1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000
1.2 +++ b/os/persistentdata/persistentstorage/sqlite3api/SQLite/fts1_hash.c Fri Jun 15 03:10:57 2012 +0200
1.3 @@ -0,0 +1,369 @@
1.4 +/*
1.5 +** 2001 September 22
1.6 +**
1.7 +** The author disclaims copyright to this source code. In place of
1.8 +** a legal notice, here is a blessing:
1.9 +**
1.10 +** May you do good and not evil.
1.11 +** May you find forgiveness for yourself and forgive others.
1.12 +** May you share freely, never taking more than you give.
1.13 +**
1.14 +*************************************************************************
1.15 +** This is the implementation of generic hash-tables used in SQLite.
1.16 +** We've modified it slightly to serve as a standalone hash table
1.17 +** implementation for the full-text indexing module.
1.18 +*/
1.19 +#include <assert.h>
1.20 +#include <stdlib.h>
1.21 +#include <string.h>
1.22 +
1.23 +/*
1.24 +** The code in this file is only compiled if:
1.25 +**
1.26 +** * The FTS1 module is being built as an extension
1.27 +** (in which case SQLITE_CORE is not defined), or
1.28 +**
1.29 +** * The FTS1 module is being built into the core of
1.30 +** SQLite (in which case SQLITE_ENABLE_FTS1 is defined).
1.31 +*/
1.32 +#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1)
1.33 +
1.34 +
1.35 +#include "fts1_hash.h"
1.36 +
1.37 +static void *malloc_and_zero(int n){
1.38 + void *p = malloc(n);
1.39 + if( p ){
1.40 + memset(p, 0, n);
1.41 + }
1.42 + return p;
1.43 +}
1.44 +
1.45 +/* Turn bulk memory into a hash table object by initializing the
1.46 +** fields of the Hash structure.
1.47 +**
1.48 +** "pNew" is a pointer to the hash table that is to be initialized.
1.49 +** keyClass is one of the constants
1.50 +** FTS1_HASH_BINARY or FTS1_HASH_STRING. The value of keyClass
1.51 +** determines what kind of key the hash table will use. "copyKey" is
1.52 +** true if the hash table should make its own private copy of keys and
1.53 +** false if it should just use the supplied pointer.
1.54 +*/
1.55 +void sqlite3Fts1HashInit(fts1Hash *pNew, int keyClass, int copyKey){
1.56 + assert( pNew!=0 );
1.57 + assert( keyClass>=FTS1_HASH_STRING && keyClass<=FTS1_HASH_BINARY );
1.58 + pNew->keyClass = keyClass;
1.59 + pNew->copyKey = copyKey;
1.60 + pNew->first = 0;
1.61 + pNew->count = 0;
1.62 + pNew->htsize = 0;
1.63 + pNew->ht = 0;
1.64 + pNew->xMalloc = malloc_and_zero;
1.65 + pNew->xFree = free;
1.66 +}
1.67 +
1.68 +/* Remove all entries from a hash table. Reclaim all memory.
1.69 +** Call this routine to delete a hash table or to reset a hash table
1.70 +** to the empty state.
1.71 +*/
1.72 +void sqlite3Fts1HashClear(fts1Hash *pH){
1.73 + fts1HashElem *elem; /* For looping over all elements of the table */
1.74 +
1.75 + assert( pH!=0 );
1.76 + elem = pH->first;
1.77 + pH->first = 0;
1.78 + if( pH->ht ) pH->xFree(pH->ht);
1.79 + pH->ht = 0;
1.80 + pH->htsize = 0;
1.81 + while( elem ){
1.82 + fts1HashElem *next_elem = elem->next;
1.83 + if( pH->copyKey && elem->pKey ){
1.84 + pH->xFree(elem->pKey);
1.85 + }
1.86 + pH->xFree(elem);
1.87 + elem = next_elem;
1.88 + }
1.89 + pH->count = 0;
1.90 +}
1.91 +
1.92 +/*
1.93 +** Hash and comparison functions when the mode is FTS1_HASH_STRING
1.94 +*/
1.95 +static int strHash(const void *pKey, int nKey){
1.96 + const char *z = (const char *)pKey;
1.97 + int h = 0;
1.98 + if( nKey<=0 ) nKey = (int) strlen(z);
1.99 + while( nKey > 0 ){
1.100 + h = (h<<3) ^ h ^ *z++;
1.101 + nKey--;
1.102 + }
1.103 + return h & 0x7fffffff;
1.104 +}
1.105 +static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
1.106 + if( n1!=n2 ) return 1;
1.107 + return strncmp((const char*)pKey1,(const char*)pKey2,n1);
1.108 +}
1.109 +
1.110 +/*
1.111 +** Hash and comparison functions when the mode is FTS1_HASH_BINARY
1.112 +*/
1.113 +static int binHash(const void *pKey, int nKey){
1.114 + int h = 0;
1.115 + const char *z = (const char *)pKey;
1.116 + while( nKey-- > 0 ){
1.117 + h = (h<<3) ^ h ^ *(z++);
1.118 + }
1.119 + return h & 0x7fffffff;
1.120 +}
1.121 +static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
1.122 + if( n1!=n2 ) return 1;
1.123 + return memcmp(pKey1,pKey2,n1);
1.124 +}
1.125 +
1.126 +/*
1.127 +** Return a pointer to the appropriate hash function given the key class.
1.128 +**
1.129 +** The C syntax in this function definition may be unfamilar to some
1.130 +** programmers, so we provide the following additional explanation:
1.131 +**
1.132 +** The name of the function is "hashFunction". The function takes a
1.133 +** single parameter "keyClass". The return value of hashFunction()
1.134 +** is a pointer to another function. Specifically, the return value
1.135 +** of hashFunction() is a pointer to a function that takes two parameters
1.136 +** with types "const void*" and "int" and returns an "int".
1.137 +*/
1.138 +static int (*hashFunction(int keyClass))(const void*,int){
1.139 + if( keyClass==FTS1_HASH_STRING ){
1.140 + return &strHash;
1.141 + }else{
1.142 + assert( keyClass==FTS1_HASH_BINARY );
1.143 + return &binHash;
1.144 + }
1.145 +}
1.146 +
1.147 +/*
1.148 +** Return a pointer to the appropriate hash function given the key class.
1.149 +**
1.150 +** For help in interpreted the obscure C code in the function definition,
1.151 +** see the header comment on the previous function.
1.152 +*/
1.153 +static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
1.154 + if( keyClass==FTS1_HASH_STRING ){
1.155 + return &strCompare;
1.156 + }else{
1.157 + assert( keyClass==FTS1_HASH_BINARY );
1.158 + return &binCompare;
1.159 + }
1.160 +}
1.161 +
1.162 +/* Link an element into the hash table
1.163 +*/
1.164 +static void insertElement(
1.165 + fts1Hash *pH, /* The complete hash table */
1.166 + struct _fts1ht *pEntry, /* The entry into which pNew is inserted */
1.167 + fts1HashElem *pNew /* The element to be inserted */
1.168 +){
1.169 + fts1HashElem *pHead; /* First element already in pEntry */
1.170 + pHead = pEntry->chain;
1.171 + if( pHead ){
1.172 + pNew->next = pHead;
1.173 + pNew->prev = pHead->prev;
1.174 + if( pHead->prev ){ pHead->prev->next = pNew; }
1.175 + else { pH->first = pNew; }
1.176 + pHead->prev = pNew;
1.177 + }else{
1.178 + pNew->next = pH->first;
1.179 + if( pH->first ){ pH->first->prev = pNew; }
1.180 + pNew->prev = 0;
1.181 + pH->first = pNew;
1.182 + }
1.183 + pEntry->count++;
1.184 + pEntry->chain = pNew;
1.185 +}
1.186 +
1.187 +
1.188 +/* Resize the hash table so that it cantains "new_size" buckets.
1.189 +** "new_size" must be a power of 2. The hash table might fail
1.190 +** to resize if sqliteMalloc() fails.
1.191 +*/
1.192 +static void rehash(fts1Hash *pH, int new_size){
1.193 + struct _fts1ht *new_ht; /* The new hash table */
1.194 + fts1HashElem *elem, *next_elem; /* For looping over existing elements */
1.195 + int (*xHash)(const void*,int); /* The hash function */
1.196 +
1.197 + assert( (new_size & (new_size-1))==0 );
1.198 + new_ht = (struct _fts1ht *)pH->xMalloc( new_size*sizeof(struct _fts1ht) );
1.199 + if( new_ht==0 ) return;
1.200 + if( pH->ht ) pH->xFree(pH->ht);
1.201 + pH->ht = new_ht;
1.202 + pH->htsize = new_size;
1.203 + xHash = hashFunction(pH->keyClass);
1.204 + for(elem=pH->first, pH->first=0; elem; elem = next_elem){
1.205 + int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
1.206 + next_elem = elem->next;
1.207 + insertElement(pH, &new_ht[h], elem);
1.208 + }
1.209 +}
1.210 +
1.211 +/* This function (for internal use only) locates an element in an
1.212 +** hash table that matches the given key. The hash for this key has
1.213 +** already been computed and is passed as the 4th parameter.
1.214 +*/
1.215 +static fts1HashElem *findElementGivenHash(
1.216 + const fts1Hash *pH, /* The pH to be searched */
1.217 + const void *pKey, /* The key we are searching for */
1.218 + int nKey,
1.219 + int h /* The hash for this key. */
1.220 +){
1.221 + fts1HashElem *elem; /* Used to loop thru the element list */
1.222 + int count; /* Number of elements left to test */
1.223 + int (*xCompare)(const void*,int,const void*,int); /* comparison function */
1.224 +
1.225 + if( pH->ht ){
1.226 + struct _fts1ht *pEntry = &pH->ht[h];
1.227 + elem = pEntry->chain;
1.228 + count = pEntry->count;
1.229 + xCompare = compareFunction(pH->keyClass);
1.230 + while( count-- && elem ){
1.231 + if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
1.232 + return elem;
1.233 + }
1.234 + elem = elem->next;
1.235 + }
1.236 + }
1.237 + return 0;
1.238 +}
1.239 +
1.240 +/* Remove a single entry from the hash table given a pointer to that
1.241 +** element and a hash on the element's key.
1.242 +*/
1.243 +static void removeElementGivenHash(
1.244 + fts1Hash *pH, /* The pH containing "elem" */
1.245 + fts1HashElem* elem, /* The element to be removed from the pH */
1.246 + int h /* Hash value for the element */
1.247 +){
1.248 + struct _fts1ht *pEntry;
1.249 + if( elem->prev ){
1.250 + elem->prev->next = elem->next;
1.251 + }else{
1.252 + pH->first = elem->next;
1.253 + }
1.254 + if( elem->next ){
1.255 + elem->next->prev = elem->prev;
1.256 + }
1.257 + pEntry = &pH->ht[h];
1.258 + if( pEntry->chain==elem ){
1.259 + pEntry->chain = elem->next;
1.260 + }
1.261 + pEntry->count--;
1.262 + if( pEntry->count<=0 ){
1.263 + pEntry->chain = 0;
1.264 + }
1.265 + if( pH->copyKey && elem->pKey ){
1.266 + pH->xFree(elem->pKey);
1.267 + }
1.268 + pH->xFree( elem );
1.269 + pH->count--;
1.270 + if( pH->count<=0 ){
1.271 + assert( pH->first==0 );
1.272 + assert( pH->count==0 );
1.273 + fts1HashClear(pH);
1.274 + }
1.275 +}
1.276 +
1.277 +/* Attempt to locate an element of the hash table pH with a key
1.278 +** that matches pKey,nKey. Return the data for this element if it is
1.279 +** found, or NULL if there is no match.
1.280 +*/
1.281 +void *sqlite3Fts1HashFind(const fts1Hash *pH, const void *pKey, int nKey){
1.282 + int h; /* A hash on key */
1.283 + fts1HashElem *elem; /* The element that matches key */
1.284 + int (*xHash)(const void*,int); /* The hash function */
1.285 +
1.286 + if( pH==0 || pH->ht==0 ) return 0;
1.287 + xHash = hashFunction(pH->keyClass);
1.288 + assert( xHash!=0 );
1.289 + h = (*xHash)(pKey,nKey);
1.290 + assert( (pH->htsize & (pH->htsize-1))==0 );
1.291 + elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
1.292 + return elem ? elem->data : 0;
1.293 +}
1.294 +
1.295 +/* Insert an element into the hash table pH. The key is pKey,nKey
1.296 +** and the data is "data".
1.297 +**
1.298 +** If no element exists with a matching key, then a new
1.299 +** element is created. A copy of the key is made if the copyKey
1.300 +** flag is set. NULL is returned.
1.301 +**
1.302 +** If another element already exists with the same key, then the
1.303 +** new data replaces the old data and the old data is returned.
1.304 +** The key is not copied in this instance. If a malloc fails, then
1.305 +** the new data is returned and the hash table is unchanged.
1.306 +**
1.307 +** If the "data" parameter to this function is NULL, then the
1.308 +** element corresponding to "key" is removed from the hash table.
1.309 +*/
1.310 +void *sqlite3Fts1HashInsert(
1.311 + fts1Hash *pH, /* The hash table to insert into */
1.312 + const void *pKey, /* The key */
1.313 + int nKey, /* Number of bytes in the key */
1.314 + void *data /* The data */
1.315 +){
1.316 + int hraw; /* Raw hash value of the key */
1.317 + int h; /* the hash of the key modulo hash table size */
1.318 + fts1HashElem *elem; /* Used to loop thru the element list */
1.319 + fts1HashElem *new_elem; /* New element added to the pH */
1.320 + int (*xHash)(const void*,int); /* The hash function */
1.321 +
1.322 + assert( pH!=0 );
1.323 + xHash = hashFunction(pH->keyClass);
1.324 + assert( xHash!=0 );
1.325 + hraw = (*xHash)(pKey, nKey);
1.326 + assert( (pH->htsize & (pH->htsize-1))==0 );
1.327 + h = hraw & (pH->htsize-1);
1.328 + elem = findElementGivenHash(pH,pKey,nKey,h);
1.329 + if( elem ){
1.330 + void *old_data = elem->data;
1.331 + if( data==0 ){
1.332 + removeElementGivenHash(pH,elem,h);
1.333 + }else{
1.334 + elem->data = data;
1.335 + }
1.336 + return old_data;
1.337 + }
1.338 + if( data==0 ) return 0;
1.339 + new_elem = (fts1HashElem*)pH->xMalloc( sizeof(fts1HashElem) );
1.340 + if( new_elem==0 ) return data;
1.341 + if( pH->copyKey && pKey!=0 ){
1.342 + new_elem->pKey = pH->xMalloc( nKey );
1.343 + if( new_elem->pKey==0 ){
1.344 + pH->xFree(new_elem);
1.345 + return data;
1.346 + }
1.347 + memcpy((void*)new_elem->pKey, pKey, nKey);
1.348 + }else{
1.349 + new_elem->pKey = (void*)pKey;
1.350 + }
1.351 + new_elem->nKey = nKey;
1.352 + pH->count++;
1.353 + if( pH->htsize==0 ){
1.354 + rehash(pH,8);
1.355 + if( pH->htsize==0 ){
1.356 + pH->count = 0;
1.357 + pH->xFree(new_elem);
1.358 + return data;
1.359 + }
1.360 + }
1.361 + if( pH->count > pH->htsize ){
1.362 + rehash(pH,pH->htsize*2);
1.363 + }
1.364 + assert( pH->htsize>0 );
1.365 + assert( (pH->htsize & (pH->htsize-1))==0 );
1.366 + h = hraw & (pH->htsize-1);
1.367 + insertElement(pH, &pH->ht[h], new_elem);
1.368 + new_elem->data = data;
1.369 + return 0;
1.370 +}
1.371 +
1.372 +#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) */