os/persistentdata/persistentstorage/sqlite3api/SQLite/fts1_hash.c
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
sl@0
     1
/*
sl@0
     2
** 2001 September 22
sl@0
     3
**
sl@0
     4
** The author disclaims copyright to this source code.  In place of
sl@0
     5
** a legal notice, here is a blessing:
sl@0
     6
**
sl@0
     7
**    May you do good and not evil.
sl@0
     8
**    May you find forgiveness for yourself and forgive others.
sl@0
     9
**    May you share freely, never taking more than you give.
sl@0
    10
**
sl@0
    11
*************************************************************************
sl@0
    12
** This is the implementation of generic hash-tables used in SQLite.
sl@0
    13
** We've modified it slightly to serve as a standalone hash table
sl@0
    14
** implementation for the full-text indexing module.
sl@0
    15
*/
sl@0
    16
#include <assert.h>
sl@0
    17
#include <stdlib.h>
sl@0
    18
#include <string.h>
sl@0
    19
sl@0
    20
/*
sl@0
    21
** The code in this file is only compiled if:
sl@0
    22
**
sl@0
    23
**     * The FTS1 module is being built as an extension
sl@0
    24
**       (in which case SQLITE_CORE is not defined), or
sl@0
    25
**
sl@0
    26
**     * The FTS1 module is being built into the core of
sl@0
    27
**       SQLite (in which case SQLITE_ENABLE_FTS1 is defined).
sl@0
    28
*/
sl@0
    29
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1)
sl@0
    30
sl@0
    31
sl@0
    32
#include "fts1_hash.h"
sl@0
    33
sl@0
    34
static void *malloc_and_zero(int n){
sl@0
    35
  void *p = malloc(n);
sl@0
    36
  if( p ){
sl@0
    37
    memset(p, 0, n);
sl@0
    38
  }
sl@0
    39
  return p;
sl@0
    40
}
sl@0
    41
sl@0
    42
/* Turn bulk memory into a hash table object by initializing the
sl@0
    43
** fields of the Hash structure.
sl@0
    44
**
sl@0
    45
** "pNew" is a pointer to the hash table that is to be initialized.
sl@0
    46
** keyClass is one of the constants 
sl@0
    47
** FTS1_HASH_BINARY or FTS1_HASH_STRING.  The value of keyClass 
sl@0
    48
** determines what kind of key the hash table will use.  "copyKey" is
sl@0
    49
** true if the hash table should make its own private copy of keys and
sl@0
    50
** false if it should just use the supplied pointer.
sl@0
    51
*/
sl@0
    52
void sqlite3Fts1HashInit(fts1Hash *pNew, int keyClass, int copyKey){
sl@0
    53
  assert( pNew!=0 );
sl@0
    54
  assert( keyClass>=FTS1_HASH_STRING && keyClass<=FTS1_HASH_BINARY );
sl@0
    55
  pNew->keyClass = keyClass;
sl@0
    56
  pNew->copyKey = copyKey;
sl@0
    57
  pNew->first = 0;
sl@0
    58
  pNew->count = 0;
sl@0
    59
  pNew->htsize = 0;
sl@0
    60
  pNew->ht = 0;
sl@0
    61
  pNew->xMalloc = malloc_and_zero;
sl@0
    62
  pNew->xFree = free;
sl@0
    63
}
sl@0
    64
sl@0
    65
/* Remove all entries from a hash table.  Reclaim all memory.
sl@0
    66
** Call this routine to delete a hash table or to reset a hash table
sl@0
    67
** to the empty state.
sl@0
    68
*/
sl@0
    69
void sqlite3Fts1HashClear(fts1Hash *pH){
sl@0
    70
  fts1HashElem *elem;         /* For looping over all elements of the table */
sl@0
    71
sl@0
    72
  assert( pH!=0 );
sl@0
    73
  elem = pH->first;
sl@0
    74
  pH->first = 0;
sl@0
    75
  if( pH->ht ) pH->xFree(pH->ht);
sl@0
    76
  pH->ht = 0;
sl@0
    77
  pH->htsize = 0;
sl@0
    78
  while( elem ){
sl@0
    79
    fts1HashElem *next_elem = elem->next;
sl@0
    80
    if( pH->copyKey && elem->pKey ){
sl@0
    81
      pH->xFree(elem->pKey);
sl@0
    82
    }
sl@0
    83
    pH->xFree(elem);
sl@0
    84
    elem = next_elem;
sl@0
    85
  }
sl@0
    86
  pH->count = 0;
sl@0
    87
}
sl@0
    88
sl@0
    89
/*
sl@0
    90
** Hash and comparison functions when the mode is FTS1_HASH_STRING
sl@0
    91
*/
sl@0
    92
static int strHash(const void *pKey, int nKey){
sl@0
    93
  const char *z = (const char *)pKey;
sl@0
    94
  int h = 0;
sl@0
    95
  if( nKey<=0 ) nKey = (int) strlen(z);
sl@0
    96
  while( nKey > 0  ){
sl@0
    97
    h = (h<<3) ^ h ^ *z++;
sl@0
    98
    nKey--;
sl@0
    99
  }
sl@0
   100
  return h & 0x7fffffff;
sl@0
   101
}
sl@0
   102
static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
sl@0
   103
  if( n1!=n2 ) return 1;
sl@0
   104
  return strncmp((const char*)pKey1,(const char*)pKey2,n1);
sl@0
   105
}
sl@0
   106
sl@0
   107
/*
sl@0
   108
** Hash and comparison functions when the mode is FTS1_HASH_BINARY
sl@0
   109
*/
sl@0
   110
static int binHash(const void *pKey, int nKey){
sl@0
   111
  int h = 0;
sl@0
   112
  const char *z = (const char *)pKey;
sl@0
   113
  while( nKey-- > 0 ){
sl@0
   114
    h = (h<<3) ^ h ^ *(z++);
sl@0
   115
  }
sl@0
   116
  return h & 0x7fffffff;
sl@0
   117
}
sl@0
   118
static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
sl@0
   119
  if( n1!=n2 ) return 1;
sl@0
   120
  return memcmp(pKey1,pKey2,n1);
sl@0
   121
}
sl@0
   122
sl@0
   123
/*
sl@0
   124
** Return a pointer to the appropriate hash function given the key class.
sl@0
   125
**
sl@0
   126
** The C syntax in this function definition may be unfamilar to some 
sl@0
   127
** programmers, so we provide the following additional explanation:
sl@0
   128
**
sl@0
   129
** The name of the function is "hashFunction".  The function takes a
sl@0
   130
** single parameter "keyClass".  The return value of hashFunction()
sl@0
   131
** is a pointer to another function.  Specifically, the return value
sl@0
   132
** of hashFunction() is a pointer to a function that takes two parameters
sl@0
   133
** with types "const void*" and "int" and returns an "int".
sl@0
   134
*/
sl@0
   135
static int (*hashFunction(int keyClass))(const void*,int){
sl@0
   136
  if( keyClass==FTS1_HASH_STRING ){
sl@0
   137
    return &strHash;
sl@0
   138
  }else{
sl@0
   139
    assert( keyClass==FTS1_HASH_BINARY );
sl@0
   140
    return &binHash;
sl@0
   141
  }
sl@0
   142
}
sl@0
   143
sl@0
   144
/*
sl@0
   145
** Return a pointer to the appropriate hash function given the key class.
sl@0
   146
**
sl@0
   147
** For help in interpreted the obscure C code in the function definition,
sl@0
   148
** see the header comment on the previous function.
sl@0
   149
*/
sl@0
   150
static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
sl@0
   151
  if( keyClass==FTS1_HASH_STRING ){
sl@0
   152
    return &strCompare;
sl@0
   153
  }else{
sl@0
   154
    assert( keyClass==FTS1_HASH_BINARY );
sl@0
   155
    return &binCompare;
sl@0
   156
  }
sl@0
   157
}
sl@0
   158
sl@0
   159
/* Link an element into the hash table
sl@0
   160
*/
sl@0
   161
static void insertElement(
sl@0
   162
  fts1Hash *pH,            /* The complete hash table */
sl@0
   163
  struct _fts1ht *pEntry,  /* The entry into which pNew is inserted */
sl@0
   164
  fts1HashElem *pNew       /* The element to be inserted */
sl@0
   165
){
sl@0
   166
  fts1HashElem *pHead;     /* First element already in pEntry */
sl@0
   167
  pHead = pEntry->chain;
sl@0
   168
  if( pHead ){
sl@0
   169
    pNew->next = pHead;
sl@0
   170
    pNew->prev = pHead->prev;
sl@0
   171
    if( pHead->prev ){ pHead->prev->next = pNew; }
sl@0
   172
    else             { pH->first = pNew; }
sl@0
   173
    pHead->prev = pNew;
sl@0
   174
  }else{
sl@0
   175
    pNew->next = pH->first;
sl@0
   176
    if( pH->first ){ pH->first->prev = pNew; }
sl@0
   177
    pNew->prev = 0;
sl@0
   178
    pH->first = pNew;
sl@0
   179
  }
sl@0
   180
  pEntry->count++;
sl@0
   181
  pEntry->chain = pNew;
sl@0
   182
}
sl@0
   183
sl@0
   184
sl@0
   185
/* Resize the hash table so that it cantains "new_size" buckets.
sl@0
   186
** "new_size" must be a power of 2.  The hash table might fail 
sl@0
   187
** to resize if sqliteMalloc() fails.
sl@0
   188
*/
sl@0
   189
static void rehash(fts1Hash *pH, int new_size){
sl@0
   190
  struct _fts1ht *new_ht;          /* The new hash table */
sl@0
   191
  fts1HashElem *elem, *next_elem;  /* For looping over existing elements */
sl@0
   192
  int (*xHash)(const void*,int);   /* The hash function */
sl@0
   193
sl@0
   194
  assert( (new_size & (new_size-1))==0 );
sl@0
   195
  new_ht = (struct _fts1ht *)pH->xMalloc( new_size*sizeof(struct _fts1ht) );
sl@0
   196
  if( new_ht==0 ) return;
sl@0
   197
  if( pH->ht ) pH->xFree(pH->ht);
sl@0
   198
  pH->ht = new_ht;
sl@0
   199
  pH->htsize = new_size;
sl@0
   200
  xHash = hashFunction(pH->keyClass);
sl@0
   201
  for(elem=pH->first, pH->first=0; elem; elem = next_elem){
sl@0
   202
    int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
sl@0
   203
    next_elem = elem->next;
sl@0
   204
    insertElement(pH, &new_ht[h], elem);
sl@0
   205
  }
sl@0
   206
}
sl@0
   207
sl@0
   208
/* This function (for internal use only) locates an element in an
sl@0
   209
** hash table that matches the given key.  The hash for this key has
sl@0
   210
** already been computed and is passed as the 4th parameter.
sl@0
   211
*/
sl@0
   212
static fts1HashElem *findElementGivenHash(
sl@0
   213
  const fts1Hash *pH, /* The pH to be searched */
sl@0
   214
  const void *pKey,   /* The key we are searching for */
sl@0
   215
  int nKey,
sl@0
   216
  int h               /* The hash for this key. */
sl@0
   217
){
sl@0
   218
  fts1HashElem *elem;            /* Used to loop thru the element list */
sl@0
   219
  int count;                     /* Number of elements left to test */
sl@0
   220
  int (*xCompare)(const void*,int,const void*,int);  /* comparison function */
sl@0
   221
sl@0
   222
  if( pH->ht ){
sl@0
   223
    struct _fts1ht *pEntry = &pH->ht[h];
sl@0
   224
    elem = pEntry->chain;
sl@0
   225
    count = pEntry->count;
sl@0
   226
    xCompare = compareFunction(pH->keyClass);
sl@0
   227
    while( count-- && elem ){
sl@0
   228
      if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ 
sl@0
   229
        return elem;
sl@0
   230
      }
sl@0
   231
      elem = elem->next;
sl@0
   232
    }
sl@0
   233
  }
sl@0
   234
  return 0;
sl@0
   235
}
sl@0
   236
sl@0
   237
/* Remove a single entry from the hash table given a pointer to that
sl@0
   238
** element and a hash on the element's key.
sl@0
   239
*/
sl@0
   240
static void removeElementGivenHash(
sl@0
   241
  fts1Hash *pH,         /* The pH containing "elem" */
sl@0
   242
  fts1HashElem* elem,   /* The element to be removed from the pH */
sl@0
   243
  int h                 /* Hash value for the element */
sl@0
   244
){
sl@0
   245
  struct _fts1ht *pEntry;
sl@0
   246
  if( elem->prev ){
sl@0
   247
    elem->prev->next = elem->next; 
sl@0
   248
  }else{
sl@0
   249
    pH->first = elem->next;
sl@0
   250
  }
sl@0
   251
  if( elem->next ){
sl@0
   252
    elem->next->prev = elem->prev;
sl@0
   253
  }
sl@0
   254
  pEntry = &pH->ht[h];
sl@0
   255
  if( pEntry->chain==elem ){
sl@0
   256
    pEntry->chain = elem->next;
sl@0
   257
  }
sl@0
   258
  pEntry->count--;
sl@0
   259
  if( pEntry->count<=0 ){
sl@0
   260
    pEntry->chain = 0;
sl@0
   261
  }
sl@0
   262
  if( pH->copyKey && elem->pKey ){
sl@0
   263
    pH->xFree(elem->pKey);
sl@0
   264
  }
sl@0
   265
  pH->xFree( elem );
sl@0
   266
  pH->count--;
sl@0
   267
  if( pH->count<=0 ){
sl@0
   268
    assert( pH->first==0 );
sl@0
   269
    assert( pH->count==0 );
sl@0
   270
    fts1HashClear(pH);
sl@0
   271
  }
sl@0
   272
}
sl@0
   273
sl@0
   274
/* Attempt to locate an element of the hash table pH with a key
sl@0
   275
** that matches pKey,nKey.  Return the data for this element if it is
sl@0
   276
** found, or NULL if there is no match.
sl@0
   277
*/
sl@0
   278
void *sqlite3Fts1HashFind(const fts1Hash *pH, const void *pKey, int nKey){
sl@0
   279
  int h;                 /* A hash on key */
sl@0
   280
  fts1HashElem *elem;    /* The element that matches key */
sl@0
   281
  int (*xHash)(const void*,int);  /* The hash function */
sl@0
   282
sl@0
   283
  if( pH==0 || pH->ht==0 ) return 0;
sl@0
   284
  xHash = hashFunction(pH->keyClass);
sl@0
   285
  assert( xHash!=0 );
sl@0
   286
  h = (*xHash)(pKey,nKey);
sl@0
   287
  assert( (pH->htsize & (pH->htsize-1))==0 );
sl@0
   288
  elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
sl@0
   289
  return elem ? elem->data : 0;
sl@0
   290
}
sl@0
   291
sl@0
   292
/* Insert an element into the hash table pH.  The key is pKey,nKey
sl@0
   293
** and the data is "data".
sl@0
   294
**
sl@0
   295
** If no element exists with a matching key, then a new
sl@0
   296
** element is created.  A copy of the key is made if the copyKey
sl@0
   297
** flag is set.  NULL is returned.
sl@0
   298
**
sl@0
   299
** If another element already exists with the same key, then the
sl@0
   300
** new data replaces the old data and the old data is returned.
sl@0
   301
** The key is not copied in this instance.  If a malloc fails, then
sl@0
   302
** the new data is returned and the hash table is unchanged.
sl@0
   303
**
sl@0
   304
** If the "data" parameter to this function is NULL, then the
sl@0
   305
** element corresponding to "key" is removed from the hash table.
sl@0
   306
*/
sl@0
   307
void *sqlite3Fts1HashInsert(
sl@0
   308
  fts1Hash *pH,        /* The hash table to insert into */
sl@0
   309
  const void *pKey,    /* The key */
sl@0
   310
  int nKey,            /* Number of bytes in the key */
sl@0
   311
  void *data           /* The data */
sl@0
   312
){
sl@0
   313
  int hraw;                 /* Raw hash value of the key */
sl@0
   314
  int h;                    /* the hash of the key modulo hash table size */
sl@0
   315
  fts1HashElem *elem;       /* Used to loop thru the element list */
sl@0
   316
  fts1HashElem *new_elem;   /* New element added to the pH */
sl@0
   317
  int (*xHash)(const void*,int);  /* The hash function */
sl@0
   318
sl@0
   319
  assert( pH!=0 );
sl@0
   320
  xHash = hashFunction(pH->keyClass);
sl@0
   321
  assert( xHash!=0 );
sl@0
   322
  hraw = (*xHash)(pKey, nKey);
sl@0
   323
  assert( (pH->htsize & (pH->htsize-1))==0 );
sl@0
   324
  h = hraw & (pH->htsize-1);
sl@0
   325
  elem = findElementGivenHash(pH,pKey,nKey,h);
sl@0
   326
  if( elem ){
sl@0
   327
    void *old_data = elem->data;
sl@0
   328
    if( data==0 ){
sl@0
   329
      removeElementGivenHash(pH,elem,h);
sl@0
   330
    }else{
sl@0
   331
      elem->data = data;
sl@0
   332
    }
sl@0
   333
    return old_data;
sl@0
   334
  }
sl@0
   335
  if( data==0 ) return 0;
sl@0
   336
  new_elem = (fts1HashElem*)pH->xMalloc( sizeof(fts1HashElem) );
sl@0
   337
  if( new_elem==0 ) return data;
sl@0
   338
  if( pH->copyKey && pKey!=0 ){
sl@0
   339
    new_elem->pKey = pH->xMalloc( nKey );
sl@0
   340
    if( new_elem->pKey==0 ){
sl@0
   341
      pH->xFree(new_elem);
sl@0
   342
      return data;
sl@0
   343
    }
sl@0
   344
    memcpy((void*)new_elem->pKey, pKey, nKey);
sl@0
   345
  }else{
sl@0
   346
    new_elem->pKey = (void*)pKey;
sl@0
   347
  }
sl@0
   348
  new_elem->nKey = nKey;
sl@0
   349
  pH->count++;
sl@0
   350
  if( pH->htsize==0 ){
sl@0
   351
    rehash(pH,8);
sl@0
   352
    if( pH->htsize==0 ){
sl@0
   353
      pH->count = 0;
sl@0
   354
      pH->xFree(new_elem);
sl@0
   355
      return data;
sl@0
   356
    }
sl@0
   357
  }
sl@0
   358
  if( pH->count > pH->htsize ){
sl@0
   359
    rehash(pH,pH->htsize*2);
sl@0
   360
  }
sl@0
   361
  assert( pH->htsize>0 );
sl@0
   362
  assert( (pH->htsize & (pH->htsize-1))==0 );
sl@0
   363
  h = hraw & (pH->htsize-1);
sl@0
   364
  insertElement(pH, &pH->ht[h], new_elem);
sl@0
   365
  new_elem->data = data;
sl@0
   366
  return 0;
sl@0
   367
}
sl@0
   368
sl@0
   369
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) */