sl@0
|
1 |
/*
|
sl@0
|
2 |
** 2007 August 28
|
sl@0
|
3 |
**
|
sl@0
|
4 |
** The author disclaims copyright to this source code. In place of
|
sl@0
|
5 |
** a legal notice, here is a blessing:
|
sl@0
|
6 |
**
|
sl@0
|
7 |
** May you do good and not evil.
|
sl@0
|
8 |
** May you find forgiveness for yourself and forgive others.
|
sl@0
|
9 |
** May you share freely, never taking more than you give.
|
sl@0
|
10 |
**
|
sl@0
|
11 |
*************************************************************************
|
sl@0
|
12 |
** This file contains the C functions that implement mutexes for pthreads
|
sl@0
|
13 |
**
|
sl@0
|
14 |
** $Id: mutex_unix.c,v 1.13 2008/07/16 12:33:24 drh Exp $
|
sl@0
|
15 |
*/
|
sl@0
|
16 |
#include "sqliteInt.h"
|
sl@0
|
17 |
|
sl@0
|
18 |
/*
|
sl@0
|
19 |
** The code in this file is only used if we are compiling threadsafe
|
sl@0
|
20 |
** under unix with pthreads.
|
sl@0
|
21 |
**
|
sl@0
|
22 |
** Note that this implementation requires a version of pthreads that
|
sl@0
|
23 |
** supports recursive mutexes.
|
sl@0
|
24 |
*/
|
sl@0
|
25 |
#ifdef SQLITE_MUTEX_PTHREADS
|
sl@0
|
26 |
|
sl@0
|
27 |
#include <pthread.h>
|
sl@0
|
28 |
|
sl@0
|
29 |
|
sl@0
|
30 |
/*
|
sl@0
|
31 |
** Each recursive mutex is an instance of the following structure.
|
sl@0
|
32 |
*/
|
sl@0
|
33 |
struct sqlite3_mutex {
|
sl@0
|
34 |
pthread_mutex_t mutex; /* Mutex controlling the lock */
|
sl@0
|
35 |
int id; /* Mutex type */
|
sl@0
|
36 |
int nRef; /* Number of entrances */
|
sl@0
|
37 |
pthread_t owner; /* Thread that is within this mutex */
|
sl@0
|
38 |
#ifdef SQLITE_DEBUG
|
sl@0
|
39 |
int trace; /* True to trace changes */
|
sl@0
|
40 |
#endif
|
sl@0
|
41 |
};
|
sl@0
|
42 |
#ifdef SQLITE_DEBUG
|
sl@0
|
43 |
#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 }
|
sl@0
|
44 |
#else
|
sl@0
|
45 |
#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0 }
|
sl@0
|
46 |
#endif
|
sl@0
|
47 |
|
sl@0
|
48 |
/*
|
sl@0
|
49 |
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
|
sl@0
|
50 |
** intended for use only inside assert() statements. On some platforms,
|
sl@0
|
51 |
** there might be race conditions that can cause these routines to
|
sl@0
|
52 |
** deliver incorrect results. In particular, if pthread_equal() is
|
sl@0
|
53 |
** not an atomic operation, then these routines might delivery
|
sl@0
|
54 |
** incorrect results. On most platforms, pthread_equal() is a
|
sl@0
|
55 |
** comparison of two integers and is therefore atomic. But we are
|
sl@0
|
56 |
** told that HPUX is not such a platform. If so, then these routines
|
sl@0
|
57 |
** will not always work correctly on HPUX.
|
sl@0
|
58 |
**
|
sl@0
|
59 |
** On those platforms where pthread_equal() is not atomic, SQLite
|
sl@0
|
60 |
** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
|
sl@0
|
61 |
** make sure no assert() statements are evaluated and hence these
|
sl@0
|
62 |
** routines are never called.
|
sl@0
|
63 |
*/
|
sl@0
|
64 |
#ifndef NDEBUG
|
sl@0
|
65 |
static int pthreadMutexHeld(sqlite3_mutex *p){
|
sl@0
|
66 |
return (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
|
sl@0
|
67 |
}
|
sl@0
|
68 |
static int pthreadMutexNotheld(sqlite3_mutex *p){
|
sl@0
|
69 |
return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
|
sl@0
|
70 |
}
|
sl@0
|
71 |
#endif
|
sl@0
|
72 |
|
sl@0
|
73 |
/*
|
sl@0
|
74 |
** Initialize and deinitialize the mutex subsystem.
|
sl@0
|
75 |
*/
|
sl@0
|
76 |
static int pthreadMutexInit(void){ return SQLITE_OK; }
|
sl@0
|
77 |
static int pthreadMutexEnd(void){ return SQLITE_OK; }
|
sl@0
|
78 |
|
sl@0
|
79 |
/*
|
sl@0
|
80 |
** The sqlite3_mutex_alloc() routine allocates a new
|
sl@0
|
81 |
** mutex and returns a pointer to it. If it returns NULL
|
sl@0
|
82 |
** that means that a mutex could not be allocated. SQLite
|
sl@0
|
83 |
** will unwind its stack and return an error. The argument
|
sl@0
|
84 |
** to sqlite3_mutex_alloc() is one of these integer constants:
|
sl@0
|
85 |
**
|
sl@0
|
86 |
** <ul>
|
sl@0
|
87 |
** <li> SQLITE_MUTEX_FAST
|
sl@0
|
88 |
** <li> SQLITE_MUTEX_RECURSIVE
|
sl@0
|
89 |
** <li> SQLITE_MUTEX_STATIC_MASTER
|
sl@0
|
90 |
** <li> SQLITE_MUTEX_STATIC_MEM
|
sl@0
|
91 |
** <li> SQLITE_MUTEX_STATIC_MEM2
|
sl@0
|
92 |
** <li> SQLITE_MUTEX_STATIC_PRNG
|
sl@0
|
93 |
** <li> SQLITE_MUTEX_STATIC_LRU
|
sl@0
|
94 |
** </ul>
|
sl@0
|
95 |
**
|
sl@0
|
96 |
** The first two constants cause sqlite3_mutex_alloc() to create
|
sl@0
|
97 |
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
|
sl@0
|
98 |
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
|
sl@0
|
99 |
** The mutex implementation does not need to make a distinction
|
sl@0
|
100 |
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
|
sl@0
|
101 |
** not want to. But SQLite will only request a recursive mutex in
|
sl@0
|
102 |
** cases where it really needs one. If a faster non-recursive mutex
|
sl@0
|
103 |
** implementation is available on the host platform, the mutex subsystem
|
sl@0
|
104 |
** might return such a mutex in response to SQLITE_MUTEX_FAST.
|
sl@0
|
105 |
**
|
sl@0
|
106 |
** The other allowed parameters to sqlite3_mutex_alloc() each return
|
sl@0
|
107 |
** a pointer to a static preexisting mutex. Three static mutexes are
|
sl@0
|
108 |
** used by the current version of SQLite. Future versions of SQLite
|
sl@0
|
109 |
** may add additional static mutexes. Static mutexes are for internal
|
sl@0
|
110 |
** use by SQLite only. Applications that use SQLite mutexes should
|
sl@0
|
111 |
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
|
sl@0
|
112 |
** SQLITE_MUTEX_RECURSIVE.
|
sl@0
|
113 |
**
|
sl@0
|
114 |
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
|
sl@0
|
115 |
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
|
sl@0
|
116 |
** returns a different mutex on every call. But for the static
|
sl@0
|
117 |
** mutex types, the same mutex is returned on every call that has
|
sl@0
|
118 |
** the same type number.
|
sl@0
|
119 |
*/
|
sl@0
|
120 |
static sqlite3_mutex *pthreadMutexAlloc(int iType){
|
sl@0
|
121 |
static sqlite3_mutex staticMutexes[] = {
|
sl@0
|
122 |
SQLITE3_MUTEX_INITIALIZER,
|
sl@0
|
123 |
SQLITE3_MUTEX_INITIALIZER,
|
sl@0
|
124 |
SQLITE3_MUTEX_INITIALIZER,
|
sl@0
|
125 |
SQLITE3_MUTEX_INITIALIZER,
|
sl@0
|
126 |
SQLITE3_MUTEX_INITIALIZER,
|
sl@0
|
127 |
SQLITE3_MUTEX_INITIALIZER
|
sl@0
|
128 |
};
|
sl@0
|
129 |
sqlite3_mutex *p;
|
sl@0
|
130 |
switch( iType ){
|
sl@0
|
131 |
case SQLITE_MUTEX_RECURSIVE: {
|
sl@0
|
132 |
p = sqlite3MallocZero( sizeof(*p) );
|
sl@0
|
133 |
if( p ){
|
sl@0
|
134 |
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
|
sl@0
|
135 |
/* If recursive mutexes are not available, we will have to
|
sl@0
|
136 |
** build our own. See below. */
|
sl@0
|
137 |
pthread_mutex_init(&p->mutex, 0);
|
sl@0
|
138 |
#else
|
sl@0
|
139 |
/* Use a recursive mutex if it is available */
|
sl@0
|
140 |
pthread_mutexattr_t recursiveAttr;
|
sl@0
|
141 |
pthread_mutexattr_init(&recursiveAttr);
|
sl@0
|
142 |
pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
|
sl@0
|
143 |
pthread_mutex_init(&p->mutex, &recursiveAttr);
|
sl@0
|
144 |
pthread_mutexattr_destroy(&recursiveAttr);
|
sl@0
|
145 |
#endif
|
sl@0
|
146 |
p->id = iType;
|
sl@0
|
147 |
}
|
sl@0
|
148 |
break;
|
sl@0
|
149 |
}
|
sl@0
|
150 |
case SQLITE_MUTEX_FAST: {
|
sl@0
|
151 |
p = sqlite3MallocZero( sizeof(*p) );
|
sl@0
|
152 |
if( p ){
|
sl@0
|
153 |
p->id = iType;
|
sl@0
|
154 |
pthread_mutex_init(&p->mutex, 0);
|
sl@0
|
155 |
}
|
sl@0
|
156 |
break;
|
sl@0
|
157 |
}
|
sl@0
|
158 |
default: {
|
sl@0
|
159 |
assert( iType-2 >= 0 );
|
sl@0
|
160 |
assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
|
sl@0
|
161 |
p = &staticMutexes[iType-2];
|
sl@0
|
162 |
p->id = iType;
|
sl@0
|
163 |
break;
|
sl@0
|
164 |
}
|
sl@0
|
165 |
}
|
sl@0
|
166 |
return p;
|
sl@0
|
167 |
}
|
sl@0
|
168 |
|
sl@0
|
169 |
|
sl@0
|
170 |
/*
|
sl@0
|
171 |
** This routine deallocates a previously
|
sl@0
|
172 |
** allocated mutex. SQLite is careful to deallocate every
|
sl@0
|
173 |
** mutex that it allocates.
|
sl@0
|
174 |
*/
|
sl@0
|
175 |
static void pthreadMutexFree(sqlite3_mutex *p){
|
sl@0
|
176 |
assert( p->nRef==0 );
|
sl@0
|
177 |
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
|
sl@0
|
178 |
pthread_mutex_destroy(&p->mutex);
|
sl@0
|
179 |
sqlite3_free(p);
|
sl@0
|
180 |
}
|
sl@0
|
181 |
|
sl@0
|
182 |
/*
|
sl@0
|
183 |
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
|
sl@0
|
184 |
** to enter a mutex. If another thread is already within the mutex,
|
sl@0
|
185 |
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
|
sl@0
|
186 |
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
|
sl@0
|
187 |
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
|
sl@0
|
188 |
** be entered multiple times by the same thread. In such cases the,
|
sl@0
|
189 |
** mutex must be exited an equal number of times before another thread
|
sl@0
|
190 |
** can enter. If the same thread tries to enter any other kind of mutex
|
sl@0
|
191 |
** more than once, the behavior is undefined.
|
sl@0
|
192 |
*/
|
sl@0
|
193 |
static void pthreadMutexEnter(sqlite3_mutex *p){
|
sl@0
|
194 |
assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
|
sl@0
|
195 |
|
sl@0
|
196 |
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
|
sl@0
|
197 |
/* If recursive mutexes are not available, then we have to grow
|
sl@0
|
198 |
** our own. This implementation assumes that pthread_equal()
|
sl@0
|
199 |
** is atomic - that it cannot be deceived into thinking self
|
sl@0
|
200 |
** and p->owner are equal if p->owner changes between two values
|
sl@0
|
201 |
** that are not equal to self while the comparison is taking place.
|
sl@0
|
202 |
** This implementation also assumes a coherent cache - that
|
sl@0
|
203 |
** separate processes cannot read different values from the same
|
sl@0
|
204 |
** address at the same time. If either of these two conditions
|
sl@0
|
205 |
** are not met, then the mutexes will fail and problems will result.
|
sl@0
|
206 |
*/
|
sl@0
|
207 |
{
|
sl@0
|
208 |
pthread_t self = pthread_self();
|
sl@0
|
209 |
if( p->nRef>0 && pthread_equal(p->owner, self) ){
|
sl@0
|
210 |
p->nRef++;
|
sl@0
|
211 |
}else{
|
sl@0
|
212 |
pthread_mutex_lock(&p->mutex);
|
sl@0
|
213 |
assert( p->nRef==0 );
|
sl@0
|
214 |
p->owner = self;
|
sl@0
|
215 |
p->nRef = 1;
|
sl@0
|
216 |
}
|
sl@0
|
217 |
}
|
sl@0
|
218 |
#else
|
sl@0
|
219 |
/* Use the built-in recursive mutexes if they are available.
|
sl@0
|
220 |
*/
|
sl@0
|
221 |
pthread_mutex_lock(&p->mutex);
|
sl@0
|
222 |
p->owner = pthread_self();
|
sl@0
|
223 |
p->nRef++;
|
sl@0
|
224 |
#endif
|
sl@0
|
225 |
|
sl@0
|
226 |
#ifdef SQLITE_DEBUG
|
sl@0
|
227 |
if( p->trace ){
|
sl@0
|
228 |
printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
|
sl@0
|
229 |
}
|
sl@0
|
230 |
#endif
|
sl@0
|
231 |
}
|
sl@0
|
232 |
static int pthreadMutexTry(sqlite3_mutex *p){
|
sl@0
|
233 |
int rc;
|
sl@0
|
234 |
assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
|
sl@0
|
235 |
|
sl@0
|
236 |
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
|
sl@0
|
237 |
/* If recursive mutexes are not available, then we have to grow
|
sl@0
|
238 |
** our own. This implementation assumes that pthread_equal()
|
sl@0
|
239 |
** is atomic - that it cannot be deceived into thinking self
|
sl@0
|
240 |
** and p->owner are equal if p->owner changes between two values
|
sl@0
|
241 |
** that are not equal to self while the comparison is taking place.
|
sl@0
|
242 |
** This implementation also assumes a coherent cache - that
|
sl@0
|
243 |
** separate processes cannot read different values from the same
|
sl@0
|
244 |
** address at the same time. If either of these two conditions
|
sl@0
|
245 |
** are not met, then the mutexes will fail and problems will result.
|
sl@0
|
246 |
*/
|
sl@0
|
247 |
{
|
sl@0
|
248 |
pthread_t self = pthread_self();
|
sl@0
|
249 |
if( p->nRef>0 && pthread_equal(p->owner, self) ){
|
sl@0
|
250 |
p->nRef++;
|
sl@0
|
251 |
rc = SQLITE_OK;
|
sl@0
|
252 |
}else if( pthread_mutex_trylock(&p->mutex)==0 ){
|
sl@0
|
253 |
assert( p->nRef==0 );
|
sl@0
|
254 |
p->owner = self;
|
sl@0
|
255 |
p->nRef = 1;
|
sl@0
|
256 |
rc = SQLITE_OK;
|
sl@0
|
257 |
}else{
|
sl@0
|
258 |
rc = SQLITE_BUSY;
|
sl@0
|
259 |
}
|
sl@0
|
260 |
}
|
sl@0
|
261 |
#else
|
sl@0
|
262 |
/* Use the built-in recursive mutexes if they are available.
|
sl@0
|
263 |
*/
|
sl@0
|
264 |
if( pthread_mutex_trylock(&p->mutex)==0 ){
|
sl@0
|
265 |
p->owner = pthread_self();
|
sl@0
|
266 |
p->nRef++;
|
sl@0
|
267 |
rc = SQLITE_OK;
|
sl@0
|
268 |
}else{
|
sl@0
|
269 |
rc = SQLITE_BUSY;
|
sl@0
|
270 |
}
|
sl@0
|
271 |
#endif
|
sl@0
|
272 |
|
sl@0
|
273 |
#ifdef SQLITE_DEBUG
|
sl@0
|
274 |
if( rc==SQLITE_OK && p->trace ){
|
sl@0
|
275 |
printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
|
sl@0
|
276 |
}
|
sl@0
|
277 |
#endif
|
sl@0
|
278 |
return rc;
|
sl@0
|
279 |
}
|
sl@0
|
280 |
|
sl@0
|
281 |
/*
|
sl@0
|
282 |
** The sqlite3_mutex_leave() routine exits a mutex that was
|
sl@0
|
283 |
** previously entered by the same thread. The behavior
|
sl@0
|
284 |
** is undefined if the mutex is not currently entered or
|
sl@0
|
285 |
** is not currently allocated. SQLite will never do either.
|
sl@0
|
286 |
*/
|
sl@0
|
287 |
static void pthreadMutexLeave(sqlite3_mutex *p){
|
sl@0
|
288 |
assert( pthreadMutexHeld(p) );
|
sl@0
|
289 |
p->nRef--;
|
sl@0
|
290 |
assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
|
sl@0
|
291 |
|
sl@0
|
292 |
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
|
sl@0
|
293 |
if( p->nRef==0 ){
|
sl@0
|
294 |
pthread_mutex_unlock(&p->mutex);
|
sl@0
|
295 |
}
|
sl@0
|
296 |
#else
|
sl@0
|
297 |
pthread_mutex_unlock(&p->mutex);
|
sl@0
|
298 |
#endif
|
sl@0
|
299 |
|
sl@0
|
300 |
#ifdef SQLITE_DEBUG
|
sl@0
|
301 |
if( p->trace ){
|
sl@0
|
302 |
printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
|
sl@0
|
303 |
}
|
sl@0
|
304 |
#endif
|
sl@0
|
305 |
}
|
sl@0
|
306 |
|
sl@0
|
307 |
sqlite3_mutex_methods *sqlite3DefaultMutex(void){
|
sl@0
|
308 |
static sqlite3_mutex_methods sMutex = {
|
sl@0
|
309 |
pthreadMutexInit,
|
sl@0
|
310 |
pthreadMutexEnd,
|
sl@0
|
311 |
pthreadMutexAlloc,
|
sl@0
|
312 |
pthreadMutexFree,
|
sl@0
|
313 |
pthreadMutexEnter,
|
sl@0
|
314 |
pthreadMutexTry,
|
sl@0
|
315 |
pthreadMutexLeave,
|
sl@0
|
316 |
#ifdef SQLITE_DEBUG
|
sl@0
|
317 |
pthreadMutexHeld,
|
sl@0
|
318 |
pthreadMutexNotheld
|
sl@0
|
319 |
#endif
|
sl@0
|
320 |
};
|
sl@0
|
321 |
|
sl@0
|
322 |
return &sMutex;
|
sl@0
|
323 |
}
|
sl@0
|
324 |
|
sl@0
|
325 |
#endif /* SQLITE_MUTEX_PTHREAD */
|