sl@0: /* sl@0: ** 2007 August 28 sl@0: ** sl@0: ** The author disclaims copyright to this source code. In place of sl@0: ** a legal notice, here is a blessing: sl@0: ** sl@0: ** May you do good and not evil. sl@0: ** May you find forgiveness for yourself and forgive others. sl@0: ** May you share freely, never taking more than you give. sl@0: ** sl@0: ************************************************************************* sl@0: ** This file contains the C functions that implement mutexes for pthreads sl@0: ** sl@0: ** $Id: mutex_unix.c,v 1.13 2008/07/16 12:33:24 drh Exp $ sl@0: */ sl@0: #include "sqliteInt.h" sl@0: sl@0: /* sl@0: ** The code in this file is only used if we are compiling threadsafe sl@0: ** under unix with pthreads. sl@0: ** sl@0: ** Note that this implementation requires a version of pthreads that sl@0: ** supports recursive mutexes. sl@0: */ sl@0: #ifdef SQLITE_MUTEX_PTHREADS sl@0: sl@0: #include sl@0: sl@0: sl@0: /* sl@0: ** Each recursive mutex is an instance of the following structure. sl@0: */ sl@0: struct sqlite3_mutex { sl@0: pthread_mutex_t mutex; /* Mutex controlling the lock */ sl@0: int id; /* Mutex type */ sl@0: int nRef; /* Number of entrances */ sl@0: pthread_t owner; /* Thread that is within this mutex */ sl@0: #ifdef SQLITE_DEBUG sl@0: int trace; /* True to trace changes */ sl@0: #endif sl@0: }; sl@0: #ifdef SQLITE_DEBUG sl@0: #define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 } sl@0: #else sl@0: #define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0 } sl@0: #endif sl@0: sl@0: /* sl@0: ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are sl@0: ** intended for use only inside assert() statements. On some platforms, sl@0: ** there might be race conditions that can cause these routines to sl@0: ** deliver incorrect results. In particular, if pthread_equal() is sl@0: ** not an atomic operation, then these routines might delivery sl@0: ** incorrect results. On most platforms, pthread_equal() is a sl@0: ** comparison of two integers and is therefore atomic. But we are sl@0: ** told that HPUX is not such a platform. If so, then these routines sl@0: ** will not always work correctly on HPUX. sl@0: ** sl@0: ** On those platforms where pthread_equal() is not atomic, SQLite sl@0: ** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to sl@0: ** make sure no assert() statements are evaluated and hence these sl@0: ** routines are never called. sl@0: */ sl@0: #ifndef NDEBUG sl@0: static int pthreadMutexHeld(sqlite3_mutex *p){ sl@0: return (p->nRef!=0 && pthread_equal(p->owner, pthread_self())); sl@0: } sl@0: static int pthreadMutexNotheld(sqlite3_mutex *p){ sl@0: return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0; sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** Initialize and deinitialize the mutex subsystem. sl@0: */ sl@0: static int pthreadMutexInit(void){ return SQLITE_OK; } sl@0: static int pthreadMutexEnd(void){ return SQLITE_OK; } sl@0: sl@0: /* sl@0: ** The sqlite3_mutex_alloc() routine allocates a new sl@0: ** mutex and returns a pointer to it. If it returns NULL sl@0: ** that means that a mutex could not be allocated. SQLite sl@0: ** will unwind its stack and return an error. The argument sl@0: ** to sqlite3_mutex_alloc() is one of these integer constants: sl@0: ** sl@0: ** sl@0: ** sl@0: ** The first two constants cause sqlite3_mutex_alloc() to create sl@0: ** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE sl@0: ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. sl@0: ** The mutex implementation does not need to make a distinction sl@0: ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does sl@0: ** not want to. But SQLite will only request a recursive mutex in sl@0: ** cases where it really needs one. If a faster non-recursive mutex sl@0: ** implementation is available on the host platform, the mutex subsystem sl@0: ** might return such a mutex in response to SQLITE_MUTEX_FAST. sl@0: ** sl@0: ** The other allowed parameters to sqlite3_mutex_alloc() each return sl@0: ** a pointer to a static preexisting mutex. Three static mutexes are sl@0: ** used by the current version of SQLite. Future versions of SQLite sl@0: ** may add additional static mutexes. Static mutexes are for internal sl@0: ** use by SQLite only. Applications that use SQLite mutexes should sl@0: ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or sl@0: ** SQLITE_MUTEX_RECURSIVE. sl@0: ** sl@0: ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST sl@0: ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() sl@0: ** returns a different mutex on every call. But for the static sl@0: ** mutex types, the same mutex is returned on every call that has sl@0: ** the same type number. sl@0: */ sl@0: static sqlite3_mutex *pthreadMutexAlloc(int iType){ sl@0: static sqlite3_mutex staticMutexes[] = { sl@0: SQLITE3_MUTEX_INITIALIZER, sl@0: SQLITE3_MUTEX_INITIALIZER, sl@0: SQLITE3_MUTEX_INITIALIZER, sl@0: SQLITE3_MUTEX_INITIALIZER, sl@0: SQLITE3_MUTEX_INITIALIZER, sl@0: SQLITE3_MUTEX_INITIALIZER sl@0: }; sl@0: sqlite3_mutex *p; sl@0: switch( iType ){ sl@0: case SQLITE_MUTEX_RECURSIVE: { sl@0: p = sqlite3MallocZero( sizeof(*p) ); sl@0: if( p ){ sl@0: #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX sl@0: /* If recursive mutexes are not available, we will have to sl@0: ** build our own. See below. */ sl@0: pthread_mutex_init(&p->mutex, 0); sl@0: #else sl@0: /* Use a recursive mutex if it is available */ sl@0: pthread_mutexattr_t recursiveAttr; sl@0: pthread_mutexattr_init(&recursiveAttr); sl@0: pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE); sl@0: pthread_mutex_init(&p->mutex, &recursiveAttr); sl@0: pthread_mutexattr_destroy(&recursiveAttr); sl@0: #endif sl@0: p->id = iType; sl@0: } sl@0: break; sl@0: } sl@0: case SQLITE_MUTEX_FAST: { sl@0: p = sqlite3MallocZero( sizeof(*p) ); sl@0: if( p ){ sl@0: p->id = iType; sl@0: pthread_mutex_init(&p->mutex, 0); sl@0: } sl@0: break; sl@0: } sl@0: default: { sl@0: assert( iType-2 >= 0 ); sl@0: assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) ); sl@0: p = &staticMutexes[iType-2]; sl@0: p->id = iType; sl@0: break; sl@0: } sl@0: } sl@0: return p; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** This routine deallocates a previously sl@0: ** allocated mutex. SQLite is careful to deallocate every sl@0: ** mutex that it allocates. sl@0: */ sl@0: static void pthreadMutexFree(sqlite3_mutex *p){ sl@0: assert( p->nRef==0 ); sl@0: assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ); sl@0: pthread_mutex_destroy(&p->mutex); sl@0: sqlite3_free(p); sl@0: } sl@0: sl@0: /* sl@0: ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt sl@0: ** to enter a mutex. If another thread is already within the mutex, sl@0: ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return sl@0: ** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK sl@0: ** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can sl@0: ** be entered multiple times by the same thread. In such cases the, sl@0: ** mutex must be exited an equal number of times before another thread sl@0: ** can enter. If the same thread tries to enter any other kind of mutex sl@0: ** more than once, the behavior is undefined. sl@0: */ sl@0: static void pthreadMutexEnter(sqlite3_mutex *p){ sl@0: assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) ); sl@0: sl@0: #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX sl@0: /* If recursive mutexes are not available, then we have to grow sl@0: ** our own. This implementation assumes that pthread_equal() sl@0: ** is atomic - that it cannot be deceived into thinking self sl@0: ** and p->owner are equal if p->owner changes between two values sl@0: ** that are not equal to self while the comparison is taking place. sl@0: ** This implementation also assumes a coherent cache - that sl@0: ** separate processes cannot read different values from the same sl@0: ** address at the same time. If either of these two conditions sl@0: ** are not met, then the mutexes will fail and problems will result. sl@0: */ sl@0: { sl@0: pthread_t self = pthread_self(); sl@0: if( p->nRef>0 && pthread_equal(p->owner, self) ){ sl@0: p->nRef++; sl@0: }else{ sl@0: pthread_mutex_lock(&p->mutex); sl@0: assert( p->nRef==0 ); sl@0: p->owner = self; sl@0: p->nRef = 1; sl@0: } sl@0: } sl@0: #else sl@0: /* Use the built-in recursive mutexes if they are available. sl@0: */ sl@0: pthread_mutex_lock(&p->mutex); sl@0: p->owner = pthread_self(); sl@0: p->nRef++; sl@0: #endif sl@0: sl@0: #ifdef SQLITE_DEBUG sl@0: if( p->trace ){ sl@0: printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); sl@0: } sl@0: #endif sl@0: } sl@0: static int pthreadMutexTry(sqlite3_mutex *p){ sl@0: int rc; sl@0: assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) ); sl@0: sl@0: #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX sl@0: /* If recursive mutexes are not available, then we have to grow sl@0: ** our own. This implementation assumes that pthread_equal() sl@0: ** is atomic - that it cannot be deceived into thinking self sl@0: ** and p->owner are equal if p->owner changes between two values sl@0: ** that are not equal to self while the comparison is taking place. sl@0: ** This implementation also assumes a coherent cache - that sl@0: ** separate processes cannot read different values from the same sl@0: ** address at the same time. If either of these two conditions sl@0: ** are not met, then the mutexes will fail and problems will result. sl@0: */ sl@0: { sl@0: pthread_t self = pthread_self(); sl@0: if( p->nRef>0 && pthread_equal(p->owner, self) ){ sl@0: p->nRef++; sl@0: rc = SQLITE_OK; sl@0: }else if( pthread_mutex_trylock(&p->mutex)==0 ){ sl@0: assert( p->nRef==0 ); sl@0: p->owner = self; sl@0: p->nRef = 1; sl@0: rc = SQLITE_OK; sl@0: }else{ sl@0: rc = SQLITE_BUSY; sl@0: } sl@0: } sl@0: #else sl@0: /* Use the built-in recursive mutexes if they are available. sl@0: */ sl@0: if( pthread_mutex_trylock(&p->mutex)==0 ){ sl@0: p->owner = pthread_self(); sl@0: p->nRef++; sl@0: rc = SQLITE_OK; sl@0: }else{ sl@0: rc = SQLITE_BUSY; sl@0: } sl@0: #endif sl@0: sl@0: #ifdef SQLITE_DEBUG sl@0: if( rc==SQLITE_OK && p->trace ){ sl@0: printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); sl@0: } sl@0: #endif sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** The sqlite3_mutex_leave() routine exits a mutex that was sl@0: ** previously entered by the same thread. The behavior sl@0: ** is undefined if the mutex is not currently entered or sl@0: ** is not currently allocated. SQLite will never do either. sl@0: */ sl@0: static void pthreadMutexLeave(sqlite3_mutex *p){ sl@0: assert( pthreadMutexHeld(p) ); sl@0: p->nRef--; sl@0: assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE ); sl@0: sl@0: #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX sl@0: if( p->nRef==0 ){ sl@0: pthread_mutex_unlock(&p->mutex); sl@0: } sl@0: #else sl@0: pthread_mutex_unlock(&p->mutex); sl@0: #endif sl@0: sl@0: #ifdef SQLITE_DEBUG sl@0: if( p->trace ){ sl@0: printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); sl@0: } sl@0: #endif sl@0: } sl@0: sl@0: sqlite3_mutex_methods *sqlite3DefaultMutex(void){ sl@0: static sqlite3_mutex_methods sMutex = { sl@0: pthreadMutexInit, sl@0: pthreadMutexEnd, sl@0: pthreadMutexAlloc, sl@0: pthreadMutexFree, sl@0: pthreadMutexEnter, sl@0: pthreadMutexTry, sl@0: pthreadMutexLeave, sl@0: #ifdef SQLITE_DEBUG sl@0: pthreadMutexHeld, sl@0: pthreadMutexNotheld sl@0: #endif sl@0: }; sl@0: sl@0: return &sMutex; sl@0: } sl@0: sl@0: #endif /* SQLITE_MUTEX_PTHREAD */