os/persistentdata/persistentstorage/sql/SQLite/expr.c
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
sl@0
     1
/*
sl@0
     2
** 2001 September 15
sl@0
     3
**
sl@0
     4
** The author disclaims copyright to this source code.  In place of
sl@0
     5
** a legal notice, here is a blessing:
sl@0
     6
**
sl@0
     7
**    May you do good and not evil.
sl@0
     8
**    May you find forgiveness for yourself and forgive others.
sl@0
     9
**    May you share freely, never taking more than you give.
sl@0
    10
**
sl@0
    11
*************************************************************************
sl@0
    12
** This file contains routines used for analyzing expressions and
sl@0
    13
** for generating VDBE code that evaluates expressions in SQLite.
sl@0
    14
**
sl@0
    15
** $Id: expr.c,v 1.387 2008/07/28 19:34:53 drh Exp $
sl@0
    16
*/
sl@0
    17
#include "sqliteInt.h"
sl@0
    18
#include <ctype.h>
sl@0
    19
sl@0
    20
/*
sl@0
    21
** Return the 'affinity' of the expression pExpr if any.
sl@0
    22
**
sl@0
    23
** If pExpr is a column, a reference to a column via an 'AS' alias,
sl@0
    24
** or a sub-select with a column as the return value, then the 
sl@0
    25
** affinity of that column is returned. Otherwise, 0x00 is returned,
sl@0
    26
** indicating no affinity for the expression.
sl@0
    27
**
sl@0
    28
** i.e. the WHERE clause expresssions in the following statements all
sl@0
    29
** have an affinity:
sl@0
    30
**
sl@0
    31
** CREATE TABLE t1(a);
sl@0
    32
** SELECT * FROM t1 WHERE a;
sl@0
    33
** SELECT a AS b FROM t1 WHERE b;
sl@0
    34
** SELECT * FROM t1 WHERE (select a from t1);
sl@0
    35
*/
sl@0
    36
char sqlite3ExprAffinity(Expr *pExpr){
sl@0
    37
  int op = pExpr->op;
sl@0
    38
  if( op==TK_SELECT ){
sl@0
    39
    return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
sl@0
    40
  }
sl@0
    41
#ifndef SQLITE_OMIT_CAST
sl@0
    42
  if( op==TK_CAST ){
sl@0
    43
    return sqlite3AffinityType(&pExpr->token);
sl@0
    44
  }
sl@0
    45
#endif
sl@0
    46
  return pExpr->affinity;
sl@0
    47
}
sl@0
    48
sl@0
    49
/*
sl@0
    50
** Set the collating sequence for expression pExpr to be the collating
sl@0
    51
** sequence named by pToken.   Return a pointer to the revised expression.
sl@0
    52
** The collating sequence is marked as "explicit" using the EP_ExpCollate
sl@0
    53
** flag.  An explicit collating sequence will override implicit
sl@0
    54
** collating sequences.
sl@0
    55
*/
sl@0
    56
Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
sl@0
    57
  char *zColl = 0;            /* Dequoted name of collation sequence */
sl@0
    58
  CollSeq *pColl;
sl@0
    59
  sqlite3 *db = pParse->db;
sl@0
    60
  zColl = sqlite3NameFromToken(db, pName);
sl@0
    61
  if( pExpr && zColl ){
sl@0
    62
    pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
sl@0
    63
    if( pColl ){
sl@0
    64
      pExpr->pColl = pColl;
sl@0
    65
      pExpr->flags |= EP_ExpCollate;
sl@0
    66
    }
sl@0
    67
  }
sl@0
    68
  sqlite3DbFree(db, zColl);
sl@0
    69
  return pExpr;
sl@0
    70
}
sl@0
    71
sl@0
    72
/*
sl@0
    73
** Return the default collation sequence for the expression pExpr. If
sl@0
    74
** there is no default collation type, return 0.
sl@0
    75
*/
sl@0
    76
CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
sl@0
    77
  CollSeq *pColl = 0;
sl@0
    78
  if( pExpr ){
sl@0
    79
    int op;
sl@0
    80
    pColl = pExpr->pColl;
sl@0
    81
    op = pExpr->op;
sl@0
    82
    if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){
sl@0
    83
      return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
sl@0
    84
    }
sl@0
    85
  }
sl@0
    86
  if( sqlite3CheckCollSeq(pParse, pColl) ){ 
sl@0
    87
    pColl = 0;
sl@0
    88
  }
sl@0
    89
  return pColl;
sl@0
    90
}
sl@0
    91
sl@0
    92
/*
sl@0
    93
** pExpr is an operand of a comparison operator.  aff2 is the
sl@0
    94
** type affinity of the other operand.  This routine returns the
sl@0
    95
** type affinity that should be used for the comparison operator.
sl@0
    96
*/
sl@0
    97
char sqlite3CompareAffinity(Expr *pExpr, char aff2){
sl@0
    98
  char aff1 = sqlite3ExprAffinity(pExpr);
sl@0
    99
  if( aff1 && aff2 ){
sl@0
   100
    /* Both sides of the comparison are columns. If one has numeric
sl@0
   101
    ** affinity, use that. Otherwise use no affinity.
sl@0
   102
    */
sl@0
   103
    if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
sl@0
   104
      return SQLITE_AFF_NUMERIC;
sl@0
   105
    }else{
sl@0
   106
      return SQLITE_AFF_NONE;
sl@0
   107
    }
sl@0
   108
  }else if( !aff1 && !aff2 ){
sl@0
   109
    /* Neither side of the comparison is a column.  Compare the
sl@0
   110
    ** results directly.
sl@0
   111
    */
sl@0
   112
    return SQLITE_AFF_NONE;
sl@0
   113
  }else{
sl@0
   114
    /* One side is a column, the other is not. Use the columns affinity. */
sl@0
   115
    assert( aff1==0 || aff2==0 );
sl@0
   116
    return (aff1 + aff2);
sl@0
   117
  }
sl@0
   118
}
sl@0
   119
sl@0
   120
/*
sl@0
   121
** pExpr is a comparison operator.  Return the type affinity that should
sl@0
   122
** be applied to both operands prior to doing the comparison.
sl@0
   123
*/
sl@0
   124
static char comparisonAffinity(Expr *pExpr){
sl@0
   125
  char aff;
sl@0
   126
  assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
sl@0
   127
          pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
sl@0
   128
          pExpr->op==TK_NE );
sl@0
   129
  assert( pExpr->pLeft );
sl@0
   130
  aff = sqlite3ExprAffinity(pExpr->pLeft);
sl@0
   131
  if( pExpr->pRight ){
sl@0
   132
    aff = sqlite3CompareAffinity(pExpr->pRight, aff);
sl@0
   133
  }
sl@0
   134
  else if( pExpr->pSelect ){
sl@0
   135
    aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
sl@0
   136
  }
sl@0
   137
  else if( !aff ){
sl@0
   138
    aff = SQLITE_AFF_NONE;
sl@0
   139
  }
sl@0
   140
  return aff;
sl@0
   141
}
sl@0
   142
sl@0
   143
/*
sl@0
   144
** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
sl@0
   145
** idx_affinity is the affinity of an indexed column. Return true
sl@0
   146
** if the index with affinity idx_affinity may be used to implement
sl@0
   147
** the comparison in pExpr.
sl@0
   148
*/
sl@0
   149
int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
sl@0
   150
  char aff = comparisonAffinity(pExpr);
sl@0
   151
  switch( aff ){
sl@0
   152
    case SQLITE_AFF_NONE:
sl@0
   153
      return 1;
sl@0
   154
    case SQLITE_AFF_TEXT:
sl@0
   155
      return idx_affinity==SQLITE_AFF_TEXT;
sl@0
   156
    default:
sl@0
   157
      return sqlite3IsNumericAffinity(idx_affinity);
sl@0
   158
  }
sl@0
   159
}
sl@0
   160
sl@0
   161
/*
sl@0
   162
** Return the P5 value that should be used for a binary comparison
sl@0
   163
** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
sl@0
   164
*/
sl@0
   165
static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
sl@0
   166
  u8 aff = (char)sqlite3ExprAffinity(pExpr2);
sl@0
   167
  aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull;
sl@0
   168
  return aff;
sl@0
   169
}
sl@0
   170
sl@0
   171
/*
sl@0
   172
** Return a pointer to the collation sequence that should be used by
sl@0
   173
** a binary comparison operator comparing pLeft and pRight.
sl@0
   174
**
sl@0
   175
** If the left hand expression has a collating sequence type, then it is
sl@0
   176
** used. Otherwise the collation sequence for the right hand expression
sl@0
   177
** is used, or the default (BINARY) if neither expression has a collating
sl@0
   178
** type.
sl@0
   179
**
sl@0
   180
** Argument pRight (but not pLeft) may be a null pointer. In this case,
sl@0
   181
** it is not considered.
sl@0
   182
*/
sl@0
   183
CollSeq *sqlite3BinaryCompareCollSeq(
sl@0
   184
  Parse *pParse, 
sl@0
   185
  Expr *pLeft, 
sl@0
   186
  Expr *pRight
sl@0
   187
){
sl@0
   188
  CollSeq *pColl;
sl@0
   189
  assert( pLeft );
sl@0
   190
  if( pLeft->flags & EP_ExpCollate ){
sl@0
   191
    assert( pLeft->pColl );
sl@0
   192
    pColl = pLeft->pColl;
sl@0
   193
  }else if( pRight && pRight->flags & EP_ExpCollate ){
sl@0
   194
    assert( pRight->pColl );
sl@0
   195
    pColl = pRight->pColl;
sl@0
   196
  }else{
sl@0
   197
    pColl = sqlite3ExprCollSeq(pParse, pLeft);
sl@0
   198
    if( !pColl ){
sl@0
   199
      pColl = sqlite3ExprCollSeq(pParse, pRight);
sl@0
   200
    }
sl@0
   201
  }
sl@0
   202
  return pColl;
sl@0
   203
}
sl@0
   204
sl@0
   205
/*
sl@0
   206
** Generate the operands for a comparison operation.  Before
sl@0
   207
** generating the code for each operand, set the EP_AnyAff
sl@0
   208
** flag on the expression so that it will be able to used a
sl@0
   209
** cached column value that has previously undergone an
sl@0
   210
** affinity change.
sl@0
   211
*/
sl@0
   212
static void codeCompareOperands(
sl@0
   213
  Parse *pParse,    /* Parsing and code generating context */
sl@0
   214
  Expr *pLeft,      /* The left operand */
sl@0
   215
  int *pRegLeft,    /* Register where left operand is stored */
sl@0
   216
  int *pFreeLeft,   /* Free this register when done */
sl@0
   217
  Expr *pRight,     /* The right operand */
sl@0
   218
  int *pRegRight,   /* Register where right operand is stored */
sl@0
   219
  int *pFreeRight   /* Write temp register for right operand there */
sl@0
   220
){
sl@0
   221
  while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
sl@0
   222
  pLeft->flags |= EP_AnyAff;
sl@0
   223
  *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
sl@0
   224
  while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
sl@0
   225
  pRight->flags |= EP_AnyAff;
sl@0
   226
  *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
sl@0
   227
}
sl@0
   228
sl@0
   229
/*
sl@0
   230
** Generate code for a comparison operator.
sl@0
   231
*/
sl@0
   232
static int codeCompare(
sl@0
   233
  Parse *pParse,    /* The parsing (and code generating) context */
sl@0
   234
  Expr *pLeft,      /* The left operand */
sl@0
   235
  Expr *pRight,     /* The right operand */
sl@0
   236
  int opcode,       /* The comparison opcode */
sl@0
   237
  int in1, int in2, /* Register holding operands */
sl@0
   238
  int dest,         /* Jump here if true.  */
sl@0
   239
  int jumpIfNull    /* If true, jump if either operand is NULL */
sl@0
   240
){
sl@0
   241
  int p5;
sl@0
   242
  int addr;
sl@0
   243
  CollSeq *p4;
sl@0
   244
sl@0
   245
  p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
sl@0
   246
  p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
sl@0
   247
  addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
sl@0
   248
                           (void*)p4, P4_COLLSEQ);
sl@0
   249
  sqlite3VdbeChangeP5(pParse->pVdbe, p5);
sl@0
   250
  if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
sl@0
   251
    sqlite3ExprCacheAffinityChange(pParse, in1, 1);
sl@0
   252
    sqlite3ExprCacheAffinityChange(pParse, in2, 1);
sl@0
   253
  }
sl@0
   254
  return addr;
sl@0
   255
}
sl@0
   256
sl@0
   257
#if SQLITE_MAX_EXPR_DEPTH>0
sl@0
   258
/*
sl@0
   259
** Check that argument nHeight is less than or equal to the maximum
sl@0
   260
** expression depth allowed. If it is not, leave an error message in
sl@0
   261
** pParse.
sl@0
   262
*/
sl@0
   263
static int checkExprHeight(Parse *pParse, int nHeight){
sl@0
   264
  int rc = SQLITE_OK;
sl@0
   265
  int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
sl@0
   266
  if( nHeight>mxHeight ){
sl@0
   267
    sqlite3ErrorMsg(pParse, 
sl@0
   268
       "Expression tree is too large (maximum depth %d)", mxHeight
sl@0
   269
    );
sl@0
   270
    rc = SQLITE_ERROR;
sl@0
   271
  }
sl@0
   272
  return rc;
sl@0
   273
}
sl@0
   274
sl@0
   275
/* The following three functions, heightOfExpr(), heightOfExprList()
sl@0
   276
** and heightOfSelect(), are used to determine the maximum height
sl@0
   277
** of any expression tree referenced by the structure passed as the
sl@0
   278
** first argument.
sl@0
   279
**
sl@0
   280
** If this maximum height is greater than the current value pointed
sl@0
   281
** to by pnHeight, the second parameter, then set *pnHeight to that
sl@0
   282
** value.
sl@0
   283
*/
sl@0
   284
static void heightOfExpr(Expr *p, int *pnHeight){
sl@0
   285
  if( p ){
sl@0
   286
    if( p->nHeight>*pnHeight ){
sl@0
   287
      *pnHeight = p->nHeight;
sl@0
   288
    }
sl@0
   289
  }
sl@0
   290
}
sl@0
   291
static void heightOfExprList(ExprList *p, int *pnHeight){
sl@0
   292
  if( p ){
sl@0
   293
    int i;
sl@0
   294
    for(i=0; i<p->nExpr; i++){
sl@0
   295
      heightOfExpr(p->a[i].pExpr, pnHeight);
sl@0
   296
    }
sl@0
   297
  }
sl@0
   298
}
sl@0
   299
static void heightOfSelect(Select *p, int *pnHeight){
sl@0
   300
  if( p ){
sl@0
   301
    heightOfExpr(p->pWhere, pnHeight);
sl@0
   302
    heightOfExpr(p->pHaving, pnHeight);
sl@0
   303
    heightOfExpr(p->pLimit, pnHeight);
sl@0
   304
    heightOfExpr(p->pOffset, pnHeight);
sl@0
   305
    heightOfExprList(p->pEList, pnHeight);
sl@0
   306
    heightOfExprList(p->pGroupBy, pnHeight);
sl@0
   307
    heightOfExprList(p->pOrderBy, pnHeight);
sl@0
   308
    heightOfSelect(p->pPrior, pnHeight);
sl@0
   309
  }
sl@0
   310
}
sl@0
   311
sl@0
   312
/*
sl@0
   313
** Set the Expr.nHeight variable in the structure passed as an 
sl@0
   314
** argument. An expression with no children, Expr.pList or 
sl@0
   315
** Expr.pSelect member has a height of 1. Any other expression
sl@0
   316
** has a height equal to the maximum height of any other 
sl@0
   317
** referenced Expr plus one.
sl@0
   318
*/
sl@0
   319
static void exprSetHeight(Expr *p){
sl@0
   320
  int nHeight = 0;
sl@0
   321
  heightOfExpr(p->pLeft, &nHeight);
sl@0
   322
  heightOfExpr(p->pRight, &nHeight);
sl@0
   323
  heightOfExprList(p->pList, &nHeight);
sl@0
   324
  heightOfSelect(p->pSelect, &nHeight);
sl@0
   325
  p->nHeight = nHeight + 1;
sl@0
   326
}
sl@0
   327
sl@0
   328
/*
sl@0
   329
** Set the Expr.nHeight variable using the exprSetHeight() function. If
sl@0
   330
** the height is greater than the maximum allowed expression depth,
sl@0
   331
** leave an error in pParse.
sl@0
   332
*/
sl@0
   333
void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
sl@0
   334
  exprSetHeight(p);
sl@0
   335
  checkExprHeight(pParse, p->nHeight);
sl@0
   336
}
sl@0
   337
sl@0
   338
/*
sl@0
   339
** Return the maximum height of any expression tree referenced
sl@0
   340
** by the select statement passed as an argument.
sl@0
   341
*/
sl@0
   342
int sqlite3SelectExprHeight(Select *p){
sl@0
   343
  int nHeight = 0;
sl@0
   344
  heightOfSelect(p, &nHeight);
sl@0
   345
  return nHeight;
sl@0
   346
}
sl@0
   347
#else
sl@0
   348
  #define checkExprHeight(x,y)
sl@0
   349
  #define exprSetHeight(y)
sl@0
   350
#endif /* SQLITE_MAX_EXPR_DEPTH>0 */
sl@0
   351
sl@0
   352
/*
sl@0
   353
** Construct a new expression node and return a pointer to it.  Memory
sl@0
   354
** for this node is obtained from sqlite3_malloc().  The calling function
sl@0
   355
** is responsible for making sure the node eventually gets freed.
sl@0
   356
*/
sl@0
   357
Expr *sqlite3Expr(
sl@0
   358
  sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
sl@0
   359
  int op,                 /* Expression opcode */
sl@0
   360
  Expr *pLeft,            /* Left operand */
sl@0
   361
  Expr *pRight,           /* Right operand */
sl@0
   362
  const Token *pToken     /* Argument token */
sl@0
   363
){
sl@0
   364
  Expr *pNew;
sl@0
   365
  pNew = sqlite3DbMallocZero(db, sizeof(Expr));
sl@0
   366
  if( pNew==0 ){
sl@0
   367
    /* When malloc fails, delete pLeft and pRight. Expressions passed to 
sl@0
   368
    ** this function must always be allocated with sqlite3Expr() for this 
sl@0
   369
    ** reason. 
sl@0
   370
    */
sl@0
   371
    sqlite3ExprDelete(db, pLeft);
sl@0
   372
    sqlite3ExprDelete(db, pRight);
sl@0
   373
    return 0;
sl@0
   374
  }
sl@0
   375
  pNew->op = op;
sl@0
   376
  pNew->pLeft = pLeft;
sl@0
   377
  pNew->pRight = pRight;
sl@0
   378
  pNew->iAgg = -1;
sl@0
   379
  pNew->span.z = (u8*)"";
sl@0
   380
  if( pToken ){
sl@0
   381
    assert( pToken->dyn==0 );
sl@0
   382
    pNew->span = pNew->token = *pToken;
sl@0
   383
  }else if( pLeft ){
sl@0
   384
    if( pRight ){
sl@0
   385
      if( pRight->span.dyn==0 && pLeft->span.dyn==0 ){
sl@0
   386
        sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
sl@0
   387
      }
sl@0
   388
      if( pRight->flags & EP_ExpCollate ){
sl@0
   389
        pNew->flags |= EP_ExpCollate;
sl@0
   390
        pNew->pColl = pRight->pColl;
sl@0
   391
      }
sl@0
   392
    }
sl@0
   393
    if( pLeft->flags & EP_ExpCollate ){
sl@0
   394
      pNew->flags |= EP_ExpCollate;
sl@0
   395
      pNew->pColl = pLeft->pColl;
sl@0
   396
    }
sl@0
   397
  }
sl@0
   398
sl@0
   399
  exprSetHeight(pNew);
sl@0
   400
  return pNew;
sl@0
   401
}
sl@0
   402
sl@0
   403
/*
sl@0
   404
** Works like sqlite3Expr() except that it takes an extra Parse*
sl@0
   405
** argument and notifies the associated connection object if malloc fails.
sl@0
   406
*/
sl@0
   407
Expr *sqlite3PExpr(
sl@0
   408
  Parse *pParse,          /* Parsing context */
sl@0
   409
  int op,                 /* Expression opcode */
sl@0
   410
  Expr *pLeft,            /* Left operand */
sl@0
   411
  Expr *pRight,           /* Right operand */
sl@0
   412
  const Token *pToken     /* Argument token */
sl@0
   413
){
sl@0
   414
  Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
sl@0
   415
  if( p ){
sl@0
   416
    checkExprHeight(pParse, p->nHeight);
sl@0
   417
  }
sl@0
   418
  return p;
sl@0
   419
}
sl@0
   420
sl@0
   421
/*
sl@0
   422
** When doing a nested parse, you can include terms in an expression
sl@0
   423
** that look like this:   #1 #2 ...  These terms refer to registers
sl@0
   424
** in the virtual machine.  #N is the N-th register.
sl@0
   425
**
sl@0
   426
** This routine is called by the parser to deal with on of those terms.
sl@0
   427
** It immediately generates code to store the value in a memory location.
sl@0
   428
** The returns an expression that will code to extract the value from
sl@0
   429
** that memory location as needed.
sl@0
   430
*/
sl@0
   431
Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
sl@0
   432
  Vdbe *v = pParse->pVdbe;
sl@0
   433
  Expr *p;
sl@0
   434
  if( pParse->nested==0 ){
sl@0
   435
    sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
sl@0
   436
    return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
sl@0
   437
  }
sl@0
   438
  if( v==0 ) return 0;
sl@0
   439
  p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
sl@0
   440
  if( p==0 ){
sl@0
   441
    return 0;  /* Malloc failed */
sl@0
   442
  }
sl@0
   443
  p->iTable = atoi((char*)&pToken->z[1]);
sl@0
   444
  return p;
sl@0
   445
}
sl@0
   446
sl@0
   447
/*
sl@0
   448
** Join two expressions using an AND operator.  If either expression is
sl@0
   449
** NULL, then just return the other expression.
sl@0
   450
*/
sl@0
   451
Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
sl@0
   452
  if( pLeft==0 ){
sl@0
   453
    return pRight;
sl@0
   454
  }else if( pRight==0 ){
sl@0
   455
    return pLeft;
sl@0
   456
  }else{
sl@0
   457
    return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
sl@0
   458
  }
sl@0
   459
}
sl@0
   460
sl@0
   461
/*
sl@0
   462
** Set the Expr.span field of the given expression to span all
sl@0
   463
** text between the two given tokens.  Both tokens must be pointing
sl@0
   464
** at the same string.
sl@0
   465
*/
sl@0
   466
void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
sl@0
   467
  assert( pRight!=0 );
sl@0
   468
  assert( pLeft!=0 );
sl@0
   469
  if( pExpr ){
sl@0
   470
    pExpr->span.z = pLeft->z;
sl@0
   471
    pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
sl@0
   472
  }
sl@0
   473
}
sl@0
   474
sl@0
   475
/*
sl@0
   476
** Construct a new expression node for a function with multiple
sl@0
   477
** arguments.
sl@0
   478
*/
sl@0
   479
Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
sl@0
   480
  Expr *pNew;
sl@0
   481
  sqlite3 *db = pParse->db;
sl@0
   482
  assert( pToken );
sl@0
   483
  pNew = sqlite3DbMallocZero(db, sizeof(Expr) );
sl@0
   484
  if( pNew==0 ){
sl@0
   485
    sqlite3ExprListDelete(db, pList); /* Avoid leaking memory when malloc fails */
sl@0
   486
    return 0;
sl@0
   487
  }
sl@0
   488
  pNew->op = TK_FUNCTION;
sl@0
   489
  pNew->pList = pList;
sl@0
   490
  assert( pToken->dyn==0 );
sl@0
   491
  pNew->token = *pToken;
sl@0
   492
  pNew->span = pNew->token;
sl@0
   493
sl@0
   494
  sqlite3ExprSetHeight(pParse, pNew);
sl@0
   495
  return pNew;
sl@0
   496
}
sl@0
   497
sl@0
   498
/*
sl@0
   499
** Assign a variable number to an expression that encodes a wildcard
sl@0
   500
** in the original SQL statement.  
sl@0
   501
**
sl@0
   502
** Wildcards consisting of a single "?" are assigned the next sequential
sl@0
   503
** variable number.
sl@0
   504
**
sl@0
   505
** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
sl@0
   506
** sure "nnn" is not too be to avoid a denial of service attack when
sl@0
   507
** the SQL statement comes from an external source.
sl@0
   508
**
sl@0
   509
** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
sl@0
   510
** as the previous instance of the same wildcard.  Or if this is the first
sl@0
   511
** instance of the wildcard, the next sequenial variable number is
sl@0
   512
** assigned.
sl@0
   513
*/
sl@0
   514
void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
sl@0
   515
  Token *pToken;
sl@0
   516
  sqlite3 *db = pParse->db;
sl@0
   517
sl@0
   518
  if( pExpr==0 ) return;
sl@0
   519
  pToken = &pExpr->token;
sl@0
   520
  assert( pToken->n>=1 );
sl@0
   521
  assert( pToken->z!=0 );
sl@0
   522
  assert( pToken->z[0]!=0 );
sl@0
   523
  if( pToken->n==1 ){
sl@0
   524
    /* Wildcard of the form "?".  Assign the next variable number */
sl@0
   525
    pExpr->iTable = ++pParse->nVar;
sl@0
   526
  }else if( pToken->z[0]=='?' ){
sl@0
   527
    /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
sl@0
   528
    ** use it as the variable number */
sl@0
   529
    int i;
sl@0
   530
    pExpr->iTable = i = atoi((char*)&pToken->z[1]);
sl@0
   531
    testcase( i==0 );
sl@0
   532
    testcase( i==1 );
sl@0
   533
    testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
sl@0
   534
    testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
sl@0
   535
    if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
sl@0
   536
      sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
sl@0
   537
          db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
sl@0
   538
    }
sl@0
   539
    if( i>pParse->nVar ){
sl@0
   540
      pParse->nVar = i;
sl@0
   541
    }
sl@0
   542
  }else{
sl@0
   543
    /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
sl@0
   544
    ** number as the prior appearance of the same name, or if the name
sl@0
   545
    ** has never appeared before, reuse the same variable number
sl@0
   546
    */
sl@0
   547
    int i, n;
sl@0
   548
    n = pToken->n;
sl@0
   549
    for(i=0; i<pParse->nVarExpr; i++){
sl@0
   550
      Expr *pE;
sl@0
   551
      if( (pE = pParse->apVarExpr[i])!=0
sl@0
   552
          && pE->token.n==n
sl@0
   553
          && memcmp(pE->token.z, pToken->z, n)==0 ){
sl@0
   554
        pExpr->iTable = pE->iTable;
sl@0
   555
        break;
sl@0
   556
      }
sl@0
   557
    }
sl@0
   558
    if( i>=pParse->nVarExpr ){
sl@0
   559
      pExpr->iTable = ++pParse->nVar;
sl@0
   560
      if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
sl@0
   561
        pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
sl@0
   562
        pParse->apVarExpr =
sl@0
   563
            sqlite3DbReallocOrFree(
sl@0
   564
              db,
sl@0
   565
              pParse->apVarExpr,
sl@0
   566
              pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
sl@0
   567
            );
sl@0
   568
      }
sl@0
   569
      if( !db->mallocFailed ){
sl@0
   570
        assert( pParse->apVarExpr!=0 );
sl@0
   571
        pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
sl@0
   572
      }
sl@0
   573
    }
sl@0
   574
  } 
sl@0
   575
  if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
sl@0
   576
    sqlite3ErrorMsg(pParse, "too many SQL variables");
sl@0
   577
  }
sl@0
   578
}
sl@0
   579
sl@0
   580
/*
sl@0
   581
** Recursively delete an expression tree.
sl@0
   582
*/
sl@0
   583
void sqlite3ExprDelete(sqlite3 *db, Expr *p){
sl@0
   584
  if( p==0 ) return;
sl@0
   585
  if( p->span.dyn ) sqlite3DbFree(db, (char*)p->span.z);
sl@0
   586
  if( p->token.dyn ) sqlite3DbFree(db, (char*)p->token.z);
sl@0
   587
  sqlite3ExprDelete(db, p->pLeft);
sl@0
   588
  sqlite3ExprDelete(db, p->pRight);
sl@0
   589
  sqlite3ExprListDelete(db, p->pList);
sl@0
   590
  sqlite3SelectDelete(db, p->pSelect);
sl@0
   591
  sqlite3DbFree(db, p);
sl@0
   592
}
sl@0
   593
sl@0
   594
/*
sl@0
   595
** The Expr.token field might be a string literal that is quoted.
sl@0
   596
** If so, remove the quotation marks.
sl@0
   597
*/
sl@0
   598
void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
sl@0
   599
  if( ExprHasAnyProperty(p, EP_Dequoted) ){
sl@0
   600
    return;
sl@0
   601
  }
sl@0
   602
  ExprSetProperty(p, EP_Dequoted);
sl@0
   603
  if( p->token.dyn==0 ){
sl@0
   604
    sqlite3TokenCopy(db, &p->token, &p->token);
sl@0
   605
  }
sl@0
   606
  sqlite3Dequote((char*)p->token.z);
sl@0
   607
}
sl@0
   608
sl@0
   609
sl@0
   610
/*
sl@0
   611
** The following group of routines make deep copies of expressions,
sl@0
   612
** expression lists, ID lists, and select statements.  The copies can
sl@0
   613
** be deleted (by being passed to their respective ...Delete() routines)
sl@0
   614
** without effecting the originals.
sl@0
   615
**
sl@0
   616
** The expression list, ID, and source lists return by sqlite3ExprListDup(),
sl@0
   617
** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 
sl@0
   618
** by subsequent calls to sqlite*ListAppend() routines.
sl@0
   619
**
sl@0
   620
** Any tables that the SrcList might point to are not duplicated.
sl@0
   621
*/
sl@0
   622
Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
sl@0
   623
  Expr *pNew;
sl@0
   624
  if( p==0 ) return 0;
sl@0
   625
  pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
sl@0
   626
  if( pNew==0 ) return 0;
sl@0
   627
  memcpy(pNew, p, sizeof(*pNew));
sl@0
   628
  if( p->token.z!=0 ){
sl@0
   629
    pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
sl@0
   630
    pNew->token.dyn = 1;
sl@0
   631
  }else{
sl@0
   632
    assert( pNew->token.z==0 );
sl@0
   633
  }
sl@0
   634
  pNew->span.z = 0;
sl@0
   635
  pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
sl@0
   636
  pNew->pRight = sqlite3ExprDup(db, p->pRight);
sl@0
   637
  pNew->pList = sqlite3ExprListDup(db, p->pList);
sl@0
   638
  pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
sl@0
   639
  return pNew;
sl@0
   640
}
sl@0
   641
void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
sl@0
   642
  if( pTo->dyn ) sqlite3DbFree(db, (char*)pTo->z);
sl@0
   643
  if( pFrom->z ){
sl@0
   644
    pTo->n = pFrom->n;
sl@0
   645
    pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
sl@0
   646
    pTo->dyn = 1;
sl@0
   647
  }else{
sl@0
   648
    pTo->z = 0;
sl@0
   649
  }
sl@0
   650
}
sl@0
   651
ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
sl@0
   652
  ExprList *pNew;
sl@0
   653
  struct ExprList_item *pItem, *pOldItem;
sl@0
   654
  int i;
sl@0
   655
  if( p==0 ) return 0;
sl@0
   656
  pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
sl@0
   657
  if( pNew==0 ) return 0;
sl@0
   658
  pNew->iECursor = 0;
sl@0
   659
  pNew->nExpr = pNew->nAlloc = p->nExpr;
sl@0
   660
  pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
sl@0
   661
  if( pItem==0 ){
sl@0
   662
    sqlite3DbFree(db, pNew);
sl@0
   663
    return 0;
sl@0
   664
  } 
sl@0
   665
  pOldItem = p->a;
sl@0
   666
  for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
sl@0
   667
    Expr *pNewExpr, *pOldExpr;
sl@0
   668
    pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
sl@0
   669
    if( pOldExpr->span.z!=0 && pNewExpr ){
sl@0
   670
      /* Always make a copy of the span for top-level expressions in the
sl@0
   671
      ** expression list.  The logic in SELECT processing that determines
sl@0
   672
      ** the names of columns in the result set needs this information */
sl@0
   673
      sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
sl@0
   674
    }
sl@0
   675
    assert( pNewExpr==0 || pNewExpr->span.z!=0 
sl@0
   676
            || pOldExpr->span.z==0
sl@0
   677
            || db->mallocFailed );
sl@0
   678
    pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
sl@0
   679
    pItem->sortOrder = pOldItem->sortOrder;
sl@0
   680
    pItem->isAgg = pOldItem->isAgg;
sl@0
   681
    pItem->done = 0;
sl@0
   682
  }
sl@0
   683
  return pNew;
sl@0
   684
}
sl@0
   685
sl@0
   686
/*
sl@0
   687
** If cursors, triggers, views and subqueries are all omitted from
sl@0
   688
** the build, then none of the following routines, except for 
sl@0
   689
** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
sl@0
   690
** called with a NULL argument.
sl@0
   691
*/
sl@0
   692
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
sl@0
   693
 || !defined(SQLITE_OMIT_SUBQUERY)
sl@0
   694
SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
sl@0
   695
  SrcList *pNew;
sl@0
   696
  int i;
sl@0
   697
  int nByte;
sl@0
   698
  if( p==0 ) return 0;
sl@0
   699
  nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
sl@0
   700
  pNew = sqlite3DbMallocRaw(db, nByte );
sl@0
   701
  if( pNew==0 ) return 0;
sl@0
   702
  pNew->nSrc = pNew->nAlloc = p->nSrc;
sl@0
   703
  for(i=0; i<p->nSrc; i++){
sl@0
   704
    struct SrcList_item *pNewItem = &pNew->a[i];
sl@0
   705
    struct SrcList_item *pOldItem = &p->a[i];
sl@0
   706
    Table *pTab;
sl@0
   707
    pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
sl@0
   708
    pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
sl@0
   709
    pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
sl@0
   710
    pNewItem->jointype = pOldItem->jointype;
sl@0
   711
    pNewItem->iCursor = pOldItem->iCursor;
sl@0
   712
    pNewItem->isPopulated = pOldItem->isPopulated;
sl@0
   713
    pTab = pNewItem->pTab = pOldItem->pTab;
sl@0
   714
    if( pTab ){
sl@0
   715
      pTab->nRef++;
sl@0
   716
    }
sl@0
   717
    pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
sl@0
   718
    pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
sl@0
   719
    pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
sl@0
   720
    pNewItem->colUsed = pOldItem->colUsed;
sl@0
   721
  }
sl@0
   722
  return pNew;
sl@0
   723
}
sl@0
   724
IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
sl@0
   725
  IdList *pNew;
sl@0
   726
  int i;
sl@0
   727
  if( p==0 ) return 0;
sl@0
   728
  pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
sl@0
   729
  if( pNew==0 ) return 0;
sl@0
   730
  pNew->nId = pNew->nAlloc = p->nId;
sl@0
   731
  pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
sl@0
   732
  if( pNew->a==0 ){
sl@0
   733
    sqlite3DbFree(db, pNew);
sl@0
   734
    return 0;
sl@0
   735
  }
sl@0
   736
  for(i=0; i<p->nId; i++){
sl@0
   737
    struct IdList_item *pNewItem = &pNew->a[i];
sl@0
   738
    struct IdList_item *pOldItem = &p->a[i];
sl@0
   739
    pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
sl@0
   740
    pNewItem->idx = pOldItem->idx;
sl@0
   741
  }
sl@0
   742
  return pNew;
sl@0
   743
}
sl@0
   744
Select *sqlite3SelectDup(sqlite3 *db, Select *p){
sl@0
   745
  Select *pNew;
sl@0
   746
  if( p==0 ) return 0;
sl@0
   747
  pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
sl@0
   748
  if( pNew==0 ) return 0;
sl@0
   749
  pNew->isDistinct = p->isDistinct;
sl@0
   750
  pNew->pEList = sqlite3ExprListDup(db, p->pEList);
sl@0
   751
  pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
sl@0
   752
  pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
sl@0
   753
  pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
sl@0
   754
  pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
sl@0
   755
  pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
sl@0
   756
  pNew->op = p->op;
sl@0
   757
  pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
sl@0
   758
  pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
sl@0
   759
  pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
sl@0
   760
  pNew->iLimit = 0;
sl@0
   761
  pNew->iOffset = 0;
sl@0
   762
  pNew->isResolved = p->isResolved;
sl@0
   763
  pNew->isAgg = p->isAgg;
sl@0
   764
  pNew->usesEphm = 0;
sl@0
   765
  pNew->disallowOrderBy = 0;
sl@0
   766
  pNew->pRightmost = 0;
sl@0
   767
  pNew->addrOpenEphm[0] = -1;
sl@0
   768
  pNew->addrOpenEphm[1] = -1;
sl@0
   769
  pNew->addrOpenEphm[2] = -1;
sl@0
   770
  return pNew;
sl@0
   771
}
sl@0
   772
#else
sl@0
   773
Select *sqlite3SelectDup(sqlite3 *db, Select *p){
sl@0
   774
  assert( p==0 );
sl@0
   775
  return 0;
sl@0
   776
}
sl@0
   777
#endif
sl@0
   778
sl@0
   779
sl@0
   780
/*
sl@0
   781
** Add a new element to the end of an expression list.  If pList is
sl@0
   782
** initially NULL, then create a new expression list.
sl@0
   783
*/
sl@0
   784
ExprList *sqlite3ExprListAppend(
sl@0
   785
  Parse *pParse,          /* Parsing context */
sl@0
   786
  ExprList *pList,        /* List to which to append. Might be NULL */
sl@0
   787
  Expr *pExpr,            /* Expression to be appended */
sl@0
   788
  Token *pName            /* AS keyword for the expression */
sl@0
   789
){
sl@0
   790
  sqlite3 *db = pParse->db;
sl@0
   791
  if( pList==0 ){
sl@0
   792
    pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
sl@0
   793
    if( pList==0 ){
sl@0
   794
      goto no_mem;
sl@0
   795
    }
sl@0
   796
    assert( pList->nAlloc==0 );
sl@0
   797
  }
sl@0
   798
  if( pList->nAlloc<=pList->nExpr ){
sl@0
   799
    struct ExprList_item *a;
sl@0
   800
    int n = pList->nAlloc*2 + 4;
sl@0
   801
    a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
sl@0
   802
    if( a==0 ){
sl@0
   803
      goto no_mem;
sl@0
   804
    }
sl@0
   805
    pList->a = a;
sl@0
   806
    pList->nAlloc = n;
sl@0
   807
  }
sl@0
   808
  assert( pList->a!=0 );
sl@0
   809
  if( pExpr || pName ){
sl@0
   810
    struct ExprList_item *pItem = &pList->a[pList->nExpr++];
sl@0
   811
    memset(pItem, 0, sizeof(*pItem));
sl@0
   812
    pItem->zName = sqlite3NameFromToken(db, pName);
sl@0
   813
    pItem->pExpr = pExpr;
sl@0
   814
  }
sl@0
   815
  return pList;
sl@0
   816
sl@0
   817
no_mem:     
sl@0
   818
  /* Avoid leaking memory if malloc has failed. */
sl@0
   819
  sqlite3ExprDelete(db, pExpr);
sl@0
   820
  sqlite3ExprListDelete(db, pList);
sl@0
   821
  return 0;
sl@0
   822
}
sl@0
   823
sl@0
   824
/*
sl@0
   825
** If the expression list pEList contains more than iLimit elements,
sl@0
   826
** leave an error message in pParse.
sl@0
   827
*/
sl@0
   828
void sqlite3ExprListCheckLength(
sl@0
   829
  Parse *pParse,
sl@0
   830
  ExprList *pEList,
sl@0
   831
  const char *zObject
sl@0
   832
){
sl@0
   833
  int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
sl@0
   834
  testcase( pEList && pEList->nExpr==mx );
sl@0
   835
  testcase( pEList && pEList->nExpr==mx+1 );
sl@0
   836
  if( pEList && pEList->nExpr>mx ){
sl@0
   837
    sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
sl@0
   838
  }
sl@0
   839
}
sl@0
   840
sl@0
   841
/*
sl@0
   842
** Delete an entire expression list.
sl@0
   843
*/
sl@0
   844
void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
sl@0
   845
  int i;
sl@0
   846
  struct ExprList_item *pItem;
sl@0
   847
  if( pList==0 ) return;
sl@0
   848
  assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
sl@0
   849
  assert( pList->nExpr<=pList->nAlloc );
sl@0
   850
  for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
sl@0
   851
    sqlite3ExprDelete(db, pItem->pExpr);
sl@0
   852
    sqlite3DbFree(db, pItem->zName);
sl@0
   853
  }
sl@0
   854
  sqlite3DbFree(db, pList->a);
sl@0
   855
  sqlite3DbFree(db, pList);
sl@0
   856
}
sl@0
   857
sl@0
   858
/*
sl@0
   859
** Walk an expression tree.  Call xFunc for each node visited.  xFunc
sl@0
   860
** is called on the node before xFunc is called on the nodes children.
sl@0
   861
**
sl@0
   862
** The return value from xFunc determines whether the tree walk continues.
sl@0
   863
** 0 means continue walking the tree.  1 means do not walk children
sl@0
   864
** of the current node but continue with siblings.  2 means abandon
sl@0
   865
** the tree walk completely.
sl@0
   866
**
sl@0
   867
** The return value from this routine is 1 to abandon the tree walk
sl@0
   868
** and 0 to continue.
sl@0
   869
**
sl@0
   870
** NOTICE:  This routine does *not* descend into subqueries.
sl@0
   871
*/
sl@0
   872
static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
sl@0
   873
static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
sl@0
   874
  int rc;
sl@0
   875
  if( pExpr==0 ) return 0;
sl@0
   876
  rc = (*xFunc)(pArg, pExpr);
sl@0
   877
  if( rc==0 ){
sl@0
   878
    if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
sl@0
   879
    if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
sl@0
   880
    if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
sl@0
   881
  }
sl@0
   882
  return rc>1;
sl@0
   883
}
sl@0
   884
sl@0
   885
/*
sl@0
   886
** Call walkExprTree() for every expression in list p.
sl@0
   887
*/
sl@0
   888
static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
sl@0
   889
  int i;
sl@0
   890
  struct ExprList_item *pItem;
sl@0
   891
  if( !p ) return 0;
sl@0
   892
  for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
sl@0
   893
    if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
sl@0
   894
  }
sl@0
   895
  return 0;
sl@0
   896
}
sl@0
   897
sl@0
   898
/*
sl@0
   899
** Call walkExprTree() for every expression in Select p, not including
sl@0
   900
** expressions that are part of sub-selects in any FROM clause or the LIMIT
sl@0
   901
** or OFFSET expressions..
sl@0
   902
*/
sl@0
   903
static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
sl@0
   904
  walkExprList(p->pEList, xFunc, pArg);
sl@0
   905
  walkExprTree(p->pWhere, xFunc, pArg);
sl@0
   906
  walkExprList(p->pGroupBy, xFunc, pArg);
sl@0
   907
  walkExprTree(p->pHaving, xFunc, pArg);
sl@0
   908
  walkExprList(p->pOrderBy, xFunc, pArg);
sl@0
   909
  if( p->pPrior ){
sl@0
   910
    walkSelectExpr(p->pPrior, xFunc, pArg);
sl@0
   911
  }
sl@0
   912
  return 0;
sl@0
   913
}
sl@0
   914
sl@0
   915
sl@0
   916
/*
sl@0
   917
** This routine is designed as an xFunc for walkExprTree().
sl@0
   918
**
sl@0
   919
** pArg is really a pointer to an integer.  If we can tell by looking
sl@0
   920
** at pExpr that the expression that contains pExpr is not a constant
sl@0
   921
** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
sl@0
   922
** If pExpr does does not disqualify the expression from being a constant
sl@0
   923
** then do nothing.
sl@0
   924
**
sl@0
   925
** After walking the whole tree, if no nodes are found that disqualify
sl@0
   926
** the expression as constant, then we assume the whole expression
sl@0
   927
** is constant.  See sqlite3ExprIsConstant() for additional information.
sl@0
   928
*/
sl@0
   929
static int exprNodeIsConstant(void *pArg, Expr *pExpr){
sl@0
   930
  int *pN = (int*)pArg;
sl@0
   931
sl@0
   932
  /* If *pArg is 3 then any term of the expression that comes from
sl@0
   933
  ** the ON or USING clauses of a join disqualifies the expression
sl@0
   934
  ** from being considered constant. */
sl@0
   935
  if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
sl@0
   936
    *pN = 0;
sl@0
   937
    return 2;
sl@0
   938
  }
sl@0
   939
sl@0
   940
  switch( pExpr->op ){
sl@0
   941
    /* Consider functions to be constant if all their arguments are constant
sl@0
   942
    ** and *pArg==2 */
sl@0
   943
    case TK_FUNCTION:
sl@0
   944
      if( (*pN)==2 ) return 0;
sl@0
   945
      /* Fall through */
sl@0
   946
    case TK_ID:
sl@0
   947
    case TK_COLUMN:
sl@0
   948
    case TK_DOT:
sl@0
   949
    case TK_AGG_FUNCTION:
sl@0
   950
    case TK_AGG_COLUMN:
sl@0
   951
#ifndef SQLITE_OMIT_SUBQUERY
sl@0
   952
    case TK_SELECT:
sl@0
   953
    case TK_EXISTS:
sl@0
   954
      testcase( pExpr->op==TK_SELECT );
sl@0
   955
      testcase( pExpr->op==TK_EXISTS );
sl@0
   956
#endif
sl@0
   957
      testcase( pExpr->op==TK_ID );
sl@0
   958
      testcase( pExpr->op==TK_COLUMN );
sl@0
   959
      testcase( pExpr->op==TK_DOT );
sl@0
   960
      testcase( pExpr->op==TK_AGG_FUNCTION );
sl@0
   961
      testcase( pExpr->op==TK_AGG_COLUMN );
sl@0
   962
      *pN = 0;
sl@0
   963
      return 2;
sl@0
   964
    case TK_IN:
sl@0
   965
      if( pExpr->pSelect ){
sl@0
   966
        *pN = 0;
sl@0
   967
        return 2;
sl@0
   968
      }
sl@0
   969
    default:
sl@0
   970
      return 0;
sl@0
   971
  }
sl@0
   972
}
sl@0
   973
sl@0
   974
/*
sl@0
   975
** Walk an expression tree.  Return 1 if the expression is constant
sl@0
   976
** and 0 if it involves variables or function calls.
sl@0
   977
**
sl@0
   978
** For the purposes of this function, a double-quoted string (ex: "abc")
sl@0
   979
** is considered a variable but a single-quoted string (ex: 'abc') is
sl@0
   980
** a constant.
sl@0
   981
*/
sl@0
   982
int sqlite3ExprIsConstant(Expr *p){
sl@0
   983
  int isConst = 1;
sl@0
   984
  walkExprTree(p, exprNodeIsConstant, &isConst);
sl@0
   985
  return isConst;
sl@0
   986
}
sl@0
   987
sl@0
   988
/*
sl@0
   989
** Walk an expression tree.  Return 1 if the expression is constant
sl@0
   990
** that does no originate from the ON or USING clauses of a join.
sl@0
   991
** Return 0 if it involves variables or function calls or terms from
sl@0
   992
** an ON or USING clause.
sl@0
   993
*/
sl@0
   994
int sqlite3ExprIsConstantNotJoin(Expr *p){
sl@0
   995
  int isConst = 3;
sl@0
   996
  walkExprTree(p, exprNodeIsConstant, &isConst);
sl@0
   997
  return isConst!=0;
sl@0
   998
}
sl@0
   999
sl@0
  1000
/*
sl@0
  1001
** Walk an expression tree.  Return 1 if the expression is constant
sl@0
  1002
** or a function call with constant arguments.  Return and 0 if there
sl@0
  1003
** are any variables.
sl@0
  1004
**
sl@0
  1005
** For the purposes of this function, a double-quoted string (ex: "abc")
sl@0
  1006
** is considered a variable but a single-quoted string (ex: 'abc') is
sl@0
  1007
** a constant.
sl@0
  1008
*/
sl@0
  1009
int sqlite3ExprIsConstantOrFunction(Expr *p){
sl@0
  1010
  int isConst = 2;
sl@0
  1011
  walkExprTree(p, exprNodeIsConstant, &isConst);
sl@0
  1012
  return isConst!=0;
sl@0
  1013
}
sl@0
  1014
sl@0
  1015
/*
sl@0
  1016
** If the expression p codes a constant integer that is small enough
sl@0
  1017
** to fit in a 32-bit integer, return 1 and put the value of the integer
sl@0
  1018
** in *pValue.  If the expression is not an integer or if it is too big
sl@0
  1019
** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
sl@0
  1020
*/
sl@0
  1021
int sqlite3ExprIsInteger(Expr *p, int *pValue){
sl@0
  1022
  int rc = 0;
sl@0
  1023
  if( p->flags & EP_IntValue ){
sl@0
  1024
    *pValue = p->iTable;
sl@0
  1025
    return 1;
sl@0
  1026
  }
sl@0
  1027
  switch( p->op ){
sl@0
  1028
    case TK_INTEGER: {
sl@0
  1029
      rc = sqlite3GetInt32((char*)p->token.z, pValue);
sl@0
  1030
      break;
sl@0
  1031
    }
sl@0
  1032
    case TK_UPLUS: {
sl@0
  1033
      rc = sqlite3ExprIsInteger(p->pLeft, pValue);
sl@0
  1034
      break;
sl@0
  1035
    }
sl@0
  1036
    case TK_UMINUS: {
sl@0
  1037
      int v;
sl@0
  1038
      if( sqlite3ExprIsInteger(p->pLeft, &v) ){
sl@0
  1039
        *pValue = -v;
sl@0
  1040
        rc = 1;
sl@0
  1041
      }
sl@0
  1042
      break;
sl@0
  1043
    }
sl@0
  1044
    default: break;
sl@0
  1045
  }
sl@0
  1046
  if( rc ){
sl@0
  1047
    p->op = TK_INTEGER;
sl@0
  1048
    p->flags |= EP_IntValue;
sl@0
  1049
    p->iTable = *pValue;
sl@0
  1050
  }
sl@0
  1051
  return rc;
sl@0
  1052
}
sl@0
  1053
sl@0
  1054
/*
sl@0
  1055
** Return TRUE if the given string is a row-id column name.
sl@0
  1056
*/
sl@0
  1057
int sqlite3IsRowid(const char *z){
sl@0
  1058
  if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
sl@0
  1059
  if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
sl@0
  1060
  if( sqlite3StrICmp(z, "OID")==0 ) return 1;
sl@0
  1061
  return 0;
sl@0
  1062
}
sl@0
  1063
sl@0
  1064
/*
sl@0
  1065
** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
sl@0
  1066
** that name in the set of source tables in pSrcList and make the pExpr 
sl@0
  1067
** expression node refer back to that source column.  The following changes
sl@0
  1068
** are made to pExpr:
sl@0
  1069
**
sl@0
  1070
**    pExpr->iDb           Set the index in db->aDb[] of the database holding
sl@0
  1071
**                         the table.
sl@0
  1072
**    pExpr->iTable        Set to the cursor number for the table obtained
sl@0
  1073
**                         from pSrcList.
sl@0
  1074
**    pExpr->iColumn       Set to the column number within the table.
sl@0
  1075
**    pExpr->op            Set to TK_COLUMN.
sl@0
  1076
**    pExpr->pLeft         Any expression this points to is deleted
sl@0
  1077
**    pExpr->pRight        Any expression this points to is deleted.
sl@0
  1078
**
sl@0
  1079
** The pDbToken is the name of the database (the "X").  This value may be
sl@0
  1080
** NULL meaning that name is of the form Y.Z or Z.  Any available database
sl@0
  1081
** can be used.  The pTableToken is the name of the table (the "Y").  This
sl@0
  1082
** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it
sl@0
  1083
** means that the form of the name is Z and that columns from any table
sl@0
  1084
** can be used.
sl@0
  1085
**
sl@0
  1086
** If the name cannot be resolved unambiguously, leave an error message
sl@0
  1087
** in pParse and return non-zero.  Return zero on success.
sl@0
  1088
*/
sl@0
  1089
static int lookupName(
sl@0
  1090
  Parse *pParse,       /* The parsing context */
sl@0
  1091
  Token *pDbToken,     /* Name of the database containing table, or NULL */
sl@0
  1092
  Token *pTableToken,  /* Name of table containing column, or NULL */
sl@0
  1093
  Token *pColumnToken, /* Name of the column. */
sl@0
  1094
  NameContext *pNC,    /* The name context used to resolve the name */
sl@0
  1095
  Expr *pExpr          /* Make this EXPR node point to the selected column */
sl@0
  1096
){
sl@0
  1097
  char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
sl@0
  1098
  char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
sl@0
  1099
  char *zCol = 0;      /* Name of the column.  The "Z" */
sl@0
  1100
  int i, j;            /* Loop counters */
sl@0
  1101
  int cnt = 0;         /* Number of matching column names */
sl@0
  1102
  int cntTab = 0;      /* Number of matching table names */
sl@0
  1103
  sqlite3 *db = pParse->db;  /* The database */
sl@0
  1104
  struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
sl@0
  1105
  struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
sl@0
  1106
  NameContext *pTopNC = pNC;        /* First namecontext in the list */
sl@0
  1107
  Schema *pSchema = 0;              /* Schema of the expression */
sl@0
  1108
sl@0
  1109
  assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
sl@0
  1110
  zDb = sqlite3NameFromToken(db, pDbToken);
sl@0
  1111
  zTab = sqlite3NameFromToken(db, pTableToken);
sl@0
  1112
  zCol = sqlite3NameFromToken(db, pColumnToken);
sl@0
  1113
  if( db->mallocFailed ){
sl@0
  1114
    goto lookupname_end;
sl@0
  1115
  }
sl@0
  1116
sl@0
  1117
  pExpr->iTable = -1;
sl@0
  1118
  while( pNC && cnt==0 ){
sl@0
  1119
    ExprList *pEList;
sl@0
  1120
    SrcList *pSrcList = pNC->pSrcList;
sl@0
  1121
sl@0
  1122
    if( pSrcList ){
sl@0
  1123
      for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
sl@0
  1124
        Table *pTab;
sl@0
  1125
        int iDb;
sl@0
  1126
        Column *pCol;
sl@0
  1127
  
sl@0
  1128
        pTab = pItem->pTab;
sl@0
  1129
        assert( pTab!=0 );
sl@0
  1130
        iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
sl@0
  1131
        assert( pTab->nCol>0 );
sl@0
  1132
        if( zTab ){
sl@0
  1133
          if( pItem->zAlias ){
sl@0
  1134
            char *zTabName = pItem->zAlias;
sl@0
  1135
            if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
sl@0
  1136
          }else{
sl@0
  1137
            char *zTabName = pTab->zName;
sl@0
  1138
            if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
sl@0
  1139
            if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
sl@0
  1140
              continue;
sl@0
  1141
            }
sl@0
  1142
          }
sl@0
  1143
        }
sl@0
  1144
        if( 0==(cntTab++) ){
sl@0
  1145
          pExpr->iTable = pItem->iCursor;
sl@0
  1146
          pSchema = pTab->pSchema;
sl@0
  1147
          pMatch = pItem;
sl@0
  1148
        }
sl@0
  1149
        for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
sl@0
  1150
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
sl@0
  1151
            const char *zColl = pTab->aCol[j].zColl;
sl@0
  1152
            IdList *pUsing;
sl@0
  1153
            cnt++;
sl@0
  1154
            pExpr->iTable = pItem->iCursor;
sl@0
  1155
            pMatch = pItem;
sl@0
  1156
            pSchema = pTab->pSchema;
sl@0
  1157
            /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
sl@0
  1158
            pExpr->iColumn = j==pTab->iPKey ? -1 : j;
sl@0
  1159
            pExpr->affinity = pTab->aCol[j].affinity;
sl@0
  1160
            if( (pExpr->flags & EP_ExpCollate)==0 ){
sl@0
  1161
              pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
sl@0
  1162
            }
sl@0
  1163
            if( i<pSrcList->nSrc-1 ){
sl@0
  1164
              if( pItem[1].jointype & JT_NATURAL ){
sl@0
  1165
                /* If this match occurred in the left table of a natural join,
sl@0
  1166
                ** then skip the right table to avoid a duplicate match */
sl@0
  1167
                pItem++;
sl@0
  1168
                i++;
sl@0
  1169
              }else if( (pUsing = pItem[1].pUsing)!=0 ){
sl@0
  1170
                /* If this match occurs on a column that is in the USING clause
sl@0
  1171
                ** of a join, skip the search of the right table of the join
sl@0
  1172
                ** to avoid a duplicate match there. */
sl@0
  1173
                int k;
sl@0
  1174
                for(k=0; k<pUsing->nId; k++){
sl@0
  1175
                  if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
sl@0
  1176
                    pItem++;
sl@0
  1177
                    i++;
sl@0
  1178
                    break;
sl@0
  1179
                  }
sl@0
  1180
                }
sl@0
  1181
              }
sl@0
  1182
            }
sl@0
  1183
            break;
sl@0
  1184
          }
sl@0
  1185
        }
sl@0
  1186
      }
sl@0
  1187
    }
sl@0
  1188
sl@0
  1189
#ifndef SQLITE_OMIT_TRIGGER
sl@0
  1190
    /* If we have not already resolved the name, then maybe 
sl@0
  1191
    ** it is a new.* or old.* trigger argument reference
sl@0
  1192
    */
sl@0
  1193
    if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
sl@0
  1194
      TriggerStack *pTriggerStack = pParse->trigStack;
sl@0
  1195
      Table *pTab = 0;
sl@0
  1196
      u32 *piColMask;
sl@0
  1197
      if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
sl@0
  1198
        pExpr->iTable = pTriggerStack->newIdx;
sl@0
  1199
        assert( pTriggerStack->pTab );
sl@0
  1200
        pTab = pTriggerStack->pTab;
sl@0
  1201
        piColMask = &(pTriggerStack->newColMask);
sl@0
  1202
      }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
sl@0
  1203
        pExpr->iTable = pTriggerStack->oldIdx;
sl@0
  1204
        assert( pTriggerStack->pTab );
sl@0
  1205
        pTab = pTriggerStack->pTab;
sl@0
  1206
        piColMask = &(pTriggerStack->oldColMask);
sl@0
  1207
      }
sl@0
  1208
sl@0
  1209
      if( pTab ){ 
sl@0
  1210
        int iCol;
sl@0
  1211
        Column *pCol = pTab->aCol;
sl@0
  1212
sl@0
  1213
        pSchema = pTab->pSchema;
sl@0
  1214
        cntTab++;
sl@0
  1215
        for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
sl@0
  1216
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
sl@0
  1217
            const char *zColl = pTab->aCol[iCol].zColl;
sl@0
  1218
            cnt++;
sl@0
  1219
            pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
sl@0
  1220
            pExpr->affinity = pTab->aCol[iCol].affinity;
sl@0
  1221
            if( (pExpr->flags & EP_ExpCollate)==0 ){
sl@0
  1222
              pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
sl@0
  1223
            }
sl@0
  1224
            pExpr->pTab = pTab;
sl@0
  1225
            if( iCol>=0 ){
sl@0
  1226
              testcase( iCol==31 );
sl@0
  1227
              testcase( iCol==32 );
sl@0
  1228
              *piColMask |= ((u32)1<<iCol) | (iCol>=32?0xffffffff:0);
sl@0
  1229
            }
sl@0
  1230
            break;
sl@0
  1231
          }
sl@0
  1232
        }
sl@0
  1233
      }
sl@0
  1234
    }
sl@0
  1235
#endif /* !defined(SQLITE_OMIT_TRIGGER) */
sl@0
  1236
sl@0
  1237
    /*
sl@0
  1238
    ** Perhaps the name is a reference to the ROWID
sl@0
  1239
    */
sl@0
  1240
    if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
sl@0
  1241
      cnt = 1;
sl@0
  1242
      pExpr->iColumn = -1;
sl@0
  1243
      pExpr->affinity = SQLITE_AFF_INTEGER;
sl@0
  1244
    }
sl@0
  1245
sl@0
  1246
    /*
sl@0
  1247
    ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
sl@0
  1248
    ** might refer to an result-set alias.  This happens, for example, when
sl@0
  1249
    ** we are resolving names in the WHERE clause of the following command:
sl@0
  1250
    **
sl@0
  1251
    **     SELECT a+b AS x FROM table WHERE x<10;
sl@0
  1252
    **
sl@0
  1253
    ** In cases like this, replace pExpr with a copy of the expression that
sl@0
  1254
    ** forms the result set entry ("a+b" in the example) and return immediately.
sl@0
  1255
    ** Note that the expression in the result set should have already been
sl@0
  1256
    ** resolved by the time the WHERE clause is resolved.
sl@0
  1257
    */
sl@0
  1258
    if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
sl@0
  1259
      for(j=0; j<pEList->nExpr; j++){
sl@0
  1260
        char *zAs = pEList->a[j].zName;
sl@0
  1261
        if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
sl@0
  1262
          Expr *pDup, *pOrig;
sl@0
  1263
          assert( pExpr->pLeft==0 && pExpr->pRight==0 );
sl@0
  1264
          assert( pExpr->pList==0 );
sl@0
  1265
          assert( pExpr->pSelect==0 );
sl@0
  1266
          pOrig = pEList->a[j].pExpr;
sl@0
  1267
          if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
sl@0
  1268
            sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
sl@0
  1269
            sqlite3DbFree(db, zCol);
sl@0
  1270
            return 2;
sl@0
  1271
          }
sl@0
  1272
          pDup = sqlite3ExprDup(db, pOrig);
sl@0
  1273
          if( pExpr->flags & EP_ExpCollate ){
sl@0
  1274
            pDup->pColl = pExpr->pColl;
sl@0
  1275
            pDup->flags |= EP_ExpCollate;
sl@0
  1276
          }
sl@0
  1277
          if( pExpr->span.dyn ) sqlite3DbFree(db, (char*)pExpr->span.z);
sl@0
  1278
          if( pExpr->token.dyn ) sqlite3DbFree(db, (char*)pExpr->token.z);
sl@0
  1279
          memcpy(pExpr, pDup, sizeof(*pExpr));
sl@0
  1280
          sqlite3DbFree(db, pDup);
sl@0
  1281
          cnt = 1;
sl@0
  1282
          pMatch = 0;
sl@0
  1283
          assert( zTab==0 && zDb==0 );
sl@0
  1284
          goto lookupname_end_2;
sl@0
  1285
        }
sl@0
  1286
      } 
sl@0
  1287
    }
sl@0
  1288
sl@0
  1289
    /* Advance to the next name context.  The loop will exit when either
sl@0
  1290
    ** we have a match (cnt>0) or when we run out of name contexts.
sl@0
  1291
    */
sl@0
  1292
    if( cnt==0 ){
sl@0
  1293
      pNC = pNC->pNext;
sl@0
  1294
    }
sl@0
  1295
  }
sl@0
  1296
sl@0
  1297
  /*
sl@0
  1298
  ** If X and Y are NULL (in other words if only the column name Z is
sl@0
  1299
  ** supplied) and the value of Z is enclosed in double-quotes, then
sl@0
  1300
  ** Z is a string literal if it doesn't match any column names.  In that
sl@0
  1301
  ** case, we need to return right away and not make any changes to
sl@0
  1302
  ** pExpr.
sl@0
  1303
  **
sl@0
  1304
  ** Because no reference was made to outer contexts, the pNC->nRef
sl@0
  1305
  ** fields are not changed in any context.
sl@0
  1306
  */
sl@0
  1307
  if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
sl@0
  1308
    sqlite3DbFree(db, zCol);
sl@0
  1309
    return 0;
sl@0
  1310
  }
sl@0
  1311
sl@0
  1312
  /*
sl@0
  1313
  ** cnt==0 means there was not match.  cnt>1 means there were two or
sl@0
  1314
  ** more matches.  Either way, we have an error.
sl@0
  1315
  */
sl@0
  1316
  if( cnt!=1 ){
sl@0
  1317
    const char *zErr;
sl@0
  1318
    zErr = cnt==0 ? "no such column" : "ambiguous column name";
sl@0
  1319
    if( zDb ){
sl@0
  1320
      sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
sl@0
  1321
    }else if( zTab ){
sl@0
  1322
      sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
sl@0
  1323
    }else{
sl@0
  1324
      sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
sl@0
  1325
    }
sl@0
  1326
    pTopNC->nErr++;
sl@0
  1327
  }
sl@0
  1328
sl@0
  1329
  /* If a column from a table in pSrcList is referenced, then record
sl@0
  1330
  ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
sl@0
  1331
  ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
sl@0
  1332
  ** column number is greater than the number of bits in the bitmask
sl@0
  1333
  ** then set the high-order bit of the bitmask.
sl@0
  1334
  */
sl@0
  1335
  if( pExpr->iColumn>=0 && pMatch!=0 ){
sl@0
  1336
    int n = pExpr->iColumn;
sl@0
  1337
    testcase( n==sizeof(Bitmask)*8-1 );
sl@0
  1338
    if( n>=sizeof(Bitmask)*8 ){
sl@0
  1339
      n = sizeof(Bitmask)*8-1;
sl@0
  1340
    }
sl@0
  1341
    assert( pMatch->iCursor==pExpr->iTable );
sl@0
  1342
    pMatch->colUsed |= ((Bitmask)1)<<n;
sl@0
  1343
  }
sl@0
  1344
sl@0
  1345
lookupname_end:
sl@0
  1346
  /* Clean up and return
sl@0
  1347
  */
sl@0
  1348
  sqlite3DbFree(db, zDb);
sl@0
  1349
  sqlite3DbFree(db, zTab);
sl@0
  1350
  sqlite3ExprDelete(db, pExpr->pLeft);
sl@0
  1351
  pExpr->pLeft = 0;
sl@0
  1352
  sqlite3ExprDelete(db, pExpr->pRight);
sl@0
  1353
  pExpr->pRight = 0;
sl@0
  1354
  pExpr->op = TK_COLUMN;
sl@0
  1355
lookupname_end_2:
sl@0
  1356
  sqlite3DbFree(db, zCol);
sl@0
  1357
  if( cnt==1 ){
sl@0
  1358
    assert( pNC!=0 );
sl@0
  1359
    sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
sl@0
  1360
    if( pMatch && !pMatch->pSelect ){
sl@0
  1361
      pExpr->pTab = pMatch->pTab;
sl@0
  1362
    }
sl@0
  1363
    /* Increment the nRef value on all name contexts from TopNC up to
sl@0
  1364
    ** the point where the name matched. */
sl@0
  1365
    for(;;){
sl@0
  1366
      assert( pTopNC!=0 );
sl@0
  1367
      pTopNC->nRef++;
sl@0
  1368
      if( pTopNC==pNC ) break;
sl@0
  1369
      pTopNC = pTopNC->pNext;
sl@0
  1370
    }
sl@0
  1371
    return 0;
sl@0
  1372
  } else {
sl@0
  1373
    return 1;
sl@0
  1374
  }
sl@0
  1375
}
sl@0
  1376
sl@0
  1377
/*
sl@0
  1378
** This routine is designed as an xFunc for walkExprTree().
sl@0
  1379
**
sl@0
  1380
** Resolve symbolic names into TK_COLUMN operators for the current
sl@0
  1381
** node in the expression tree.  Return 0 to continue the search down
sl@0
  1382
** the tree or 2 to abort the tree walk.
sl@0
  1383
**
sl@0
  1384
** This routine also does error checking and name resolution for
sl@0
  1385
** function names.  The operator for aggregate functions is changed
sl@0
  1386
** to TK_AGG_FUNCTION.
sl@0
  1387
*/
sl@0
  1388
static int nameResolverStep(void *pArg, Expr *pExpr){
sl@0
  1389
  NameContext *pNC = (NameContext*)pArg;
sl@0
  1390
  Parse *pParse;
sl@0
  1391
sl@0
  1392
  if( pExpr==0 ) return 1;
sl@0
  1393
  assert( pNC!=0 );
sl@0
  1394
  pParse = pNC->pParse;
sl@0
  1395
sl@0
  1396
  if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
sl@0
  1397
  ExprSetProperty(pExpr, EP_Resolved);
sl@0
  1398
#ifndef NDEBUG
sl@0
  1399
  if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
sl@0
  1400
    SrcList *pSrcList = pNC->pSrcList;
sl@0
  1401
    int i;
sl@0
  1402
    for(i=0; i<pNC->pSrcList->nSrc; i++){
sl@0
  1403
      assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
sl@0
  1404
    }
sl@0
  1405
  }
sl@0
  1406
#endif
sl@0
  1407
  switch( pExpr->op ){
sl@0
  1408
    /* Double-quoted strings (ex: "abc") are used as identifiers if
sl@0
  1409
    ** possible.  Otherwise they remain as strings.  Single-quoted
sl@0
  1410
    ** strings (ex: 'abc') are always string literals.
sl@0
  1411
    */
sl@0
  1412
    case TK_STRING: {
sl@0
  1413
      if( pExpr->token.z[0]=='\'' ) break;
sl@0
  1414
      /* Fall thru into the TK_ID case if this is a double-quoted string */
sl@0
  1415
    }
sl@0
  1416
    /* A lone identifier is the name of a column.
sl@0
  1417
    */
sl@0
  1418
    case TK_ID: {
sl@0
  1419
      lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
sl@0
  1420
      return 1;
sl@0
  1421
    }
sl@0
  1422
  
sl@0
  1423
    /* A table name and column name:     ID.ID
sl@0
  1424
    ** Or a database, table and column:  ID.ID.ID
sl@0
  1425
    */
sl@0
  1426
    case TK_DOT: {
sl@0
  1427
      Token *pColumn;
sl@0
  1428
      Token *pTable;
sl@0
  1429
      Token *pDb;
sl@0
  1430
      Expr *pRight;
sl@0
  1431
sl@0
  1432
      /* if( pSrcList==0 ) break; */
sl@0
  1433
      pRight = pExpr->pRight;
sl@0
  1434
      if( pRight->op==TK_ID ){
sl@0
  1435
        pDb = 0;
sl@0
  1436
        pTable = &pExpr->pLeft->token;
sl@0
  1437
        pColumn = &pRight->token;
sl@0
  1438
      }else{
sl@0
  1439
        assert( pRight->op==TK_DOT );
sl@0
  1440
        pDb = &pExpr->pLeft->token;
sl@0
  1441
        pTable = &pRight->pLeft->token;
sl@0
  1442
        pColumn = &pRight->pRight->token;
sl@0
  1443
      }
sl@0
  1444
      lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
sl@0
  1445
      return 1;
sl@0
  1446
    }
sl@0
  1447
sl@0
  1448
    /* Resolve function names
sl@0
  1449
    */
sl@0
  1450
    case TK_CONST_FUNC:
sl@0
  1451
    case TK_FUNCTION: {
sl@0
  1452
      ExprList *pList = pExpr->pList;    /* The argument list */
sl@0
  1453
      int n = pList ? pList->nExpr : 0;  /* Number of arguments */
sl@0
  1454
      int no_such_func = 0;       /* True if no such function exists */
sl@0
  1455
      int wrong_num_args = 0;     /* True if wrong number of arguments */
sl@0
  1456
      int is_agg = 0;             /* True if is an aggregate function */
sl@0
  1457
      int i;
sl@0
  1458
      int auth;                   /* Authorization to use the function */
sl@0
  1459
      int nId;                    /* Number of characters in function name */
sl@0
  1460
      const char *zId;            /* The function name. */
sl@0
  1461
      FuncDef *pDef;              /* Information about the function */
sl@0
  1462
      int enc = ENC(pParse->db);  /* The database encoding */
sl@0
  1463
sl@0
  1464
      zId = (char*)pExpr->token.z;
sl@0
  1465
      nId = pExpr->token.n;
sl@0
  1466
      pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
sl@0
  1467
      if( pDef==0 ){
sl@0
  1468
        pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
sl@0
  1469
        if( pDef==0 ){
sl@0
  1470
          no_such_func = 1;
sl@0
  1471
        }else{
sl@0
  1472
          wrong_num_args = 1;
sl@0
  1473
        }
sl@0
  1474
      }else{
sl@0
  1475
        is_agg = pDef->xFunc==0;
sl@0
  1476
      }
sl@0
  1477
#ifndef SQLITE_OMIT_AUTHORIZATION
sl@0
  1478
      if( pDef ){
sl@0
  1479
        auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
sl@0
  1480
        if( auth!=SQLITE_OK ){
sl@0
  1481
          if( auth==SQLITE_DENY ){
sl@0
  1482
            sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
sl@0
  1483
                                    pDef->zName);
sl@0
  1484
            pNC->nErr++;
sl@0
  1485
          }
sl@0
  1486
          pExpr->op = TK_NULL;
sl@0
  1487
          return 1;
sl@0
  1488
        }
sl@0
  1489
      }
sl@0
  1490
#endif
sl@0
  1491
      if( is_agg && !pNC->allowAgg ){
sl@0
  1492
        sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
sl@0
  1493
        pNC->nErr++;
sl@0
  1494
        is_agg = 0;
sl@0
  1495
      }else if( no_such_func ){
sl@0
  1496
        sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
sl@0
  1497
        pNC->nErr++;
sl@0
  1498
      }else if( wrong_num_args ){
sl@0
  1499
        sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
sl@0
  1500
             nId, zId);
sl@0
  1501
        pNC->nErr++;
sl@0
  1502
      }
sl@0
  1503
      if( is_agg ){
sl@0
  1504
        pExpr->op = TK_AGG_FUNCTION;
sl@0
  1505
        pNC->hasAgg = 1;
sl@0
  1506
      }
sl@0
  1507
      if( is_agg ) pNC->allowAgg = 0;
sl@0
  1508
      for(i=0; pNC->nErr==0 && i<n; i++){
sl@0
  1509
        walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
sl@0
  1510
      }
sl@0
  1511
      if( is_agg ) pNC->allowAgg = 1;
sl@0
  1512
      /* FIX ME:  Compute pExpr->affinity based on the expected return
sl@0
  1513
      ** type of the function 
sl@0
  1514
      */
sl@0
  1515
      return is_agg;
sl@0
  1516
    }
sl@0
  1517
#ifndef SQLITE_OMIT_SUBQUERY
sl@0
  1518
    case TK_SELECT:
sl@0
  1519
    case TK_EXISTS:
sl@0
  1520
#endif
sl@0
  1521
    case TK_IN: {
sl@0
  1522
      if( pExpr->pSelect ){
sl@0
  1523
        int nRef = pNC->nRef;
sl@0
  1524
#ifndef SQLITE_OMIT_CHECK
sl@0
  1525
        if( pNC->isCheck ){
sl@0
  1526
          sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
sl@0
  1527
        }
sl@0
  1528
#endif
sl@0
  1529
        sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
sl@0
  1530
        assert( pNC->nRef>=nRef );
sl@0
  1531
        if( nRef!=pNC->nRef ){
sl@0
  1532
          ExprSetProperty(pExpr, EP_VarSelect);
sl@0
  1533
        }
sl@0
  1534
      }
sl@0
  1535
      break;
sl@0
  1536
    }
sl@0
  1537
#ifndef SQLITE_OMIT_CHECK
sl@0
  1538
    case TK_VARIABLE: {
sl@0
  1539
      if( pNC->isCheck ){
sl@0
  1540
        sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
sl@0
  1541
      }
sl@0
  1542
      break;
sl@0
  1543
    }
sl@0
  1544
#endif
sl@0
  1545
  }
sl@0
  1546
  return 0;
sl@0
  1547
}
sl@0
  1548
sl@0
  1549
/*
sl@0
  1550
** This routine walks an expression tree and resolves references to
sl@0
  1551
** table columns.  Nodes of the form ID.ID or ID resolve into an
sl@0
  1552
** index to the table in the table list and a column offset.  The 
sl@0
  1553
** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable
sl@0
  1554
** value is changed to the index of the referenced table in pTabList
sl@0
  1555
** plus the "base" value.  The base value will ultimately become the
sl@0
  1556
** VDBE cursor number for a cursor that is pointing into the referenced
sl@0
  1557
** table.  The Expr.iColumn value is changed to the index of the column 
sl@0
  1558
** of the referenced table.  The Expr.iColumn value for the special
sl@0
  1559
** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an
sl@0
  1560
** alias for ROWID.
sl@0
  1561
**
sl@0
  1562
** Also resolve function names and check the functions for proper
sl@0
  1563
** usage.  Make sure all function names are recognized and all functions
sl@0
  1564
** have the correct number of arguments.  Leave an error message
sl@0
  1565
** in pParse->zErrMsg if anything is amiss.  Return the number of errors.
sl@0
  1566
**
sl@0
  1567
** If the expression contains aggregate functions then set the EP_Agg
sl@0
  1568
** property on the expression.
sl@0
  1569
*/
sl@0
  1570
int sqlite3ExprResolveNames( 
sl@0
  1571
  NameContext *pNC,       /* Namespace to resolve expressions in. */
sl@0
  1572
  Expr *pExpr             /* The expression to be analyzed. */
sl@0
  1573
){
sl@0
  1574
  int savedHasAgg;
sl@0
  1575
sl@0
  1576
  if( pExpr==0 ) return 0;
sl@0
  1577
#if SQLITE_MAX_EXPR_DEPTH>0
sl@0
  1578
  {
sl@0
  1579
    if( checkExprHeight(pNC->pParse, pExpr->nHeight + pNC->pParse->nHeight) ){
sl@0
  1580
      return 1;
sl@0
  1581
    }
sl@0
  1582
    pNC->pParse->nHeight += pExpr->nHeight;
sl@0
  1583
  }
sl@0
  1584
#endif
sl@0
  1585
  savedHasAgg = pNC->hasAgg;
sl@0
  1586
  pNC->hasAgg = 0;
sl@0
  1587
  walkExprTree(pExpr, nameResolverStep, pNC);
sl@0
  1588
#if SQLITE_MAX_EXPR_DEPTH>0
sl@0
  1589
  pNC->pParse->nHeight -= pExpr->nHeight;
sl@0
  1590
#endif
sl@0
  1591
  if( pNC->nErr>0 ){
sl@0
  1592
    ExprSetProperty(pExpr, EP_Error);
sl@0
  1593
  }
sl@0
  1594
  if( pNC->hasAgg ){
sl@0
  1595
    ExprSetProperty(pExpr, EP_Agg);
sl@0
  1596
  }else if( savedHasAgg ){
sl@0
  1597
    pNC->hasAgg = 1;
sl@0
  1598
  }
sl@0
  1599
  return ExprHasProperty(pExpr, EP_Error);
sl@0
  1600
}
sl@0
  1601
sl@0
  1602
/*
sl@0
  1603
** A pointer instance of this structure is used to pass information
sl@0
  1604
** through walkExprTree into codeSubqueryStep().
sl@0
  1605
*/
sl@0
  1606
typedef struct QueryCoder QueryCoder;
sl@0
  1607
struct QueryCoder {
sl@0
  1608
  Parse *pParse;       /* The parsing context */
sl@0
  1609
  NameContext *pNC;    /* Namespace of first enclosing query */
sl@0
  1610
};
sl@0
  1611
sl@0
  1612
#ifdef SQLITE_TEST
sl@0
  1613
  int sqlite3_enable_in_opt = 1;
sl@0
  1614
#else
sl@0
  1615
  #define sqlite3_enable_in_opt 1
sl@0
  1616
#endif
sl@0
  1617
sl@0
  1618
/*
sl@0
  1619
** Return true if the IN operator optimization is enabled and
sl@0
  1620
** the SELECT statement p exists and is of the
sl@0
  1621
** simple form:
sl@0
  1622
**
sl@0
  1623
**     SELECT <column> FROM <table>
sl@0
  1624
**
sl@0
  1625
** If this is the case, it may be possible to use an existing table
sl@0
  1626
** or index instead of generating an epheremal table.
sl@0
  1627
*/
sl@0
  1628
#ifndef SQLITE_OMIT_SUBQUERY
sl@0
  1629
static int isCandidateForInOpt(Select *p){
sl@0
  1630
  SrcList *pSrc;
sl@0
  1631
  ExprList *pEList;
sl@0
  1632
  Table *pTab;
sl@0
  1633
  if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */
sl@0
  1634
  if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
sl@0
  1635
  if( p->pPrior ) return 0;              /* Not a compound SELECT */
sl@0
  1636
  if( p->isDistinct ) return 0;          /* No DISTINCT keyword */
sl@0
  1637
  if( p->isAgg ) return 0;               /* Contains no aggregate functions */
sl@0
  1638
  if( p->pGroupBy ) return 0;            /* Has no GROUP BY clause */
sl@0
  1639
  if( p->pLimit ) return 0;              /* Has no LIMIT clause */
sl@0
  1640
  if( p->pOffset ) return 0;
sl@0
  1641
  if( p->pWhere ) return 0;              /* Has no WHERE clause */
sl@0
  1642
  pSrc = p->pSrc;
sl@0
  1643
  if( pSrc==0 ) return 0;                /* A single table in the FROM clause */
sl@0
  1644
  if( pSrc->nSrc!=1 ) return 0;
sl@0
  1645
  if( pSrc->a[0].pSelect ) return 0;     /* FROM clause is not a subquery */
sl@0
  1646
  pTab = pSrc->a[0].pTab;
sl@0
  1647
  if( pTab==0 ) return 0;
sl@0
  1648
  if( pTab->pSelect ) return 0;          /* FROM clause is not a view */
sl@0
  1649
  if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
sl@0
  1650
  pEList = p->pEList;
sl@0
  1651
  if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
sl@0
  1652
  if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
sl@0
  1653
  return 1;
sl@0
  1654
}
sl@0
  1655
#endif /* SQLITE_OMIT_SUBQUERY */
sl@0
  1656
sl@0
  1657
/*
sl@0
  1658
** This function is used by the implementation of the IN (...) operator.
sl@0
  1659
** It's job is to find or create a b-tree structure that may be used
sl@0
  1660
** either to test for membership of the (...) set or to iterate through
sl@0
  1661
** its members, skipping duplicates.
sl@0
  1662
**
sl@0
  1663
** The cursor opened on the structure (database table, database index 
sl@0
  1664
** or ephermal table) is stored in pX->iTable before this function returns.
sl@0
  1665
** The returned value indicates the structure type, as follows:
sl@0
  1666
**
sl@0
  1667
**   IN_INDEX_ROWID - The cursor was opened on a database table.
sl@0
  1668
**   IN_INDEX_INDEX - The cursor was opened on a database index.
sl@0
  1669
**   IN_INDEX_EPH -   The cursor was opened on a specially created and
sl@0
  1670
**                    populated epheremal table.
sl@0
  1671
**
sl@0
  1672
** An existing structure may only be used if the SELECT is of the simple
sl@0
  1673
** form:
sl@0
  1674
**
sl@0
  1675
**     SELECT <column> FROM <table>
sl@0
  1676
**
sl@0
  1677
** If prNotFound parameter is 0, then the structure will be used to iterate
sl@0
  1678
** through the set members, skipping any duplicates. In this case an
sl@0
  1679
** epheremal table must be used unless the selected <column> is guaranteed
sl@0
  1680
** to be unique - either because it is an INTEGER PRIMARY KEY or it
sl@0
  1681
** is unique by virtue of a constraint or implicit index.
sl@0
  1682
**
sl@0
  1683
** If the prNotFound parameter is not 0, then the structure will be used 
sl@0
  1684
** for fast set membership tests. In this case an epheremal table must 
sl@0
  1685
** be used unless <column> is an INTEGER PRIMARY KEY or an index can 
sl@0
  1686
** be found with <column> as its left-most column.
sl@0
  1687
**
sl@0
  1688
** When the structure is being used for set membership tests, the user
sl@0
  1689
** needs to know whether or not the structure contains an SQL NULL 
sl@0
  1690
** value in order to correctly evaluate expressions like "X IN (Y, Z)".
sl@0
  1691
** If there is a chance that the structure may contain a NULL value at
sl@0
  1692
** runtime, then a register is allocated and the register number written
sl@0
  1693
** to *prNotFound. If there is no chance that the structure contains a
sl@0
  1694
** NULL value, then *prNotFound is left unchanged.
sl@0
  1695
**
sl@0
  1696
** If a register is allocated and its location stored in *prNotFound, then
sl@0
  1697
** its initial value is NULL. If the structure does not remain constant
sl@0
  1698
** for the duration of the query (i.e. the set is a correlated sub-select), 
sl@0
  1699
** the value of the allocated register is reset to NULL each time the 
sl@0
  1700
** structure is repopulated. This allows the caller to use vdbe code 
sl@0
  1701
** equivalent to the following:
sl@0
  1702
**
sl@0
  1703
**   if( register==NULL ){
sl@0
  1704
**     has_null = <test if data structure contains null>
sl@0
  1705
**     register = 1
sl@0
  1706
**   }
sl@0
  1707
**
sl@0
  1708
** in order to avoid running the <test if data structure contains null>
sl@0
  1709
** test more often than is necessary.
sl@0
  1710
*/
sl@0
  1711
#ifndef SQLITE_OMIT_SUBQUERY
sl@0
  1712
int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
sl@0
  1713
  Select *p;
sl@0
  1714
  int eType = 0;
sl@0
  1715
  int iTab = pParse->nTab++;
sl@0
  1716
  int mustBeUnique = !prNotFound;
sl@0
  1717
sl@0
  1718
  /* The follwing if(...) expression is true if the SELECT is of the 
sl@0
  1719
  ** simple form:
sl@0
  1720
  **
sl@0
  1721
  **     SELECT <column> FROM <table>
sl@0
  1722
  **
sl@0
  1723
  ** If this is the case, it may be possible to use an existing table
sl@0
  1724
  ** or index instead of generating an epheremal table.
sl@0
  1725
  */
sl@0
  1726
  p = pX->pSelect;
sl@0
  1727
  if( isCandidateForInOpt(p) ){
sl@0
  1728
    sqlite3 *db = pParse->db;
sl@0
  1729
    Index *pIdx;
sl@0
  1730
    Expr *pExpr = p->pEList->a[0].pExpr;
sl@0
  1731
    int iCol = pExpr->iColumn;
sl@0
  1732
    Vdbe *v = sqlite3GetVdbe(pParse);
sl@0
  1733
sl@0
  1734
    /* This function is only called from two places. In both cases the vdbe
sl@0
  1735
    ** has already been allocated. So assume sqlite3GetVdbe() is always
sl@0
  1736
    ** successful here.
sl@0
  1737
    */
sl@0
  1738
    assert(v);
sl@0
  1739
    if( iCol<0 ){
sl@0
  1740
      int iMem = ++pParse->nMem;
sl@0
  1741
      int iAddr;
sl@0
  1742
      Table *pTab = p->pSrc->a[0].pTab;
sl@0
  1743
      int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
sl@0
  1744
      sqlite3VdbeUsesBtree(v, iDb);
sl@0
  1745
sl@0
  1746
      iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
sl@0
  1747
      sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
sl@0
  1748
sl@0
  1749
      sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
sl@0
  1750
      eType = IN_INDEX_ROWID;
sl@0
  1751
sl@0
  1752
      sqlite3VdbeJumpHere(v, iAddr);
sl@0
  1753
    }else{
sl@0
  1754
      /* The collation sequence used by the comparison. If an index is to 
sl@0
  1755
      ** be used in place of a temp-table, it must be ordered according
sl@0
  1756
      ** to this collation sequence.
sl@0
  1757
      */
sl@0
  1758
      CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
sl@0
  1759
sl@0
  1760
      /* Check that the affinity that will be used to perform the 
sl@0
  1761
      ** comparison is the same as the affinity of the column. If
sl@0
  1762
      ** it is not, it is not possible to use any index.
sl@0
  1763
      */
sl@0
  1764
      Table *pTab = p->pSrc->a[0].pTab;
sl@0
  1765
      char aff = comparisonAffinity(pX);
sl@0
  1766
      int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
sl@0
  1767
sl@0
  1768
      for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
sl@0
  1769
        if( (pIdx->aiColumn[0]==iCol)
sl@0
  1770
         && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
sl@0
  1771
         && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
sl@0
  1772
        ){
sl@0
  1773
          int iDb;
sl@0
  1774
          int iMem = ++pParse->nMem;
sl@0
  1775
          int iAddr;
sl@0
  1776
          char *pKey;
sl@0
  1777
  
sl@0
  1778
          pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
sl@0
  1779
          iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
sl@0
  1780
          sqlite3VdbeUsesBtree(v, iDb);
sl@0
  1781
sl@0
  1782
          iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
sl@0
  1783
          sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
sl@0
  1784
  
sl@0
  1785
          sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn);
sl@0
  1786
          sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
sl@0
  1787
                               pKey,P4_KEYINFO_HANDOFF);
sl@0
  1788
          VdbeComment((v, "%s", pIdx->zName));
sl@0
  1789
          eType = IN_INDEX_INDEX;
sl@0
  1790
sl@0
  1791
          sqlite3VdbeJumpHere(v, iAddr);
sl@0
  1792
          if( prNotFound && !pTab->aCol[iCol].notNull ){
sl@0
  1793
            *prNotFound = ++pParse->nMem;
sl@0
  1794
          }
sl@0
  1795
        }
sl@0
  1796
      }
sl@0
  1797
    }
sl@0
  1798
  }
sl@0
  1799
sl@0
  1800
  if( eType==0 ){
sl@0
  1801
    int rMayHaveNull = 0;
sl@0
  1802
    if( prNotFound ){
sl@0
  1803
      *prNotFound = rMayHaveNull = ++pParse->nMem;
sl@0
  1804
    }
sl@0
  1805
    sqlite3CodeSubselect(pParse, pX, rMayHaveNull);
sl@0
  1806
    eType = IN_INDEX_EPH;
sl@0
  1807
  }else{
sl@0
  1808
    pX->iTable = iTab;
sl@0
  1809
  }
sl@0
  1810
  return eType;
sl@0
  1811
}
sl@0
  1812
#endif
sl@0
  1813
sl@0
  1814
/*
sl@0
  1815
** Generate code for scalar subqueries used as an expression
sl@0
  1816
** and IN operators.  Examples:
sl@0
  1817
**
sl@0
  1818
**     (SELECT a FROM b)          -- subquery
sl@0
  1819
**     EXISTS (SELECT a FROM b)   -- EXISTS subquery
sl@0
  1820
**     x IN (4,5,11)              -- IN operator with list on right-hand side
sl@0
  1821
**     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
sl@0
  1822
**
sl@0
  1823
** The pExpr parameter describes the expression that contains the IN
sl@0
  1824
** operator or subquery.
sl@0
  1825
*/
sl@0
  1826
#ifndef SQLITE_OMIT_SUBQUERY
sl@0
  1827
void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr, int rMayHaveNull){
sl@0
  1828
  int testAddr = 0;                       /* One-time test address */
sl@0
  1829
  Vdbe *v = sqlite3GetVdbe(pParse);
sl@0
  1830
  if( v==0 ) return;
sl@0
  1831
sl@0
  1832
sl@0
  1833
  /* This code must be run in its entirety every time it is encountered
sl@0
  1834
  ** if any of the following is true:
sl@0
  1835
  **
sl@0
  1836
  **    *  The right-hand side is a correlated subquery
sl@0
  1837
  **    *  The right-hand side is an expression list containing variables
sl@0
  1838
  **    *  We are inside a trigger
sl@0
  1839
  **
sl@0
  1840
  ** If all of the above are false, then we can run this code just once
sl@0
  1841
  ** save the results, and reuse the same result on subsequent invocations.
sl@0
  1842
  */
sl@0
  1843
  if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
sl@0
  1844
    int mem = ++pParse->nMem;
sl@0
  1845
    sqlite3VdbeAddOp1(v, OP_If, mem);
sl@0
  1846
    testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
sl@0
  1847
    assert( testAddr>0 || pParse->db->mallocFailed );
sl@0
  1848
  }
sl@0
  1849
sl@0
  1850
  switch( pExpr->op ){
sl@0
  1851
    case TK_IN: {
sl@0
  1852
      char affinity;
sl@0
  1853
      KeyInfo keyInfo;
sl@0
  1854
      int addr;        /* Address of OP_OpenEphemeral instruction */
sl@0
  1855
sl@0
  1856
      if( rMayHaveNull ){
sl@0
  1857
        sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
sl@0
  1858
      }
sl@0
  1859
sl@0
  1860
      affinity = sqlite3ExprAffinity(pExpr->pLeft);
sl@0
  1861
sl@0
  1862
      /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
sl@0
  1863
      ** expression it is handled the same way. A virtual table is 
sl@0
  1864
      ** filled with single-field index keys representing the results
sl@0
  1865
      ** from the SELECT or the <exprlist>.
sl@0
  1866
      **
sl@0
  1867
      ** If the 'x' expression is a column value, or the SELECT...
sl@0
  1868
      ** statement returns a column value, then the affinity of that
sl@0
  1869
      ** column is used to build the index keys. If both 'x' and the
sl@0
  1870
      ** SELECT... statement are columns, then numeric affinity is used
sl@0
  1871
      ** if either column has NUMERIC or INTEGER affinity. If neither
sl@0
  1872
      ** 'x' nor the SELECT... statement are columns, then numeric affinity
sl@0
  1873
      ** is used.
sl@0
  1874
      */
sl@0
  1875
      pExpr->iTable = pParse->nTab++;
sl@0
  1876
      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, 1);
sl@0
  1877
      memset(&keyInfo, 0, sizeof(keyInfo));
sl@0
  1878
      keyInfo.nField = 1;
sl@0
  1879
sl@0
  1880
      if( pExpr->pSelect ){
sl@0
  1881
        /* Case 1:     expr IN (SELECT ...)
sl@0
  1882
        **
sl@0
  1883
        ** Generate code to write the results of the select into the temporary
sl@0
  1884
        ** table allocated and opened above.
sl@0
  1885
        */
sl@0
  1886
        SelectDest dest;
sl@0
  1887
        ExprList *pEList;
sl@0
  1888
sl@0
  1889
        sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
sl@0
  1890
        dest.affinity = (int)affinity;
sl@0
  1891
        assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
sl@0
  1892
        if( sqlite3Select(pParse, pExpr->pSelect, &dest, 0, 0, 0) ){
sl@0
  1893
          return;
sl@0
  1894
        }
sl@0
  1895
        pEList = pExpr->pSelect->pEList;
sl@0
  1896
        if( pEList && pEList->nExpr>0 ){ 
sl@0
  1897
          keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
sl@0
  1898
              pEList->a[0].pExpr);
sl@0
  1899
        }
sl@0
  1900
      }else if( pExpr->pList ){
sl@0
  1901
        /* Case 2:     expr IN (exprlist)
sl@0
  1902
        **
sl@0
  1903
        ** For each expression, build an index key from the evaluation and
sl@0
  1904
        ** store it in the temporary table. If <expr> is a column, then use
sl@0
  1905
        ** that columns affinity when building index keys. If <expr> is not
sl@0
  1906
        ** a column, use numeric affinity.
sl@0
  1907
        */
sl@0
  1908
        int i;
sl@0
  1909
        ExprList *pList = pExpr->pList;
sl@0
  1910
        struct ExprList_item *pItem;
sl@0
  1911
        int r1, r2, r3;
sl@0
  1912
sl@0
  1913
        if( !affinity ){
sl@0
  1914
          affinity = SQLITE_AFF_NONE;
sl@0
  1915
        }
sl@0
  1916
        keyInfo.aColl[0] = pExpr->pLeft->pColl;
sl@0
  1917
sl@0
  1918
        /* Loop through each expression in <exprlist>. */
sl@0
  1919
        r1 = sqlite3GetTempReg(pParse);
sl@0
  1920
        r2 = sqlite3GetTempReg(pParse);
sl@0
  1921
        for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
sl@0
  1922
          Expr *pE2 = pItem->pExpr;
sl@0
  1923
sl@0
  1924
          /* If the expression is not constant then we will need to
sl@0
  1925
          ** disable the test that was generated above that makes sure
sl@0
  1926
          ** this code only executes once.  Because for a non-constant
sl@0
  1927
          ** expression we need to rerun this code each time.
sl@0
  1928
          */
sl@0
  1929
          if( testAddr && !sqlite3ExprIsConstant(pE2) ){
sl@0
  1930
            sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
sl@0
  1931
            testAddr = 0;
sl@0
  1932
          }
sl@0
  1933
sl@0
  1934
          /* Evaluate the expression and insert it into the temp table */
sl@0
  1935
          pParse->disableColCache++;
sl@0
  1936
          r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
sl@0
  1937
          assert( pParse->disableColCache>0 );
sl@0
  1938
          pParse->disableColCache--;
sl@0
  1939
          sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
sl@0
  1940
          sqlite3ExprCacheAffinityChange(pParse, r3, 1);
sl@0
  1941
          sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
sl@0
  1942
        }
sl@0
  1943
        sqlite3ReleaseTempReg(pParse, r1);
sl@0
  1944
        sqlite3ReleaseTempReg(pParse, r2);
sl@0
  1945
      }
sl@0
  1946
      sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
sl@0
  1947
      break;
sl@0
  1948
    }
sl@0
  1949
sl@0
  1950
    case TK_EXISTS:
sl@0
  1951
    case TK_SELECT: {
sl@0
  1952
      /* This has to be a scalar SELECT.  Generate code to put the
sl@0
  1953
      ** value of this select in a memory cell and record the number
sl@0
  1954
      ** of the memory cell in iColumn.
sl@0
  1955
      */
sl@0
  1956
      static const Token one = { (u8*)"1", 0, 1 };
sl@0
  1957
      Select *pSel;
sl@0
  1958
      SelectDest dest;
sl@0
  1959
sl@0
  1960
      pSel = pExpr->pSelect;
sl@0
  1961
      sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
sl@0
  1962
      if( pExpr->op==TK_SELECT ){
sl@0
  1963
        dest.eDest = SRT_Mem;
sl@0
  1964
        sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
sl@0
  1965
        VdbeComment((v, "Init subquery result"));
sl@0
  1966
      }else{
sl@0
  1967
        dest.eDest = SRT_Exists;
sl@0
  1968
        sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
sl@0
  1969
        VdbeComment((v, "Init EXISTS result"));
sl@0
  1970
      }
sl@0
  1971
      sqlite3ExprDelete(pParse->db, pSel->pLimit);
sl@0
  1972
      pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
sl@0
  1973
      if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0) ){
sl@0
  1974
        return;
sl@0
  1975
      }
sl@0
  1976
      pExpr->iColumn = dest.iParm;
sl@0
  1977
      break;
sl@0
  1978
    }
sl@0
  1979
  }
sl@0
  1980
sl@0
  1981
  if( testAddr ){
sl@0
  1982
    sqlite3VdbeJumpHere(v, testAddr-1);
sl@0
  1983
  }
sl@0
  1984
sl@0
  1985
  return;
sl@0
  1986
}
sl@0
  1987
#endif /* SQLITE_OMIT_SUBQUERY */
sl@0
  1988
sl@0
  1989
/*
sl@0
  1990
** Duplicate an 8-byte value
sl@0
  1991
*/
sl@0
  1992
static char *dup8bytes(Vdbe *v, const char *in){
sl@0
  1993
  char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
sl@0
  1994
  if( out ){
sl@0
  1995
    memcpy(out, in, 8);
sl@0
  1996
  }
sl@0
  1997
  return out;
sl@0
  1998
}
sl@0
  1999
sl@0
  2000
/*
sl@0
  2001
** Generate an instruction that will put the floating point
sl@0
  2002
** value described by z[0..n-1] into register iMem.
sl@0
  2003
**
sl@0
  2004
** The z[] string will probably not be zero-terminated.  But the 
sl@0
  2005
** z[n] character is guaranteed to be something that does not look
sl@0
  2006
** like the continuation of the number.
sl@0
  2007
*/
sl@0
  2008
static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){
sl@0
  2009
  assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
sl@0
  2010
  if( z ){
sl@0
  2011
    double value;
sl@0
  2012
    char *zV;
sl@0
  2013
    assert( !isdigit(z[n]) );
sl@0
  2014
    sqlite3AtoF(z, &value);
sl@0
  2015
    if( sqlite3IsNaN(value) ){
sl@0
  2016
      sqlite3VdbeAddOp2(v, OP_Null, 0, iMem);
sl@0
  2017
    }else{
sl@0
  2018
      if( negateFlag ) value = -value;
sl@0
  2019
      zV = dup8bytes(v, (char*)&value);
sl@0
  2020
      sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
sl@0
  2021
    }
sl@0
  2022
  }
sl@0
  2023
}
sl@0
  2024
sl@0
  2025
sl@0
  2026
/*
sl@0
  2027
** Generate an instruction that will put the integer describe by
sl@0
  2028
** text z[0..n-1] into register iMem.
sl@0
  2029
**
sl@0
  2030
** The z[] string will probably not be zero-terminated.  But the 
sl@0
  2031
** z[n] character is guaranteed to be something that does not look
sl@0
  2032
** like the continuation of the number.
sl@0
  2033
*/
sl@0
  2034
static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
sl@0
  2035
  const char *z;
sl@0
  2036
  if( pExpr->flags & EP_IntValue ){
sl@0
  2037
    int i = pExpr->iTable;
sl@0
  2038
    if( negFlag ) i = -i;
sl@0
  2039
    sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
sl@0
  2040
  }else if( (z = (char*)pExpr->token.z)!=0 ){
sl@0
  2041
    int i;
sl@0
  2042
    int n = pExpr->token.n;
sl@0
  2043
    assert( !isdigit(z[n]) );
sl@0
  2044
    if( sqlite3GetInt32(z, &i) ){
sl@0
  2045
      if( negFlag ) i = -i;
sl@0
  2046
      sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
sl@0
  2047
    }else if( sqlite3FitsIn64Bits(z, negFlag) ){
sl@0
  2048
      i64 value;
sl@0
  2049
      char *zV;
sl@0
  2050
      sqlite3Atoi64(z, &value);
sl@0
  2051
      if( negFlag ) value = -value;
sl@0
  2052
      zV = dup8bytes(v, (char*)&value);
sl@0
  2053
      sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
sl@0
  2054
    }else{
sl@0
  2055
      codeReal(v, z, n, negFlag, iMem);
sl@0
  2056
    }
sl@0
  2057
  }
sl@0
  2058
}
sl@0
  2059
sl@0
  2060
sl@0
  2061
/*
sl@0
  2062
** Generate code that will extract the iColumn-th column from
sl@0
  2063
** table pTab and store the column value in a register.  An effort
sl@0
  2064
** is made to store the column value in register iReg, but this is
sl@0
  2065
** not guaranteed.  The location of the column value is returned.
sl@0
  2066
**
sl@0
  2067
** There must be an open cursor to pTab in iTable when this routine
sl@0
  2068
** is called.  If iColumn<0 then code is generated that extracts the rowid.
sl@0
  2069
**
sl@0
  2070
** This routine might attempt to reuse the value of the column that
sl@0
  2071
** has already been loaded into a register.  The value will always
sl@0
  2072
** be used if it has not undergone any affinity changes.  But if
sl@0
  2073
** an affinity change has occurred, then the cached value will only be
sl@0
  2074
** used if allowAffChng is true.
sl@0
  2075
*/
sl@0
  2076
int sqlite3ExprCodeGetColumn(
sl@0
  2077
  Parse *pParse,   /* Parsing and code generating context */
sl@0
  2078
  Table *pTab,     /* Description of the table we are reading from */
sl@0
  2079
  int iColumn,     /* Index of the table column */
sl@0
  2080
  int iTable,      /* The cursor pointing to the table */
sl@0
  2081
  int iReg,        /* Store results here */
sl@0
  2082
  int allowAffChng /* True if prior affinity changes are OK */
sl@0
  2083
){
sl@0
  2084
  Vdbe *v = pParse->pVdbe;
sl@0
  2085
  int i;
sl@0
  2086
  struct yColCache *p;
sl@0
  2087
sl@0
  2088
  for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
sl@0
  2089
    if( p->iTable==iTable && p->iColumn==iColumn
sl@0
  2090
           && (!p->affChange || allowAffChng) ){
sl@0
  2091
#if 0
sl@0
  2092
      sqlite3VdbeAddOp0(v, OP_Noop);
sl@0
  2093
      VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg));
sl@0
  2094
#endif
sl@0
  2095
      return p->iReg;
sl@0
  2096
    }
sl@0
  2097
  }  
sl@0
  2098
  assert( v!=0 );
sl@0
  2099
  if( iColumn<0 ){
sl@0
  2100
    int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
sl@0
  2101
    sqlite3VdbeAddOp2(v, op, iTable, iReg);
sl@0
  2102
  }else if( pTab==0 ){
sl@0
  2103
    sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg);
sl@0
  2104
  }else{
sl@0
  2105
    int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
sl@0
  2106
    sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
sl@0
  2107
    sqlite3ColumnDefault(v, pTab, iColumn);
sl@0
  2108
#ifndef SQLITE_OMIT_FLOATING_POINT
sl@0
  2109
    if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
sl@0
  2110
      sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
sl@0
  2111
    }
sl@0
  2112
#endif
sl@0
  2113
  }
sl@0
  2114
  if( pParse->disableColCache==0 ){
sl@0
  2115
    i = pParse->iColCache;
sl@0
  2116
    p = &pParse->aColCache[i];
sl@0
  2117
    p->iTable = iTable;
sl@0
  2118
    p->iColumn = iColumn;
sl@0
  2119
    p->iReg = iReg;
sl@0
  2120
    p->affChange = 0;
sl@0
  2121
    i++;
sl@0
  2122
    if( i>=ArraySize(pParse->aColCache) ) i = 0;
sl@0
  2123
    if( i>pParse->nColCache ) pParse->nColCache = i;
sl@0
  2124
    pParse->iColCache = i;
sl@0
  2125
  }
sl@0
  2126
  return iReg;
sl@0
  2127
}
sl@0
  2128
sl@0
  2129
/*
sl@0
  2130
** Clear all column cache entries associated with the vdbe
sl@0
  2131
** cursor with cursor number iTable.
sl@0
  2132
*/
sl@0
  2133
void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){
sl@0
  2134
  if( iTable<0 ){
sl@0
  2135
    pParse->nColCache = 0;
sl@0
  2136
    pParse->iColCache = 0;
sl@0
  2137
  }else{
sl@0
  2138
    int i;
sl@0
  2139
    for(i=0; i<pParse->nColCache; i++){
sl@0
  2140
      if( pParse->aColCache[i].iTable==iTable ){
sl@0
  2141
        testcase( i==pParse->nColCache-1 );
sl@0
  2142
        pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
sl@0
  2143
        pParse->iColCache = pParse->nColCache;
sl@0
  2144
      }
sl@0
  2145
    }
sl@0
  2146
  }
sl@0
  2147
}
sl@0
  2148
sl@0
  2149
/*
sl@0
  2150
** Record the fact that an affinity change has occurred on iCount
sl@0
  2151
** registers starting with iStart.
sl@0
  2152
*/
sl@0
  2153
void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
sl@0
  2154
  int iEnd = iStart + iCount - 1;
sl@0
  2155
  int i;
sl@0
  2156
  for(i=0; i<pParse->nColCache; i++){
sl@0
  2157
    int r = pParse->aColCache[i].iReg;
sl@0
  2158
    if( r>=iStart && r<=iEnd ){
sl@0
  2159
      pParse->aColCache[i].affChange = 1;
sl@0
  2160
    }
sl@0
  2161
  }
sl@0
  2162
}
sl@0
  2163
sl@0
  2164
/*
sl@0
  2165
** Generate code to move content from registers iFrom...iFrom+nReg-1
sl@0
  2166
** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
sl@0
  2167
*/
sl@0
  2168
void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
sl@0
  2169
  int i;
sl@0
  2170
  if( iFrom==iTo ) return;
sl@0
  2171
  sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
sl@0
  2172
  for(i=0; i<pParse->nColCache; i++){
sl@0
  2173
    int x = pParse->aColCache[i].iReg;
sl@0
  2174
    if( x>=iFrom && x<iFrom+nReg ){
sl@0
  2175
      pParse->aColCache[i].iReg += iTo-iFrom;
sl@0
  2176
    }
sl@0
  2177
  }
sl@0
  2178
}
sl@0
  2179
sl@0
  2180
/*
sl@0
  2181
** Generate code to copy content from registers iFrom...iFrom+nReg-1
sl@0
  2182
** over to iTo..iTo+nReg-1.
sl@0
  2183
*/
sl@0
  2184
void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
sl@0
  2185
  int i;
sl@0
  2186
  if( iFrom==iTo ) return;
sl@0
  2187
  for(i=0; i<nReg; i++){
sl@0
  2188
    sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
sl@0
  2189
  }
sl@0
  2190
}
sl@0
  2191
sl@0
  2192
/*
sl@0
  2193
** Return true if any register in the range iFrom..iTo (inclusive)
sl@0
  2194
** is used as part of the column cache.
sl@0
  2195
*/
sl@0
  2196
static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
sl@0
  2197
  int i;
sl@0
  2198
  for(i=0; i<pParse->nColCache; i++){
sl@0
  2199
    int r = pParse->aColCache[i].iReg;
sl@0
  2200
    if( r>=iFrom && r<=iTo ) return 1;
sl@0
  2201
  }
sl@0
  2202
  return 0;
sl@0
  2203
}
sl@0
  2204
sl@0
  2205
/*
sl@0
  2206
** Theres is a value in register iCurrent.  We ultimately want
sl@0
  2207
** the value to be in register iTarget.  It might be that
sl@0
  2208
** iCurrent and iTarget are the same register.
sl@0
  2209
**
sl@0
  2210
** We are going to modify the value, so we need to make sure it
sl@0
  2211
** is not a cached register.  If iCurrent is a cached register,
sl@0
  2212
** then try to move the value over to iTarget.  If iTarget is a
sl@0
  2213
** cached register, then clear the corresponding cache line.
sl@0
  2214
**
sl@0
  2215
** Return the register that the value ends up in.
sl@0
  2216
*/
sl@0
  2217
int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){
sl@0
  2218
  int i;
sl@0
  2219
  assert( pParse->pVdbe!=0 );
sl@0
  2220
  if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){
sl@0
  2221
    return iCurrent;
sl@0
  2222
  }
sl@0
  2223
  if( iCurrent!=iTarget ){
sl@0
  2224
    sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget);
sl@0
  2225
  }
sl@0
  2226
  for(i=0; i<pParse->nColCache; i++){
sl@0
  2227
    if( pParse->aColCache[i].iReg==iTarget ){
sl@0
  2228
      pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
sl@0
  2229
      pParse->iColCache = pParse->nColCache;
sl@0
  2230
    }
sl@0
  2231
  }
sl@0
  2232
  return iTarget;
sl@0
  2233
}
sl@0
  2234
sl@0
  2235
/*
sl@0
  2236
** If the last instruction coded is an ephemeral copy of any of
sl@0
  2237
** the registers in the nReg registers beginning with iReg, then
sl@0
  2238
** convert the last instruction from OP_SCopy to OP_Copy.
sl@0
  2239
*/
sl@0
  2240
void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
sl@0
  2241
  int addr;
sl@0
  2242
  VdbeOp *pOp;
sl@0
  2243
  Vdbe *v;
sl@0
  2244
sl@0
  2245
  v = pParse->pVdbe;
sl@0
  2246
  addr = sqlite3VdbeCurrentAddr(v);
sl@0
  2247
  pOp = sqlite3VdbeGetOp(v, addr-1);
sl@0
  2248
  assert( pOp || pParse->db->mallocFailed );
sl@0
  2249
  if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
sl@0
  2250
    pOp->opcode = OP_Copy;
sl@0
  2251
  }
sl@0
  2252
}
sl@0
  2253
sl@0
  2254
/*
sl@0
  2255
** Generate code into the current Vdbe to evaluate the given
sl@0
  2256
** expression.  Attempt to store the results in register "target".
sl@0
  2257
** Return the register where results are stored.
sl@0
  2258
**
sl@0
  2259
** With this routine, there is no guaranteed that results will
sl@0
  2260
** be stored in target.  The result might be stored in some other
sl@0
  2261
** register if it is convenient to do so.  The calling function
sl@0
  2262
** must check the return code and move the results to the desired
sl@0
  2263
** register.
sl@0
  2264
*/
sl@0
  2265
int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
sl@0
  2266
  Vdbe *v = pParse->pVdbe;  /* The VM under construction */
sl@0
  2267
  int op;                   /* The opcode being coded */
sl@0
  2268
  int inReg = target;       /* Results stored in register inReg */
sl@0
  2269
  int regFree1 = 0;         /* If non-zero free this temporary register */
sl@0
  2270
  int regFree2 = 0;         /* If non-zero free this temporary register */
sl@0
  2271
  int r1, r2, r3, r4;       /* Various register numbers */
sl@0
  2272
sl@0
  2273
  assert( v!=0 || pParse->db->mallocFailed );
sl@0
  2274
  assert( target>0 && target<=pParse->nMem );
sl@0
  2275
  if( v==0 ) return 0;
sl@0
  2276
sl@0
  2277
  if( pExpr==0 ){
sl@0
  2278
    op = TK_NULL;
sl@0
  2279
  }else{
sl@0
  2280
    op = pExpr->op;
sl@0
  2281
  }
sl@0
  2282
  switch( op ){
sl@0
  2283
    case TK_AGG_COLUMN: {
sl@0
  2284
      AggInfo *pAggInfo = pExpr->pAggInfo;
sl@0
  2285
      struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
sl@0
  2286
      if( !pAggInfo->directMode ){
sl@0
  2287
        assert( pCol->iMem>0 );
sl@0
  2288
        inReg = pCol->iMem;
sl@0
  2289
        break;
sl@0
  2290
      }else if( pAggInfo->useSortingIdx ){
sl@0
  2291
        sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
sl@0
  2292
                              pCol->iSorterColumn, target);
sl@0
  2293
        break;
sl@0
  2294
      }
sl@0
  2295
      /* Otherwise, fall thru into the TK_COLUMN case */
sl@0
  2296
    }
sl@0
  2297
    case TK_COLUMN: {
sl@0
  2298
      if( pExpr->iTable<0 ){
sl@0
  2299
        /* This only happens when coding check constraints */
sl@0
  2300
        assert( pParse->ckBase>0 );
sl@0
  2301
        inReg = pExpr->iColumn + pParse->ckBase;
sl@0
  2302
      }else{
sl@0
  2303
        testcase( (pExpr->flags & EP_AnyAff)!=0 );
sl@0
  2304
        inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
sl@0
  2305
                                 pExpr->iColumn, pExpr->iTable, target,
sl@0
  2306
                                 pExpr->flags & EP_AnyAff);
sl@0
  2307
      }
sl@0
  2308
      break;
sl@0
  2309
    }
sl@0
  2310
    case TK_INTEGER: {
sl@0
  2311
      codeInteger(v, pExpr, 0, target);
sl@0
  2312
      break;
sl@0
  2313
    }
sl@0
  2314
    case TK_FLOAT: {
sl@0
  2315
      codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
sl@0
  2316
      break;
sl@0
  2317
    }
sl@0
  2318
    case TK_STRING: {
sl@0
  2319
      sqlite3DequoteExpr(pParse->db, pExpr);
sl@0
  2320
      sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0,
sl@0
  2321
                        (char*)pExpr->token.z, pExpr->token.n);
sl@0
  2322
      break;
sl@0
  2323
    }
sl@0
  2324
    case TK_NULL: {
sl@0
  2325
      sqlite3VdbeAddOp2(v, OP_Null, 0, target);
sl@0
  2326
      break;
sl@0
  2327
    }
sl@0
  2328
#ifndef SQLITE_OMIT_BLOB_LITERAL
sl@0
  2329
    case TK_BLOB: {
sl@0
  2330
      int n;
sl@0
  2331
      const char *z;
sl@0
  2332
      char *zBlob;
sl@0
  2333
      assert( pExpr->token.n>=3 );
sl@0
  2334
      assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
sl@0
  2335
      assert( pExpr->token.z[1]=='\'' );
sl@0
  2336
      assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
sl@0
  2337
      n = pExpr->token.n - 3;
sl@0
  2338
      z = (char*)pExpr->token.z + 2;
sl@0
  2339
      zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
sl@0
  2340
      sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
sl@0
  2341
      break;
sl@0
  2342
    }
sl@0
  2343
#endif
sl@0
  2344
    case TK_VARIABLE: {
sl@0
  2345
      sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target);
sl@0
  2346
      if( pExpr->token.n>1 ){
sl@0
  2347
        sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n);
sl@0
  2348
      }
sl@0
  2349
      break;
sl@0
  2350
    }
sl@0
  2351
    case TK_REGISTER: {
sl@0
  2352
      inReg = pExpr->iTable;
sl@0
  2353
      break;
sl@0
  2354
    }
sl@0
  2355
#ifndef SQLITE_OMIT_CAST
sl@0
  2356
    case TK_CAST: {
sl@0
  2357
      /* Expressions of the form:   CAST(pLeft AS token) */
sl@0
  2358
      int aff, to_op;
sl@0
  2359
      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
sl@0
  2360
      aff = sqlite3AffinityType(&pExpr->token);
sl@0
  2361
      to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
sl@0
  2362
      assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
sl@0
  2363
      assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
sl@0
  2364
      assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
sl@0
  2365
      assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
sl@0
  2366
      assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
sl@0
  2367
      testcase( to_op==OP_ToText );
sl@0
  2368
      testcase( to_op==OP_ToBlob );
sl@0
  2369
      testcase( to_op==OP_ToNumeric );
sl@0
  2370
      testcase( to_op==OP_ToInt );
sl@0
  2371
      testcase( to_op==OP_ToReal );
sl@0
  2372
      sqlite3VdbeAddOp1(v, to_op, inReg);
sl@0
  2373
      testcase( usedAsColumnCache(pParse, inReg, inReg) );
sl@0
  2374
      sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
sl@0
  2375
      break;
sl@0
  2376
    }
sl@0
  2377
#endif /* SQLITE_OMIT_CAST */
sl@0
  2378
    case TK_LT:
sl@0
  2379
    case TK_LE:
sl@0
  2380
    case TK_GT:
sl@0
  2381
    case TK_GE:
sl@0
  2382
    case TK_NE:
sl@0
  2383
    case TK_EQ: {
sl@0
  2384
      assert( TK_LT==OP_Lt );
sl@0
  2385
      assert( TK_LE==OP_Le );
sl@0
  2386
      assert( TK_GT==OP_Gt );
sl@0
  2387
      assert( TK_GE==OP_Ge );
sl@0
  2388
      assert( TK_EQ==OP_Eq );
sl@0
  2389
      assert( TK_NE==OP_Ne );
sl@0
  2390
      testcase( op==TK_LT );
sl@0
  2391
      testcase( op==TK_LE );
sl@0
  2392
      testcase( op==TK_GT );
sl@0
  2393
      testcase( op==TK_GE );
sl@0
  2394
      testcase( op==TK_EQ );
sl@0
  2395
      testcase( op==TK_NE );
sl@0
  2396
      codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
sl@0
  2397
                                  pExpr->pRight, &r2, &regFree2);
sl@0
  2398
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
sl@0
  2399
                  r1, r2, inReg, SQLITE_STOREP2);
sl@0
  2400
      testcase( regFree1==0 );
sl@0
  2401
      testcase( regFree2==0 );
sl@0
  2402
      break;
sl@0
  2403
    }
sl@0
  2404
    case TK_AND:
sl@0
  2405
    case TK_OR:
sl@0
  2406
    case TK_PLUS:
sl@0
  2407
    case TK_STAR:
sl@0
  2408
    case TK_MINUS:
sl@0
  2409
    case TK_REM:
sl@0
  2410
    case TK_BITAND:
sl@0
  2411
    case TK_BITOR:
sl@0
  2412
    case TK_SLASH:
sl@0
  2413
    case TK_LSHIFT:
sl@0
  2414
    case TK_RSHIFT: 
sl@0
  2415
    case TK_CONCAT: {
sl@0
  2416
      assert( TK_AND==OP_And );
sl@0
  2417
      assert( TK_OR==OP_Or );
sl@0
  2418
      assert( TK_PLUS==OP_Add );
sl@0
  2419
      assert( TK_MINUS==OP_Subtract );
sl@0
  2420
      assert( TK_REM==OP_Remainder );
sl@0
  2421
      assert( TK_BITAND==OP_BitAnd );
sl@0
  2422
      assert( TK_BITOR==OP_BitOr );
sl@0
  2423
      assert( TK_SLASH==OP_Divide );
sl@0
  2424
      assert( TK_LSHIFT==OP_ShiftLeft );
sl@0
  2425
      assert( TK_RSHIFT==OP_ShiftRight );
sl@0
  2426
      assert( TK_CONCAT==OP_Concat );
sl@0
  2427
      testcase( op==TK_AND );
sl@0
  2428
      testcase( op==TK_OR );
sl@0
  2429
      testcase( op==TK_PLUS );
sl@0
  2430
      testcase( op==TK_MINUS );
sl@0
  2431
      testcase( op==TK_REM );
sl@0
  2432
      testcase( op==TK_BITAND );
sl@0
  2433
      testcase( op==TK_BITOR );
sl@0
  2434
      testcase( op==TK_SLASH );
sl@0
  2435
      testcase( op==TK_LSHIFT );
sl@0
  2436
      testcase( op==TK_RSHIFT );
sl@0
  2437
      testcase( op==TK_CONCAT );
sl@0
  2438
      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
sl@0
  2439
      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
sl@0
  2440
      sqlite3VdbeAddOp3(v, op, r2, r1, target);
sl@0
  2441
      testcase( regFree1==0 );
sl@0
  2442
      testcase( regFree2==0 );
sl@0
  2443
      break;
sl@0
  2444
    }
sl@0
  2445
    case TK_UMINUS: {
sl@0
  2446
      Expr *pLeft = pExpr->pLeft;
sl@0
  2447
      assert( pLeft );
sl@0
  2448
      if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
sl@0
  2449
        if( pLeft->op==TK_FLOAT ){
sl@0
  2450
          codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target);
sl@0
  2451
        }else{
sl@0
  2452
          codeInteger(v, pLeft, 1, target);
sl@0
  2453
        }
sl@0
  2454
      }else{
sl@0
  2455
        regFree1 = r1 = sqlite3GetTempReg(pParse);
sl@0
  2456
        sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
sl@0
  2457
        r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
sl@0
  2458
        sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
sl@0
  2459
        testcase( regFree2==0 );
sl@0
  2460
      }
sl@0
  2461
      inReg = target;
sl@0
  2462
      break;
sl@0
  2463
    }
sl@0
  2464
    case TK_BITNOT:
sl@0
  2465
    case TK_NOT: {
sl@0
  2466
      assert( TK_BITNOT==OP_BitNot );
sl@0
  2467
      assert( TK_NOT==OP_Not );
sl@0
  2468
      testcase( op==TK_BITNOT );
sl@0
  2469
      testcase( op==TK_NOT );
sl@0
  2470
      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
sl@0
  2471
      testcase( inReg==target );
sl@0
  2472
      testcase( usedAsColumnCache(pParse, inReg, inReg) );
sl@0
  2473
      inReg = sqlite3ExprWritableRegister(pParse, inReg, target);
sl@0
  2474
      sqlite3VdbeAddOp1(v, op, inReg);
sl@0
  2475
      break;
sl@0
  2476
    }
sl@0
  2477
    case TK_ISNULL:
sl@0
  2478
    case TK_NOTNULL: {
sl@0
  2479
      int addr;
sl@0
  2480
      assert( TK_ISNULL==OP_IsNull );
sl@0
  2481
      assert( TK_NOTNULL==OP_NotNull );
sl@0
  2482
      testcase( op==TK_ISNULL );
sl@0
  2483
      testcase( op==TK_NOTNULL );
sl@0
  2484
      sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
sl@0
  2485
      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
sl@0
  2486
      testcase( regFree1==0 );
sl@0
  2487
      addr = sqlite3VdbeAddOp1(v, op, r1);
sl@0
  2488
      sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
sl@0
  2489
      sqlite3VdbeJumpHere(v, addr);
sl@0
  2490
      break;
sl@0
  2491
    }
sl@0
  2492
    case TK_AGG_FUNCTION: {
sl@0
  2493
      AggInfo *pInfo = pExpr->pAggInfo;
sl@0
  2494
      if( pInfo==0 ){
sl@0
  2495
        sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
sl@0
  2496
            &pExpr->span);
sl@0
  2497
      }else{
sl@0
  2498
        inReg = pInfo->aFunc[pExpr->iAgg].iMem;
sl@0
  2499
      }
sl@0
  2500
      break;
sl@0
  2501
    }
sl@0
  2502
    case TK_CONST_FUNC:
sl@0
  2503
    case TK_FUNCTION: {
sl@0
  2504
      ExprList *pList = pExpr->pList;
sl@0
  2505
      int nExpr = pList ? pList->nExpr : 0;
sl@0
  2506
      FuncDef *pDef;
sl@0
  2507
      int nId;
sl@0
  2508
      const char *zId;
sl@0
  2509
      int constMask = 0;
sl@0
  2510
      int i;
sl@0
  2511
      sqlite3 *db = pParse->db;
sl@0
  2512
      u8 enc = ENC(db);
sl@0
  2513
      CollSeq *pColl = 0;
sl@0
  2514
sl@0
  2515
      testcase( op==TK_CONST_FUNC );
sl@0
  2516
      testcase( op==TK_FUNCTION );
sl@0
  2517
      zId = (char*)pExpr->token.z;
sl@0
  2518
      nId = pExpr->token.n;
sl@0
  2519
      pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
sl@0
  2520
      assert( pDef!=0 );
sl@0
  2521
      if( pList ){
sl@0
  2522
        nExpr = pList->nExpr;
sl@0
  2523
        r1 = sqlite3GetTempRange(pParse, nExpr);
sl@0
  2524
        sqlite3ExprCodeExprList(pParse, pList, r1, 1);
sl@0
  2525
      }else{
sl@0
  2526
        nExpr = r1 = 0;
sl@0
  2527
      }
sl@0
  2528
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
  2529
      /* Possibly overload the function if the first argument is
sl@0
  2530
      ** a virtual table column.
sl@0
  2531
      **
sl@0
  2532
      ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
sl@0
  2533
      ** second argument, not the first, as the argument to test to
sl@0
  2534
      ** see if it is a column in a virtual table.  This is done because
sl@0
  2535
      ** the left operand of infix functions (the operand we want to
sl@0
  2536
      ** control overloading) ends up as the second argument to the
sl@0
  2537
      ** function.  The expression "A glob B" is equivalent to 
sl@0
  2538
      ** "glob(B,A).  We want to use the A in "A glob B" to test
sl@0
  2539
      ** for function overloading.  But we use the B term in "glob(B,A)".
sl@0
  2540
      */
sl@0
  2541
      if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
sl@0
  2542
        pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
sl@0
  2543
      }else if( nExpr>0 ){
sl@0
  2544
        pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
sl@0
  2545
      }
sl@0
  2546
#endif
sl@0
  2547
      for(i=0; i<nExpr && i<32; i++){
sl@0
  2548
        if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
sl@0
  2549
          constMask |= (1<<i);
sl@0
  2550
        }
sl@0
  2551
        if( pDef->needCollSeq && !pColl ){
sl@0
  2552
          pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
sl@0
  2553
        }
sl@0
  2554
      }
sl@0
  2555
      if( pDef->needCollSeq ){
sl@0
  2556
        if( !pColl ) pColl = pParse->db->pDfltColl; 
sl@0
  2557
        sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
sl@0
  2558
      }
sl@0
  2559
      sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
sl@0
  2560
                        (char*)pDef, P4_FUNCDEF);
sl@0
  2561
      sqlite3VdbeChangeP5(v, nExpr);
sl@0
  2562
      if( nExpr ){
sl@0
  2563
        sqlite3ReleaseTempRange(pParse, r1, nExpr);
sl@0
  2564
      }
sl@0
  2565
      sqlite3ExprCacheAffinityChange(pParse, r1, nExpr);
sl@0
  2566
      break;
sl@0
  2567
    }
sl@0
  2568
#ifndef SQLITE_OMIT_SUBQUERY
sl@0
  2569
    case TK_EXISTS:
sl@0
  2570
    case TK_SELECT: {
sl@0
  2571
      testcase( op==TK_EXISTS );
sl@0
  2572
      testcase( op==TK_SELECT );
sl@0
  2573
      if( pExpr->iColumn==0 ){
sl@0
  2574
        sqlite3CodeSubselect(pParse, pExpr, 0);
sl@0
  2575
      }
sl@0
  2576
      inReg = pExpr->iColumn;
sl@0
  2577
      break;
sl@0
  2578
    }
sl@0
  2579
    case TK_IN: {
sl@0
  2580
      int rNotFound = 0;
sl@0
  2581
      int rMayHaveNull = 0;
sl@0
  2582
      int j2, j3, j4, j5;
sl@0
  2583
      char affinity;
sl@0
  2584
      int eType;
sl@0
  2585
sl@0
  2586
      VdbeNoopComment((v, "begin IN expr r%d", target));
sl@0
  2587
      eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull);
sl@0
  2588
      if( rMayHaveNull ){
sl@0
  2589
        rNotFound = ++pParse->nMem;
sl@0
  2590
      }
sl@0
  2591
sl@0
  2592
      /* Figure out the affinity to use to create a key from the results
sl@0
  2593
      ** of the expression. affinityStr stores a static string suitable for
sl@0
  2594
      ** P4 of OP_MakeRecord.
sl@0
  2595
      */
sl@0
  2596
      affinity = comparisonAffinity(pExpr);
sl@0
  2597
sl@0
  2598
sl@0
  2599
      /* Code the <expr> from "<expr> IN (...)". The temporary table
sl@0
  2600
      ** pExpr->iTable contains the values that make up the (...) set.
sl@0
  2601
      */
sl@0
  2602
      pParse->disableColCache++;
sl@0
  2603
      sqlite3ExprCode(pParse, pExpr->pLeft, target);
sl@0
  2604
      pParse->disableColCache--;
sl@0
  2605
      j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target);
sl@0
  2606
      if( eType==IN_INDEX_ROWID ){
sl@0
  2607
        j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target);
sl@0
  2608
        j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target);
sl@0
  2609
        sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
sl@0
  2610
        j5 = sqlite3VdbeAddOp0(v, OP_Goto);
sl@0
  2611
        sqlite3VdbeJumpHere(v, j3);
sl@0
  2612
        sqlite3VdbeJumpHere(v, j4);
sl@0
  2613
        sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
sl@0
  2614
      }else{
sl@0
  2615
        r2 = regFree2 = sqlite3GetTempReg(pParse);
sl@0
  2616
sl@0
  2617
        /* Create a record and test for set membership. If the set contains
sl@0
  2618
        ** the value, then jump to the end of the test code. The target
sl@0
  2619
        ** register still contains the true (1) value written to it earlier.
sl@0
  2620
        */
sl@0
  2621
        sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1);
sl@0
  2622
        sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
sl@0
  2623
        j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
sl@0
  2624
sl@0
  2625
        /* If the set membership test fails, then the result of the 
sl@0
  2626
        ** "x IN (...)" expression must be either 0 or NULL. If the set
sl@0
  2627
        ** contains no NULL values, then the result is 0. If the set 
sl@0
  2628
        ** contains one or more NULL values, then the result of the
sl@0
  2629
        ** expression is also NULL.
sl@0
  2630
        */
sl@0
  2631
        if( rNotFound==0 ){
sl@0
  2632
          /* This branch runs if it is known at compile time (now) that 
sl@0
  2633
          ** the set contains no NULL values. This happens as the result
sl@0
  2634
          ** of a "NOT NULL" constraint in the database schema. No need
sl@0
  2635
          ** to test the data structure at runtime in this case.
sl@0
  2636
          */
sl@0
  2637
          sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
sl@0
  2638
        }else{
sl@0
  2639
          /* This block populates the rNotFound register with either NULL
sl@0
  2640
          ** or 0 (an integer value). If the data structure contains one
sl@0
  2641
          ** or more NULLs, then set rNotFound to NULL. Otherwise, set it
sl@0
  2642
          ** to 0. If register rMayHaveNull is already set to some value
sl@0
  2643
          ** other than NULL, then the test has already been run and 
sl@0
  2644
          ** rNotFound is already populated.
sl@0
  2645
          */
sl@0
  2646
          static const char nullRecord[] = { 0x02, 0x00 };
sl@0
  2647
          j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull);
sl@0
  2648
          sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound);
sl@0
  2649
          sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0, 
sl@0
  2650
                             nullRecord, P4_STATIC);
sl@0
  2651
          j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull);
sl@0
  2652
          sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound);
sl@0
  2653
          sqlite3VdbeJumpHere(v, j4);
sl@0
  2654
          sqlite3VdbeJumpHere(v, j3);
sl@0
  2655
sl@0
  2656
          /* Copy the value of register rNotFound (which is either NULL or 0)
sl@0
  2657
	  ** into the target register. This will be the result of the
sl@0
  2658
          ** expression.
sl@0
  2659
          */
sl@0
  2660
          sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target);
sl@0
  2661
        }
sl@0
  2662
      }
sl@0
  2663
      sqlite3VdbeJumpHere(v, j2);
sl@0
  2664
      sqlite3VdbeJumpHere(v, j5);
sl@0
  2665
      VdbeComment((v, "end IN expr r%d", target));
sl@0
  2666
      break;
sl@0
  2667
    }
sl@0
  2668
#endif
sl@0
  2669
    /*
sl@0
  2670
    **    x BETWEEN y AND z
sl@0
  2671
    **
sl@0
  2672
    ** This is equivalent to
sl@0
  2673
    **
sl@0
  2674
    **    x>=y AND x<=z
sl@0
  2675
    **
sl@0
  2676
    ** X is stored in pExpr->pLeft.
sl@0
  2677
    ** Y is stored in pExpr->pList->a[0].pExpr.
sl@0
  2678
    ** Z is stored in pExpr->pList->a[1].pExpr.
sl@0
  2679
    */
sl@0
  2680
    case TK_BETWEEN: {
sl@0
  2681
      Expr *pLeft = pExpr->pLeft;
sl@0
  2682
      struct ExprList_item *pLItem = pExpr->pList->a;
sl@0
  2683
      Expr *pRight = pLItem->pExpr;
sl@0
  2684
sl@0
  2685
      codeCompareOperands(pParse, pLeft, &r1, &regFree1,
sl@0
  2686
                                  pRight, &r2, &regFree2);
sl@0
  2687
      testcase( regFree1==0 );
sl@0
  2688
      testcase( regFree2==0 );
sl@0
  2689
      r3 = sqlite3GetTempReg(pParse);
sl@0
  2690
      r4 = sqlite3GetTempReg(pParse);
sl@0
  2691
      codeCompare(pParse, pLeft, pRight, OP_Ge,
sl@0
  2692
                  r1, r2, r3, SQLITE_STOREP2);
sl@0
  2693
      pLItem++;
sl@0
  2694
      pRight = pLItem->pExpr;
sl@0
  2695
      sqlite3ReleaseTempReg(pParse, regFree2);
sl@0
  2696
      r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
sl@0
  2697
      testcase( regFree2==0 );
sl@0
  2698
      codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
sl@0
  2699
      sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
sl@0
  2700
      sqlite3ReleaseTempReg(pParse, r3);
sl@0
  2701
      sqlite3ReleaseTempReg(pParse, r4);
sl@0
  2702
      break;
sl@0
  2703
    }
sl@0
  2704
    case TK_UPLUS: {
sl@0
  2705
      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
sl@0
  2706
      break;
sl@0
  2707
    }
sl@0
  2708
sl@0
  2709
    /*
sl@0
  2710
    ** Form A:
sl@0
  2711
    **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
sl@0
  2712
    **
sl@0
  2713
    ** Form B:
sl@0
  2714
    **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
sl@0
  2715
    **
sl@0
  2716
    ** Form A is can be transformed into the equivalent form B as follows:
sl@0
  2717
    **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
sl@0
  2718
    **        WHEN x=eN THEN rN ELSE y END
sl@0
  2719
    **
sl@0
  2720
    ** X (if it exists) is in pExpr->pLeft.
sl@0
  2721
    ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
sl@0
  2722
    ** ELSE clause and no other term matches, then the result of the
sl@0
  2723
    ** exprssion is NULL.
sl@0
  2724
    ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
sl@0
  2725
    **
sl@0
  2726
    ** The result of the expression is the Ri for the first matching Ei,
sl@0
  2727
    ** or if there is no matching Ei, the ELSE term Y, or if there is
sl@0
  2728
    ** no ELSE term, NULL.
sl@0
  2729
    */
sl@0
  2730
    case TK_CASE: {
sl@0
  2731
      int endLabel;                     /* GOTO label for end of CASE stmt */
sl@0
  2732
      int nextCase;                     /* GOTO label for next WHEN clause */
sl@0
  2733
      int nExpr;                        /* 2x number of WHEN terms */
sl@0
  2734
      int i;                            /* Loop counter */
sl@0
  2735
      ExprList *pEList;                 /* List of WHEN terms */
sl@0
  2736
      struct ExprList_item *aListelem;  /* Array of WHEN terms */
sl@0
  2737
      Expr opCompare;                   /* The X==Ei expression */
sl@0
  2738
      Expr cacheX;                      /* Cached expression X */
sl@0
  2739
      Expr *pX;                         /* The X expression */
sl@0
  2740
      Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
sl@0
  2741
sl@0
  2742
      assert(pExpr->pList);
sl@0
  2743
      assert((pExpr->pList->nExpr % 2) == 0);
sl@0
  2744
      assert(pExpr->pList->nExpr > 0);
sl@0
  2745
      pEList = pExpr->pList;
sl@0
  2746
      aListelem = pEList->a;
sl@0
  2747
      nExpr = pEList->nExpr;
sl@0
  2748
      endLabel = sqlite3VdbeMakeLabel(v);
sl@0
  2749
      if( (pX = pExpr->pLeft)!=0 ){
sl@0
  2750
        cacheX = *pX;
sl@0
  2751
        testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER );
sl@0
  2752
        cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
sl@0
  2753
        testcase( regFree1==0 );
sl@0
  2754
        cacheX.op = TK_REGISTER;
sl@0
  2755
        cacheX.iColumn = 0;
sl@0
  2756
        opCompare.op = TK_EQ;
sl@0
  2757
        opCompare.pLeft = &cacheX;
sl@0
  2758
        pTest = &opCompare;
sl@0
  2759
      }
sl@0
  2760
      pParse->disableColCache++;
sl@0
  2761
      for(i=0; i<nExpr; i=i+2){
sl@0
  2762
        if( pX ){
sl@0
  2763
          opCompare.pRight = aListelem[i].pExpr;
sl@0
  2764
        }else{
sl@0
  2765
          pTest = aListelem[i].pExpr;
sl@0
  2766
        }
sl@0
  2767
        nextCase = sqlite3VdbeMakeLabel(v);
sl@0
  2768
        testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER );
sl@0
  2769
        sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
sl@0
  2770
        testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
sl@0
  2771
        testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
sl@0
  2772
        sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
sl@0
  2773
        sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
sl@0
  2774
        sqlite3VdbeResolveLabel(v, nextCase);
sl@0
  2775
      }
sl@0
  2776
      if( pExpr->pRight ){
sl@0
  2777
        sqlite3ExprCode(pParse, pExpr->pRight, target);
sl@0
  2778
      }else{
sl@0
  2779
        sqlite3VdbeAddOp2(v, OP_Null, 0, target);
sl@0
  2780
      }
sl@0
  2781
      sqlite3VdbeResolveLabel(v, endLabel);
sl@0
  2782
      assert( pParse->disableColCache>0 );
sl@0
  2783
      pParse->disableColCache--;
sl@0
  2784
      break;
sl@0
  2785
    }
sl@0
  2786
#ifndef SQLITE_OMIT_TRIGGER
sl@0
  2787
    case TK_RAISE: {
sl@0
  2788
      if( !pParse->trigStack ){
sl@0
  2789
        sqlite3ErrorMsg(pParse,
sl@0
  2790
                       "RAISE() may only be used within a trigger-program");
sl@0
  2791
        return 0;
sl@0
  2792
      }
sl@0
  2793
      if( pExpr->iColumn!=OE_Ignore ){
sl@0
  2794
         assert( pExpr->iColumn==OE_Rollback ||
sl@0
  2795
                 pExpr->iColumn == OE_Abort ||
sl@0
  2796
                 pExpr->iColumn == OE_Fail );
sl@0
  2797
         sqlite3DequoteExpr(pParse->db, pExpr);
sl@0
  2798
         sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0,
sl@0
  2799
                        (char*)pExpr->token.z, pExpr->token.n);
sl@0
  2800
      } else {
sl@0
  2801
         assert( pExpr->iColumn == OE_Ignore );
sl@0
  2802
         sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
sl@0
  2803
         sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
sl@0
  2804
         VdbeComment((v, "raise(IGNORE)"));
sl@0
  2805
      }
sl@0
  2806
      break;
sl@0
  2807
    }
sl@0
  2808
#endif
sl@0
  2809
  }
sl@0
  2810
  sqlite3ReleaseTempReg(pParse, regFree1);
sl@0
  2811
  sqlite3ReleaseTempReg(pParse, regFree2);
sl@0
  2812
  return inReg;
sl@0
  2813
}
sl@0
  2814
sl@0
  2815
/*
sl@0
  2816
** Generate code to evaluate an expression and store the results
sl@0
  2817
** into a register.  Return the register number where the results
sl@0
  2818
** are stored.
sl@0
  2819
**
sl@0
  2820
** If the register is a temporary register that can be deallocated,
sl@0
  2821
** then write its number into *pReg.  If the result register is not
sl@0
  2822
** a temporary, then set *pReg to zero.
sl@0
  2823
*/
sl@0
  2824
int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
sl@0
  2825
  int r1 = sqlite3GetTempReg(pParse);
sl@0
  2826
  int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
sl@0
  2827
  if( r2==r1 ){
sl@0
  2828
    *pReg = r1;
sl@0
  2829
  }else{
sl@0
  2830
    sqlite3ReleaseTempReg(pParse, r1);
sl@0
  2831
    *pReg = 0;
sl@0
  2832
  }
sl@0
  2833
  return r2;
sl@0
  2834
}
sl@0
  2835
sl@0
  2836
/*
sl@0
  2837
** Generate code that will evaluate expression pExpr and store the
sl@0
  2838
** results in register target.  The results are guaranteed to appear
sl@0
  2839
** in register target.
sl@0
  2840
*/
sl@0
  2841
int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
sl@0
  2842
  int inReg;
sl@0
  2843
sl@0
  2844
  assert( target>0 && target<=pParse->nMem );
sl@0
  2845
  inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
sl@0
  2846
  assert( pParse->pVdbe || pParse->db->mallocFailed );
sl@0
  2847
  if( inReg!=target && pParse->pVdbe ){
sl@0
  2848
    sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
sl@0
  2849
  }
sl@0
  2850
  return target;
sl@0
  2851
}
sl@0
  2852
sl@0
  2853
/*
sl@0
  2854
** Generate code that evalutes the given expression and puts the result
sl@0
  2855
** in register target.
sl@0
  2856
**
sl@0
  2857
** Also make a copy of the expression results into another "cache" register
sl@0
  2858
** and modify the expression so that the next time it is evaluated,
sl@0
  2859
** the result is a copy of the cache register.
sl@0
  2860
**
sl@0
  2861
** This routine is used for expressions that are used multiple 
sl@0
  2862
** times.  They are evaluated once and the results of the expression
sl@0
  2863
** are reused.
sl@0
  2864
*/
sl@0
  2865
int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
sl@0
  2866
  Vdbe *v = pParse->pVdbe;
sl@0
  2867
  int inReg;
sl@0
  2868
  inReg = sqlite3ExprCode(pParse, pExpr, target);
sl@0
  2869
  assert( target>0 );
sl@0
  2870
  if( pExpr->op!=TK_REGISTER ){  
sl@0
  2871
    int iMem;
sl@0
  2872
    iMem = ++pParse->nMem;
sl@0
  2873
    sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
sl@0
  2874
    pExpr->iTable = iMem;
sl@0
  2875
    pExpr->iColumn = pExpr->op;
sl@0
  2876
    pExpr->op = TK_REGISTER;
sl@0
  2877
  }
sl@0
  2878
  return inReg;
sl@0
  2879
}
sl@0
  2880
sl@0
  2881
/*
sl@0
  2882
** Return TRUE if pExpr is an constant expression that is appropriate
sl@0
  2883
** for factoring out of a loop.  Appropriate expressions are:
sl@0
  2884
**
sl@0
  2885
**    *  Any expression that evaluates to two or more opcodes.
sl@0
  2886
**
sl@0
  2887
**    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 
sl@0
  2888
**       or OP_Variable that does not need to be placed in a 
sl@0
  2889
**       specific register.
sl@0
  2890
**
sl@0
  2891
** There is no point in factoring out single-instruction constant
sl@0
  2892
** expressions that need to be placed in a particular register.  
sl@0
  2893
** We could factor them out, but then we would end up adding an
sl@0
  2894
** OP_SCopy instruction to move the value into the correct register
sl@0
  2895
** later.  We might as well just use the original instruction and
sl@0
  2896
** avoid the OP_SCopy.
sl@0
  2897
*/
sl@0
  2898
static int isAppropriateForFactoring(Expr *p){
sl@0
  2899
  if( !sqlite3ExprIsConstantNotJoin(p) ){
sl@0
  2900
    return 0;  /* Only constant expressions are appropriate for factoring */
sl@0
  2901
  }
sl@0
  2902
  if( (p->flags & EP_FixedDest)==0 ){
sl@0
  2903
    return 1;  /* Any constant without a fixed destination is appropriate */
sl@0
  2904
  }
sl@0
  2905
  while( p->op==TK_UPLUS ) p = p->pLeft;
sl@0
  2906
  switch( p->op ){
sl@0
  2907
#ifndef SQLITE_OMIT_BLOB_LITERAL
sl@0
  2908
    case TK_BLOB:
sl@0
  2909
#endif
sl@0
  2910
    case TK_VARIABLE:
sl@0
  2911
    case TK_INTEGER:
sl@0
  2912
    case TK_FLOAT:
sl@0
  2913
    case TK_NULL:
sl@0
  2914
    case TK_STRING: {
sl@0
  2915
      testcase( p->op==TK_BLOB );
sl@0
  2916
      testcase( p->op==TK_VARIABLE );
sl@0
  2917
      testcase( p->op==TK_INTEGER );
sl@0
  2918
      testcase( p->op==TK_FLOAT );
sl@0
  2919
      testcase( p->op==TK_NULL );
sl@0
  2920
      testcase( p->op==TK_STRING );
sl@0
  2921
      /* Single-instruction constants with a fixed destination are
sl@0
  2922
      ** better done in-line.  If we factor them, they will just end
sl@0
  2923
      ** up generating an OP_SCopy to move the value to the destination
sl@0
  2924
      ** register. */
sl@0
  2925
      return 0;
sl@0
  2926
    }
sl@0
  2927
    case TK_UMINUS: {
sl@0
  2928
       if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
sl@0
  2929
         return 0;
sl@0
  2930
       }
sl@0
  2931
       break;
sl@0
  2932
    }
sl@0
  2933
    default: {
sl@0
  2934
      break;
sl@0
  2935
    }
sl@0
  2936
  }
sl@0
  2937
  return 1;
sl@0
  2938
}
sl@0
  2939
sl@0
  2940
/*
sl@0
  2941
** If pExpr is a constant expression that is appropriate for
sl@0
  2942
** factoring out of a loop, then evaluate the expression
sl@0
  2943
** into a register and convert the expression into a TK_REGISTER
sl@0
  2944
** expression.
sl@0
  2945
*/
sl@0
  2946
static int evalConstExpr(void *pArg, Expr *pExpr){
sl@0
  2947
  Parse *pParse = (Parse*)pArg;
sl@0
  2948
  switch( pExpr->op ){
sl@0
  2949
    case TK_REGISTER: {
sl@0
  2950
      return 1;
sl@0
  2951
    }
sl@0
  2952
    case TK_FUNCTION:
sl@0
  2953
    case TK_AGG_FUNCTION:
sl@0
  2954
    case TK_CONST_FUNC: {
sl@0
  2955
      /* The arguments to a function have a fixed destination.
sl@0
  2956
      ** Mark them this way to avoid generated unneeded OP_SCopy
sl@0
  2957
      ** instructions. 
sl@0
  2958
      */
sl@0
  2959
      ExprList *pList = pExpr->pList;
sl@0
  2960
      if( pList ){
sl@0
  2961
        int i = pList->nExpr;
sl@0
  2962
        struct ExprList_item *pItem = pList->a;
sl@0
  2963
        for(; i>0; i--, pItem++){
sl@0
  2964
          if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest;
sl@0
  2965
        }
sl@0
  2966
      }
sl@0
  2967
      break;
sl@0
  2968
    }
sl@0
  2969
  }
sl@0
  2970
  if( isAppropriateForFactoring(pExpr) ){
sl@0
  2971
    int r1 = ++pParse->nMem;
sl@0
  2972
    int r2;
sl@0
  2973
    r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
sl@0
  2974
    if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1);
sl@0
  2975
    pExpr->iColumn = pExpr->op;
sl@0
  2976
    pExpr->op = TK_REGISTER;
sl@0
  2977
    pExpr->iTable = r2;
sl@0
  2978
    return 1;
sl@0
  2979
  }
sl@0
  2980
  return 0;
sl@0
  2981
}
sl@0
  2982
sl@0
  2983
/*
sl@0
  2984
** Preevaluate constant subexpressions within pExpr and store the
sl@0
  2985
** results in registers.  Modify pExpr so that the constant subexpresions
sl@0
  2986
** are TK_REGISTER opcodes that refer to the precomputed values.
sl@0
  2987
*/
sl@0
  2988
void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
sl@0
  2989
   walkExprTree(pExpr, evalConstExpr, pParse);
sl@0
  2990
}
sl@0
  2991
sl@0
  2992
sl@0
  2993
/*
sl@0
  2994
** Generate code that pushes the value of every element of the given
sl@0
  2995
** expression list into a sequence of registers beginning at target.
sl@0
  2996
**
sl@0
  2997
** Return the number of elements evaluated.
sl@0
  2998
*/
sl@0
  2999
int sqlite3ExprCodeExprList(
sl@0
  3000
  Parse *pParse,     /* Parsing context */
sl@0
  3001
  ExprList *pList,   /* The expression list to be coded */
sl@0
  3002
  int target,        /* Where to write results */
sl@0
  3003
  int doHardCopy     /* Call sqlite3ExprHardCopy on each element if true */
sl@0
  3004
){
sl@0
  3005
  struct ExprList_item *pItem;
sl@0
  3006
  int i, n;
sl@0
  3007
  assert( pList!=0 || pParse->db->mallocFailed );
sl@0
  3008
  if( pList==0 ){
sl@0
  3009
    return 0;
sl@0
  3010
  }
sl@0
  3011
  assert( target>0 );
sl@0
  3012
  n = pList->nExpr;
sl@0
  3013
  for(pItem=pList->a, i=0; i<n; i++, pItem++){
sl@0
  3014
    sqlite3ExprCode(pParse, pItem->pExpr, target+i);
sl@0
  3015
    if( doHardCopy ) sqlite3ExprHardCopy(pParse, target, n);
sl@0
  3016
  }
sl@0
  3017
  return n;
sl@0
  3018
}
sl@0
  3019
sl@0
  3020
/*
sl@0
  3021
** Generate code for a boolean expression such that a jump is made
sl@0
  3022
** to the label "dest" if the expression is true but execution
sl@0
  3023
** continues straight thru if the expression is false.
sl@0
  3024
**
sl@0
  3025
** If the expression evaluates to NULL (neither true nor false), then
sl@0
  3026
** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
sl@0
  3027
**
sl@0
  3028
** This code depends on the fact that certain token values (ex: TK_EQ)
sl@0
  3029
** are the same as opcode values (ex: OP_Eq) that implement the corresponding
sl@0
  3030
** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
sl@0
  3031
** the make process cause these values to align.  Assert()s in the code
sl@0
  3032
** below verify that the numbers are aligned correctly.
sl@0
  3033
*/
sl@0
  3034
void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
sl@0
  3035
  Vdbe *v = pParse->pVdbe;
sl@0
  3036
  int op = 0;
sl@0
  3037
  int regFree1 = 0;
sl@0
  3038
  int regFree2 = 0;
sl@0
  3039
  int r1, r2;
sl@0
  3040
sl@0
  3041
  assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
sl@0
  3042
  if( v==0 || pExpr==0 ) return;
sl@0
  3043
  op = pExpr->op;
sl@0
  3044
  switch( op ){
sl@0
  3045
    case TK_AND: {
sl@0
  3046
      int d2 = sqlite3VdbeMakeLabel(v);
sl@0
  3047
      testcase( jumpIfNull==0 );
sl@0
  3048
      testcase( pParse->disableColCache==0 );
sl@0
  3049
      sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
sl@0
  3050
      pParse->disableColCache++;
sl@0
  3051
      sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
sl@0
  3052
      assert( pParse->disableColCache>0 );
sl@0
  3053
      pParse->disableColCache--;
sl@0
  3054
      sqlite3VdbeResolveLabel(v, d2);
sl@0
  3055
      break;
sl@0
  3056
    }
sl@0
  3057
    case TK_OR: {
sl@0
  3058
      testcase( jumpIfNull==0 );
sl@0
  3059
      testcase( pParse->disableColCache==0 );
sl@0
  3060
      sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
sl@0
  3061
      pParse->disableColCache++;
sl@0
  3062
      sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
sl@0
  3063
      assert( pParse->disableColCache>0 );
sl@0
  3064
      pParse->disableColCache--;
sl@0
  3065
      break;
sl@0
  3066
    }
sl@0
  3067
    case TK_NOT: {
sl@0
  3068
      testcase( jumpIfNull==0 );
sl@0
  3069
      sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
sl@0
  3070
      break;
sl@0
  3071
    }
sl@0
  3072
    case TK_LT:
sl@0
  3073
    case TK_LE:
sl@0
  3074
    case TK_GT:
sl@0
  3075
    case TK_GE:
sl@0
  3076
    case TK_NE:
sl@0
  3077
    case TK_EQ: {
sl@0
  3078
      assert( TK_LT==OP_Lt );
sl@0
  3079
      assert( TK_LE==OP_Le );
sl@0
  3080
      assert( TK_GT==OP_Gt );
sl@0
  3081
      assert( TK_GE==OP_Ge );
sl@0
  3082
      assert( TK_EQ==OP_Eq );
sl@0
  3083
      assert( TK_NE==OP_Ne );
sl@0
  3084
      testcase( op==TK_LT );
sl@0
  3085
      testcase( op==TK_LE );
sl@0
  3086
      testcase( op==TK_GT );
sl@0
  3087
      testcase( op==TK_GE );
sl@0
  3088
      testcase( op==TK_EQ );
sl@0
  3089
      testcase( op==TK_NE );
sl@0
  3090
      testcase( jumpIfNull==0 );
sl@0
  3091
      codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
sl@0
  3092
                                  pExpr->pRight, &r2, &regFree2);
sl@0
  3093
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
sl@0
  3094
                  r1, r2, dest, jumpIfNull);
sl@0
  3095
      testcase( regFree1==0 );
sl@0
  3096
      testcase( regFree2==0 );
sl@0
  3097
      break;
sl@0
  3098
    }
sl@0
  3099
    case TK_ISNULL:
sl@0
  3100
    case TK_NOTNULL: {
sl@0
  3101
      assert( TK_ISNULL==OP_IsNull );
sl@0
  3102
      assert( TK_NOTNULL==OP_NotNull );
sl@0
  3103
      testcase( op==TK_ISNULL );
sl@0
  3104
      testcase( op==TK_NOTNULL );
sl@0
  3105
      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
sl@0
  3106
      sqlite3VdbeAddOp2(v, op, r1, dest);
sl@0
  3107
      testcase( regFree1==0 );
sl@0
  3108
      break;
sl@0
  3109
    }
sl@0
  3110
    case TK_BETWEEN: {
sl@0
  3111
      /*    x BETWEEN y AND z
sl@0
  3112
      **
sl@0
  3113
      ** Is equivalent to 
sl@0
  3114
      **
sl@0
  3115
      **    x>=y AND x<=z
sl@0
  3116
      **
sl@0
  3117
      ** Code it as such, taking care to do the common subexpression
sl@0
  3118
      ** elementation of x.
sl@0
  3119
      */
sl@0
  3120
      Expr exprAnd;
sl@0
  3121
      Expr compLeft;
sl@0
  3122
      Expr compRight;
sl@0
  3123
      Expr exprX;
sl@0
  3124
sl@0
  3125
      exprX = *pExpr->pLeft;
sl@0
  3126
      exprAnd.op = TK_AND;
sl@0
  3127
      exprAnd.pLeft = &compLeft;
sl@0
  3128
      exprAnd.pRight = &compRight;
sl@0
  3129
      compLeft.op = TK_GE;
sl@0
  3130
      compLeft.pLeft = &exprX;
sl@0
  3131
      compLeft.pRight = pExpr->pList->a[0].pExpr;
sl@0
  3132
      compRight.op = TK_LE;
sl@0
  3133
      compRight.pLeft = &exprX;
sl@0
  3134
      compRight.pRight = pExpr->pList->a[1].pExpr;
sl@0
  3135
      exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
sl@0
  3136
      testcase( regFree1==0 );
sl@0
  3137
      exprX.op = TK_REGISTER;
sl@0
  3138
      testcase( jumpIfNull==0 );
sl@0
  3139
      sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
sl@0
  3140
      break;
sl@0
  3141
    }
sl@0
  3142
    default: {
sl@0
  3143
      r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
sl@0
  3144
      sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
sl@0
  3145
      testcase( regFree1==0 );
sl@0
  3146
      testcase( jumpIfNull==0 );
sl@0
  3147
      break;
sl@0
  3148
    }
sl@0
  3149
  }
sl@0
  3150
  sqlite3ReleaseTempReg(pParse, regFree1);
sl@0
  3151
  sqlite3ReleaseTempReg(pParse, regFree2);  
sl@0
  3152
}
sl@0
  3153
sl@0
  3154
/*
sl@0
  3155
** Generate code for a boolean expression such that a jump is made
sl@0
  3156
** to the label "dest" if the expression is false but execution
sl@0
  3157
** continues straight thru if the expression is true.
sl@0
  3158
**
sl@0
  3159
** If the expression evaluates to NULL (neither true nor false) then
sl@0
  3160
** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
sl@0
  3161
** is 0.
sl@0
  3162
*/
sl@0
  3163
void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
sl@0
  3164
  Vdbe *v = pParse->pVdbe;
sl@0
  3165
  int op = 0;
sl@0
  3166
  int regFree1 = 0;
sl@0
  3167
  int regFree2 = 0;
sl@0
  3168
  int r1, r2;
sl@0
  3169
sl@0
  3170
  assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
sl@0
  3171
  if( v==0 || pExpr==0 ) return;
sl@0
  3172
sl@0
  3173
  /* The value of pExpr->op and op are related as follows:
sl@0
  3174
  **
sl@0
  3175
  **       pExpr->op            op
sl@0
  3176
  **       ---------          ----------
sl@0
  3177
  **       TK_ISNULL          OP_NotNull
sl@0
  3178
  **       TK_NOTNULL         OP_IsNull
sl@0
  3179
  **       TK_NE              OP_Eq
sl@0
  3180
  **       TK_EQ              OP_Ne
sl@0
  3181
  **       TK_GT              OP_Le
sl@0
  3182
  **       TK_LE              OP_Gt
sl@0
  3183
  **       TK_GE              OP_Lt
sl@0
  3184
  **       TK_LT              OP_Ge
sl@0
  3185
  **
sl@0
  3186
  ** For other values of pExpr->op, op is undefined and unused.
sl@0
  3187
  ** The value of TK_ and OP_ constants are arranged such that we
sl@0
  3188
  ** can compute the mapping above using the following expression.
sl@0
  3189
  ** Assert()s verify that the computation is correct.
sl@0
  3190
  */
sl@0
  3191
  op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
sl@0
  3192
sl@0
  3193
  /* Verify correct alignment of TK_ and OP_ constants
sl@0
  3194
  */
sl@0
  3195
  assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
sl@0
  3196
  assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
sl@0
  3197
  assert( pExpr->op!=TK_NE || op==OP_Eq );
sl@0
  3198
  assert( pExpr->op!=TK_EQ || op==OP_Ne );
sl@0
  3199
  assert( pExpr->op!=TK_LT || op==OP_Ge );
sl@0
  3200
  assert( pExpr->op!=TK_LE || op==OP_Gt );
sl@0
  3201
  assert( pExpr->op!=TK_GT || op==OP_Le );
sl@0
  3202
  assert( pExpr->op!=TK_GE || op==OP_Lt );
sl@0
  3203
sl@0
  3204
  switch( pExpr->op ){
sl@0
  3205
    case TK_AND: {
sl@0
  3206
      testcase( jumpIfNull==0 );
sl@0
  3207
      testcase( pParse->disableColCache==0 );
sl@0
  3208
      sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
sl@0
  3209
      pParse->disableColCache++;
sl@0
  3210
      sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
sl@0
  3211
      assert( pParse->disableColCache>0 );
sl@0
  3212
      pParse->disableColCache--;
sl@0
  3213
      break;
sl@0
  3214
    }
sl@0
  3215
    case TK_OR: {
sl@0
  3216
      int d2 = sqlite3VdbeMakeLabel(v);
sl@0
  3217
      testcase( jumpIfNull==0 );
sl@0
  3218
      testcase( pParse->disableColCache==0 );
sl@0
  3219
      sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
sl@0
  3220
      pParse->disableColCache++;
sl@0
  3221
      sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
sl@0
  3222
      assert( pParse->disableColCache>0 );
sl@0
  3223
      pParse->disableColCache--;
sl@0
  3224
      sqlite3VdbeResolveLabel(v, d2);
sl@0
  3225
      break;
sl@0
  3226
    }
sl@0
  3227
    case TK_NOT: {
sl@0
  3228
      sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
sl@0
  3229
      break;
sl@0
  3230
    }
sl@0
  3231
    case TK_LT:
sl@0
  3232
    case TK_LE:
sl@0
  3233
    case TK_GT:
sl@0
  3234
    case TK_GE:
sl@0
  3235
    case TK_NE:
sl@0
  3236
    case TK_EQ: {
sl@0
  3237
      testcase( op==TK_LT );
sl@0
  3238
      testcase( op==TK_LE );
sl@0
  3239
      testcase( op==TK_GT );
sl@0
  3240
      testcase( op==TK_GE );
sl@0
  3241
      testcase( op==TK_EQ );
sl@0
  3242
      testcase( op==TK_NE );
sl@0
  3243
      testcase( jumpIfNull==0 );
sl@0
  3244
      codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
sl@0
  3245
                                  pExpr->pRight, &r2, &regFree2);
sl@0
  3246
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
sl@0
  3247
                  r1, r2, dest, jumpIfNull);
sl@0
  3248
      testcase( regFree1==0 );
sl@0
  3249
      testcase( regFree2==0 );
sl@0
  3250
      break;
sl@0
  3251
    }
sl@0
  3252
    case TK_ISNULL:
sl@0
  3253
    case TK_NOTNULL: {
sl@0
  3254
      testcase( op==TK_ISNULL );
sl@0
  3255
      testcase( op==TK_NOTNULL );
sl@0
  3256
      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
sl@0
  3257
      sqlite3VdbeAddOp2(v, op, r1, dest);
sl@0
  3258
      testcase( regFree1==0 );
sl@0
  3259
      break;
sl@0
  3260
    }
sl@0
  3261
    case TK_BETWEEN: {
sl@0
  3262
      /*    x BETWEEN y AND z
sl@0
  3263
      **
sl@0
  3264
      ** Is equivalent to 
sl@0
  3265
      **
sl@0
  3266
      **    x>=y AND x<=z
sl@0
  3267
      **
sl@0
  3268
      ** Code it as such, taking care to do the common subexpression
sl@0
  3269
      ** elementation of x.
sl@0
  3270
      */
sl@0
  3271
      Expr exprAnd;
sl@0
  3272
      Expr compLeft;
sl@0
  3273
      Expr compRight;
sl@0
  3274
      Expr exprX;
sl@0
  3275
sl@0
  3276
      exprX = *pExpr->pLeft;
sl@0
  3277
      exprAnd.op = TK_AND;
sl@0
  3278
      exprAnd.pLeft = &compLeft;
sl@0
  3279
      exprAnd.pRight = &compRight;
sl@0
  3280
      compLeft.op = TK_GE;
sl@0
  3281
      compLeft.pLeft = &exprX;
sl@0
  3282
      compLeft.pRight = pExpr->pList->a[0].pExpr;
sl@0
  3283
      compRight.op = TK_LE;
sl@0
  3284
      compRight.pLeft = &exprX;
sl@0
  3285
      compRight.pRight = pExpr->pList->a[1].pExpr;
sl@0
  3286
      exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
sl@0
  3287
      testcase( regFree1==0 );
sl@0
  3288
      exprX.op = TK_REGISTER;
sl@0
  3289
      testcase( jumpIfNull==0 );
sl@0
  3290
      sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
sl@0
  3291
      break;
sl@0
  3292
    }
sl@0
  3293
    default: {
sl@0
  3294
      r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
sl@0
  3295
      sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
sl@0
  3296
      testcase( regFree1==0 );
sl@0
  3297
      testcase( jumpIfNull==0 );
sl@0
  3298
      break;
sl@0
  3299
    }
sl@0
  3300
  }
sl@0
  3301
  sqlite3ReleaseTempReg(pParse, regFree1);
sl@0
  3302
  sqlite3ReleaseTempReg(pParse, regFree2);
sl@0
  3303
}
sl@0
  3304
sl@0
  3305
/*
sl@0
  3306
** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
sl@0
  3307
** if they are identical and return FALSE if they differ in any way.
sl@0
  3308
**
sl@0
  3309
** Sometimes this routine will return FALSE even if the two expressions
sl@0
  3310
** really are equivalent.  If we cannot prove that the expressions are
sl@0
  3311
** identical, we return FALSE just to be safe.  So if this routine
sl@0
  3312
** returns false, then you do not really know for certain if the two
sl@0
  3313
** expressions are the same.  But if you get a TRUE return, then you
sl@0
  3314
** can be sure the expressions are the same.  In the places where
sl@0
  3315
** this routine is used, it does not hurt to get an extra FALSE - that
sl@0
  3316
** just might result in some slightly slower code.  But returning
sl@0
  3317
** an incorrect TRUE could lead to a malfunction.
sl@0
  3318
*/
sl@0
  3319
int sqlite3ExprCompare(Expr *pA, Expr *pB){
sl@0
  3320
  int i;
sl@0
  3321
  if( pA==0||pB==0 ){
sl@0
  3322
    return pB==pA;
sl@0
  3323
  }
sl@0
  3324
  if( pA->op!=pB->op ) return 0;
sl@0
  3325
  if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
sl@0
  3326
  if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
sl@0
  3327
  if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
sl@0
  3328
  if( pA->pList ){
sl@0
  3329
    if( pB->pList==0 ) return 0;
sl@0
  3330
    if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
sl@0
  3331
    for(i=0; i<pA->pList->nExpr; i++){
sl@0
  3332
      if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
sl@0
  3333
        return 0;
sl@0
  3334
      }
sl@0
  3335
    }
sl@0
  3336
  }else if( pB->pList ){
sl@0
  3337
    return 0;
sl@0
  3338
  }
sl@0
  3339
  if( pA->pSelect || pB->pSelect ) return 0;
sl@0
  3340
  if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
sl@0
  3341
  if( pA->op!=TK_COLUMN && pA->token.z ){
sl@0
  3342
    if( pB->token.z==0 ) return 0;
sl@0
  3343
    if( pB->token.n!=pA->token.n ) return 0;
sl@0
  3344
    if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
sl@0
  3345
      return 0;
sl@0
  3346
    }
sl@0
  3347
  }
sl@0
  3348
  return 1;
sl@0
  3349
}
sl@0
  3350
sl@0
  3351
sl@0
  3352
/*
sl@0
  3353
** Add a new element to the pAggInfo->aCol[] array.  Return the index of
sl@0
  3354
** the new element.  Return a negative number if malloc fails.
sl@0
  3355
*/
sl@0
  3356
static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
sl@0
  3357
  int i;
sl@0
  3358
  pInfo->aCol = sqlite3ArrayAllocate(
sl@0
  3359
       db,
sl@0
  3360
       pInfo->aCol,
sl@0
  3361
       sizeof(pInfo->aCol[0]),
sl@0
  3362
       3,
sl@0
  3363
       &pInfo->nColumn,
sl@0
  3364
       &pInfo->nColumnAlloc,
sl@0
  3365
       &i
sl@0
  3366
  );
sl@0
  3367
  return i;
sl@0
  3368
}    
sl@0
  3369
sl@0
  3370
/*
sl@0
  3371
** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
sl@0
  3372
** the new element.  Return a negative number if malloc fails.
sl@0
  3373
*/
sl@0
  3374
static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
sl@0
  3375
  int i;
sl@0
  3376
  pInfo->aFunc = sqlite3ArrayAllocate(
sl@0
  3377
       db, 
sl@0
  3378
       pInfo->aFunc,
sl@0
  3379
       sizeof(pInfo->aFunc[0]),
sl@0
  3380
       3,
sl@0
  3381
       &pInfo->nFunc,
sl@0
  3382
       &pInfo->nFuncAlloc,
sl@0
  3383
       &i
sl@0
  3384
  );
sl@0
  3385
  return i;
sl@0
  3386
}    
sl@0
  3387
sl@0
  3388
/*
sl@0
  3389
** This is an xFunc for walkExprTree() used to implement 
sl@0
  3390
** sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
sl@0
  3391
** for additional information.
sl@0
  3392
**
sl@0
  3393
** This routine analyzes the aggregate function at pExpr.
sl@0
  3394
*/
sl@0
  3395
static int analyzeAggregate(void *pArg, Expr *pExpr){
sl@0
  3396
  int i;
sl@0
  3397
  NameContext *pNC = (NameContext *)pArg;
sl@0
  3398
  Parse *pParse = pNC->pParse;
sl@0
  3399
  SrcList *pSrcList = pNC->pSrcList;
sl@0
  3400
  AggInfo *pAggInfo = pNC->pAggInfo;
sl@0
  3401
sl@0
  3402
  switch( pExpr->op ){
sl@0
  3403
    case TK_AGG_COLUMN:
sl@0
  3404
    case TK_COLUMN: {
sl@0
  3405
      /* Check to see if the column is in one of the tables in the FROM
sl@0
  3406
      ** clause of the aggregate query */
sl@0
  3407
      if( pSrcList ){
sl@0
  3408
        struct SrcList_item *pItem = pSrcList->a;
sl@0
  3409
        for(i=0; i<pSrcList->nSrc; i++, pItem++){
sl@0
  3410
          struct AggInfo_col *pCol;
sl@0
  3411
          if( pExpr->iTable==pItem->iCursor ){
sl@0
  3412
            /* If we reach this point, it means that pExpr refers to a table
sl@0
  3413
            ** that is in the FROM clause of the aggregate query.  
sl@0
  3414
            **
sl@0
  3415
            ** Make an entry for the column in pAggInfo->aCol[] if there
sl@0
  3416
            ** is not an entry there already.
sl@0
  3417
            */
sl@0
  3418
            int k;
sl@0
  3419
            pCol = pAggInfo->aCol;
sl@0
  3420
            for(k=0; k<pAggInfo->nColumn; k++, pCol++){
sl@0
  3421
              if( pCol->iTable==pExpr->iTable &&
sl@0
  3422
                  pCol->iColumn==pExpr->iColumn ){
sl@0
  3423
                break;
sl@0
  3424
              }
sl@0
  3425
            }
sl@0
  3426
            if( (k>=pAggInfo->nColumn)
sl@0
  3427
             && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 
sl@0
  3428
            ){
sl@0
  3429
              pCol = &pAggInfo->aCol[k];
sl@0
  3430
              pCol->pTab = pExpr->pTab;
sl@0
  3431
              pCol->iTable = pExpr->iTable;
sl@0
  3432
              pCol->iColumn = pExpr->iColumn;
sl@0
  3433
              pCol->iMem = ++pParse->nMem;
sl@0
  3434
              pCol->iSorterColumn = -1;
sl@0
  3435
              pCol->pExpr = pExpr;
sl@0
  3436
              if( pAggInfo->pGroupBy ){
sl@0
  3437
                int j, n;
sl@0
  3438
                ExprList *pGB = pAggInfo->pGroupBy;
sl@0
  3439
                struct ExprList_item *pTerm = pGB->a;
sl@0
  3440
                n = pGB->nExpr;
sl@0
  3441
                for(j=0; j<n; j++, pTerm++){
sl@0
  3442
                  Expr *pE = pTerm->pExpr;
sl@0
  3443
                  if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
sl@0
  3444
                      pE->iColumn==pExpr->iColumn ){
sl@0
  3445
                    pCol->iSorterColumn = j;
sl@0
  3446
                    break;
sl@0
  3447
                  }
sl@0
  3448
                }
sl@0
  3449
              }
sl@0
  3450
              if( pCol->iSorterColumn<0 ){
sl@0
  3451
                pCol->iSorterColumn = pAggInfo->nSortingColumn++;
sl@0
  3452
              }
sl@0
  3453
            }
sl@0
  3454
            /* There is now an entry for pExpr in pAggInfo->aCol[] (either
sl@0
  3455
            ** because it was there before or because we just created it).
sl@0
  3456
            ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
sl@0
  3457
            ** pAggInfo->aCol[] entry.
sl@0
  3458
            */
sl@0
  3459
            pExpr->pAggInfo = pAggInfo;
sl@0
  3460
            pExpr->op = TK_AGG_COLUMN;
sl@0
  3461
            pExpr->iAgg = k;
sl@0
  3462
            break;
sl@0
  3463
          } /* endif pExpr->iTable==pItem->iCursor */
sl@0
  3464
        } /* end loop over pSrcList */
sl@0
  3465
      }
sl@0
  3466
      return 1;
sl@0
  3467
    }
sl@0
  3468
    case TK_AGG_FUNCTION: {
sl@0
  3469
      /* The pNC->nDepth==0 test causes aggregate functions in subqueries
sl@0
  3470
      ** to be ignored */
sl@0
  3471
      if( pNC->nDepth==0 ){
sl@0
  3472
        /* Check to see if pExpr is a duplicate of another aggregate 
sl@0
  3473
        ** function that is already in the pAggInfo structure
sl@0
  3474
        */
sl@0
  3475
        struct AggInfo_func *pItem = pAggInfo->aFunc;
sl@0
  3476
        for(i=0; i<pAggInfo->nFunc; i++, pItem++){
sl@0
  3477
          if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
sl@0
  3478
            break;
sl@0
  3479
          }
sl@0
  3480
        }
sl@0
  3481
        if( i>=pAggInfo->nFunc ){
sl@0
  3482
          /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
sl@0
  3483
          */
sl@0
  3484
          u8 enc = ENC(pParse->db);
sl@0
  3485
          i = addAggInfoFunc(pParse->db, pAggInfo);
sl@0
  3486
          if( i>=0 ){
sl@0
  3487
            pItem = &pAggInfo->aFunc[i];
sl@0
  3488
            pItem->pExpr = pExpr;
sl@0
  3489
            pItem->iMem = ++pParse->nMem;
sl@0
  3490
            pItem->pFunc = sqlite3FindFunction(pParse->db,
sl@0
  3491
                   (char*)pExpr->token.z, pExpr->token.n,
sl@0
  3492
                   pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
sl@0
  3493
            if( pExpr->flags & EP_Distinct ){
sl@0
  3494
              pItem->iDistinct = pParse->nTab++;
sl@0
  3495
            }else{
sl@0
  3496
              pItem->iDistinct = -1;
sl@0
  3497
            }
sl@0
  3498
          }
sl@0
  3499
        }
sl@0
  3500
        /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
sl@0
  3501
        */
sl@0
  3502
        pExpr->iAgg = i;
sl@0
  3503
        pExpr->pAggInfo = pAggInfo;
sl@0
  3504
        return 1;
sl@0
  3505
      }
sl@0
  3506
    }
sl@0
  3507
  }
sl@0
  3508
sl@0
  3509
  /* Recursively walk subqueries looking for TK_COLUMN nodes that need
sl@0
  3510
  ** to be changed to TK_AGG_COLUMN.  But increment nDepth so that
sl@0
  3511
  ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
sl@0
  3512
  */
sl@0
  3513
  if( pExpr->pSelect ){
sl@0
  3514
    pNC->nDepth++;
sl@0
  3515
    walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
sl@0
  3516
    pNC->nDepth--;
sl@0
  3517
  }
sl@0
  3518
  return 0;
sl@0
  3519
}
sl@0
  3520
sl@0
  3521
/*
sl@0
  3522
** Analyze the given expression looking for aggregate functions and
sl@0
  3523
** for variables that need to be added to the pParse->aAgg[] array.
sl@0
  3524
** Make additional entries to the pParse->aAgg[] array as necessary.
sl@0
  3525
**
sl@0
  3526
** This routine should only be called after the expression has been
sl@0
  3527
** analyzed by sqlite3ExprResolveNames().
sl@0
  3528
*/
sl@0
  3529
void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
sl@0
  3530
  walkExprTree(pExpr, analyzeAggregate, pNC);
sl@0
  3531
}
sl@0
  3532
sl@0
  3533
/*
sl@0
  3534
** Call sqlite3ExprAnalyzeAggregates() for every expression in an
sl@0
  3535
** expression list.  Return the number of errors.
sl@0
  3536
**
sl@0
  3537
** If an error is found, the analysis is cut short.
sl@0
  3538
*/
sl@0
  3539
void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
sl@0
  3540
  struct ExprList_item *pItem;
sl@0
  3541
  int i;
sl@0
  3542
  if( pList ){
sl@0
  3543
    for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
sl@0
  3544
      sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
sl@0
  3545
    }
sl@0
  3546
  }
sl@0
  3547
}
sl@0
  3548
sl@0
  3549
/*
sl@0
  3550
** Allocate or deallocate temporary use registers during code generation.
sl@0
  3551
*/
sl@0
  3552
int sqlite3GetTempReg(Parse *pParse){
sl@0
  3553
  if( pParse->nTempReg==0 ){
sl@0
  3554
    return ++pParse->nMem;
sl@0
  3555
  }
sl@0
  3556
  return pParse->aTempReg[--pParse->nTempReg];
sl@0
  3557
}
sl@0
  3558
void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
sl@0
  3559
  if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
sl@0
  3560
    sqlite3ExprWritableRegister(pParse, iReg, iReg);
sl@0
  3561
    pParse->aTempReg[pParse->nTempReg++] = iReg;
sl@0
  3562
  }
sl@0
  3563
}
sl@0
  3564
sl@0
  3565
/*
sl@0
  3566
** Allocate or deallocate a block of nReg consecutive registers
sl@0
  3567
*/
sl@0
  3568
int sqlite3GetTempRange(Parse *pParse, int nReg){
sl@0
  3569
  int i, n;
sl@0
  3570
  i = pParse->iRangeReg;
sl@0
  3571
  n = pParse->nRangeReg;
sl@0
  3572
  if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
sl@0
  3573
    pParse->iRangeReg += nReg;
sl@0
  3574
    pParse->nRangeReg -= nReg;
sl@0
  3575
  }else{
sl@0
  3576
    i = pParse->nMem+1;
sl@0
  3577
    pParse->nMem += nReg;
sl@0
  3578
  }
sl@0
  3579
  return i;
sl@0
  3580
}
sl@0
  3581
void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
sl@0
  3582
  if( nReg>pParse->nRangeReg ){
sl@0
  3583
    pParse->nRangeReg = nReg;
sl@0
  3584
    pParse->iRangeReg = iReg;
sl@0
  3585
  }
sl@0
  3586
}