**
sl@0
    11
*************************************************************************
sl@0
    12
** This file contains the C functions that implement mutexes for pthreads
sl@0
    13
**
sl@0
    14
** $Id: mutex_unix.c,v 1.13 2008/07/16 12:33:24 drh Exp $
sl@0
    15
*/
sl@0
    16
#include "sqliteInt.h"
sl@0
    17
sl@0
    18
/*
sl@0
    19
** The code in this file is only used if we are compiling threadsafe
sl@0
    20
** under unix with pthreads.
sl@0
    21
**
sl@0
    22
** Note that this implementation requires a version of pthreads that
sl@0
    23
** supports recursive mutexes.
sl@0
    24
*/
sl@0
    25
#ifdef SQLITE_MUTEX_PTHREADS
sl@0
    26
sl@0
    27
#include <pthread.h>
sl@0
    28
sl@0
    29
sl@0
    30
/*
sl@0
    31
** Each recursive mutex is an instance of the following structure.
sl@0
    32
*/
sl@0
    33
struct sqlite3_mutex {
sl@0
    34
  pthread_mutex_t mutex;     /* Mutex controlling the lock */
sl@0
    35
  int id;                    /* Mutex type */
sl@0
    36
  int nRef;                  /* Number of entrances */
sl@0
    37
  pthread_t owner;           /* Thread that is within this mutex */
sl@0
    38
#ifdef SQLITE_DEBUG
sl@0
    39
  int trace;                 /* True to trace changes */
sl@0
    40
#endif
sl@0
    41
};
sl@0
    42
#ifdef SQLITE_DEBUG
sl@0
    43
#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 }
sl@0
    44
#else
sl@0
    45
#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0 }
sl@0
    46
#endif
sl@0
    47
sl@0
    48
/*
sl@0
    49
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
sl@0
    50
** intended for use only inside assert() statements.  On some platforms,
sl@0
    51
** there might be race conditions that can cause these routines to
sl@0
    52
** deliver incorrect results.  In particular, if pthread_equal() is
sl@0
    53
** not an atomic operation, then these routines might delivery
sl@0
    54
** incorrect results.  On most platforms, pthread_equal() is a 
sl@0
    55
** comparison of two integers and is therefore atomic.  But we are
sl@0
    56
** told that HPUX is not such a platform.  If so, then these routines
sl@0
    57
** will not always work correctly on HPUX.
sl@0
    58
**
sl@0
    59
** On those platforms where pthread_equal() is not atomic, SQLite
sl@0
    60
** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
sl@0
    61
** make sure no assert() statements are evaluated and hence these
sl@0
    62
** routines are never called.
sl@0
    63
*/
sl@0
    64
#ifndef NDEBUG
sl@0
    65
static int pthreadMutexHeld(sqlite3_mutex *p){
sl@0
    66
  return (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
sl@0
    67
}
sl@0
    68
static int pthreadMutexNotheld(sqlite3_mutex *p){
sl@0
    69
  return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
sl@0
    70
}
sl@0
    71
#endif
sl@0
    72
sl@0
    73
/*
sl@0
    74
** Initialize and deinitialize the mutex subsystem.
sl@0
    75
*/
sl@0
    76
static int pthreadMutexInit(void){ return SQLITE_OK; }
sl@0
    77
static int pthreadMutexEnd(void){ return SQLITE_OK; }
sl@0
    78
sl@0
    79
/*
sl@0
    80
** The sqlite3_mutex_alloc() routine allocates a new
sl@0
    81
** mutex and returns a pointer to it.  If it returns NULL
sl@0
    82
** that means that a mutex could not be allocated.  SQLite
sl@0
    83
** will unwind its stack and return an error.  The argument
sl@0
    84
** to sqlite3_mutex_alloc() is one of these integer constants:
sl@0
    85
**
sl@0
    86
** <ul>
sl@0
    87
** <li>  SQLITE_MUTEX_FAST
sl@0
    88
** <li>  SQLITE_MUTEX_RECURSIVE
sl@0
    89
** <li>  SQLITE_MUTEX_STATIC_MASTER
sl@0
    90
** <li>  SQLITE_MUTEX_STATIC_MEM
sl@0
    91
** <li>  SQLITE_MUTEX_STATIC_MEM2
sl@0
    92
** <li>  SQLITE_MUTEX_STATIC_PRNG
sl@0
    93
** <li>  SQLITE_MUTEX_STATIC_LRU
sl@0
    94
** </ul>
sl@0
    95
**
sl@0
    96
** The first two constants cause sqlite3_mutex_alloc() to create
sl@0
    97
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
sl@0
    98
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
sl@0
    99
** The mutex implementation does not need to make a distinction
sl@0
   100
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
sl@0
   101
** not want to.  But SQLite will only request a recursive mutex in
sl@0
   102
** cases where it really needs one.  If a faster non-recursive mutex
sl@0
   103
** implementation is available on the host platform, the mutex subsystem
sl@0
   104
** might return such a mutex in response to SQLITE_MUTEX_FAST.
sl@0
   105
**
sl@0
   106
** The other allowed parameters to sqlite3_mutex_alloc() each return
sl@0
   107
** a pointer to a static preexisting mutex.  Three static mutexes are
sl@0
   108
** used by the current version of SQLite.  Future versions of SQLite
sl@0
   109
** may add additional static mutexes.  Static mutexes are for internal
sl@0
   110
** use by SQLite only.  Applications that use SQLite mutexes should
sl@0
   111
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
sl@0
   112
** SQLITE_MUTEX_RECURSIVE.
sl@0
   113
**
sl@0
   114
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
sl@0
   115
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
sl@0
   116
** returns a different mutex on every call.  But for the static 
sl@0
   117
** mutex types, the same mutex is returned on every call that has
sl@0
   118
** the same type number.
sl@0
   119
*/
sl@0
   120
static sqlite3_mutex *pthreadMutexAlloc(int iType){
sl@0
   121
  static sqlite3_mutex staticMutexes[] = {
sl@0
   122
    SQLITE3_MUTEX_INITIALIZER,
sl@0
   123
    SQLITE3_MUTEX_INITIALIZER,
sl@0
   124
    SQLITE3_MUTEX_INITIALIZER,
sl@0
   125
    SQLITE3_MUTEX_INITIALIZER,
sl@0
   126
    SQLITE3_MUTEX_INITIALIZER,
sl@0
   127
    SQLITE3_MUTEX_INITIALIZER
sl@0
   128
  };
sl@0
   129
  sqlite3_mutex *p;
sl@0
   130
  switch( iType ){
sl@0
   131
    case SQLITE_MUTEX_RECURSIVE: {
sl@0
   132
      p = sqlite3MallocZero( sizeof(*p) );
sl@0
   133
      if( p ){
sl@0
   134
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
sl@0
   135
        /* If recursive mutexes are not available, we will have to
sl@0
   136
        ** build our own.  See below. */
sl@0
   137
        pthread_mutex_init(&p->mutex, 0);
sl@0
   138
#else
sl@0
   139
        /* Use a recursive mutex if it is available */
sl@0
   140
        pthread_mutexattr_t recursiveAttr;
sl@0
   141
        pthread_mutexattr_init(&recursiveAttr);
sl@0
   142
        pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
sl@0
   143
        pthread_mutex_init(&p->mutex, &recursiveAttr);
sl@0
   144
        pthread_mutexattr_destroy(&recursiveAttr);
sl@0
   145
#endif
sl@0
   146
        p->id = iType;
sl@0
   147
      }
sl@0
   148
      break;
sl@0
   149
    }
sl@0
   150
    case SQLITE_MUTEX_FAST: {
sl@0
   151
      p = sqlite3MallocZero( sizeof(*p) );
sl@0
   152
      if( p ){
sl@0
   153
        p->id = iType;
sl@0
   154
        pthread_mutex_init(&p->mutex, 0);
sl@0
   155
      }
sl@0
   156
      break;
sl@0
   157
    }
sl@0
   158
    default: {
sl@0
   159
      assert( iType-2 >= 0 );
sl@0
   160
      assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
sl@0
   161
      p = &staticMutexes[iType-2];
sl@0
   162
      p->id = iType;
sl@0
   163
      break;
sl@0
   164
    }
sl@0
   165
  }
sl@0
   166
  return p;
sl@0
   167
}
sl@0
   168
sl@0
   169
sl@0
   170
/*
sl@0
   171
** This routine deallocates a previously
sl@0
   172
** allocated mutex.  SQLite is careful to deallocate every
sl@0
   173
** mutex that it allocates.
sl@0
   174
*/
sl@0
   175
static void pthreadMutexFree(sqlite3_mutex *p){
sl@0
   176
  assert( p->nRef==0 );
sl@0
   177
  assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
sl@0
   178
  pthread_mutex_destroy(&p->mutex);
sl@0
   179
  sqlite3_free(p);
sl@0
   180
}
sl@0
   181
sl@0
   182
/*
sl@0
   183
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
sl@0
   184
** to enter a mutex.  If another thread is already within the mutex,
sl@0
   185
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
sl@0
   186
** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
sl@0
   187
** upon successful entry.  Mutexes created using SQLITE_MUTEX_RECURSIVE can
sl@0
   188
** be entered multiple times by the same thread.  In such cases the,
sl@0
   189
** mutex must be exited an equal number of times before another thread
sl@0
   190
** can enter.  If the same thread tries to enter any other kind of mutex
sl@0
   191
** more than once, the behavior is undefined.
sl@0
   192
*/
sl@0
   193
static void pthreadMutexEnter(sqlite3_mutex *p){
sl@0
   194
  assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
sl@0
   195
sl@0
   196
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
sl@0
   197
  /* If recursive mutexes are not available, then we have to grow
sl@0
   198
  ** our own.  This implementation assumes that pthread_equal()
sl@0
   199
  ** is atomic - that it cannot be deceived into thinking self
sl@0
   200
  ** and p->owner are equal if p->owner changes between two values
sl@0
   201
  ** that are not equal to self while the comparison is taking place.
sl@0
   202
  ** This implementation also assumes a coherent cache - that 
sl@0
   203
  ** separate processes cannot read different values from the same
sl@0
   204
  ** address at the same time.  If either of these two conditions
sl@0
   205
  ** are not met, then the mutexes will fail and problems will result.
sl@0
   206
  */
sl@0
   207
  {
sl@0
   208
    pthread_t self = pthread_self();
sl@0
   209
    if( p->nRef>0 && pthread_equal(p->owner, self) ){
sl@0
   210
      p->nRef++;
sl@0
   211
    }else{
sl@0
   212
      pthread_mutex_lock(&p->mutex);
sl@0
   213
      assert( p->nRef==0 );
sl@0
   214
      p->owner = self;
sl@0
   215
      p->nRef = 1;
sl@0
   216
    }
sl@0
   217
  }
sl@0
   218
#else
sl@0
   219
  /* Use the built-in recursive mutexes if they are available.
sl@0
   220
  */
sl@0
   221
  pthread_mutex_lock(&p->mutex);
sl@0
   222
  p->owner = pthread_self();
sl@0
   223
  p->nRef++;
sl@0
   224
#endif
sl@0
   225
sl@0
   226
#ifdef SQLITE_DEBUG
sl@0
   227
  if( p->trace ){
sl@0
   228
    printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
sl@0
   229
  }
sl@0
   230
#endif
sl@0
   231
}
sl@0
   232
static int pthreadMutexTry(sqlite3_mutex *p){
sl@0
   233
  int rc;
sl@0
   234
  assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
sl@0
   235
sl@0
   236
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
sl@0
   237
  /* If recursive mutexes are not available, then we have to grow
sl@0
   238
  ** our own.  This implementation assumes that pthread_equal()
sl@0
   239
  ** is atomic - that it cannot be deceived into thinking self
sl@0
   240
  ** and p->owner are equal if p->owner changes between two values
sl@0
   241
  ** that are not equal to self while the comparison is taking place.
sl@0
   242
  ** This implementation also assumes a coherent cache - that 
sl@0
   243
  ** separate processes cannot read different values from the same
sl@0
   244
  ** address at the same time.  If either of these two conditions
sl@0
   245
  ** are not met, then the mutexes will fail and problems will result.
sl@0
   246
  */
sl@0
   247
  {
sl@0
   248
    pthread_t self = pthread_self();
sl@0
   249
    if( p->nRef>0 && pthread_equal(p->owner, self) ){
sl@0
   250
      p->nRef++;
sl@0
   251
      rc = SQLITE_OK;
sl@0
   252
    }else if( pthread_mutex_trylock(&p->mutex)==0 ){
sl@0
   253
      assert( p->nRef==0 );
sl@0
   254
      p->owner = self;
sl@0
   255
      p->nRef = 1;
sl@0
   256
      rc = SQLITE_OK;
sl@0
   257
    }else{
sl@0
   258
      rc = SQLITE_BUSY;
sl@0
   259
    }
sl@0
   260
  }
sl@0
   261
#else
sl@0
   262
  /* Use the built-in recursive mutexes if they are available.
sl@0
   263
  */
sl@0
   264
  if( pthread_mutex_trylock(&p->mutex)==0 ){
sl@0
   265
    p->owner = pthread_self();
sl@0
   266
    p->nRef++;
sl@0
   267
    rc = SQLITE_OK;
sl@0
   268
  }else{
sl@0
   269
    rc = SQLITE_BUSY;
sl@0
   270
  }
sl@0
   271
#endif
sl@0
   272
sl@0
   273
#ifdef SQLITE_DEBUG
sl@0
   274
  if( rc==SQLITE_OK && p->trace ){
sl@0
   275
    printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
sl@0
   276
  }
sl@0
   277
#endif
sl@0
   278
  return rc;
sl@0
   279
}
sl@0
   280
sl@0
   281
/*
sl@0
   282
** The sqlite3_mutex_leave() routine exits a mutex that was
sl@0
   283
** previously entered by the same thread.  The behavior
sl@0
   284
** is undefined if the mutex is not currently entered or
sl@0
   285
** is not currently allocated.  SQLite will never do either.
sl@0
   286
*/
sl@0
   287
static void pthreadMutexLeave(sqlite3_mutex *p){
sl@0
   288
  assert( pthreadMutexHeld(p) );
sl@0
   289
  p->nRef--;
sl@0
   290
  assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
sl@0
   291
sl@0
   292
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
sl@0
   293
  if( p->nRef==0 ){
sl@0
   294
    pthread_mutex_unlock(&p->mutex);
sl@0
   295
  }
sl@0
   296
#else
sl@0
   297
  pthread_mutex_unlock(&p->mutex);
sl@0
   298
#endif
sl@0
   299
sl@0
   300
#ifdef SQLITE_DEBUG
sl@0
   301
  if( p->trace ){
sl@0
   302
    printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
sl@0
   303
  }
sl@0
   304
#endif
sl@0
   305
}
sl@0
   306
sl@0
   307
sqlite3_mutex_methods *sqlite3DefaultMutex(void){
sl@0
   308
  static sqlite3_mutex_methods sMutex = {
sl@0
   309
    pthreadMutexInit,
sl@0
   310
    pthreadMutexEnd,
sl@0
   311
    pthreadMutexAlloc,
sl@0
   312
    pthreadMutexFree,
sl@0
   313
    pthreadMutexEnter,
sl@0
   314
    pthreadMutexTry,
sl@0
   315
    pthreadMutexLeave,
sl@0
   316
#ifdef SQLITE_DEBUG
sl@0
   317
    pthreadMutexHeld,
sl@0
   318
    pthreadMutexNotheld
sl@0
   319
#endif
sl@0
   320
  };
sl@0
   321
sl@0
   322
  return &sMutex;
sl@0
   323
}
sl@0
   324
sl@0
   325
#endif /* SQLITE_MUTEX_PTHREAD */