os/persistentdata/persistentstorage/sqlite3api/SQLite/mutex_unix.c
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/persistentdata/persistentstorage/sqlite3api/SQLite/mutex_unix.c	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,325 @@
     1.4 +/*
     1.5 +** 2007 August 28
     1.6 +**
     1.7 +** The author disclaims copyright to this source code.  In place of
     1.8 +** a legal notice, here is a blessing:
     1.9 +**
    1.10 +**    May you do good and not evil.
    1.11 +**    May you find forgiveness for yourself and forgive others.
    1.12 +**    May you share freely, never taking more than you give.
    1.13 +**
    1.14 +*************************************************************************
    1.15 +** This file contains the C functions that implement mutexes for pthreads
    1.16 +**
    1.17 +** $Id: mutex_unix.c,v 1.13 2008/07/16 12:33:24 drh Exp $
    1.18 +*/
    1.19 +#include "sqliteInt.h"
    1.20 +
    1.21 +/*
    1.22 +** The code in this file is only used if we are compiling threadsafe
    1.23 +** under unix with pthreads.
    1.24 +**
    1.25 +** Note that this implementation requires a version of pthreads that
    1.26 +** supports recursive mutexes.
    1.27 +*/
    1.28 +#ifdef SQLITE_MUTEX_PTHREADS
    1.29 +
    1.30 +#include <pthread.h>
    1.31 +
    1.32 +
    1.33 +/*
    1.34 +** Each recursive mutex is an instance of the following structure.
    1.35 +*/
    1.36 +struct sqlite3_mutex {
    1.37 +  pthread_mutex_t mutex;     /* Mutex controlling the lock */
    1.38 +  int id;                    /* Mutex type */
    1.39 +  int nRef;                  /* Number of entrances */
    1.40 +  pthread_t owner;           /* Thread that is within this mutex */
    1.41 +#ifdef SQLITE_DEBUG
    1.42 +  int trace;                 /* True to trace changes */
    1.43 +#endif
    1.44 +};
    1.45 +#ifdef SQLITE_DEBUG
    1.46 +#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 }
    1.47 +#else
    1.48 +#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0 }
    1.49 +#endif
    1.50 +
    1.51 +/*
    1.52 +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
    1.53 +** intended for use only inside assert() statements.  On some platforms,
    1.54 +** there might be race conditions that can cause these routines to
    1.55 +** deliver incorrect results.  In particular, if pthread_equal() is
    1.56 +** not an atomic operation, then these routines might delivery
    1.57 +** incorrect results.  On most platforms, pthread_equal() is a 
    1.58 +** comparison of two integers and is therefore atomic.  But we are
    1.59 +** told that HPUX is not such a platform.  If so, then these routines
    1.60 +** will not always work correctly on HPUX.
    1.61 +**
    1.62 +** On those platforms where pthread_equal() is not atomic, SQLite
    1.63 +** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
    1.64 +** make sure no assert() statements are evaluated and hence these
    1.65 +** routines are never called.
    1.66 +*/
    1.67 +#ifndef NDEBUG
    1.68 +static int pthreadMutexHeld(sqlite3_mutex *p){
    1.69 +  return (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
    1.70 +}
    1.71 +static int pthreadMutexNotheld(sqlite3_mutex *p){
    1.72 +  return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
    1.73 +}
    1.74 +#endif
    1.75 +
    1.76 +/*
    1.77 +** Initialize and deinitialize the mutex subsystem.
    1.78 +*/
    1.79 +static int pthreadMutexInit(void){ return SQLITE_OK; }
    1.80 +static int pthreadMutexEnd(void){ return SQLITE_OK; }
    1.81 +
    1.82 +/*
    1.83 +** The sqlite3_mutex_alloc() routine allocates a new
    1.84 +** mutex and returns a pointer to it.  If it returns NULL
    1.85 +** that means that a mutex could not be allocated.  SQLite
    1.86 +** will unwind its stack and return an error.  The argument
    1.87 +** to sqlite3_mutex_alloc() is one of these integer constants:
    1.88 +**
    1.89 +** <ul>
    1.90 +** <li>  SQLITE_MUTEX_FAST
    1.91 +** <li>  SQLITE_MUTEX_RECURSIVE
    1.92 +** <li>  SQLITE_MUTEX_STATIC_MASTER
    1.93 +** <li>  SQLITE_MUTEX_STATIC_MEM
    1.94 +** <li>  SQLITE_MUTEX_STATIC_MEM2
    1.95 +** <li>  SQLITE_MUTEX_STATIC_PRNG
    1.96 +** <li>  SQLITE_MUTEX_STATIC_LRU
    1.97 +** </ul>
    1.98 +**
    1.99 +** The first two constants cause sqlite3_mutex_alloc() to create
   1.100 +** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
   1.101 +** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
   1.102 +** The mutex implementation does not need to make a distinction
   1.103 +** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
   1.104 +** not want to.  But SQLite will only request a recursive mutex in
   1.105 +** cases where it really needs one.  If a faster non-recursive mutex
   1.106 +** implementation is available on the host platform, the mutex subsystem
   1.107 +** might return such a mutex in response to SQLITE_MUTEX_FAST.
   1.108 +**
   1.109 +** The other allowed parameters to sqlite3_mutex_alloc() each return
   1.110 +** a pointer to a static preexisting mutex.  Three static mutexes are
   1.111 +** used by the current version of SQLite.  Future versions of SQLite
   1.112 +** may add additional static mutexes.  Static mutexes are for internal
   1.113 +** use by SQLite only.  Applications that use SQLite mutexes should
   1.114 +** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
   1.115 +** SQLITE_MUTEX_RECURSIVE.
   1.116 +**
   1.117 +** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
   1.118 +** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
   1.119 +** returns a different mutex on every call.  But for the static 
   1.120 +** mutex types, the same mutex is returned on every call that has
   1.121 +** the same type number.
   1.122 +*/
   1.123 +static sqlite3_mutex *pthreadMutexAlloc(int iType){
   1.124 +  static sqlite3_mutex staticMutexes[] = {
   1.125 +    SQLITE3_MUTEX_INITIALIZER,
   1.126 +    SQLITE3_MUTEX_INITIALIZER,
   1.127 +    SQLITE3_MUTEX_INITIALIZER,
   1.128 +    SQLITE3_MUTEX_INITIALIZER,
   1.129 +    SQLITE3_MUTEX_INITIALIZER,
   1.130 +    SQLITE3_MUTEX_INITIALIZER
   1.131 +  };
   1.132 +  sqlite3_mutex *p;
   1.133 +  switch( iType ){
   1.134 +    case SQLITE_MUTEX_RECURSIVE: {
   1.135 +      p = sqlite3MallocZero( sizeof(*p) );
   1.136 +      if( p ){
   1.137 +#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
   1.138 +        /* If recursive mutexes are not available, we will have to
   1.139 +        ** build our own.  See below. */
   1.140 +        pthread_mutex_init(&p->mutex, 0);
   1.141 +#else
   1.142 +        /* Use a recursive mutex if it is available */
   1.143 +        pthread_mutexattr_t recursiveAttr;
   1.144 +        pthread_mutexattr_init(&recursiveAttr);
   1.145 +        pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
   1.146 +        pthread_mutex_init(&p->mutex, &recursiveAttr);
   1.147 +        pthread_mutexattr_destroy(&recursiveAttr);
   1.148 +#endif
   1.149 +        p->id = iType;
   1.150 +      }
   1.151 +      break;
   1.152 +    }
   1.153 +    case SQLITE_MUTEX_FAST: {
   1.154 +      p = sqlite3MallocZero( sizeof(*p) );
   1.155 +      if( p ){
   1.156 +        p->id = iType;
   1.157 +        pthread_mutex_init(&p->mutex, 0);
   1.158 +      }
   1.159 +      break;
   1.160 +    }
   1.161 +    default: {
   1.162 +      assert( iType-2 >= 0 );
   1.163 +      assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
   1.164 +      p = &staticMutexes[iType-2];
   1.165 +      p->id = iType;
   1.166 +      break;
   1.167 +    }
   1.168 +  }
   1.169 +  return p;
   1.170 +}
   1.171 +
   1.172 +
   1.173 +/*
   1.174 +** This routine deallocates a previously
   1.175 +** allocated mutex.  SQLite is careful to deallocate every
   1.176 +** mutex that it allocates.
   1.177 +*/
   1.178 +static void pthreadMutexFree(sqlite3_mutex *p){
   1.179 +  assert( p->nRef==0 );
   1.180 +  assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
   1.181 +  pthread_mutex_destroy(&p->mutex);
   1.182 +  sqlite3_free(p);
   1.183 +}
   1.184 +
   1.185 +/*
   1.186 +** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
   1.187 +** to enter a mutex.  If another thread is already within the mutex,
   1.188 +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
   1.189 +** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
   1.190 +** upon successful entry.  Mutexes created using SQLITE_MUTEX_RECURSIVE can
   1.191 +** be entered multiple times by the same thread.  In such cases the,
   1.192 +** mutex must be exited an equal number of times before another thread
   1.193 +** can enter.  If the same thread tries to enter any other kind of mutex
   1.194 +** more than once, the behavior is undefined.
   1.195 +*/
   1.196 +static void pthreadMutexEnter(sqlite3_mutex *p){
   1.197 +  assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
   1.198 +
   1.199 +#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
   1.200 +  /* If recursive mutexes are not available, then we have to grow
   1.201 +  ** our own.  This implementation assumes that pthread_equal()
   1.202 +  ** is atomic - that it cannot be deceived into thinking self
   1.203 +  ** and p->owner are equal if p->owner changes between two values
   1.204 +  ** that are not equal to self while the comparison is taking place.
   1.205 +  ** This implementation also assumes a coherent cache - that 
   1.206 +  ** separate processes cannot read different values from the same
   1.207 +  ** address at the same time.  If either of these two conditions
   1.208 +  ** are not met, then the mutexes will fail and problems will result.
   1.209 +  */
   1.210 +  {
   1.211 +    pthread_t self = pthread_self();
   1.212 +    if( p->nRef>0 && pthread_equal(p->owner, self) ){
   1.213 +      p->nRef++;
   1.214 +    }else{
   1.215 +      pthread_mutex_lock(&p->mutex);
   1.216 +      assert( p->nRef==0 );
   1.217 +      p->owner = self;
   1.218 +      p->nRef = 1;
   1.219 +    }
   1.220 +  }
   1.221 +#else
   1.222 +  /* Use the built-in recursive mutexes if they are available.
   1.223 +  */
   1.224 +  pthread_mutex_lock(&p->mutex);
   1.225 +  p->owner = pthread_self();
   1.226 +  p->nRef++;
   1.227 +#endif
   1.228 +
   1.229 +#ifdef SQLITE_DEBUG
   1.230 +  if( p->trace ){
   1.231 +    printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
   1.232 +  }
   1.233 +#endif
   1.234 +}
   1.235 +static int pthreadMutexTry(sqlite3_mutex *p){
   1.236 +  int rc;
   1.237 +  assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
   1.238 +
   1.239 +#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
   1.240 +  /* If recursive mutexes are not available, then we have to grow
   1.241 +  ** our own.  This implementation assumes that pthread_equal()
   1.242 +  ** is atomic - that it cannot be deceived into thinking self
   1.243 +  ** and p->owner are equal if p->owner changes between two values
   1.244 +  ** that are not equal to self while the comparison is taking place.
   1.245 +  ** This implementation also assumes a coherent cache - that 
   1.246 +  ** separate processes cannot read different values from the same
   1.247 +  ** address at the same time.  If either of these two conditions
   1.248 +  ** are not met, then the mutexes will fail and problems will result.
   1.249 +  */
   1.250 +  {
   1.251 +    pthread_t self = pthread_self();
   1.252 +    if( p->nRef>0 && pthread_equal(p->owner, self) ){
   1.253 +      p->nRef++;
   1.254 +      rc = SQLITE_OK;
   1.255 +    }else if( pthread_mutex_trylock(&p->mutex)==0 ){
   1.256 +      assert( p->nRef==0 );
   1.257 +      p->owner = self;
   1.258 +      p->nRef = 1;
   1.259 +      rc = SQLITE_OK;
   1.260 +    }else{
   1.261 +      rc = SQLITE_BUSY;
   1.262 +    }
   1.263 +  }
   1.264 +#else
   1.265 +  /* Use the built-in recursive mutexes if they are available.
   1.266 +  */
   1.267 +  if( pthread_mutex_trylock(&p->mutex)==0 ){
   1.268 +    p->owner = pthread_self();
   1.269 +    p->nRef++;
   1.270 +    rc = SQLITE_OK;
   1.271 +  }else{
   1.272 +    rc = SQLITE_BUSY;
   1.273 +  }
   1.274 +#endif
   1.275 +
   1.276 +#ifdef SQLITE_DEBUG
   1.277 +  if( rc==SQLITE_OK && p->trace ){
   1.278 +    printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
   1.279 +  }
   1.280 +#endif
   1.281 +  return rc;
   1.282 +}
   1.283 +
   1.284 +/*
   1.285 +** The sqlite3_mutex_leave() routine exits a mutex that was
   1.286 +** previously entered by the same thread.  The behavior
   1.287 +** is undefined if the mutex is not currently entered or
   1.288 +** is not currently allocated.  SQLite will never do either.
   1.289 +*/
   1.290 +static void pthreadMutexLeave(sqlite3_mutex *p){
   1.291 +  assert( pthreadMutexHeld(p) );
   1.292 +  p->nRef--;
   1.293 +  assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
   1.294 +
   1.295 +#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
   1.296 +  if( p->nRef==0 ){
   1.297 +    pthread_mutex_unlock(&p->mutex);
   1.298 +  }
   1.299 +#else
   1.300 +  pthread_mutex_unlock(&p->mutex);
   1.301 +#endif
   1.302 +
   1.303 +#ifdef SQLITE_DEBUG
   1.304 +  if( p->trace ){
   1.305 +    printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
   1.306 +  }
   1.307 +#endif
   1.308 +}
   1.309 +
   1.310 +sqlite3_mutex_methods *sqlite3DefaultMutex(void){
   1.311 +  static sqlite3_mutex_methods sMutex = {
   1.312 +    pthreadMutexInit,
   1.313 +    pthreadMutexEnd,
   1.314 +    pthreadMutexAlloc,
   1.315 +    pthreadMutexFree,
   1.316 +    pthreadMutexEnter,
   1.317 +    pthreadMutexTry,
   1.318 +    pthreadMutexLeave,
   1.319 +#ifdef SQLITE_DEBUG
   1.320 +    pthreadMutexHeld,
   1.321 +    pthreadMutexNotheld
   1.322 +#endif
   1.323 +  };
   1.324 +
   1.325 +  return &sMutex;
   1.326 +}
   1.327 +
   1.328 +#endif /* SQLITE_MUTEX_PTHREAD */