os/persistentdata/persistentstorage/sqlite3api/SQLite/fts1_hash.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2001 September 22
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** This is the implementation of generic hash-tables used in SQLite.
    13 ** We've modified it slightly to serve as a standalone hash table
    14 ** implementation for the full-text indexing module.
    15 */
    16 #include <assert.h>
    17 #include <stdlib.h>
    18 #include <string.h>
    19 
    20 /*
    21 ** The code in this file is only compiled if:
    22 **
    23 **     * The FTS1 module is being built as an extension
    24 **       (in which case SQLITE_CORE is not defined), or
    25 **
    26 **     * The FTS1 module is being built into the core of
    27 **       SQLite (in which case SQLITE_ENABLE_FTS1 is defined).
    28 */
    29 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1)
    30 
    31 
    32 #include "fts1_hash.h"
    33 
    34 static void *malloc_and_zero(int n){
    35   void *p = malloc(n);
    36   if( p ){
    37     memset(p, 0, n);
    38   }
    39   return p;
    40 }
    41 
    42 /* Turn bulk memory into a hash table object by initializing the
    43 ** fields of the Hash structure.
    44 **
    45 ** "pNew" is a pointer to the hash table that is to be initialized.
    46 ** keyClass is one of the constants 
    47 ** FTS1_HASH_BINARY or FTS1_HASH_STRING.  The value of keyClass 
    48 ** determines what kind of key the hash table will use.  "copyKey" is
    49 ** true if the hash table should make its own private copy of keys and
    50 ** false if it should just use the supplied pointer.
    51 */
    52 void sqlite3Fts1HashInit(fts1Hash *pNew, int keyClass, int copyKey){
    53   assert( pNew!=0 );
    54   assert( keyClass>=FTS1_HASH_STRING && keyClass<=FTS1_HASH_BINARY );
    55   pNew->keyClass = keyClass;
    56   pNew->copyKey = copyKey;
    57   pNew->first = 0;
    58   pNew->count = 0;
    59   pNew->htsize = 0;
    60   pNew->ht = 0;
    61   pNew->xMalloc = malloc_and_zero;
    62   pNew->xFree = free;
    63 }
    64 
    65 /* Remove all entries from a hash table.  Reclaim all memory.
    66 ** Call this routine to delete a hash table or to reset a hash table
    67 ** to the empty state.
    68 */
    69 void sqlite3Fts1HashClear(fts1Hash *pH){
    70   fts1HashElem *elem;         /* For looping over all elements of the table */
    71 
    72   assert( pH!=0 );
    73   elem = pH->first;
    74   pH->first = 0;
    75   if( pH->ht ) pH->xFree(pH->ht);
    76   pH->ht = 0;
    77   pH->htsize = 0;
    78   while( elem ){
    79     fts1HashElem *next_elem = elem->next;
    80     if( pH->copyKey && elem->pKey ){
    81       pH->xFree(elem->pKey);
    82     }
    83     pH->xFree(elem);
    84     elem = next_elem;
    85   }
    86   pH->count = 0;
    87 }
    88 
    89 /*
    90 ** Hash and comparison functions when the mode is FTS1_HASH_STRING
    91 */
    92 static int strHash(const void *pKey, int nKey){
    93   const char *z = (const char *)pKey;
    94   int h = 0;
    95   if( nKey<=0 ) nKey = (int) strlen(z);
    96   while( nKey > 0  ){
    97     h = (h<<3) ^ h ^ *z++;
    98     nKey--;
    99   }
   100   return h & 0x7fffffff;
   101 }
   102 static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
   103   if( n1!=n2 ) return 1;
   104   return strncmp((const char*)pKey1,(const char*)pKey2,n1);
   105 }
   106 
   107 /*
   108 ** Hash and comparison functions when the mode is FTS1_HASH_BINARY
   109 */
   110 static int binHash(const void *pKey, int nKey){
   111   int h = 0;
   112   const char *z = (const char *)pKey;
   113   while( nKey-- > 0 ){
   114     h = (h<<3) ^ h ^ *(z++);
   115   }
   116   return h & 0x7fffffff;
   117 }
   118 static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
   119   if( n1!=n2 ) return 1;
   120   return memcmp(pKey1,pKey2,n1);
   121 }
   122 
   123 /*
   124 ** Return a pointer to the appropriate hash function given the key class.
   125 **
   126 ** The C syntax in this function definition may be unfamilar to some 
   127 ** programmers, so we provide the following additional explanation:
   128 **
   129 ** The name of the function is "hashFunction".  The function takes a
   130 ** single parameter "keyClass".  The return value of hashFunction()
   131 ** is a pointer to another function.  Specifically, the return value
   132 ** of hashFunction() is a pointer to a function that takes two parameters
   133 ** with types "const void*" and "int" and returns an "int".
   134 */
   135 static int (*hashFunction(int keyClass))(const void*,int){
   136   if( keyClass==FTS1_HASH_STRING ){
   137     return &strHash;
   138   }else{
   139     assert( keyClass==FTS1_HASH_BINARY );
   140     return &binHash;
   141   }
   142 }
   143 
   144 /*
   145 ** Return a pointer to the appropriate hash function given the key class.
   146 **
   147 ** For help in interpreted the obscure C code in the function definition,
   148 ** see the header comment on the previous function.
   149 */
   150 static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
   151   if( keyClass==FTS1_HASH_STRING ){
   152     return &strCompare;
   153   }else{
   154     assert( keyClass==FTS1_HASH_BINARY );
   155     return &binCompare;
   156   }
   157 }
   158 
   159 /* Link an element into the hash table
   160 */
   161 static void insertElement(
   162   fts1Hash *pH,            /* The complete hash table */
   163   struct _fts1ht *pEntry,  /* The entry into which pNew is inserted */
   164   fts1HashElem *pNew       /* The element to be inserted */
   165 ){
   166   fts1HashElem *pHead;     /* First element already in pEntry */
   167   pHead = pEntry->chain;
   168   if( pHead ){
   169     pNew->next = pHead;
   170     pNew->prev = pHead->prev;
   171     if( pHead->prev ){ pHead->prev->next = pNew; }
   172     else             { pH->first = pNew; }
   173     pHead->prev = pNew;
   174   }else{
   175     pNew->next = pH->first;
   176     if( pH->first ){ pH->first->prev = pNew; }
   177     pNew->prev = 0;
   178     pH->first = pNew;
   179   }
   180   pEntry->count++;
   181   pEntry->chain = pNew;
   182 }
   183 
   184 
   185 /* Resize the hash table so that it cantains "new_size" buckets.
   186 ** "new_size" must be a power of 2.  The hash table might fail 
   187 ** to resize if sqliteMalloc() fails.
   188 */
   189 static void rehash(fts1Hash *pH, int new_size){
   190   struct _fts1ht *new_ht;          /* The new hash table */
   191   fts1HashElem *elem, *next_elem;  /* For looping over existing elements */
   192   int (*xHash)(const void*,int);   /* The hash function */
   193 
   194   assert( (new_size & (new_size-1))==0 );
   195   new_ht = (struct _fts1ht *)pH->xMalloc( new_size*sizeof(struct _fts1ht) );
   196   if( new_ht==0 ) return;
   197   if( pH->ht ) pH->xFree(pH->ht);
   198   pH->ht = new_ht;
   199   pH->htsize = new_size;
   200   xHash = hashFunction(pH->keyClass);
   201   for(elem=pH->first, pH->first=0; elem; elem = next_elem){
   202     int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
   203     next_elem = elem->next;
   204     insertElement(pH, &new_ht[h], elem);
   205   }
   206 }
   207 
   208 /* This function (for internal use only) locates an element in an
   209 ** hash table that matches the given key.  The hash for this key has
   210 ** already been computed and is passed as the 4th parameter.
   211 */
   212 static fts1HashElem *findElementGivenHash(
   213   const fts1Hash *pH, /* The pH to be searched */
   214   const void *pKey,   /* The key we are searching for */
   215   int nKey,
   216   int h               /* The hash for this key. */
   217 ){
   218   fts1HashElem *elem;            /* Used to loop thru the element list */
   219   int count;                     /* Number of elements left to test */
   220   int (*xCompare)(const void*,int,const void*,int);  /* comparison function */
   221 
   222   if( pH->ht ){
   223     struct _fts1ht *pEntry = &pH->ht[h];
   224     elem = pEntry->chain;
   225     count = pEntry->count;
   226     xCompare = compareFunction(pH->keyClass);
   227     while( count-- && elem ){
   228       if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ 
   229         return elem;
   230       }
   231       elem = elem->next;
   232     }
   233   }
   234   return 0;
   235 }
   236 
   237 /* Remove a single entry from the hash table given a pointer to that
   238 ** element and a hash on the element's key.
   239 */
   240 static void removeElementGivenHash(
   241   fts1Hash *pH,         /* The pH containing "elem" */
   242   fts1HashElem* elem,   /* The element to be removed from the pH */
   243   int h                 /* Hash value for the element */
   244 ){
   245   struct _fts1ht *pEntry;
   246   if( elem->prev ){
   247     elem->prev->next = elem->next; 
   248   }else{
   249     pH->first = elem->next;
   250   }
   251   if( elem->next ){
   252     elem->next->prev = elem->prev;
   253   }
   254   pEntry = &pH->ht[h];
   255   if( pEntry->chain==elem ){
   256     pEntry->chain = elem->next;
   257   }
   258   pEntry->count--;
   259   if( pEntry->count<=0 ){
   260     pEntry->chain = 0;
   261   }
   262   if( pH->copyKey && elem->pKey ){
   263     pH->xFree(elem->pKey);
   264   }
   265   pH->xFree( elem );
   266   pH->count--;
   267   if( pH->count<=0 ){
   268     assert( pH->first==0 );
   269     assert( pH->count==0 );
   270     fts1HashClear(pH);
   271   }
   272 }
   273 
   274 /* Attempt to locate an element of the hash table pH with a key
   275 ** that matches pKey,nKey.  Return the data for this element if it is
   276 ** found, or NULL if there is no match.
   277 */
   278 void *sqlite3Fts1HashFind(const fts1Hash *pH, const void *pKey, int nKey){
   279   int h;                 /* A hash on key */
   280   fts1HashElem *elem;    /* The element that matches key */
   281   int (*xHash)(const void*,int);  /* The hash function */
   282 
   283   if( pH==0 || pH->ht==0 ) return 0;
   284   xHash = hashFunction(pH->keyClass);
   285   assert( xHash!=0 );
   286   h = (*xHash)(pKey,nKey);
   287   assert( (pH->htsize & (pH->htsize-1))==0 );
   288   elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
   289   return elem ? elem->data : 0;
   290 }
   291 
   292 /* Insert an element into the hash table pH.  The key is pKey,nKey
   293 ** and the data is "data".
   294 **
   295 ** If no element exists with a matching key, then a new
   296 ** element is created.  A copy of the key is made if the copyKey
   297 ** flag is set.  NULL is returned.
   298 **
   299 ** If another element already exists with the same key, then the
   300 ** new data replaces the old data and the old data is returned.
   301 ** The key is not copied in this instance.  If a malloc fails, then
   302 ** the new data is returned and the hash table is unchanged.
   303 **
   304 ** If the "data" parameter to this function is NULL, then the
   305 ** element corresponding to "key" is removed from the hash table.
   306 */
   307 void *sqlite3Fts1HashInsert(
   308   fts1Hash *pH,        /* The hash table to insert into */
   309   const void *pKey,    /* The key */
   310   int nKey,            /* Number of bytes in the key */
   311   void *data           /* The data */
   312 ){
   313   int hraw;                 /* Raw hash value of the key */
   314   int h;                    /* the hash of the key modulo hash table size */
   315   fts1HashElem *elem;       /* Used to loop thru the element list */
   316   fts1HashElem *new_elem;   /* New element added to the pH */
   317   int (*xHash)(const void*,int);  /* The hash function */
   318 
   319   assert( pH!=0 );
   320   xHash = hashFunction(pH->keyClass);
   321   assert( xHash!=0 );
   322   hraw = (*xHash)(pKey, nKey);
   323   assert( (pH->htsize & (pH->htsize-1))==0 );
   324   h = hraw & (pH->htsize-1);
   325   elem = findElementGivenHash(pH,pKey,nKey,h);
   326   if( elem ){
   327     void *old_data = elem->data;
   328     if( data==0 ){
   329       removeElementGivenHash(pH,elem,h);
   330     }else{
   331       elem->data = data;
   332     }
   333     return old_data;
   334   }
   335   if( data==0 ) return 0;
   336   new_elem = (fts1HashElem*)pH->xMalloc( sizeof(fts1HashElem) );
   337   if( new_elem==0 ) return data;
   338   if( pH->copyKey && pKey!=0 ){
   339     new_elem->pKey = pH->xMalloc( nKey );
   340     if( new_elem->pKey==0 ){
   341       pH->xFree(new_elem);
   342       return data;
   343     }
   344     memcpy((void*)new_elem->pKey, pKey, nKey);
   345   }else{
   346     new_elem->pKey = (void*)pKey;
   347   }
   348   new_elem->nKey = nKey;
   349   pH->count++;
   350   if( pH->htsize==0 ){
   351     rehash(pH,8);
   352     if( pH->htsize==0 ){
   353       pH->count = 0;
   354       pH->xFree(new_elem);
   355       return data;
   356     }
   357   }
   358   if( pH->count > pH->htsize ){
   359     rehash(pH,pH->htsize*2);
   360   }
   361   assert( pH->htsize>0 );
   362   assert( (pH->htsize & (pH->htsize-1))==0 );
   363   h = hraw & (pH->htsize-1);
   364   insertElement(pH, &pH->ht[h], new_elem);
   365   new_elem->data = data;
   366   return 0;
   367 }
   368 
   369 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) */