os/persistentdata/persistentstorage/sql/SQLite/expr.c
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
     1 /*
     2 ** 2001 September 15
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** This file contains routines used for analyzing expressions and
    13 ** for generating VDBE code that evaluates expressions in SQLite.
    14 **
    15 ** $Id: expr.c,v 1.387 2008/07/28 19:34:53 drh Exp $
    16 */
    17 #include "sqliteInt.h"
    18 #include <ctype.h>
    19 
    20 /*
    21 ** Return the 'affinity' of the expression pExpr if any.
    22 **
    23 ** If pExpr is a column, a reference to a column via an 'AS' alias,
    24 ** or a sub-select with a column as the return value, then the 
    25 ** affinity of that column is returned. Otherwise, 0x00 is returned,
    26 ** indicating no affinity for the expression.
    27 **
    28 ** i.e. the WHERE clause expresssions in the following statements all
    29 ** have an affinity:
    30 **
    31 ** CREATE TABLE t1(a);
    32 ** SELECT * FROM t1 WHERE a;
    33 ** SELECT a AS b FROM t1 WHERE b;
    34 ** SELECT * FROM t1 WHERE (select a from t1);
    35 */
    36 char sqlite3ExprAffinity(Expr *pExpr){
    37   int op = pExpr->op;
    38   if( op==TK_SELECT ){
    39     return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
    40   }
    41 #ifndef SQLITE_OMIT_CAST
    42   if( op==TK_CAST ){
    43     return sqlite3AffinityType(&pExpr->token);
    44   }
    45 #endif
    46   return pExpr->affinity;
    47 }
    48 
    49 /*
    50 ** Set the collating sequence for expression pExpr to be the collating
    51 ** sequence named by pToken.   Return a pointer to the revised expression.
    52 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
    53 ** flag.  An explicit collating sequence will override implicit
    54 ** collating sequences.
    55 */
    56 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
    57   char *zColl = 0;            /* Dequoted name of collation sequence */
    58   CollSeq *pColl;
    59   sqlite3 *db = pParse->db;
    60   zColl = sqlite3NameFromToken(db, pName);
    61   if( pExpr && zColl ){
    62     pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
    63     if( pColl ){
    64       pExpr->pColl = pColl;
    65       pExpr->flags |= EP_ExpCollate;
    66     }
    67   }
    68   sqlite3DbFree(db, zColl);
    69   return pExpr;
    70 }
    71 
    72 /*
    73 ** Return the default collation sequence for the expression pExpr. If
    74 ** there is no default collation type, return 0.
    75 */
    76 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
    77   CollSeq *pColl = 0;
    78   if( pExpr ){
    79     int op;
    80     pColl = pExpr->pColl;
    81     op = pExpr->op;
    82     if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){
    83       return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
    84     }
    85   }
    86   if( sqlite3CheckCollSeq(pParse, pColl) ){ 
    87     pColl = 0;
    88   }
    89   return pColl;
    90 }
    91 
    92 /*
    93 ** pExpr is an operand of a comparison operator.  aff2 is the
    94 ** type affinity of the other operand.  This routine returns the
    95 ** type affinity that should be used for the comparison operator.
    96 */
    97 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
    98   char aff1 = sqlite3ExprAffinity(pExpr);
    99   if( aff1 && aff2 ){
   100     /* Both sides of the comparison are columns. If one has numeric
   101     ** affinity, use that. Otherwise use no affinity.
   102     */
   103     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
   104       return SQLITE_AFF_NUMERIC;
   105     }else{
   106       return SQLITE_AFF_NONE;
   107     }
   108   }else if( !aff1 && !aff2 ){
   109     /* Neither side of the comparison is a column.  Compare the
   110     ** results directly.
   111     */
   112     return SQLITE_AFF_NONE;
   113   }else{
   114     /* One side is a column, the other is not. Use the columns affinity. */
   115     assert( aff1==0 || aff2==0 );
   116     return (aff1 + aff2);
   117   }
   118 }
   119 
   120 /*
   121 ** pExpr is a comparison operator.  Return the type affinity that should
   122 ** be applied to both operands prior to doing the comparison.
   123 */
   124 static char comparisonAffinity(Expr *pExpr){
   125   char aff;
   126   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
   127           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
   128           pExpr->op==TK_NE );
   129   assert( pExpr->pLeft );
   130   aff = sqlite3ExprAffinity(pExpr->pLeft);
   131   if( pExpr->pRight ){
   132     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
   133   }
   134   else if( pExpr->pSelect ){
   135     aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
   136   }
   137   else if( !aff ){
   138     aff = SQLITE_AFF_NONE;
   139   }
   140   return aff;
   141 }
   142 
   143 /*
   144 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
   145 ** idx_affinity is the affinity of an indexed column. Return true
   146 ** if the index with affinity idx_affinity may be used to implement
   147 ** the comparison in pExpr.
   148 */
   149 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
   150   char aff = comparisonAffinity(pExpr);
   151   switch( aff ){
   152     case SQLITE_AFF_NONE:
   153       return 1;
   154     case SQLITE_AFF_TEXT:
   155       return idx_affinity==SQLITE_AFF_TEXT;
   156     default:
   157       return sqlite3IsNumericAffinity(idx_affinity);
   158   }
   159 }
   160 
   161 /*
   162 ** Return the P5 value that should be used for a binary comparison
   163 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
   164 */
   165 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
   166   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
   167   aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull;
   168   return aff;
   169 }
   170 
   171 /*
   172 ** Return a pointer to the collation sequence that should be used by
   173 ** a binary comparison operator comparing pLeft and pRight.
   174 **
   175 ** If the left hand expression has a collating sequence type, then it is
   176 ** used. Otherwise the collation sequence for the right hand expression
   177 ** is used, or the default (BINARY) if neither expression has a collating
   178 ** type.
   179 **
   180 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
   181 ** it is not considered.
   182 */
   183 CollSeq *sqlite3BinaryCompareCollSeq(
   184   Parse *pParse, 
   185   Expr *pLeft, 
   186   Expr *pRight
   187 ){
   188   CollSeq *pColl;
   189   assert( pLeft );
   190   if( pLeft->flags & EP_ExpCollate ){
   191     assert( pLeft->pColl );
   192     pColl = pLeft->pColl;
   193   }else if( pRight && pRight->flags & EP_ExpCollate ){
   194     assert( pRight->pColl );
   195     pColl = pRight->pColl;
   196   }else{
   197     pColl = sqlite3ExprCollSeq(pParse, pLeft);
   198     if( !pColl ){
   199       pColl = sqlite3ExprCollSeq(pParse, pRight);
   200     }
   201   }
   202   return pColl;
   203 }
   204 
   205 /*
   206 ** Generate the operands for a comparison operation.  Before
   207 ** generating the code for each operand, set the EP_AnyAff
   208 ** flag on the expression so that it will be able to used a
   209 ** cached column value that has previously undergone an
   210 ** affinity change.
   211 */
   212 static void codeCompareOperands(
   213   Parse *pParse,    /* Parsing and code generating context */
   214   Expr *pLeft,      /* The left operand */
   215   int *pRegLeft,    /* Register where left operand is stored */
   216   int *pFreeLeft,   /* Free this register when done */
   217   Expr *pRight,     /* The right operand */
   218   int *pRegRight,   /* Register where right operand is stored */
   219   int *pFreeRight   /* Write temp register for right operand there */
   220 ){
   221   while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
   222   pLeft->flags |= EP_AnyAff;
   223   *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
   224   while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
   225   pRight->flags |= EP_AnyAff;
   226   *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
   227 }
   228 
   229 /*
   230 ** Generate code for a comparison operator.
   231 */
   232 static int codeCompare(
   233   Parse *pParse,    /* The parsing (and code generating) context */
   234   Expr *pLeft,      /* The left operand */
   235   Expr *pRight,     /* The right operand */
   236   int opcode,       /* The comparison opcode */
   237   int in1, int in2, /* Register holding operands */
   238   int dest,         /* Jump here if true.  */
   239   int jumpIfNull    /* If true, jump if either operand is NULL */
   240 ){
   241   int p5;
   242   int addr;
   243   CollSeq *p4;
   244 
   245   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
   246   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
   247   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
   248                            (void*)p4, P4_COLLSEQ);
   249   sqlite3VdbeChangeP5(pParse->pVdbe, p5);
   250   if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
   251     sqlite3ExprCacheAffinityChange(pParse, in1, 1);
   252     sqlite3ExprCacheAffinityChange(pParse, in2, 1);
   253   }
   254   return addr;
   255 }
   256 
   257 #if SQLITE_MAX_EXPR_DEPTH>0
   258 /*
   259 ** Check that argument nHeight is less than or equal to the maximum
   260 ** expression depth allowed. If it is not, leave an error message in
   261 ** pParse.
   262 */
   263 static int checkExprHeight(Parse *pParse, int nHeight){
   264   int rc = SQLITE_OK;
   265   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
   266   if( nHeight>mxHeight ){
   267     sqlite3ErrorMsg(pParse, 
   268        "Expression tree is too large (maximum depth %d)", mxHeight
   269     );
   270     rc = SQLITE_ERROR;
   271   }
   272   return rc;
   273 }
   274 
   275 /* The following three functions, heightOfExpr(), heightOfExprList()
   276 ** and heightOfSelect(), are used to determine the maximum height
   277 ** of any expression tree referenced by the structure passed as the
   278 ** first argument.
   279 **
   280 ** If this maximum height is greater than the current value pointed
   281 ** to by pnHeight, the second parameter, then set *pnHeight to that
   282 ** value.
   283 */
   284 static void heightOfExpr(Expr *p, int *pnHeight){
   285   if( p ){
   286     if( p->nHeight>*pnHeight ){
   287       *pnHeight = p->nHeight;
   288     }
   289   }
   290 }
   291 static void heightOfExprList(ExprList *p, int *pnHeight){
   292   if( p ){
   293     int i;
   294     for(i=0; i<p->nExpr; i++){
   295       heightOfExpr(p->a[i].pExpr, pnHeight);
   296     }
   297   }
   298 }
   299 static void heightOfSelect(Select *p, int *pnHeight){
   300   if( p ){
   301     heightOfExpr(p->pWhere, pnHeight);
   302     heightOfExpr(p->pHaving, pnHeight);
   303     heightOfExpr(p->pLimit, pnHeight);
   304     heightOfExpr(p->pOffset, pnHeight);
   305     heightOfExprList(p->pEList, pnHeight);
   306     heightOfExprList(p->pGroupBy, pnHeight);
   307     heightOfExprList(p->pOrderBy, pnHeight);
   308     heightOfSelect(p->pPrior, pnHeight);
   309   }
   310 }
   311 
   312 /*
   313 ** Set the Expr.nHeight variable in the structure passed as an 
   314 ** argument. An expression with no children, Expr.pList or 
   315 ** Expr.pSelect member has a height of 1. Any other expression
   316 ** has a height equal to the maximum height of any other 
   317 ** referenced Expr plus one.
   318 */
   319 static void exprSetHeight(Expr *p){
   320   int nHeight = 0;
   321   heightOfExpr(p->pLeft, &nHeight);
   322   heightOfExpr(p->pRight, &nHeight);
   323   heightOfExprList(p->pList, &nHeight);
   324   heightOfSelect(p->pSelect, &nHeight);
   325   p->nHeight = nHeight + 1;
   326 }
   327 
   328 /*
   329 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
   330 ** the height is greater than the maximum allowed expression depth,
   331 ** leave an error in pParse.
   332 */
   333 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
   334   exprSetHeight(p);
   335   checkExprHeight(pParse, p->nHeight);
   336 }
   337 
   338 /*
   339 ** Return the maximum height of any expression tree referenced
   340 ** by the select statement passed as an argument.
   341 */
   342 int sqlite3SelectExprHeight(Select *p){
   343   int nHeight = 0;
   344   heightOfSelect(p, &nHeight);
   345   return nHeight;
   346 }
   347 #else
   348   #define checkExprHeight(x,y)
   349   #define exprSetHeight(y)
   350 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
   351 
   352 /*
   353 ** Construct a new expression node and return a pointer to it.  Memory
   354 ** for this node is obtained from sqlite3_malloc().  The calling function
   355 ** is responsible for making sure the node eventually gets freed.
   356 */
   357 Expr *sqlite3Expr(
   358   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
   359   int op,                 /* Expression opcode */
   360   Expr *pLeft,            /* Left operand */
   361   Expr *pRight,           /* Right operand */
   362   const Token *pToken     /* Argument token */
   363 ){
   364   Expr *pNew;
   365   pNew = sqlite3DbMallocZero(db, sizeof(Expr));
   366   if( pNew==0 ){
   367     /* When malloc fails, delete pLeft and pRight. Expressions passed to 
   368     ** this function must always be allocated with sqlite3Expr() for this 
   369     ** reason. 
   370     */
   371     sqlite3ExprDelete(db, pLeft);
   372     sqlite3ExprDelete(db, pRight);
   373     return 0;
   374   }
   375   pNew->op = op;
   376   pNew->pLeft = pLeft;
   377   pNew->pRight = pRight;
   378   pNew->iAgg = -1;
   379   pNew->span.z = (u8*)"";
   380   if( pToken ){
   381     assert( pToken->dyn==0 );
   382     pNew->span = pNew->token = *pToken;
   383   }else if( pLeft ){
   384     if( pRight ){
   385       if( pRight->span.dyn==0 && pLeft->span.dyn==0 ){
   386         sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
   387       }
   388       if( pRight->flags & EP_ExpCollate ){
   389         pNew->flags |= EP_ExpCollate;
   390         pNew->pColl = pRight->pColl;
   391       }
   392     }
   393     if( pLeft->flags & EP_ExpCollate ){
   394       pNew->flags |= EP_ExpCollate;
   395       pNew->pColl = pLeft->pColl;
   396     }
   397   }
   398 
   399   exprSetHeight(pNew);
   400   return pNew;
   401 }
   402 
   403 /*
   404 ** Works like sqlite3Expr() except that it takes an extra Parse*
   405 ** argument and notifies the associated connection object if malloc fails.
   406 */
   407 Expr *sqlite3PExpr(
   408   Parse *pParse,          /* Parsing context */
   409   int op,                 /* Expression opcode */
   410   Expr *pLeft,            /* Left operand */
   411   Expr *pRight,           /* Right operand */
   412   const Token *pToken     /* Argument token */
   413 ){
   414   Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
   415   if( p ){
   416     checkExprHeight(pParse, p->nHeight);
   417   }
   418   return p;
   419 }
   420 
   421 /*
   422 ** When doing a nested parse, you can include terms in an expression
   423 ** that look like this:   #1 #2 ...  These terms refer to registers
   424 ** in the virtual machine.  #N is the N-th register.
   425 **
   426 ** This routine is called by the parser to deal with on of those terms.
   427 ** It immediately generates code to store the value in a memory location.
   428 ** The returns an expression that will code to extract the value from
   429 ** that memory location as needed.
   430 */
   431 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
   432   Vdbe *v = pParse->pVdbe;
   433   Expr *p;
   434   if( pParse->nested==0 ){
   435     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
   436     return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
   437   }
   438   if( v==0 ) return 0;
   439   p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
   440   if( p==0 ){
   441     return 0;  /* Malloc failed */
   442   }
   443   p->iTable = atoi((char*)&pToken->z[1]);
   444   return p;
   445 }
   446 
   447 /*
   448 ** Join two expressions using an AND operator.  If either expression is
   449 ** NULL, then just return the other expression.
   450 */
   451 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
   452   if( pLeft==0 ){
   453     return pRight;
   454   }else if( pRight==0 ){
   455     return pLeft;
   456   }else{
   457     return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
   458   }
   459 }
   460 
   461 /*
   462 ** Set the Expr.span field of the given expression to span all
   463 ** text between the two given tokens.  Both tokens must be pointing
   464 ** at the same string.
   465 */
   466 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
   467   assert( pRight!=0 );
   468   assert( pLeft!=0 );
   469   if( pExpr ){
   470     pExpr->span.z = pLeft->z;
   471     pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
   472   }
   473 }
   474 
   475 /*
   476 ** Construct a new expression node for a function with multiple
   477 ** arguments.
   478 */
   479 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
   480   Expr *pNew;
   481   sqlite3 *db = pParse->db;
   482   assert( pToken );
   483   pNew = sqlite3DbMallocZero(db, sizeof(Expr) );
   484   if( pNew==0 ){
   485     sqlite3ExprListDelete(db, pList); /* Avoid leaking memory when malloc fails */
   486     return 0;
   487   }
   488   pNew->op = TK_FUNCTION;
   489   pNew->pList = pList;
   490   assert( pToken->dyn==0 );
   491   pNew->token = *pToken;
   492   pNew->span = pNew->token;
   493 
   494   sqlite3ExprSetHeight(pParse, pNew);
   495   return pNew;
   496 }
   497 
   498 /*
   499 ** Assign a variable number to an expression that encodes a wildcard
   500 ** in the original SQL statement.  
   501 **
   502 ** Wildcards consisting of a single "?" are assigned the next sequential
   503 ** variable number.
   504 **
   505 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
   506 ** sure "nnn" is not too be to avoid a denial of service attack when
   507 ** the SQL statement comes from an external source.
   508 **
   509 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
   510 ** as the previous instance of the same wildcard.  Or if this is the first
   511 ** instance of the wildcard, the next sequenial variable number is
   512 ** assigned.
   513 */
   514 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
   515   Token *pToken;
   516   sqlite3 *db = pParse->db;
   517 
   518   if( pExpr==0 ) return;
   519   pToken = &pExpr->token;
   520   assert( pToken->n>=1 );
   521   assert( pToken->z!=0 );
   522   assert( pToken->z[0]!=0 );
   523   if( pToken->n==1 ){
   524     /* Wildcard of the form "?".  Assign the next variable number */
   525     pExpr->iTable = ++pParse->nVar;
   526   }else if( pToken->z[0]=='?' ){
   527     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
   528     ** use it as the variable number */
   529     int i;
   530     pExpr->iTable = i = atoi((char*)&pToken->z[1]);
   531     testcase( i==0 );
   532     testcase( i==1 );
   533     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
   534     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
   535     if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
   536       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
   537           db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
   538     }
   539     if( i>pParse->nVar ){
   540       pParse->nVar = i;
   541     }
   542   }else{
   543     /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
   544     ** number as the prior appearance of the same name, or if the name
   545     ** has never appeared before, reuse the same variable number
   546     */
   547     int i, n;
   548     n = pToken->n;
   549     for(i=0; i<pParse->nVarExpr; i++){
   550       Expr *pE;
   551       if( (pE = pParse->apVarExpr[i])!=0
   552           && pE->token.n==n
   553           && memcmp(pE->token.z, pToken->z, n)==0 ){
   554         pExpr->iTable = pE->iTable;
   555         break;
   556       }
   557     }
   558     if( i>=pParse->nVarExpr ){
   559       pExpr->iTable = ++pParse->nVar;
   560       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
   561         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
   562         pParse->apVarExpr =
   563             sqlite3DbReallocOrFree(
   564               db,
   565               pParse->apVarExpr,
   566               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
   567             );
   568       }
   569       if( !db->mallocFailed ){
   570         assert( pParse->apVarExpr!=0 );
   571         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
   572       }
   573     }
   574   } 
   575   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
   576     sqlite3ErrorMsg(pParse, "too many SQL variables");
   577   }
   578 }
   579 
   580 /*
   581 ** Recursively delete an expression tree.
   582 */
   583 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
   584   if( p==0 ) return;
   585   if( p->span.dyn ) sqlite3DbFree(db, (char*)p->span.z);
   586   if( p->token.dyn ) sqlite3DbFree(db, (char*)p->token.z);
   587   sqlite3ExprDelete(db, p->pLeft);
   588   sqlite3ExprDelete(db, p->pRight);
   589   sqlite3ExprListDelete(db, p->pList);
   590   sqlite3SelectDelete(db, p->pSelect);
   591   sqlite3DbFree(db, p);
   592 }
   593 
   594 /*
   595 ** The Expr.token field might be a string literal that is quoted.
   596 ** If so, remove the quotation marks.
   597 */
   598 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
   599   if( ExprHasAnyProperty(p, EP_Dequoted) ){
   600     return;
   601   }
   602   ExprSetProperty(p, EP_Dequoted);
   603   if( p->token.dyn==0 ){
   604     sqlite3TokenCopy(db, &p->token, &p->token);
   605   }
   606   sqlite3Dequote((char*)p->token.z);
   607 }
   608 
   609 
   610 /*
   611 ** The following group of routines make deep copies of expressions,
   612 ** expression lists, ID lists, and select statements.  The copies can
   613 ** be deleted (by being passed to their respective ...Delete() routines)
   614 ** without effecting the originals.
   615 **
   616 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
   617 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 
   618 ** by subsequent calls to sqlite*ListAppend() routines.
   619 **
   620 ** Any tables that the SrcList might point to are not duplicated.
   621 */
   622 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
   623   Expr *pNew;
   624   if( p==0 ) return 0;
   625   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
   626   if( pNew==0 ) return 0;
   627   memcpy(pNew, p, sizeof(*pNew));
   628   if( p->token.z!=0 ){
   629     pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
   630     pNew->token.dyn = 1;
   631   }else{
   632     assert( pNew->token.z==0 );
   633   }
   634   pNew->span.z = 0;
   635   pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
   636   pNew->pRight = sqlite3ExprDup(db, p->pRight);
   637   pNew->pList = sqlite3ExprListDup(db, p->pList);
   638   pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
   639   return pNew;
   640 }
   641 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
   642   if( pTo->dyn ) sqlite3DbFree(db, (char*)pTo->z);
   643   if( pFrom->z ){
   644     pTo->n = pFrom->n;
   645     pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
   646     pTo->dyn = 1;
   647   }else{
   648     pTo->z = 0;
   649   }
   650 }
   651 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
   652   ExprList *pNew;
   653   struct ExprList_item *pItem, *pOldItem;
   654   int i;
   655   if( p==0 ) return 0;
   656   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
   657   if( pNew==0 ) return 0;
   658   pNew->iECursor = 0;
   659   pNew->nExpr = pNew->nAlloc = p->nExpr;
   660   pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
   661   if( pItem==0 ){
   662     sqlite3DbFree(db, pNew);
   663     return 0;
   664   } 
   665   pOldItem = p->a;
   666   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
   667     Expr *pNewExpr, *pOldExpr;
   668     pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
   669     if( pOldExpr->span.z!=0 && pNewExpr ){
   670       /* Always make a copy of the span for top-level expressions in the
   671       ** expression list.  The logic in SELECT processing that determines
   672       ** the names of columns in the result set needs this information */
   673       sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
   674     }
   675     assert( pNewExpr==0 || pNewExpr->span.z!=0 
   676             || pOldExpr->span.z==0
   677             || db->mallocFailed );
   678     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
   679     pItem->sortOrder = pOldItem->sortOrder;
   680     pItem->isAgg = pOldItem->isAgg;
   681     pItem->done = 0;
   682   }
   683   return pNew;
   684 }
   685 
   686 /*
   687 ** If cursors, triggers, views and subqueries are all omitted from
   688 ** the build, then none of the following routines, except for 
   689 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
   690 ** called with a NULL argument.
   691 */
   692 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
   693  || !defined(SQLITE_OMIT_SUBQUERY)
   694 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
   695   SrcList *pNew;
   696   int i;
   697   int nByte;
   698   if( p==0 ) return 0;
   699   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
   700   pNew = sqlite3DbMallocRaw(db, nByte );
   701   if( pNew==0 ) return 0;
   702   pNew->nSrc = pNew->nAlloc = p->nSrc;
   703   for(i=0; i<p->nSrc; i++){
   704     struct SrcList_item *pNewItem = &pNew->a[i];
   705     struct SrcList_item *pOldItem = &p->a[i];
   706     Table *pTab;
   707     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
   708     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
   709     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
   710     pNewItem->jointype = pOldItem->jointype;
   711     pNewItem->iCursor = pOldItem->iCursor;
   712     pNewItem->isPopulated = pOldItem->isPopulated;
   713     pTab = pNewItem->pTab = pOldItem->pTab;
   714     if( pTab ){
   715       pTab->nRef++;
   716     }
   717     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
   718     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
   719     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
   720     pNewItem->colUsed = pOldItem->colUsed;
   721   }
   722   return pNew;
   723 }
   724 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
   725   IdList *pNew;
   726   int i;
   727   if( p==0 ) return 0;
   728   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
   729   if( pNew==0 ) return 0;
   730   pNew->nId = pNew->nAlloc = p->nId;
   731   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
   732   if( pNew->a==0 ){
   733     sqlite3DbFree(db, pNew);
   734     return 0;
   735   }
   736   for(i=0; i<p->nId; i++){
   737     struct IdList_item *pNewItem = &pNew->a[i];
   738     struct IdList_item *pOldItem = &p->a[i];
   739     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
   740     pNewItem->idx = pOldItem->idx;
   741   }
   742   return pNew;
   743 }
   744 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
   745   Select *pNew;
   746   if( p==0 ) return 0;
   747   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
   748   if( pNew==0 ) return 0;
   749   pNew->isDistinct = p->isDistinct;
   750   pNew->pEList = sqlite3ExprListDup(db, p->pEList);
   751   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
   752   pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
   753   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
   754   pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
   755   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
   756   pNew->op = p->op;
   757   pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
   758   pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
   759   pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
   760   pNew->iLimit = 0;
   761   pNew->iOffset = 0;
   762   pNew->isResolved = p->isResolved;
   763   pNew->isAgg = p->isAgg;
   764   pNew->usesEphm = 0;
   765   pNew->disallowOrderBy = 0;
   766   pNew->pRightmost = 0;
   767   pNew->addrOpenEphm[0] = -1;
   768   pNew->addrOpenEphm[1] = -1;
   769   pNew->addrOpenEphm[2] = -1;
   770   return pNew;
   771 }
   772 #else
   773 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
   774   assert( p==0 );
   775   return 0;
   776 }
   777 #endif
   778 
   779 
   780 /*
   781 ** Add a new element to the end of an expression list.  If pList is
   782 ** initially NULL, then create a new expression list.
   783 */
   784 ExprList *sqlite3ExprListAppend(
   785   Parse *pParse,          /* Parsing context */
   786   ExprList *pList,        /* List to which to append. Might be NULL */
   787   Expr *pExpr,            /* Expression to be appended */
   788   Token *pName            /* AS keyword for the expression */
   789 ){
   790   sqlite3 *db = pParse->db;
   791   if( pList==0 ){
   792     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
   793     if( pList==0 ){
   794       goto no_mem;
   795     }
   796     assert( pList->nAlloc==0 );
   797   }
   798   if( pList->nAlloc<=pList->nExpr ){
   799     struct ExprList_item *a;
   800     int n = pList->nAlloc*2 + 4;
   801     a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
   802     if( a==0 ){
   803       goto no_mem;
   804     }
   805     pList->a = a;
   806     pList->nAlloc = n;
   807   }
   808   assert( pList->a!=0 );
   809   if( pExpr || pName ){
   810     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
   811     memset(pItem, 0, sizeof(*pItem));
   812     pItem->zName = sqlite3NameFromToken(db, pName);
   813     pItem->pExpr = pExpr;
   814   }
   815   return pList;
   816 
   817 no_mem:     
   818   /* Avoid leaking memory if malloc has failed. */
   819   sqlite3ExprDelete(db, pExpr);
   820   sqlite3ExprListDelete(db, pList);
   821   return 0;
   822 }
   823 
   824 /*
   825 ** If the expression list pEList contains more than iLimit elements,
   826 ** leave an error message in pParse.
   827 */
   828 void sqlite3ExprListCheckLength(
   829   Parse *pParse,
   830   ExprList *pEList,
   831   const char *zObject
   832 ){
   833   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
   834   testcase( pEList && pEList->nExpr==mx );
   835   testcase( pEList && pEList->nExpr==mx+1 );
   836   if( pEList && pEList->nExpr>mx ){
   837     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
   838   }
   839 }
   840 
   841 /*
   842 ** Delete an entire expression list.
   843 */
   844 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
   845   int i;
   846   struct ExprList_item *pItem;
   847   if( pList==0 ) return;
   848   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
   849   assert( pList->nExpr<=pList->nAlloc );
   850   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
   851     sqlite3ExprDelete(db, pItem->pExpr);
   852     sqlite3DbFree(db, pItem->zName);
   853   }
   854   sqlite3DbFree(db, pList->a);
   855   sqlite3DbFree(db, pList);
   856 }
   857 
   858 /*
   859 ** Walk an expression tree.  Call xFunc for each node visited.  xFunc
   860 ** is called on the node before xFunc is called on the nodes children.
   861 **
   862 ** The return value from xFunc determines whether the tree walk continues.
   863 ** 0 means continue walking the tree.  1 means do not walk children
   864 ** of the current node but continue with siblings.  2 means abandon
   865 ** the tree walk completely.
   866 **
   867 ** The return value from this routine is 1 to abandon the tree walk
   868 ** and 0 to continue.
   869 **
   870 ** NOTICE:  This routine does *not* descend into subqueries.
   871 */
   872 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
   873 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
   874   int rc;
   875   if( pExpr==0 ) return 0;
   876   rc = (*xFunc)(pArg, pExpr);
   877   if( rc==0 ){
   878     if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
   879     if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
   880     if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
   881   }
   882   return rc>1;
   883 }
   884 
   885 /*
   886 ** Call walkExprTree() for every expression in list p.
   887 */
   888 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
   889   int i;
   890   struct ExprList_item *pItem;
   891   if( !p ) return 0;
   892   for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
   893     if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
   894   }
   895   return 0;
   896 }
   897 
   898 /*
   899 ** Call walkExprTree() for every expression in Select p, not including
   900 ** expressions that are part of sub-selects in any FROM clause or the LIMIT
   901 ** or OFFSET expressions..
   902 */
   903 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
   904   walkExprList(p->pEList, xFunc, pArg);
   905   walkExprTree(p->pWhere, xFunc, pArg);
   906   walkExprList(p->pGroupBy, xFunc, pArg);
   907   walkExprTree(p->pHaving, xFunc, pArg);
   908   walkExprList(p->pOrderBy, xFunc, pArg);
   909   if( p->pPrior ){
   910     walkSelectExpr(p->pPrior, xFunc, pArg);
   911   }
   912   return 0;
   913 }
   914 
   915 
   916 /*
   917 ** This routine is designed as an xFunc for walkExprTree().
   918 **
   919 ** pArg is really a pointer to an integer.  If we can tell by looking
   920 ** at pExpr that the expression that contains pExpr is not a constant
   921 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
   922 ** If pExpr does does not disqualify the expression from being a constant
   923 ** then do nothing.
   924 **
   925 ** After walking the whole tree, if no nodes are found that disqualify
   926 ** the expression as constant, then we assume the whole expression
   927 ** is constant.  See sqlite3ExprIsConstant() for additional information.
   928 */
   929 static int exprNodeIsConstant(void *pArg, Expr *pExpr){
   930   int *pN = (int*)pArg;
   931 
   932   /* If *pArg is 3 then any term of the expression that comes from
   933   ** the ON or USING clauses of a join disqualifies the expression
   934   ** from being considered constant. */
   935   if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
   936     *pN = 0;
   937     return 2;
   938   }
   939 
   940   switch( pExpr->op ){
   941     /* Consider functions to be constant if all their arguments are constant
   942     ** and *pArg==2 */
   943     case TK_FUNCTION:
   944       if( (*pN)==2 ) return 0;
   945       /* Fall through */
   946     case TK_ID:
   947     case TK_COLUMN:
   948     case TK_DOT:
   949     case TK_AGG_FUNCTION:
   950     case TK_AGG_COLUMN:
   951 #ifndef SQLITE_OMIT_SUBQUERY
   952     case TK_SELECT:
   953     case TK_EXISTS:
   954       testcase( pExpr->op==TK_SELECT );
   955       testcase( pExpr->op==TK_EXISTS );
   956 #endif
   957       testcase( pExpr->op==TK_ID );
   958       testcase( pExpr->op==TK_COLUMN );
   959       testcase( pExpr->op==TK_DOT );
   960       testcase( pExpr->op==TK_AGG_FUNCTION );
   961       testcase( pExpr->op==TK_AGG_COLUMN );
   962       *pN = 0;
   963       return 2;
   964     case TK_IN:
   965       if( pExpr->pSelect ){
   966         *pN = 0;
   967         return 2;
   968       }
   969     default:
   970       return 0;
   971   }
   972 }
   973 
   974 /*
   975 ** Walk an expression tree.  Return 1 if the expression is constant
   976 ** and 0 if it involves variables or function calls.
   977 **
   978 ** For the purposes of this function, a double-quoted string (ex: "abc")
   979 ** is considered a variable but a single-quoted string (ex: 'abc') is
   980 ** a constant.
   981 */
   982 int sqlite3ExprIsConstant(Expr *p){
   983   int isConst = 1;
   984   walkExprTree(p, exprNodeIsConstant, &isConst);
   985   return isConst;
   986 }
   987 
   988 /*
   989 ** Walk an expression tree.  Return 1 if the expression is constant
   990 ** that does no originate from the ON or USING clauses of a join.
   991 ** Return 0 if it involves variables or function calls or terms from
   992 ** an ON or USING clause.
   993 */
   994 int sqlite3ExprIsConstantNotJoin(Expr *p){
   995   int isConst = 3;
   996   walkExprTree(p, exprNodeIsConstant, &isConst);
   997   return isConst!=0;
   998 }
   999 
  1000 /*
  1001 ** Walk an expression tree.  Return 1 if the expression is constant
  1002 ** or a function call with constant arguments.  Return and 0 if there
  1003 ** are any variables.
  1004 **
  1005 ** For the purposes of this function, a double-quoted string (ex: "abc")
  1006 ** is considered a variable but a single-quoted string (ex: 'abc') is
  1007 ** a constant.
  1008 */
  1009 int sqlite3ExprIsConstantOrFunction(Expr *p){
  1010   int isConst = 2;
  1011   walkExprTree(p, exprNodeIsConstant, &isConst);
  1012   return isConst!=0;
  1013 }
  1014 
  1015 /*
  1016 ** If the expression p codes a constant integer that is small enough
  1017 ** to fit in a 32-bit integer, return 1 and put the value of the integer
  1018 ** in *pValue.  If the expression is not an integer or if it is too big
  1019 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
  1020 */
  1021 int sqlite3ExprIsInteger(Expr *p, int *pValue){
  1022   int rc = 0;
  1023   if( p->flags & EP_IntValue ){
  1024     *pValue = p->iTable;
  1025     return 1;
  1026   }
  1027   switch( p->op ){
  1028     case TK_INTEGER: {
  1029       rc = sqlite3GetInt32((char*)p->token.z, pValue);
  1030       break;
  1031     }
  1032     case TK_UPLUS: {
  1033       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
  1034       break;
  1035     }
  1036     case TK_UMINUS: {
  1037       int v;
  1038       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
  1039         *pValue = -v;
  1040         rc = 1;
  1041       }
  1042       break;
  1043     }
  1044     default: break;
  1045   }
  1046   if( rc ){
  1047     p->op = TK_INTEGER;
  1048     p->flags |= EP_IntValue;
  1049     p->iTable = *pValue;
  1050   }
  1051   return rc;
  1052 }
  1053 
  1054 /*
  1055 ** Return TRUE if the given string is a row-id column name.
  1056 */
  1057 int sqlite3IsRowid(const char *z){
  1058   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
  1059   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
  1060   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
  1061   return 0;
  1062 }
  1063 
  1064 /*
  1065 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
  1066 ** that name in the set of source tables in pSrcList and make the pExpr 
  1067 ** expression node refer back to that source column.  The following changes
  1068 ** are made to pExpr:
  1069 **
  1070 **    pExpr->iDb           Set the index in db->aDb[] of the database holding
  1071 **                         the table.
  1072 **    pExpr->iTable        Set to the cursor number for the table obtained
  1073 **                         from pSrcList.
  1074 **    pExpr->iColumn       Set to the column number within the table.
  1075 **    pExpr->op            Set to TK_COLUMN.
  1076 **    pExpr->pLeft         Any expression this points to is deleted
  1077 **    pExpr->pRight        Any expression this points to is deleted.
  1078 **
  1079 ** The pDbToken is the name of the database (the "X").  This value may be
  1080 ** NULL meaning that name is of the form Y.Z or Z.  Any available database
  1081 ** can be used.  The pTableToken is the name of the table (the "Y").  This
  1082 ** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it
  1083 ** means that the form of the name is Z and that columns from any table
  1084 ** can be used.
  1085 **
  1086 ** If the name cannot be resolved unambiguously, leave an error message
  1087 ** in pParse and return non-zero.  Return zero on success.
  1088 */
  1089 static int lookupName(
  1090   Parse *pParse,       /* The parsing context */
  1091   Token *pDbToken,     /* Name of the database containing table, or NULL */
  1092   Token *pTableToken,  /* Name of table containing column, or NULL */
  1093   Token *pColumnToken, /* Name of the column. */
  1094   NameContext *pNC,    /* The name context used to resolve the name */
  1095   Expr *pExpr          /* Make this EXPR node point to the selected column */
  1096 ){
  1097   char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
  1098   char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
  1099   char *zCol = 0;      /* Name of the column.  The "Z" */
  1100   int i, j;            /* Loop counters */
  1101   int cnt = 0;         /* Number of matching column names */
  1102   int cntTab = 0;      /* Number of matching table names */
  1103   sqlite3 *db = pParse->db;  /* The database */
  1104   struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
  1105   struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
  1106   NameContext *pTopNC = pNC;        /* First namecontext in the list */
  1107   Schema *pSchema = 0;              /* Schema of the expression */
  1108 
  1109   assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
  1110   zDb = sqlite3NameFromToken(db, pDbToken);
  1111   zTab = sqlite3NameFromToken(db, pTableToken);
  1112   zCol = sqlite3NameFromToken(db, pColumnToken);
  1113   if( db->mallocFailed ){
  1114     goto lookupname_end;
  1115   }
  1116 
  1117   pExpr->iTable = -1;
  1118   while( pNC && cnt==0 ){
  1119     ExprList *pEList;
  1120     SrcList *pSrcList = pNC->pSrcList;
  1121 
  1122     if( pSrcList ){
  1123       for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
  1124         Table *pTab;
  1125         int iDb;
  1126         Column *pCol;
  1127   
  1128         pTab = pItem->pTab;
  1129         assert( pTab!=0 );
  1130         iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  1131         assert( pTab->nCol>0 );
  1132         if( zTab ){
  1133           if( pItem->zAlias ){
  1134             char *zTabName = pItem->zAlias;
  1135             if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
  1136           }else{
  1137             char *zTabName = pTab->zName;
  1138             if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
  1139             if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
  1140               continue;
  1141             }
  1142           }
  1143         }
  1144         if( 0==(cntTab++) ){
  1145           pExpr->iTable = pItem->iCursor;
  1146           pSchema = pTab->pSchema;
  1147           pMatch = pItem;
  1148         }
  1149         for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
  1150           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
  1151             const char *zColl = pTab->aCol[j].zColl;
  1152             IdList *pUsing;
  1153             cnt++;
  1154             pExpr->iTable = pItem->iCursor;
  1155             pMatch = pItem;
  1156             pSchema = pTab->pSchema;
  1157             /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
  1158             pExpr->iColumn = j==pTab->iPKey ? -1 : j;
  1159             pExpr->affinity = pTab->aCol[j].affinity;
  1160             if( (pExpr->flags & EP_ExpCollate)==0 ){
  1161               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
  1162             }
  1163             if( i<pSrcList->nSrc-1 ){
  1164               if( pItem[1].jointype & JT_NATURAL ){
  1165                 /* If this match occurred in the left table of a natural join,
  1166                 ** then skip the right table to avoid a duplicate match */
  1167                 pItem++;
  1168                 i++;
  1169               }else if( (pUsing = pItem[1].pUsing)!=0 ){
  1170                 /* If this match occurs on a column that is in the USING clause
  1171                 ** of a join, skip the search of the right table of the join
  1172                 ** to avoid a duplicate match there. */
  1173                 int k;
  1174                 for(k=0; k<pUsing->nId; k++){
  1175                   if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
  1176                     pItem++;
  1177                     i++;
  1178                     break;
  1179                   }
  1180                 }
  1181               }
  1182             }
  1183             break;
  1184           }
  1185         }
  1186       }
  1187     }
  1188 
  1189 #ifndef SQLITE_OMIT_TRIGGER
  1190     /* If we have not already resolved the name, then maybe 
  1191     ** it is a new.* or old.* trigger argument reference
  1192     */
  1193     if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
  1194       TriggerStack *pTriggerStack = pParse->trigStack;
  1195       Table *pTab = 0;
  1196       u32 *piColMask;
  1197       if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
  1198         pExpr->iTable = pTriggerStack->newIdx;
  1199         assert( pTriggerStack->pTab );
  1200         pTab = pTriggerStack->pTab;
  1201         piColMask = &(pTriggerStack->newColMask);
  1202       }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
  1203         pExpr->iTable = pTriggerStack->oldIdx;
  1204         assert( pTriggerStack->pTab );
  1205         pTab = pTriggerStack->pTab;
  1206         piColMask = &(pTriggerStack->oldColMask);
  1207       }
  1208 
  1209       if( pTab ){ 
  1210         int iCol;
  1211         Column *pCol = pTab->aCol;
  1212 
  1213         pSchema = pTab->pSchema;
  1214         cntTab++;
  1215         for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
  1216           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
  1217             const char *zColl = pTab->aCol[iCol].zColl;
  1218             cnt++;
  1219             pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
  1220             pExpr->affinity = pTab->aCol[iCol].affinity;
  1221             if( (pExpr->flags & EP_ExpCollate)==0 ){
  1222               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
  1223             }
  1224             pExpr->pTab = pTab;
  1225             if( iCol>=0 ){
  1226               testcase( iCol==31 );
  1227               testcase( iCol==32 );
  1228               *piColMask |= ((u32)1<<iCol) | (iCol>=32?0xffffffff:0);
  1229             }
  1230             break;
  1231           }
  1232         }
  1233       }
  1234     }
  1235 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
  1236 
  1237     /*
  1238     ** Perhaps the name is a reference to the ROWID
  1239     */
  1240     if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
  1241       cnt = 1;
  1242       pExpr->iColumn = -1;
  1243       pExpr->affinity = SQLITE_AFF_INTEGER;
  1244     }
  1245 
  1246     /*
  1247     ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
  1248     ** might refer to an result-set alias.  This happens, for example, when
  1249     ** we are resolving names in the WHERE clause of the following command:
  1250     **
  1251     **     SELECT a+b AS x FROM table WHERE x<10;
  1252     **
  1253     ** In cases like this, replace pExpr with a copy of the expression that
  1254     ** forms the result set entry ("a+b" in the example) and return immediately.
  1255     ** Note that the expression in the result set should have already been
  1256     ** resolved by the time the WHERE clause is resolved.
  1257     */
  1258     if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
  1259       for(j=0; j<pEList->nExpr; j++){
  1260         char *zAs = pEList->a[j].zName;
  1261         if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
  1262           Expr *pDup, *pOrig;
  1263           assert( pExpr->pLeft==0 && pExpr->pRight==0 );
  1264           assert( pExpr->pList==0 );
  1265           assert( pExpr->pSelect==0 );
  1266           pOrig = pEList->a[j].pExpr;
  1267           if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
  1268             sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
  1269             sqlite3DbFree(db, zCol);
  1270             return 2;
  1271           }
  1272           pDup = sqlite3ExprDup(db, pOrig);
  1273           if( pExpr->flags & EP_ExpCollate ){
  1274             pDup->pColl = pExpr->pColl;
  1275             pDup->flags |= EP_ExpCollate;
  1276           }
  1277           if( pExpr->span.dyn ) sqlite3DbFree(db, (char*)pExpr->span.z);
  1278           if( pExpr->token.dyn ) sqlite3DbFree(db, (char*)pExpr->token.z);
  1279           memcpy(pExpr, pDup, sizeof(*pExpr));
  1280           sqlite3DbFree(db, pDup);
  1281           cnt = 1;
  1282           pMatch = 0;
  1283           assert( zTab==0 && zDb==0 );
  1284           goto lookupname_end_2;
  1285         }
  1286       } 
  1287     }
  1288 
  1289     /* Advance to the next name context.  The loop will exit when either
  1290     ** we have a match (cnt>0) or when we run out of name contexts.
  1291     */
  1292     if( cnt==0 ){
  1293       pNC = pNC->pNext;
  1294     }
  1295   }
  1296 
  1297   /*
  1298   ** If X and Y are NULL (in other words if only the column name Z is
  1299   ** supplied) and the value of Z is enclosed in double-quotes, then
  1300   ** Z is a string literal if it doesn't match any column names.  In that
  1301   ** case, we need to return right away and not make any changes to
  1302   ** pExpr.
  1303   **
  1304   ** Because no reference was made to outer contexts, the pNC->nRef
  1305   ** fields are not changed in any context.
  1306   */
  1307   if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
  1308     sqlite3DbFree(db, zCol);
  1309     return 0;
  1310   }
  1311 
  1312   /*
  1313   ** cnt==0 means there was not match.  cnt>1 means there were two or
  1314   ** more matches.  Either way, we have an error.
  1315   */
  1316   if( cnt!=1 ){
  1317     const char *zErr;
  1318     zErr = cnt==0 ? "no such column" : "ambiguous column name";
  1319     if( zDb ){
  1320       sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
  1321     }else if( zTab ){
  1322       sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
  1323     }else{
  1324       sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
  1325     }
  1326     pTopNC->nErr++;
  1327   }
  1328 
  1329   /* If a column from a table in pSrcList is referenced, then record
  1330   ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
  1331   ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
  1332   ** column number is greater than the number of bits in the bitmask
  1333   ** then set the high-order bit of the bitmask.
  1334   */
  1335   if( pExpr->iColumn>=0 && pMatch!=0 ){
  1336     int n = pExpr->iColumn;
  1337     testcase( n==sizeof(Bitmask)*8-1 );
  1338     if( n>=sizeof(Bitmask)*8 ){
  1339       n = sizeof(Bitmask)*8-1;
  1340     }
  1341     assert( pMatch->iCursor==pExpr->iTable );
  1342     pMatch->colUsed |= ((Bitmask)1)<<n;
  1343   }
  1344 
  1345 lookupname_end:
  1346   /* Clean up and return
  1347   */
  1348   sqlite3DbFree(db, zDb);
  1349   sqlite3DbFree(db, zTab);
  1350   sqlite3ExprDelete(db, pExpr->pLeft);
  1351   pExpr->pLeft = 0;
  1352   sqlite3ExprDelete(db, pExpr->pRight);
  1353   pExpr->pRight = 0;
  1354   pExpr->op = TK_COLUMN;
  1355 lookupname_end_2:
  1356   sqlite3DbFree(db, zCol);
  1357   if( cnt==1 ){
  1358     assert( pNC!=0 );
  1359     sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
  1360     if( pMatch && !pMatch->pSelect ){
  1361       pExpr->pTab = pMatch->pTab;
  1362     }
  1363     /* Increment the nRef value on all name contexts from TopNC up to
  1364     ** the point where the name matched. */
  1365     for(;;){
  1366       assert( pTopNC!=0 );
  1367       pTopNC->nRef++;
  1368       if( pTopNC==pNC ) break;
  1369       pTopNC = pTopNC->pNext;
  1370     }
  1371     return 0;
  1372   } else {
  1373     return 1;
  1374   }
  1375 }
  1376 
  1377 /*
  1378 ** This routine is designed as an xFunc for walkExprTree().
  1379 **
  1380 ** Resolve symbolic names into TK_COLUMN operators for the current
  1381 ** node in the expression tree.  Return 0 to continue the search down
  1382 ** the tree or 2 to abort the tree walk.
  1383 **
  1384 ** This routine also does error checking and name resolution for
  1385 ** function names.  The operator for aggregate functions is changed
  1386 ** to TK_AGG_FUNCTION.
  1387 */
  1388 static int nameResolverStep(void *pArg, Expr *pExpr){
  1389   NameContext *pNC = (NameContext*)pArg;
  1390   Parse *pParse;
  1391 
  1392   if( pExpr==0 ) return 1;
  1393   assert( pNC!=0 );
  1394   pParse = pNC->pParse;
  1395 
  1396   if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
  1397   ExprSetProperty(pExpr, EP_Resolved);
  1398 #ifndef NDEBUG
  1399   if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
  1400     SrcList *pSrcList = pNC->pSrcList;
  1401     int i;
  1402     for(i=0; i<pNC->pSrcList->nSrc; i++){
  1403       assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
  1404     }
  1405   }
  1406 #endif
  1407   switch( pExpr->op ){
  1408     /* Double-quoted strings (ex: "abc") are used as identifiers if
  1409     ** possible.  Otherwise they remain as strings.  Single-quoted
  1410     ** strings (ex: 'abc') are always string literals.
  1411     */
  1412     case TK_STRING: {
  1413       if( pExpr->token.z[0]=='\'' ) break;
  1414       /* Fall thru into the TK_ID case if this is a double-quoted string */
  1415     }
  1416     /* A lone identifier is the name of a column.
  1417     */
  1418     case TK_ID: {
  1419       lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
  1420       return 1;
  1421     }
  1422   
  1423     /* A table name and column name:     ID.ID
  1424     ** Or a database, table and column:  ID.ID.ID
  1425     */
  1426     case TK_DOT: {
  1427       Token *pColumn;
  1428       Token *pTable;
  1429       Token *pDb;
  1430       Expr *pRight;
  1431 
  1432       /* if( pSrcList==0 ) break; */
  1433       pRight = pExpr->pRight;
  1434       if( pRight->op==TK_ID ){
  1435         pDb = 0;
  1436         pTable = &pExpr->pLeft->token;
  1437         pColumn = &pRight->token;
  1438       }else{
  1439         assert( pRight->op==TK_DOT );
  1440         pDb = &pExpr->pLeft->token;
  1441         pTable = &pRight->pLeft->token;
  1442         pColumn = &pRight->pRight->token;
  1443       }
  1444       lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
  1445       return 1;
  1446     }
  1447 
  1448     /* Resolve function names
  1449     */
  1450     case TK_CONST_FUNC:
  1451     case TK_FUNCTION: {
  1452       ExprList *pList = pExpr->pList;    /* The argument list */
  1453       int n = pList ? pList->nExpr : 0;  /* Number of arguments */
  1454       int no_such_func = 0;       /* True if no such function exists */
  1455       int wrong_num_args = 0;     /* True if wrong number of arguments */
  1456       int is_agg = 0;             /* True if is an aggregate function */
  1457       int i;
  1458       int auth;                   /* Authorization to use the function */
  1459       int nId;                    /* Number of characters in function name */
  1460       const char *zId;            /* The function name. */
  1461       FuncDef *pDef;              /* Information about the function */
  1462       int enc = ENC(pParse->db);  /* The database encoding */
  1463 
  1464       zId = (char*)pExpr->token.z;
  1465       nId = pExpr->token.n;
  1466       pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
  1467       if( pDef==0 ){
  1468         pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
  1469         if( pDef==0 ){
  1470           no_such_func = 1;
  1471         }else{
  1472           wrong_num_args = 1;
  1473         }
  1474       }else{
  1475         is_agg = pDef->xFunc==0;
  1476       }
  1477 #ifndef SQLITE_OMIT_AUTHORIZATION
  1478       if( pDef ){
  1479         auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
  1480         if( auth!=SQLITE_OK ){
  1481           if( auth==SQLITE_DENY ){
  1482             sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
  1483                                     pDef->zName);
  1484             pNC->nErr++;
  1485           }
  1486           pExpr->op = TK_NULL;
  1487           return 1;
  1488         }
  1489       }
  1490 #endif
  1491       if( is_agg && !pNC->allowAgg ){
  1492         sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
  1493         pNC->nErr++;
  1494         is_agg = 0;
  1495       }else if( no_such_func ){
  1496         sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
  1497         pNC->nErr++;
  1498       }else if( wrong_num_args ){
  1499         sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
  1500              nId, zId);
  1501         pNC->nErr++;
  1502       }
  1503       if( is_agg ){
  1504         pExpr->op = TK_AGG_FUNCTION;
  1505         pNC->hasAgg = 1;
  1506       }
  1507       if( is_agg ) pNC->allowAgg = 0;
  1508       for(i=0; pNC->nErr==0 && i<n; i++){
  1509         walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
  1510       }
  1511       if( is_agg ) pNC->allowAgg = 1;
  1512       /* FIX ME:  Compute pExpr->affinity based on the expected return
  1513       ** type of the function 
  1514       */
  1515       return is_agg;
  1516     }
  1517 #ifndef SQLITE_OMIT_SUBQUERY
  1518     case TK_SELECT:
  1519     case TK_EXISTS:
  1520 #endif
  1521     case TK_IN: {
  1522       if( pExpr->pSelect ){
  1523         int nRef = pNC->nRef;
  1524 #ifndef SQLITE_OMIT_CHECK
  1525         if( pNC->isCheck ){
  1526           sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
  1527         }
  1528 #endif
  1529         sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
  1530         assert( pNC->nRef>=nRef );
  1531         if( nRef!=pNC->nRef ){
  1532           ExprSetProperty(pExpr, EP_VarSelect);
  1533         }
  1534       }
  1535       break;
  1536     }
  1537 #ifndef SQLITE_OMIT_CHECK
  1538     case TK_VARIABLE: {
  1539       if( pNC->isCheck ){
  1540         sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
  1541       }
  1542       break;
  1543     }
  1544 #endif
  1545   }
  1546   return 0;
  1547 }
  1548 
  1549 /*
  1550 ** This routine walks an expression tree and resolves references to
  1551 ** table columns.  Nodes of the form ID.ID or ID resolve into an
  1552 ** index to the table in the table list and a column offset.  The 
  1553 ** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable
  1554 ** value is changed to the index of the referenced table in pTabList
  1555 ** plus the "base" value.  The base value will ultimately become the
  1556 ** VDBE cursor number for a cursor that is pointing into the referenced
  1557 ** table.  The Expr.iColumn value is changed to the index of the column 
  1558 ** of the referenced table.  The Expr.iColumn value for the special
  1559 ** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an
  1560 ** alias for ROWID.
  1561 **
  1562 ** Also resolve function names and check the functions for proper
  1563 ** usage.  Make sure all function names are recognized and all functions
  1564 ** have the correct number of arguments.  Leave an error message
  1565 ** in pParse->zErrMsg if anything is amiss.  Return the number of errors.
  1566 **
  1567 ** If the expression contains aggregate functions then set the EP_Agg
  1568 ** property on the expression.
  1569 */
  1570 int sqlite3ExprResolveNames( 
  1571   NameContext *pNC,       /* Namespace to resolve expressions in. */
  1572   Expr *pExpr             /* The expression to be analyzed. */
  1573 ){
  1574   int savedHasAgg;
  1575 
  1576   if( pExpr==0 ) return 0;
  1577 #if SQLITE_MAX_EXPR_DEPTH>0
  1578   {
  1579     if( checkExprHeight(pNC->pParse, pExpr->nHeight + pNC->pParse->nHeight) ){
  1580       return 1;
  1581     }
  1582     pNC->pParse->nHeight += pExpr->nHeight;
  1583   }
  1584 #endif
  1585   savedHasAgg = pNC->hasAgg;
  1586   pNC->hasAgg = 0;
  1587   walkExprTree(pExpr, nameResolverStep, pNC);
  1588 #if SQLITE_MAX_EXPR_DEPTH>0
  1589   pNC->pParse->nHeight -= pExpr->nHeight;
  1590 #endif
  1591   if( pNC->nErr>0 ){
  1592     ExprSetProperty(pExpr, EP_Error);
  1593   }
  1594   if( pNC->hasAgg ){
  1595     ExprSetProperty(pExpr, EP_Agg);
  1596   }else if( savedHasAgg ){
  1597     pNC->hasAgg = 1;
  1598   }
  1599   return ExprHasProperty(pExpr, EP_Error);
  1600 }
  1601 
  1602 /*
  1603 ** A pointer instance of this structure is used to pass information
  1604 ** through walkExprTree into codeSubqueryStep().
  1605 */
  1606 typedef struct QueryCoder QueryCoder;
  1607 struct QueryCoder {
  1608   Parse *pParse;       /* The parsing context */
  1609   NameContext *pNC;    /* Namespace of first enclosing query */
  1610 };
  1611 
  1612 #ifdef SQLITE_TEST
  1613   int sqlite3_enable_in_opt = 1;
  1614 #else
  1615   #define sqlite3_enable_in_opt 1
  1616 #endif
  1617 
  1618 /*
  1619 ** Return true if the IN operator optimization is enabled and
  1620 ** the SELECT statement p exists and is of the
  1621 ** simple form:
  1622 **
  1623 **     SELECT <column> FROM <table>
  1624 **
  1625 ** If this is the case, it may be possible to use an existing table
  1626 ** or index instead of generating an epheremal table.
  1627 */
  1628 #ifndef SQLITE_OMIT_SUBQUERY
  1629 static int isCandidateForInOpt(Select *p){
  1630   SrcList *pSrc;
  1631   ExprList *pEList;
  1632   Table *pTab;
  1633   if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */
  1634   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
  1635   if( p->pPrior ) return 0;              /* Not a compound SELECT */
  1636   if( p->isDistinct ) return 0;          /* No DISTINCT keyword */
  1637   if( p->isAgg ) return 0;               /* Contains no aggregate functions */
  1638   if( p->pGroupBy ) return 0;            /* Has no GROUP BY clause */
  1639   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
  1640   if( p->pOffset ) return 0;
  1641   if( p->pWhere ) return 0;              /* Has no WHERE clause */
  1642   pSrc = p->pSrc;
  1643   if( pSrc==0 ) return 0;                /* A single table in the FROM clause */
  1644   if( pSrc->nSrc!=1 ) return 0;
  1645   if( pSrc->a[0].pSelect ) return 0;     /* FROM clause is not a subquery */
  1646   pTab = pSrc->a[0].pTab;
  1647   if( pTab==0 ) return 0;
  1648   if( pTab->pSelect ) return 0;          /* FROM clause is not a view */
  1649   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
  1650   pEList = p->pEList;
  1651   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
  1652   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
  1653   return 1;
  1654 }
  1655 #endif /* SQLITE_OMIT_SUBQUERY */
  1656 
  1657 /*
  1658 ** This function is used by the implementation of the IN (...) operator.
  1659 ** It's job is to find or create a b-tree structure that may be used
  1660 ** either to test for membership of the (...) set or to iterate through
  1661 ** its members, skipping duplicates.
  1662 **
  1663 ** The cursor opened on the structure (database table, database index 
  1664 ** or ephermal table) is stored in pX->iTable before this function returns.
  1665 ** The returned value indicates the structure type, as follows:
  1666 **
  1667 **   IN_INDEX_ROWID - The cursor was opened on a database table.
  1668 **   IN_INDEX_INDEX - The cursor was opened on a database index.
  1669 **   IN_INDEX_EPH -   The cursor was opened on a specially created and
  1670 **                    populated epheremal table.
  1671 **
  1672 ** An existing structure may only be used if the SELECT is of the simple
  1673 ** form:
  1674 **
  1675 **     SELECT <column> FROM <table>
  1676 **
  1677 ** If prNotFound parameter is 0, then the structure will be used to iterate
  1678 ** through the set members, skipping any duplicates. In this case an
  1679 ** epheremal table must be used unless the selected <column> is guaranteed
  1680 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
  1681 ** is unique by virtue of a constraint or implicit index.
  1682 **
  1683 ** If the prNotFound parameter is not 0, then the structure will be used 
  1684 ** for fast set membership tests. In this case an epheremal table must 
  1685 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 
  1686 ** be found with <column> as its left-most column.
  1687 **
  1688 ** When the structure is being used for set membership tests, the user
  1689 ** needs to know whether or not the structure contains an SQL NULL 
  1690 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
  1691 ** If there is a chance that the structure may contain a NULL value at
  1692 ** runtime, then a register is allocated and the register number written
  1693 ** to *prNotFound. If there is no chance that the structure contains a
  1694 ** NULL value, then *prNotFound is left unchanged.
  1695 **
  1696 ** If a register is allocated and its location stored in *prNotFound, then
  1697 ** its initial value is NULL. If the structure does not remain constant
  1698 ** for the duration of the query (i.e. the set is a correlated sub-select), 
  1699 ** the value of the allocated register is reset to NULL each time the 
  1700 ** structure is repopulated. This allows the caller to use vdbe code 
  1701 ** equivalent to the following:
  1702 **
  1703 **   if( register==NULL ){
  1704 **     has_null = <test if data structure contains null>
  1705 **     register = 1
  1706 **   }
  1707 **
  1708 ** in order to avoid running the <test if data structure contains null>
  1709 ** test more often than is necessary.
  1710 */
  1711 #ifndef SQLITE_OMIT_SUBQUERY
  1712 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
  1713   Select *p;
  1714   int eType = 0;
  1715   int iTab = pParse->nTab++;
  1716   int mustBeUnique = !prNotFound;
  1717 
  1718   /* The follwing if(...) expression is true if the SELECT is of the 
  1719   ** simple form:
  1720   **
  1721   **     SELECT <column> FROM <table>
  1722   **
  1723   ** If this is the case, it may be possible to use an existing table
  1724   ** or index instead of generating an epheremal table.
  1725   */
  1726   p = pX->pSelect;
  1727   if( isCandidateForInOpt(p) ){
  1728     sqlite3 *db = pParse->db;
  1729     Index *pIdx;
  1730     Expr *pExpr = p->pEList->a[0].pExpr;
  1731     int iCol = pExpr->iColumn;
  1732     Vdbe *v = sqlite3GetVdbe(pParse);
  1733 
  1734     /* This function is only called from two places. In both cases the vdbe
  1735     ** has already been allocated. So assume sqlite3GetVdbe() is always
  1736     ** successful here.
  1737     */
  1738     assert(v);
  1739     if( iCol<0 ){
  1740       int iMem = ++pParse->nMem;
  1741       int iAddr;
  1742       Table *pTab = p->pSrc->a[0].pTab;
  1743       int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  1744       sqlite3VdbeUsesBtree(v, iDb);
  1745 
  1746       iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
  1747       sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
  1748 
  1749       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
  1750       eType = IN_INDEX_ROWID;
  1751 
  1752       sqlite3VdbeJumpHere(v, iAddr);
  1753     }else{
  1754       /* The collation sequence used by the comparison. If an index is to 
  1755       ** be used in place of a temp-table, it must be ordered according
  1756       ** to this collation sequence.
  1757       */
  1758       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
  1759 
  1760       /* Check that the affinity that will be used to perform the 
  1761       ** comparison is the same as the affinity of the column. If
  1762       ** it is not, it is not possible to use any index.
  1763       */
  1764       Table *pTab = p->pSrc->a[0].pTab;
  1765       char aff = comparisonAffinity(pX);
  1766       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
  1767 
  1768       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
  1769         if( (pIdx->aiColumn[0]==iCol)
  1770          && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
  1771          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
  1772         ){
  1773           int iDb;
  1774           int iMem = ++pParse->nMem;
  1775           int iAddr;
  1776           char *pKey;
  1777   
  1778           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
  1779           iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
  1780           sqlite3VdbeUsesBtree(v, iDb);
  1781 
  1782           iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
  1783           sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
  1784   
  1785           sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn);
  1786           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
  1787                                pKey,P4_KEYINFO_HANDOFF);
  1788           VdbeComment((v, "%s", pIdx->zName));
  1789           eType = IN_INDEX_INDEX;
  1790 
  1791           sqlite3VdbeJumpHere(v, iAddr);
  1792           if( prNotFound && !pTab->aCol[iCol].notNull ){
  1793             *prNotFound = ++pParse->nMem;
  1794           }
  1795         }
  1796       }
  1797     }
  1798   }
  1799 
  1800   if( eType==0 ){
  1801     int rMayHaveNull = 0;
  1802     if( prNotFound ){
  1803       *prNotFound = rMayHaveNull = ++pParse->nMem;
  1804     }
  1805     sqlite3CodeSubselect(pParse, pX, rMayHaveNull);
  1806     eType = IN_INDEX_EPH;
  1807   }else{
  1808     pX->iTable = iTab;
  1809   }
  1810   return eType;
  1811 }
  1812 #endif
  1813 
  1814 /*
  1815 ** Generate code for scalar subqueries used as an expression
  1816 ** and IN operators.  Examples:
  1817 **
  1818 **     (SELECT a FROM b)          -- subquery
  1819 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
  1820 **     x IN (4,5,11)              -- IN operator with list on right-hand side
  1821 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
  1822 **
  1823 ** The pExpr parameter describes the expression that contains the IN
  1824 ** operator or subquery.
  1825 */
  1826 #ifndef SQLITE_OMIT_SUBQUERY
  1827 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr, int rMayHaveNull){
  1828   int testAddr = 0;                       /* One-time test address */
  1829   Vdbe *v = sqlite3GetVdbe(pParse);
  1830   if( v==0 ) return;
  1831 
  1832 
  1833   /* This code must be run in its entirety every time it is encountered
  1834   ** if any of the following is true:
  1835   **
  1836   **    *  The right-hand side is a correlated subquery
  1837   **    *  The right-hand side is an expression list containing variables
  1838   **    *  We are inside a trigger
  1839   **
  1840   ** If all of the above are false, then we can run this code just once
  1841   ** save the results, and reuse the same result on subsequent invocations.
  1842   */
  1843   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
  1844     int mem = ++pParse->nMem;
  1845     sqlite3VdbeAddOp1(v, OP_If, mem);
  1846     testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
  1847     assert( testAddr>0 || pParse->db->mallocFailed );
  1848   }
  1849 
  1850   switch( pExpr->op ){
  1851     case TK_IN: {
  1852       char affinity;
  1853       KeyInfo keyInfo;
  1854       int addr;        /* Address of OP_OpenEphemeral instruction */
  1855 
  1856       if( rMayHaveNull ){
  1857         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
  1858       }
  1859 
  1860       affinity = sqlite3ExprAffinity(pExpr->pLeft);
  1861 
  1862       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
  1863       ** expression it is handled the same way. A virtual table is 
  1864       ** filled with single-field index keys representing the results
  1865       ** from the SELECT or the <exprlist>.
  1866       **
  1867       ** If the 'x' expression is a column value, or the SELECT...
  1868       ** statement returns a column value, then the affinity of that
  1869       ** column is used to build the index keys. If both 'x' and the
  1870       ** SELECT... statement are columns, then numeric affinity is used
  1871       ** if either column has NUMERIC or INTEGER affinity. If neither
  1872       ** 'x' nor the SELECT... statement are columns, then numeric affinity
  1873       ** is used.
  1874       */
  1875       pExpr->iTable = pParse->nTab++;
  1876       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, 1);
  1877       memset(&keyInfo, 0, sizeof(keyInfo));
  1878       keyInfo.nField = 1;
  1879 
  1880       if( pExpr->pSelect ){
  1881         /* Case 1:     expr IN (SELECT ...)
  1882         **
  1883         ** Generate code to write the results of the select into the temporary
  1884         ** table allocated and opened above.
  1885         */
  1886         SelectDest dest;
  1887         ExprList *pEList;
  1888 
  1889         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
  1890         dest.affinity = (int)affinity;
  1891         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
  1892         if( sqlite3Select(pParse, pExpr->pSelect, &dest, 0, 0, 0) ){
  1893           return;
  1894         }
  1895         pEList = pExpr->pSelect->pEList;
  1896         if( pEList && pEList->nExpr>0 ){ 
  1897           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
  1898               pEList->a[0].pExpr);
  1899         }
  1900       }else if( pExpr->pList ){
  1901         /* Case 2:     expr IN (exprlist)
  1902         **
  1903         ** For each expression, build an index key from the evaluation and
  1904         ** store it in the temporary table. If <expr> is a column, then use
  1905         ** that columns affinity when building index keys. If <expr> is not
  1906         ** a column, use numeric affinity.
  1907         */
  1908         int i;
  1909         ExprList *pList = pExpr->pList;
  1910         struct ExprList_item *pItem;
  1911         int r1, r2, r3;
  1912 
  1913         if( !affinity ){
  1914           affinity = SQLITE_AFF_NONE;
  1915         }
  1916         keyInfo.aColl[0] = pExpr->pLeft->pColl;
  1917 
  1918         /* Loop through each expression in <exprlist>. */
  1919         r1 = sqlite3GetTempReg(pParse);
  1920         r2 = sqlite3GetTempReg(pParse);
  1921         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
  1922           Expr *pE2 = pItem->pExpr;
  1923 
  1924           /* If the expression is not constant then we will need to
  1925           ** disable the test that was generated above that makes sure
  1926           ** this code only executes once.  Because for a non-constant
  1927           ** expression we need to rerun this code each time.
  1928           */
  1929           if( testAddr && !sqlite3ExprIsConstant(pE2) ){
  1930             sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
  1931             testAddr = 0;
  1932           }
  1933 
  1934           /* Evaluate the expression and insert it into the temp table */
  1935           pParse->disableColCache++;
  1936           r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
  1937           assert( pParse->disableColCache>0 );
  1938           pParse->disableColCache--;
  1939           sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
  1940           sqlite3ExprCacheAffinityChange(pParse, r3, 1);
  1941           sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
  1942         }
  1943         sqlite3ReleaseTempReg(pParse, r1);
  1944         sqlite3ReleaseTempReg(pParse, r2);
  1945       }
  1946       sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
  1947       break;
  1948     }
  1949 
  1950     case TK_EXISTS:
  1951     case TK_SELECT: {
  1952       /* This has to be a scalar SELECT.  Generate code to put the
  1953       ** value of this select in a memory cell and record the number
  1954       ** of the memory cell in iColumn.
  1955       */
  1956       static const Token one = { (u8*)"1", 0, 1 };
  1957       Select *pSel;
  1958       SelectDest dest;
  1959 
  1960       pSel = pExpr->pSelect;
  1961       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
  1962       if( pExpr->op==TK_SELECT ){
  1963         dest.eDest = SRT_Mem;
  1964         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
  1965         VdbeComment((v, "Init subquery result"));
  1966       }else{
  1967         dest.eDest = SRT_Exists;
  1968         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
  1969         VdbeComment((v, "Init EXISTS result"));
  1970       }
  1971       sqlite3ExprDelete(pParse->db, pSel->pLimit);
  1972       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
  1973       if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0) ){
  1974         return;
  1975       }
  1976       pExpr->iColumn = dest.iParm;
  1977       break;
  1978     }
  1979   }
  1980 
  1981   if( testAddr ){
  1982     sqlite3VdbeJumpHere(v, testAddr-1);
  1983   }
  1984 
  1985   return;
  1986 }
  1987 #endif /* SQLITE_OMIT_SUBQUERY */
  1988 
  1989 /*
  1990 ** Duplicate an 8-byte value
  1991 */
  1992 static char *dup8bytes(Vdbe *v, const char *in){
  1993   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
  1994   if( out ){
  1995     memcpy(out, in, 8);
  1996   }
  1997   return out;
  1998 }
  1999 
  2000 /*
  2001 ** Generate an instruction that will put the floating point
  2002 ** value described by z[0..n-1] into register iMem.
  2003 **
  2004 ** The z[] string will probably not be zero-terminated.  But the 
  2005 ** z[n] character is guaranteed to be something that does not look
  2006 ** like the continuation of the number.
  2007 */
  2008 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){
  2009   assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
  2010   if( z ){
  2011     double value;
  2012     char *zV;
  2013     assert( !isdigit(z[n]) );
  2014     sqlite3AtoF(z, &value);
  2015     if( sqlite3IsNaN(value) ){
  2016       sqlite3VdbeAddOp2(v, OP_Null, 0, iMem);
  2017     }else{
  2018       if( negateFlag ) value = -value;
  2019       zV = dup8bytes(v, (char*)&value);
  2020       sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
  2021     }
  2022   }
  2023 }
  2024 
  2025 
  2026 /*
  2027 ** Generate an instruction that will put the integer describe by
  2028 ** text z[0..n-1] into register iMem.
  2029 **
  2030 ** The z[] string will probably not be zero-terminated.  But the 
  2031 ** z[n] character is guaranteed to be something that does not look
  2032 ** like the continuation of the number.
  2033 */
  2034 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
  2035   const char *z;
  2036   if( pExpr->flags & EP_IntValue ){
  2037     int i = pExpr->iTable;
  2038     if( negFlag ) i = -i;
  2039     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
  2040   }else if( (z = (char*)pExpr->token.z)!=0 ){
  2041     int i;
  2042     int n = pExpr->token.n;
  2043     assert( !isdigit(z[n]) );
  2044     if( sqlite3GetInt32(z, &i) ){
  2045       if( negFlag ) i = -i;
  2046       sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
  2047     }else if( sqlite3FitsIn64Bits(z, negFlag) ){
  2048       i64 value;
  2049       char *zV;
  2050       sqlite3Atoi64(z, &value);
  2051       if( negFlag ) value = -value;
  2052       zV = dup8bytes(v, (char*)&value);
  2053       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
  2054     }else{
  2055       codeReal(v, z, n, negFlag, iMem);
  2056     }
  2057   }
  2058 }
  2059 
  2060 
  2061 /*
  2062 ** Generate code that will extract the iColumn-th column from
  2063 ** table pTab and store the column value in a register.  An effort
  2064 ** is made to store the column value in register iReg, but this is
  2065 ** not guaranteed.  The location of the column value is returned.
  2066 **
  2067 ** There must be an open cursor to pTab in iTable when this routine
  2068 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
  2069 **
  2070 ** This routine might attempt to reuse the value of the column that
  2071 ** has already been loaded into a register.  The value will always
  2072 ** be used if it has not undergone any affinity changes.  But if
  2073 ** an affinity change has occurred, then the cached value will only be
  2074 ** used if allowAffChng is true.
  2075 */
  2076 int sqlite3ExprCodeGetColumn(
  2077   Parse *pParse,   /* Parsing and code generating context */
  2078   Table *pTab,     /* Description of the table we are reading from */
  2079   int iColumn,     /* Index of the table column */
  2080   int iTable,      /* The cursor pointing to the table */
  2081   int iReg,        /* Store results here */
  2082   int allowAffChng /* True if prior affinity changes are OK */
  2083 ){
  2084   Vdbe *v = pParse->pVdbe;
  2085   int i;
  2086   struct yColCache *p;
  2087 
  2088   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
  2089     if( p->iTable==iTable && p->iColumn==iColumn
  2090            && (!p->affChange || allowAffChng) ){
  2091 #if 0
  2092       sqlite3VdbeAddOp0(v, OP_Noop);
  2093       VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg));
  2094 #endif
  2095       return p->iReg;
  2096     }
  2097   }  
  2098   assert( v!=0 );
  2099   if( iColumn<0 ){
  2100     int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
  2101     sqlite3VdbeAddOp2(v, op, iTable, iReg);
  2102   }else if( pTab==0 ){
  2103     sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg);
  2104   }else{
  2105     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
  2106     sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
  2107     sqlite3ColumnDefault(v, pTab, iColumn);
  2108 #ifndef SQLITE_OMIT_FLOATING_POINT
  2109     if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
  2110       sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
  2111     }
  2112 #endif
  2113   }
  2114   if( pParse->disableColCache==0 ){
  2115     i = pParse->iColCache;
  2116     p = &pParse->aColCache[i];
  2117     p->iTable = iTable;
  2118     p->iColumn = iColumn;
  2119     p->iReg = iReg;
  2120     p->affChange = 0;
  2121     i++;
  2122     if( i>=ArraySize(pParse->aColCache) ) i = 0;
  2123     if( i>pParse->nColCache ) pParse->nColCache = i;
  2124     pParse->iColCache = i;
  2125   }
  2126   return iReg;
  2127 }
  2128 
  2129 /*
  2130 ** Clear all column cache entries associated with the vdbe
  2131 ** cursor with cursor number iTable.
  2132 */
  2133 void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){
  2134   if( iTable<0 ){
  2135     pParse->nColCache = 0;
  2136     pParse->iColCache = 0;
  2137   }else{
  2138     int i;
  2139     for(i=0; i<pParse->nColCache; i++){
  2140       if( pParse->aColCache[i].iTable==iTable ){
  2141         testcase( i==pParse->nColCache-1 );
  2142         pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
  2143         pParse->iColCache = pParse->nColCache;
  2144       }
  2145     }
  2146   }
  2147 }
  2148 
  2149 /*
  2150 ** Record the fact that an affinity change has occurred on iCount
  2151 ** registers starting with iStart.
  2152 */
  2153 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
  2154   int iEnd = iStart + iCount - 1;
  2155   int i;
  2156   for(i=0; i<pParse->nColCache; i++){
  2157     int r = pParse->aColCache[i].iReg;
  2158     if( r>=iStart && r<=iEnd ){
  2159       pParse->aColCache[i].affChange = 1;
  2160     }
  2161   }
  2162 }
  2163 
  2164 /*
  2165 ** Generate code to move content from registers iFrom...iFrom+nReg-1
  2166 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
  2167 */
  2168 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
  2169   int i;
  2170   if( iFrom==iTo ) return;
  2171   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
  2172   for(i=0; i<pParse->nColCache; i++){
  2173     int x = pParse->aColCache[i].iReg;
  2174     if( x>=iFrom && x<iFrom+nReg ){
  2175       pParse->aColCache[i].iReg += iTo-iFrom;
  2176     }
  2177   }
  2178 }
  2179 
  2180 /*
  2181 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
  2182 ** over to iTo..iTo+nReg-1.
  2183 */
  2184 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
  2185   int i;
  2186   if( iFrom==iTo ) return;
  2187   for(i=0; i<nReg; i++){
  2188     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
  2189   }
  2190 }
  2191 
  2192 /*
  2193 ** Return true if any register in the range iFrom..iTo (inclusive)
  2194 ** is used as part of the column cache.
  2195 */
  2196 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
  2197   int i;
  2198   for(i=0; i<pParse->nColCache; i++){
  2199     int r = pParse->aColCache[i].iReg;
  2200     if( r>=iFrom && r<=iTo ) return 1;
  2201   }
  2202   return 0;
  2203 }
  2204 
  2205 /*
  2206 ** Theres is a value in register iCurrent.  We ultimately want
  2207 ** the value to be in register iTarget.  It might be that
  2208 ** iCurrent and iTarget are the same register.
  2209 **
  2210 ** We are going to modify the value, so we need to make sure it
  2211 ** is not a cached register.  If iCurrent is a cached register,
  2212 ** then try to move the value over to iTarget.  If iTarget is a
  2213 ** cached register, then clear the corresponding cache line.
  2214 **
  2215 ** Return the register that the value ends up in.
  2216 */
  2217 int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){
  2218   int i;
  2219   assert( pParse->pVdbe!=0 );
  2220   if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){
  2221     return iCurrent;
  2222   }
  2223   if( iCurrent!=iTarget ){
  2224     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget);
  2225   }
  2226   for(i=0; i<pParse->nColCache; i++){
  2227     if( pParse->aColCache[i].iReg==iTarget ){
  2228       pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
  2229       pParse->iColCache = pParse->nColCache;
  2230     }
  2231   }
  2232   return iTarget;
  2233 }
  2234 
  2235 /*
  2236 ** If the last instruction coded is an ephemeral copy of any of
  2237 ** the registers in the nReg registers beginning with iReg, then
  2238 ** convert the last instruction from OP_SCopy to OP_Copy.
  2239 */
  2240 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
  2241   int addr;
  2242   VdbeOp *pOp;
  2243   Vdbe *v;
  2244 
  2245   v = pParse->pVdbe;
  2246   addr = sqlite3VdbeCurrentAddr(v);
  2247   pOp = sqlite3VdbeGetOp(v, addr-1);
  2248   assert( pOp || pParse->db->mallocFailed );
  2249   if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
  2250     pOp->opcode = OP_Copy;
  2251   }
  2252 }
  2253 
  2254 /*
  2255 ** Generate code into the current Vdbe to evaluate the given
  2256 ** expression.  Attempt to store the results in register "target".
  2257 ** Return the register where results are stored.
  2258 **
  2259 ** With this routine, there is no guaranteed that results will
  2260 ** be stored in target.  The result might be stored in some other
  2261 ** register if it is convenient to do so.  The calling function
  2262 ** must check the return code and move the results to the desired
  2263 ** register.
  2264 */
  2265 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
  2266   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
  2267   int op;                   /* The opcode being coded */
  2268   int inReg = target;       /* Results stored in register inReg */
  2269   int regFree1 = 0;         /* If non-zero free this temporary register */
  2270   int regFree2 = 0;         /* If non-zero free this temporary register */
  2271   int r1, r2, r3, r4;       /* Various register numbers */
  2272 
  2273   assert( v!=0 || pParse->db->mallocFailed );
  2274   assert( target>0 && target<=pParse->nMem );
  2275   if( v==0 ) return 0;
  2276 
  2277   if( pExpr==0 ){
  2278     op = TK_NULL;
  2279   }else{
  2280     op = pExpr->op;
  2281   }
  2282   switch( op ){
  2283     case TK_AGG_COLUMN: {
  2284       AggInfo *pAggInfo = pExpr->pAggInfo;
  2285       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
  2286       if( !pAggInfo->directMode ){
  2287         assert( pCol->iMem>0 );
  2288         inReg = pCol->iMem;
  2289         break;
  2290       }else if( pAggInfo->useSortingIdx ){
  2291         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
  2292                               pCol->iSorterColumn, target);
  2293         break;
  2294       }
  2295       /* Otherwise, fall thru into the TK_COLUMN case */
  2296     }
  2297     case TK_COLUMN: {
  2298       if( pExpr->iTable<0 ){
  2299         /* This only happens when coding check constraints */
  2300         assert( pParse->ckBase>0 );
  2301         inReg = pExpr->iColumn + pParse->ckBase;
  2302       }else{
  2303         testcase( (pExpr->flags & EP_AnyAff)!=0 );
  2304         inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
  2305                                  pExpr->iColumn, pExpr->iTable, target,
  2306                                  pExpr->flags & EP_AnyAff);
  2307       }
  2308       break;
  2309     }
  2310     case TK_INTEGER: {
  2311       codeInteger(v, pExpr, 0, target);
  2312       break;
  2313     }
  2314     case TK_FLOAT: {
  2315       codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
  2316       break;
  2317     }
  2318     case TK_STRING: {
  2319       sqlite3DequoteExpr(pParse->db, pExpr);
  2320       sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0,
  2321                         (char*)pExpr->token.z, pExpr->token.n);
  2322       break;
  2323     }
  2324     case TK_NULL: {
  2325       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
  2326       break;
  2327     }
  2328 #ifndef SQLITE_OMIT_BLOB_LITERAL
  2329     case TK_BLOB: {
  2330       int n;
  2331       const char *z;
  2332       char *zBlob;
  2333       assert( pExpr->token.n>=3 );
  2334       assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
  2335       assert( pExpr->token.z[1]=='\'' );
  2336       assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
  2337       n = pExpr->token.n - 3;
  2338       z = (char*)pExpr->token.z + 2;
  2339       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
  2340       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
  2341       break;
  2342     }
  2343 #endif
  2344     case TK_VARIABLE: {
  2345       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target);
  2346       if( pExpr->token.n>1 ){
  2347         sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n);
  2348       }
  2349       break;
  2350     }
  2351     case TK_REGISTER: {
  2352       inReg = pExpr->iTable;
  2353       break;
  2354     }
  2355 #ifndef SQLITE_OMIT_CAST
  2356     case TK_CAST: {
  2357       /* Expressions of the form:   CAST(pLeft AS token) */
  2358       int aff, to_op;
  2359       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
  2360       aff = sqlite3AffinityType(&pExpr->token);
  2361       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
  2362       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
  2363       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
  2364       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
  2365       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
  2366       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
  2367       testcase( to_op==OP_ToText );
  2368       testcase( to_op==OP_ToBlob );
  2369       testcase( to_op==OP_ToNumeric );
  2370       testcase( to_op==OP_ToInt );
  2371       testcase( to_op==OP_ToReal );
  2372       sqlite3VdbeAddOp1(v, to_op, inReg);
  2373       testcase( usedAsColumnCache(pParse, inReg, inReg) );
  2374       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
  2375       break;
  2376     }
  2377 #endif /* SQLITE_OMIT_CAST */
  2378     case TK_LT:
  2379     case TK_LE:
  2380     case TK_GT:
  2381     case TK_GE:
  2382     case TK_NE:
  2383     case TK_EQ: {
  2384       assert( TK_LT==OP_Lt );
  2385       assert( TK_LE==OP_Le );
  2386       assert( TK_GT==OP_Gt );
  2387       assert( TK_GE==OP_Ge );
  2388       assert( TK_EQ==OP_Eq );
  2389       assert( TK_NE==OP_Ne );
  2390       testcase( op==TK_LT );
  2391       testcase( op==TK_LE );
  2392       testcase( op==TK_GT );
  2393       testcase( op==TK_GE );
  2394       testcase( op==TK_EQ );
  2395       testcase( op==TK_NE );
  2396       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
  2397                                   pExpr->pRight, &r2, &regFree2);
  2398       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
  2399                   r1, r2, inReg, SQLITE_STOREP2);
  2400       testcase( regFree1==0 );
  2401       testcase( regFree2==0 );
  2402       break;
  2403     }
  2404     case TK_AND:
  2405     case TK_OR:
  2406     case TK_PLUS:
  2407     case TK_STAR:
  2408     case TK_MINUS:
  2409     case TK_REM:
  2410     case TK_BITAND:
  2411     case TK_BITOR:
  2412     case TK_SLASH:
  2413     case TK_LSHIFT:
  2414     case TK_RSHIFT: 
  2415     case TK_CONCAT: {
  2416       assert( TK_AND==OP_And );
  2417       assert( TK_OR==OP_Or );
  2418       assert( TK_PLUS==OP_Add );
  2419       assert( TK_MINUS==OP_Subtract );
  2420       assert( TK_REM==OP_Remainder );
  2421       assert( TK_BITAND==OP_BitAnd );
  2422       assert( TK_BITOR==OP_BitOr );
  2423       assert( TK_SLASH==OP_Divide );
  2424       assert( TK_LSHIFT==OP_ShiftLeft );
  2425       assert( TK_RSHIFT==OP_ShiftRight );
  2426       assert( TK_CONCAT==OP_Concat );
  2427       testcase( op==TK_AND );
  2428       testcase( op==TK_OR );
  2429       testcase( op==TK_PLUS );
  2430       testcase( op==TK_MINUS );
  2431       testcase( op==TK_REM );
  2432       testcase( op==TK_BITAND );
  2433       testcase( op==TK_BITOR );
  2434       testcase( op==TK_SLASH );
  2435       testcase( op==TK_LSHIFT );
  2436       testcase( op==TK_RSHIFT );
  2437       testcase( op==TK_CONCAT );
  2438       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
  2439       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
  2440       sqlite3VdbeAddOp3(v, op, r2, r1, target);
  2441       testcase( regFree1==0 );
  2442       testcase( regFree2==0 );
  2443       break;
  2444     }
  2445     case TK_UMINUS: {
  2446       Expr *pLeft = pExpr->pLeft;
  2447       assert( pLeft );
  2448       if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
  2449         if( pLeft->op==TK_FLOAT ){
  2450           codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target);
  2451         }else{
  2452           codeInteger(v, pLeft, 1, target);
  2453         }
  2454       }else{
  2455         regFree1 = r1 = sqlite3GetTempReg(pParse);
  2456         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
  2457         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
  2458         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
  2459         testcase( regFree2==0 );
  2460       }
  2461       inReg = target;
  2462       break;
  2463     }
  2464     case TK_BITNOT:
  2465     case TK_NOT: {
  2466       assert( TK_BITNOT==OP_BitNot );
  2467       assert( TK_NOT==OP_Not );
  2468       testcase( op==TK_BITNOT );
  2469       testcase( op==TK_NOT );
  2470       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
  2471       testcase( inReg==target );
  2472       testcase( usedAsColumnCache(pParse, inReg, inReg) );
  2473       inReg = sqlite3ExprWritableRegister(pParse, inReg, target);
  2474       sqlite3VdbeAddOp1(v, op, inReg);
  2475       break;
  2476     }
  2477     case TK_ISNULL:
  2478     case TK_NOTNULL: {
  2479       int addr;
  2480       assert( TK_ISNULL==OP_IsNull );
  2481       assert( TK_NOTNULL==OP_NotNull );
  2482       testcase( op==TK_ISNULL );
  2483       testcase( op==TK_NOTNULL );
  2484       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
  2485       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
  2486       testcase( regFree1==0 );
  2487       addr = sqlite3VdbeAddOp1(v, op, r1);
  2488       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
  2489       sqlite3VdbeJumpHere(v, addr);
  2490       break;
  2491     }
  2492     case TK_AGG_FUNCTION: {
  2493       AggInfo *pInfo = pExpr->pAggInfo;
  2494       if( pInfo==0 ){
  2495         sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
  2496             &pExpr->span);
  2497       }else{
  2498         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
  2499       }
  2500       break;
  2501     }
  2502     case TK_CONST_FUNC:
  2503     case TK_FUNCTION: {
  2504       ExprList *pList = pExpr->pList;
  2505       int nExpr = pList ? pList->nExpr : 0;
  2506       FuncDef *pDef;
  2507       int nId;
  2508       const char *zId;
  2509       int constMask = 0;
  2510       int i;
  2511       sqlite3 *db = pParse->db;
  2512       u8 enc = ENC(db);
  2513       CollSeq *pColl = 0;
  2514 
  2515       testcase( op==TK_CONST_FUNC );
  2516       testcase( op==TK_FUNCTION );
  2517       zId = (char*)pExpr->token.z;
  2518       nId = pExpr->token.n;
  2519       pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
  2520       assert( pDef!=0 );
  2521       if( pList ){
  2522         nExpr = pList->nExpr;
  2523         r1 = sqlite3GetTempRange(pParse, nExpr);
  2524         sqlite3ExprCodeExprList(pParse, pList, r1, 1);
  2525       }else{
  2526         nExpr = r1 = 0;
  2527       }
  2528 #ifndef SQLITE_OMIT_VIRTUALTABLE
  2529       /* Possibly overload the function if the first argument is
  2530       ** a virtual table column.
  2531       **
  2532       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
  2533       ** second argument, not the first, as the argument to test to
  2534       ** see if it is a column in a virtual table.  This is done because
  2535       ** the left operand of infix functions (the operand we want to
  2536       ** control overloading) ends up as the second argument to the
  2537       ** function.  The expression "A glob B" is equivalent to 
  2538       ** "glob(B,A).  We want to use the A in "A glob B" to test
  2539       ** for function overloading.  But we use the B term in "glob(B,A)".
  2540       */
  2541       if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
  2542         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
  2543       }else if( nExpr>0 ){
  2544         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
  2545       }
  2546 #endif
  2547       for(i=0; i<nExpr && i<32; i++){
  2548         if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
  2549           constMask |= (1<<i);
  2550         }
  2551         if( pDef->needCollSeq && !pColl ){
  2552           pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
  2553         }
  2554       }
  2555       if( pDef->needCollSeq ){
  2556         if( !pColl ) pColl = pParse->db->pDfltColl; 
  2557         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
  2558       }
  2559       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
  2560                         (char*)pDef, P4_FUNCDEF);
  2561       sqlite3VdbeChangeP5(v, nExpr);
  2562       if( nExpr ){
  2563         sqlite3ReleaseTempRange(pParse, r1, nExpr);
  2564       }
  2565       sqlite3ExprCacheAffinityChange(pParse, r1, nExpr);
  2566       break;
  2567     }
  2568 #ifndef SQLITE_OMIT_SUBQUERY
  2569     case TK_EXISTS:
  2570     case TK_SELECT: {
  2571       testcase( op==TK_EXISTS );
  2572       testcase( op==TK_SELECT );
  2573       if( pExpr->iColumn==0 ){
  2574         sqlite3CodeSubselect(pParse, pExpr, 0);
  2575       }
  2576       inReg = pExpr->iColumn;
  2577       break;
  2578     }
  2579     case TK_IN: {
  2580       int rNotFound = 0;
  2581       int rMayHaveNull = 0;
  2582       int j2, j3, j4, j5;
  2583       char affinity;
  2584       int eType;
  2585 
  2586       VdbeNoopComment((v, "begin IN expr r%d", target));
  2587       eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull);
  2588       if( rMayHaveNull ){
  2589         rNotFound = ++pParse->nMem;
  2590       }
  2591 
  2592       /* Figure out the affinity to use to create a key from the results
  2593       ** of the expression. affinityStr stores a static string suitable for
  2594       ** P4 of OP_MakeRecord.
  2595       */
  2596       affinity = comparisonAffinity(pExpr);
  2597 
  2598 
  2599       /* Code the <expr> from "<expr> IN (...)". The temporary table
  2600       ** pExpr->iTable contains the values that make up the (...) set.
  2601       */
  2602       pParse->disableColCache++;
  2603       sqlite3ExprCode(pParse, pExpr->pLeft, target);
  2604       pParse->disableColCache--;
  2605       j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target);
  2606       if( eType==IN_INDEX_ROWID ){
  2607         j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target);
  2608         j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target);
  2609         sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
  2610         j5 = sqlite3VdbeAddOp0(v, OP_Goto);
  2611         sqlite3VdbeJumpHere(v, j3);
  2612         sqlite3VdbeJumpHere(v, j4);
  2613         sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
  2614       }else{
  2615         r2 = regFree2 = sqlite3GetTempReg(pParse);
  2616 
  2617         /* Create a record and test for set membership. If the set contains
  2618         ** the value, then jump to the end of the test code. The target
  2619         ** register still contains the true (1) value written to it earlier.
  2620         */
  2621         sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1);
  2622         sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
  2623         j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
  2624 
  2625         /* If the set membership test fails, then the result of the 
  2626         ** "x IN (...)" expression must be either 0 or NULL. If the set
  2627         ** contains no NULL values, then the result is 0. If the set 
  2628         ** contains one or more NULL values, then the result of the
  2629         ** expression is also NULL.
  2630         */
  2631         if( rNotFound==0 ){
  2632           /* This branch runs if it is known at compile time (now) that 
  2633           ** the set contains no NULL values. This happens as the result
  2634           ** of a "NOT NULL" constraint in the database schema. No need
  2635           ** to test the data structure at runtime in this case.
  2636           */
  2637           sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
  2638         }else{
  2639           /* This block populates the rNotFound register with either NULL
  2640           ** or 0 (an integer value). If the data structure contains one
  2641           ** or more NULLs, then set rNotFound to NULL. Otherwise, set it
  2642           ** to 0. If register rMayHaveNull is already set to some value
  2643           ** other than NULL, then the test has already been run and 
  2644           ** rNotFound is already populated.
  2645           */
  2646           static const char nullRecord[] = { 0x02, 0x00 };
  2647           j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull);
  2648           sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound);
  2649           sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0, 
  2650                              nullRecord, P4_STATIC);
  2651           j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull);
  2652           sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound);
  2653           sqlite3VdbeJumpHere(v, j4);
  2654           sqlite3VdbeJumpHere(v, j3);
  2655 
  2656           /* Copy the value of register rNotFound (which is either NULL or 0)
  2657 	  ** into the target register. This will be the result of the
  2658           ** expression.
  2659           */
  2660           sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target);
  2661         }
  2662       }
  2663       sqlite3VdbeJumpHere(v, j2);
  2664       sqlite3VdbeJumpHere(v, j5);
  2665       VdbeComment((v, "end IN expr r%d", target));
  2666       break;
  2667     }
  2668 #endif
  2669     /*
  2670     **    x BETWEEN y AND z
  2671     **
  2672     ** This is equivalent to
  2673     **
  2674     **    x>=y AND x<=z
  2675     **
  2676     ** X is stored in pExpr->pLeft.
  2677     ** Y is stored in pExpr->pList->a[0].pExpr.
  2678     ** Z is stored in pExpr->pList->a[1].pExpr.
  2679     */
  2680     case TK_BETWEEN: {
  2681       Expr *pLeft = pExpr->pLeft;
  2682       struct ExprList_item *pLItem = pExpr->pList->a;
  2683       Expr *pRight = pLItem->pExpr;
  2684 
  2685       codeCompareOperands(pParse, pLeft, &r1, &regFree1,
  2686                                   pRight, &r2, &regFree2);
  2687       testcase( regFree1==0 );
  2688       testcase( regFree2==0 );
  2689       r3 = sqlite3GetTempReg(pParse);
  2690       r4 = sqlite3GetTempReg(pParse);
  2691       codeCompare(pParse, pLeft, pRight, OP_Ge,
  2692                   r1, r2, r3, SQLITE_STOREP2);
  2693       pLItem++;
  2694       pRight = pLItem->pExpr;
  2695       sqlite3ReleaseTempReg(pParse, regFree2);
  2696       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
  2697       testcase( regFree2==0 );
  2698       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
  2699       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
  2700       sqlite3ReleaseTempReg(pParse, r3);
  2701       sqlite3ReleaseTempReg(pParse, r4);
  2702       break;
  2703     }
  2704     case TK_UPLUS: {
  2705       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
  2706       break;
  2707     }
  2708 
  2709     /*
  2710     ** Form A:
  2711     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
  2712     **
  2713     ** Form B:
  2714     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
  2715     **
  2716     ** Form A is can be transformed into the equivalent form B as follows:
  2717     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
  2718     **        WHEN x=eN THEN rN ELSE y END
  2719     **
  2720     ** X (if it exists) is in pExpr->pLeft.
  2721     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
  2722     ** ELSE clause and no other term matches, then the result of the
  2723     ** exprssion is NULL.
  2724     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
  2725     **
  2726     ** The result of the expression is the Ri for the first matching Ei,
  2727     ** or if there is no matching Ei, the ELSE term Y, or if there is
  2728     ** no ELSE term, NULL.
  2729     */
  2730     case TK_CASE: {
  2731       int endLabel;                     /* GOTO label for end of CASE stmt */
  2732       int nextCase;                     /* GOTO label for next WHEN clause */
  2733       int nExpr;                        /* 2x number of WHEN terms */
  2734       int i;                            /* Loop counter */
  2735       ExprList *pEList;                 /* List of WHEN terms */
  2736       struct ExprList_item *aListelem;  /* Array of WHEN terms */
  2737       Expr opCompare;                   /* The X==Ei expression */
  2738       Expr cacheX;                      /* Cached expression X */
  2739       Expr *pX;                         /* The X expression */
  2740       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
  2741 
  2742       assert(pExpr->pList);
  2743       assert((pExpr->pList->nExpr % 2) == 0);
  2744       assert(pExpr->pList->nExpr > 0);
  2745       pEList = pExpr->pList;
  2746       aListelem = pEList->a;
  2747       nExpr = pEList->nExpr;
  2748       endLabel = sqlite3VdbeMakeLabel(v);
  2749       if( (pX = pExpr->pLeft)!=0 ){
  2750         cacheX = *pX;
  2751         testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER );
  2752         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
  2753         testcase( regFree1==0 );
  2754         cacheX.op = TK_REGISTER;
  2755         cacheX.iColumn = 0;
  2756         opCompare.op = TK_EQ;
  2757         opCompare.pLeft = &cacheX;
  2758         pTest = &opCompare;
  2759       }
  2760       pParse->disableColCache++;
  2761       for(i=0; i<nExpr; i=i+2){
  2762         if( pX ){
  2763           opCompare.pRight = aListelem[i].pExpr;
  2764         }else{
  2765           pTest = aListelem[i].pExpr;
  2766         }
  2767         nextCase = sqlite3VdbeMakeLabel(v);
  2768         testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER );
  2769         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
  2770         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
  2771         testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
  2772         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
  2773         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
  2774         sqlite3VdbeResolveLabel(v, nextCase);
  2775       }
  2776       if( pExpr->pRight ){
  2777         sqlite3ExprCode(pParse, pExpr->pRight, target);
  2778       }else{
  2779         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
  2780       }
  2781       sqlite3VdbeResolveLabel(v, endLabel);
  2782       assert( pParse->disableColCache>0 );
  2783       pParse->disableColCache--;
  2784       break;
  2785     }
  2786 #ifndef SQLITE_OMIT_TRIGGER
  2787     case TK_RAISE: {
  2788       if( !pParse->trigStack ){
  2789         sqlite3ErrorMsg(pParse,
  2790                        "RAISE() may only be used within a trigger-program");
  2791         return 0;
  2792       }
  2793       if( pExpr->iColumn!=OE_Ignore ){
  2794          assert( pExpr->iColumn==OE_Rollback ||
  2795                  pExpr->iColumn == OE_Abort ||
  2796                  pExpr->iColumn == OE_Fail );
  2797          sqlite3DequoteExpr(pParse->db, pExpr);
  2798          sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0,
  2799                         (char*)pExpr->token.z, pExpr->token.n);
  2800       } else {
  2801          assert( pExpr->iColumn == OE_Ignore );
  2802          sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
  2803          sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
  2804          VdbeComment((v, "raise(IGNORE)"));
  2805       }
  2806       break;
  2807     }
  2808 #endif
  2809   }
  2810   sqlite3ReleaseTempReg(pParse, regFree1);
  2811   sqlite3ReleaseTempReg(pParse, regFree2);
  2812   return inReg;
  2813 }
  2814 
  2815 /*
  2816 ** Generate code to evaluate an expression and store the results
  2817 ** into a register.  Return the register number where the results
  2818 ** are stored.
  2819 **
  2820 ** If the register is a temporary register that can be deallocated,
  2821 ** then write its number into *pReg.  If the result register is not
  2822 ** a temporary, then set *pReg to zero.
  2823 */
  2824 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
  2825   int r1 = sqlite3GetTempReg(pParse);
  2826   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
  2827   if( r2==r1 ){
  2828     *pReg = r1;
  2829   }else{
  2830     sqlite3ReleaseTempReg(pParse, r1);
  2831     *pReg = 0;
  2832   }
  2833   return r2;
  2834 }
  2835 
  2836 /*
  2837 ** Generate code that will evaluate expression pExpr and store the
  2838 ** results in register target.  The results are guaranteed to appear
  2839 ** in register target.
  2840 */
  2841 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
  2842   int inReg;
  2843 
  2844   assert( target>0 && target<=pParse->nMem );
  2845   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
  2846   assert( pParse->pVdbe || pParse->db->mallocFailed );
  2847   if( inReg!=target && pParse->pVdbe ){
  2848     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
  2849   }
  2850   return target;
  2851 }
  2852 
  2853 /*
  2854 ** Generate code that evalutes the given expression and puts the result
  2855 ** in register target.
  2856 **
  2857 ** Also make a copy of the expression results into another "cache" register
  2858 ** and modify the expression so that the next time it is evaluated,
  2859 ** the result is a copy of the cache register.
  2860 **
  2861 ** This routine is used for expressions that are used multiple 
  2862 ** times.  They are evaluated once and the results of the expression
  2863 ** are reused.
  2864 */
  2865 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
  2866   Vdbe *v = pParse->pVdbe;
  2867   int inReg;
  2868   inReg = sqlite3ExprCode(pParse, pExpr, target);
  2869   assert( target>0 );
  2870   if( pExpr->op!=TK_REGISTER ){  
  2871     int iMem;
  2872     iMem = ++pParse->nMem;
  2873     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
  2874     pExpr->iTable = iMem;
  2875     pExpr->iColumn = pExpr->op;
  2876     pExpr->op = TK_REGISTER;
  2877   }
  2878   return inReg;
  2879 }
  2880 
  2881 /*
  2882 ** Return TRUE if pExpr is an constant expression that is appropriate
  2883 ** for factoring out of a loop.  Appropriate expressions are:
  2884 **
  2885 **    *  Any expression that evaluates to two or more opcodes.
  2886 **
  2887 **    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 
  2888 **       or OP_Variable that does not need to be placed in a 
  2889 **       specific register.
  2890 **
  2891 ** There is no point in factoring out single-instruction constant
  2892 ** expressions that need to be placed in a particular register.  
  2893 ** We could factor them out, but then we would end up adding an
  2894 ** OP_SCopy instruction to move the value into the correct register
  2895 ** later.  We might as well just use the original instruction and
  2896 ** avoid the OP_SCopy.
  2897 */
  2898 static int isAppropriateForFactoring(Expr *p){
  2899   if( !sqlite3ExprIsConstantNotJoin(p) ){
  2900     return 0;  /* Only constant expressions are appropriate for factoring */
  2901   }
  2902   if( (p->flags & EP_FixedDest)==0 ){
  2903     return 1;  /* Any constant without a fixed destination is appropriate */
  2904   }
  2905   while( p->op==TK_UPLUS ) p = p->pLeft;
  2906   switch( p->op ){
  2907 #ifndef SQLITE_OMIT_BLOB_LITERAL
  2908     case TK_BLOB:
  2909 #endif
  2910     case TK_VARIABLE:
  2911     case TK_INTEGER:
  2912     case TK_FLOAT:
  2913     case TK_NULL:
  2914     case TK_STRING: {
  2915       testcase( p->op==TK_BLOB );
  2916       testcase( p->op==TK_VARIABLE );
  2917       testcase( p->op==TK_INTEGER );
  2918       testcase( p->op==TK_FLOAT );
  2919       testcase( p->op==TK_NULL );
  2920       testcase( p->op==TK_STRING );
  2921       /* Single-instruction constants with a fixed destination are
  2922       ** better done in-line.  If we factor them, they will just end
  2923       ** up generating an OP_SCopy to move the value to the destination
  2924       ** register. */
  2925       return 0;
  2926     }
  2927     case TK_UMINUS: {
  2928        if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
  2929          return 0;
  2930        }
  2931        break;
  2932     }
  2933     default: {
  2934       break;
  2935     }
  2936   }
  2937   return 1;
  2938 }
  2939 
  2940 /*
  2941 ** If pExpr is a constant expression that is appropriate for
  2942 ** factoring out of a loop, then evaluate the expression
  2943 ** into a register and convert the expression into a TK_REGISTER
  2944 ** expression.
  2945 */
  2946 static int evalConstExpr(void *pArg, Expr *pExpr){
  2947   Parse *pParse = (Parse*)pArg;
  2948   switch( pExpr->op ){
  2949     case TK_REGISTER: {
  2950       return 1;
  2951     }
  2952     case TK_FUNCTION:
  2953     case TK_AGG_FUNCTION:
  2954     case TK_CONST_FUNC: {
  2955       /* The arguments to a function have a fixed destination.
  2956       ** Mark them this way to avoid generated unneeded OP_SCopy
  2957       ** instructions. 
  2958       */
  2959       ExprList *pList = pExpr->pList;
  2960       if( pList ){
  2961         int i = pList->nExpr;
  2962         struct ExprList_item *pItem = pList->a;
  2963         for(; i>0; i--, pItem++){
  2964           if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest;
  2965         }
  2966       }
  2967       break;
  2968     }
  2969   }
  2970   if( isAppropriateForFactoring(pExpr) ){
  2971     int r1 = ++pParse->nMem;
  2972     int r2;
  2973     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
  2974     if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1);
  2975     pExpr->iColumn = pExpr->op;
  2976     pExpr->op = TK_REGISTER;
  2977     pExpr->iTable = r2;
  2978     return 1;
  2979   }
  2980   return 0;
  2981 }
  2982 
  2983 /*
  2984 ** Preevaluate constant subexpressions within pExpr and store the
  2985 ** results in registers.  Modify pExpr so that the constant subexpresions
  2986 ** are TK_REGISTER opcodes that refer to the precomputed values.
  2987 */
  2988 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
  2989    walkExprTree(pExpr, evalConstExpr, pParse);
  2990 }
  2991 
  2992 
  2993 /*
  2994 ** Generate code that pushes the value of every element of the given
  2995 ** expression list into a sequence of registers beginning at target.
  2996 **
  2997 ** Return the number of elements evaluated.
  2998 */
  2999 int sqlite3ExprCodeExprList(
  3000   Parse *pParse,     /* Parsing context */
  3001   ExprList *pList,   /* The expression list to be coded */
  3002   int target,        /* Where to write results */
  3003   int doHardCopy     /* Call sqlite3ExprHardCopy on each element if true */
  3004 ){
  3005   struct ExprList_item *pItem;
  3006   int i, n;
  3007   assert( pList!=0 || pParse->db->mallocFailed );
  3008   if( pList==0 ){
  3009     return 0;
  3010   }
  3011   assert( target>0 );
  3012   n = pList->nExpr;
  3013   for(pItem=pList->a, i=0; i<n; i++, pItem++){
  3014     sqlite3ExprCode(pParse, pItem->pExpr, target+i);
  3015     if( doHardCopy ) sqlite3ExprHardCopy(pParse, target, n);
  3016   }
  3017   return n;
  3018 }
  3019 
  3020 /*
  3021 ** Generate code for a boolean expression such that a jump is made
  3022 ** to the label "dest" if the expression is true but execution
  3023 ** continues straight thru if the expression is false.
  3024 **
  3025 ** If the expression evaluates to NULL (neither true nor false), then
  3026 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
  3027 **
  3028 ** This code depends on the fact that certain token values (ex: TK_EQ)
  3029 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
  3030 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
  3031 ** the make process cause these values to align.  Assert()s in the code
  3032 ** below verify that the numbers are aligned correctly.
  3033 */
  3034 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
  3035   Vdbe *v = pParse->pVdbe;
  3036   int op = 0;
  3037   int regFree1 = 0;
  3038   int regFree2 = 0;
  3039   int r1, r2;
  3040 
  3041   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
  3042   if( v==0 || pExpr==0 ) return;
  3043   op = pExpr->op;
  3044   switch( op ){
  3045     case TK_AND: {
  3046       int d2 = sqlite3VdbeMakeLabel(v);
  3047       testcase( jumpIfNull==0 );
  3048       testcase( pParse->disableColCache==0 );
  3049       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
  3050       pParse->disableColCache++;
  3051       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
  3052       assert( pParse->disableColCache>0 );
  3053       pParse->disableColCache--;
  3054       sqlite3VdbeResolveLabel(v, d2);
  3055       break;
  3056     }
  3057     case TK_OR: {
  3058       testcase( jumpIfNull==0 );
  3059       testcase( pParse->disableColCache==0 );
  3060       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
  3061       pParse->disableColCache++;
  3062       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
  3063       assert( pParse->disableColCache>0 );
  3064       pParse->disableColCache--;
  3065       break;
  3066     }
  3067     case TK_NOT: {
  3068       testcase( jumpIfNull==0 );
  3069       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
  3070       break;
  3071     }
  3072     case TK_LT:
  3073     case TK_LE:
  3074     case TK_GT:
  3075     case TK_GE:
  3076     case TK_NE:
  3077     case TK_EQ: {
  3078       assert( TK_LT==OP_Lt );
  3079       assert( TK_LE==OP_Le );
  3080       assert( TK_GT==OP_Gt );
  3081       assert( TK_GE==OP_Ge );
  3082       assert( TK_EQ==OP_Eq );
  3083       assert( TK_NE==OP_Ne );
  3084       testcase( op==TK_LT );
  3085       testcase( op==TK_LE );
  3086       testcase( op==TK_GT );
  3087       testcase( op==TK_GE );
  3088       testcase( op==TK_EQ );
  3089       testcase( op==TK_NE );
  3090       testcase( jumpIfNull==0 );
  3091       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
  3092                                   pExpr->pRight, &r2, &regFree2);
  3093       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
  3094                   r1, r2, dest, jumpIfNull);
  3095       testcase( regFree1==0 );
  3096       testcase( regFree2==0 );
  3097       break;
  3098     }
  3099     case TK_ISNULL:
  3100     case TK_NOTNULL: {
  3101       assert( TK_ISNULL==OP_IsNull );
  3102       assert( TK_NOTNULL==OP_NotNull );
  3103       testcase( op==TK_ISNULL );
  3104       testcase( op==TK_NOTNULL );
  3105       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
  3106       sqlite3VdbeAddOp2(v, op, r1, dest);
  3107       testcase( regFree1==0 );
  3108       break;
  3109     }
  3110     case TK_BETWEEN: {
  3111       /*    x BETWEEN y AND z
  3112       **
  3113       ** Is equivalent to 
  3114       **
  3115       **    x>=y AND x<=z
  3116       **
  3117       ** Code it as such, taking care to do the common subexpression
  3118       ** elementation of x.
  3119       */
  3120       Expr exprAnd;
  3121       Expr compLeft;
  3122       Expr compRight;
  3123       Expr exprX;
  3124 
  3125       exprX = *pExpr->pLeft;
  3126       exprAnd.op = TK_AND;
  3127       exprAnd.pLeft = &compLeft;
  3128       exprAnd.pRight = &compRight;
  3129       compLeft.op = TK_GE;
  3130       compLeft.pLeft = &exprX;
  3131       compLeft.pRight = pExpr->pList->a[0].pExpr;
  3132       compRight.op = TK_LE;
  3133       compRight.pLeft = &exprX;
  3134       compRight.pRight = pExpr->pList->a[1].pExpr;
  3135       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
  3136       testcase( regFree1==0 );
  3137       exprX.op = TK_REGISTER;
  3138       testcase( jumpIfNull==0 );
  3139       sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
  3140       break;
  3141     }
  3142     default: {
  3143       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
  3144       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
  3145       testcase( regFree1==0 );
  3146       testcase( jumpIfNull==0 );
  3147       break;
  3148     }
  3149   }
  3150   sqlite3ReleaseTempReg(pParse, regFree1);
  3151   sqlite3ReleaseTempReg(pParse, regFree2);  
  3152 }
  3153 
  3154 /*
  3155 ** Generate code for a boolean expression such that a jump is made
  3156 ** to the label "dest" if the expression is false but execution
  3157 ** continues straight thru if the expression is true.
  3158 **
  3159 ** If the expression evaluates to NULL (neither true nor false) then
  3160 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
  3161 ** is 0.
  3162 */
  3163 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
  3164   Vdbe *v = pParse->pVdbe;
  3165   int op = 0;
  3166   int regFree1 = 0;
  3167   int regFree2 = 0;
  3168   int r1, r2;
  3169 
  3170   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
  3171   if( v==0 || pExpr==0 ) return;
  3172 
  3173   /* The value of pExpr->op and op are related as follows:
  3174   **
  3175   **       pExpr->op            op
  3176   **       ---------          ----------
  3177   **       TK_ISNULL          OP_NotNull
  3178   **       TK_NOTNULL         OP_IsNull
  3179   **       TK_NE              OP_Eq
  3180   **       TK_EQ              OP_Ne
  3181   **       TK_GT              OP_Le
  3182   **       TK_LE              OP_Gt
  3183   **       TK_GE              OP_Lt
  3184   **       TK_LT              OP_Ge
  3185   **
  3186   ** For other values of pExpr->op, op is undefined and unused.
  3187   ** The value of TK_ and OP_ constants are arranged such that we
  3188   ** can compute the mapping above using the following expression.
  3189   ** Assert()s verify that the computation is correct.
  3190   */
  3191   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
  3192 
  3193   /* Verify correct alignment of TK_ and OP_ constants
  3194   */
  3195   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
  3196   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
  3197   assert( pExpr->op!=TK_NE || op==OP_Eq );
  3198   assert( pExpr->op!=TK_EQ || op==OP_Ne );
  3199   assert( pExpr->op!=TK_LT || op==OP_Ge );
  3200   assert( pExpr->op!=TK_LE || op==OP_Gt );
  3201   assert( pExpr->op!=TK_GT || op==OP_Le );
  3202   assert( pExpr->op!=TK_GE || op==OP_Lt );
  3203 
  3204   switch( pExpr->op ){
  3205     case TK_AND: {
  3206       testcase( jumpIfNull==0 );
  3207       testcase( pParse->disableColCache==0 );
  3208       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
  3209       pParse->disableColCache++;
  3210       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
  3211       assert( pParse->disableColCache>0 );
  3212       pParse->disableColCache--;
  3213       break;
  3214     }
  3215     case TK_OR: {
  3216       int d2 = sqlite3VdbeMakeLabel(v);
  3217       testcase( jumpIfNull==0 );
  3218       testcase( pParse->disableColCache==0 );
  3219       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
  3220       pParse->disableColCache++;
  3221       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
  3222       assert( pParse->disableColCache>0 );
  3223       pParse->disableColCache--;
  3224       sqlite3VdbeResolveLabel(v, d2);
  3225       break;
  3226     }
  3227     case TK_NOT: {
  3228       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
  3229       break;
  3230     }
  3231     case TK_LT:
  3232     case TK_LE:
  3233     case TK_GT:
  3234     case TK_GE:
  3235     case TK_NE:
  3236     case TK_EQ: {
  3237       testcase( op==TK_LT );
  3238       testcase( op==TK_LE );
  3239       testcase( op==TK_GT );
  3240       testcase( op==TK_GE );
  3241       testcase( op==TK_EQ );
  3242       testcase( op==TK_NE );
  3243       testcase( jumpIfNull==0 );
  3244       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
  3245                                   pExpr->pRight, &r2, &regFree2);
  3246       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
  3247                   r1, r2, dest, jumpIfNull);
  3248       testcase( regFree1==0 );
  3249       testcase( regFree2==0 );
  3250       break;
  3251     }
  3252     case TK_ISNULL:
  3253     case TK_NOTNULL: {
  3254       testcase( op==TK_ISNULL );
  3255       testcase( op==TK_NOTNULL );
  3256       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
  3257       sqlite3VdbeAddOp2(v, op, r1, dest);
  3258       testcase( regFree1==0 );
  3259       break;
  3260     }
  3261     case TK_BETWEEN: {
  3262       /*    x BETWEEN y AND z
  3263       **
  3264       ** Is equivalent to 
  3265       **
  3266       **    x>=y AND x<=z
  3267       **
  3268       ** Code it as such, taking care to do the common subexpression
  3269       ** elementation of x.
  3270       */
  3271       Expr exprAnd;
  3272       Expr compLeft;
  3273       Expr compRight;
  3274       Expr exprX;
  3275 
  3276       exprX = *pExpr->pLeft;
  3277       exprAnd.op = TK_AND;
  3278       exprAnd.pLeft = &compLeft;
  3279       exprAnd.pRight = &compRight;
  3280       compLeft.op = TK_GE;
  3281       compLeft.pLeft = &exprX;
  3282       compLeft.pRight = pExpr->pList->a[0].pExpr;
  3283       compRight.op = TK_LE;
  3284       compRight.pLeft = &exprX;
  3285       compRight.pRight = pExpr->pList->a[1].pExpr;
  3286       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
  3287       testcase( regFree1==0 );
  3288       exprX.op = TK_REGISTER;
  3289       testcase( jumpIfNull==0 );
  3290       sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
  3291       break;
  3292     }
  3293     default: {
  3294       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
  3295       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
  3296       testcase( regFree1==0 );
  3297       testcase( jumpIfNull==0 );
  3298       break;
  3299     }
  3300   }
  3301   sqlite3ReleaseTempReg(pParse, regFree1);
  3302   sqlite3ReleaseTempReg(pParse, regFree2);
  3303 }
  3304 
  3305 /*
  3306 ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
  3307 ** if they are identical and return FALSE if they differ in any way.
  3308 **
  3309 ** Sometimes this routine will return FALSE even if the two expressions
  3310 ** really are equivalent.  If we cannot prove that the expressions are
  3311 ** identical, we return FALSE just to be safe.  So if this routine
  3312 ** returns false, then you do not really know for certain if the two
  3313 ** expressions are the same.  But if you get a TRUE return, then you
  3314 ** can be sure the expressions are the same.  In the places where
  3315 ** this routine is used, it does not hurt to get an extra FALSE - that
  3316 ** just might result in some slightly slower code.  But returning
  3317 ** an incorrect TRUE could lead to a malfunction.
  3318 */
  3319 int sqlite3ExprCompare(Expr *pA, Expr *pB){
  3320   int i;
  3321   if( pA==0||pB==0 ){
  3322     return pB==pA;
  3323   }
  3324   if( pA->op!=pB->op ) return 0;
  3325   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
  3326   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
  3327   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
  3328   if( pA->pList ){
  3329     if( pB->pList==0 ) return 0;
  3330     if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
  3331     for(i=0; i<pA->pList->nExpr; i++){
  3332       if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
  3333         return 0;
  3334       }
  3335     }
  3336   }else if( pB->pList ){
  3337     return 0;
  3338   }
  3339   if( pA->pSelect || pB->pSelect ) return 0;
  3340   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
  3341   if( pA->op!=TK_COLUMN && pA->token.z ){
  3342     if( pB->token.z==0 ) return 0;
  3343     if( pB->token.n!=pA->token.n ) return 0;
  3344     if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
  3345       return 0;
  3346     }
  3347   }
  3348   return 1;
  3349 }
  3350 
  3351 
  3352 /*
  3353 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
  3354 ** the new element.  Return a negative number if malloc fails.
  3355 */
  3356 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
  3357   int i;
  3358   pInfo->aCol = sqlite3ArrayAllocate(
  3359        db,
  3360        pInfo->aCol,
  3361        sizeof(pInfo->aCol[0]),
  3362        3,
  3363        &pInfo->nColumn,
  3364        &pInfo->nColumnAlloc,
  3365        &i
  3366   );
  3367   return i;
  3368 }    
  3369 
  3370 /*
  3371 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
  3372 ** the new element.  Return a negative number if malloc fails.
  3373 */
  3374 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
  3375   int i;
  3376   pInfo->aFunc = sqlite3ArrayAllocate(
  3377        db, 
  3378        pInfo->aFunc,
  3379        sizeof(pInfo->aFunc[0]),
  3380        3,
  3381        &pInfo->nFunc,
  3382        &pInfo->nFuncAlloc,
  3383        &i
  3384   );
  3385   return i;
  3386 }    
  3387 
  3388 /*
  3389 ** This is an xFunc for walkExprTree() used to implement 
  3390 ** sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
  3391 ** for additional information.
  3392 **
  3393 ** This routine analyzes the aggregate function at pExpr.
  3394 */
  3395 static int analyzeAggregate(void *pArg, Expr *pExpr){
  3396   int i;
  3397   NameContext *pNC = (NameContext *)pArg;
  3398   Parse *pParse = pNC->pParse;
  3399   SrcList *pSrcList = pNC->pSrcList;
  3400   AggInfo *pAggInfo = pNC->pAggInfo;
  3401 
  3402   switch( pExpr->op ){
  3403     case TK_AGG_COLUMN:
  3404     case TK_COLUMN: {
  3405       /* Check to see if the column is in one of the tables in the FROM
  3406       ** clause of the aggregate query */
  3407       if( pSrcList ){
  3408         struct SrcList_item *pItem = pSrcList->a;
  3409         for(i=0; i<pSrcList->nSrc; i++, pItem++){
  3410           struct AggInfo_col *pCol;
  3411           if( pExpr->iTable==pItem->iCursor ){
  3412             /* If we reach this point, it means that pExpr refers to a table
  3413             ** that is in the FROM clause of the aggregate query.  
  3414             **
  3415             ** Make an entry for the column in pAggInfo->aCol[] if there
  3416             ** is not an entry there already.
  3417             */
  3418             int k;
  3419             pCol = pAggInfo->aCol;
  3420             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
  3421               if( pCol->iTable==pExpr->iTable &&
  3422                   pCol->iColumn==pExpr->iColumn ){
  3423                 break;
  3424               }
  3425             }
  3426             if( (k>=pAggInfo->nColumn)
  3427              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 
  3428             ){
  3429               pCol = &pAggInfo->aCol[k];
  3430               pCol->pTab = pExpr->pTab;
  3431               pCol->iTable = pExpr->iTable;
  3432               pCol->iColumn = pExpr->iColumn;
  3433               pCol->iMem = ++pParse->nMem;
  3434               pCol->iSorterColumn = -1;
  3435               pCol->pExpr = pExpr;
  3436               if( pAggInfo->pGroupBy ){
  3437                 int j, n;
  3438                 ExprList *pGB = pAggInfo->pGroupBy;
  3439                 struct ExprList_item *pTerm = pGB->a;
  3440                 n = pGB->nExpr;
  3441                 for(j=0; j<n; j++, pTerm++){
  3442                   Expr *pE = pTerm->pExpr;
  3443                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
  3444                       pE->iColumn==pExpr->iColumn ){
  3445                     pCol->iSorterColumn = j;
  3446                     break;
  3447                   }
  3448                 }
  3449               }
  3450               if( pCol->iSorterColumn<0 ){
  3451                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
  3452               }
  3453             }
  3454             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
  3455             ** because it was there before or because we just created it).
  3456             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
  3457             ** pAggInfo->aCol[] entry.
  3458             */
  3459             pExpr->pAggInfo = pAggInfo;
  3460             pExpr->op = TK_AGG_COLUMN;
  3461             pExpr->iAgg = k;
  3462             break;
  3463           } /* endif pExpr->iTable==pItem->iCursor */
  3464         } /* end loop over pSrcList */
  3465       }
  3466       return 1;
  3467     }
  3468     case TK_AGG_FUNCTION: {
  3469       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
  3470       ** to be ignored */
  3471       if( pNC->nDepth==0 ){
  3472         /* Check to see if pExpr is a duplicate of another aggregate 
  3473         ** function that is already in the pAggInfo structure
  3474         */
  3475         struct AggInfo_func *pItem = pAggInfo->aFunc;
  3476         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
  3477           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
  3478             break;
  3479           }
  3480         }
  3481         if( i>=pAggInfo->nFunc ){
  3482           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
  3483           */
  3484           u8 enc = ENC(pParse->db);
  3485           i = addAggInfoFunc(pParse->db, pAggInfo);
  3486           if( i>=0 ){
  3487             pItem = &pAggInfo->aFunc[i];
  3488             pItem->pExpr = pExpr;
  3489             pItem->iMem = ++pParse->nMem;
  3490             pItem->pFunc = sqlite3FindFunction(pParse->db,
  3491                    (char*)pExpr->token.z, pExpr->token.n,
  3492                    pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
  3493             if( pExpr->flags & EP_Distinct ){
  3494               pItem->iDistinct = pParse->nTab++;
  3495             }else{
  3496               pItem->iDistinct = -1;
  3497             }
  3498           }
  3499         }
  3500         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
  3501         */
  3502         pExpr->iAgg = i;
  3503         pExpr->pAggInfo = pAggInfo;
  3504         return 1;
  3505       }
  3506     }
  3507   }
  3508 
  3509   /* Recursively walk subqueries looking for TK_COLUMN nodes that need
  3510   ** to be changed to TK_AGG_COLUMN.  But increment nDepth so that
  3511   ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
  3512   */
  3513   if( pExpr->pSelect ){
  3514     pNC->nDepth++;
  3515     walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
  3516     pNC->nDepth--;
  3517   }
  3518   return 0;
  3519 }
  3520 
  3521 /*
  3522 ** Analyze the given expression looking for aggregate functions and
  3523 ** for variables that need to be added to the pParse->aAgg[] array.
  3524 ** Make additional entries to the pParse->aAgg[] array as necessary.
  3525 **
  3526 ** This routine should only be called after the expression has been
  3527 ** analyzed by sqlite3ExprResolveNames().
  3528 */
  3529 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
  3530   walkExprTree(pExpr, analyzeAggregate, pNC);
  3531 }
  3532 
  3533 /*
  3534 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
  3535 ** expression list.  Return the number of errors.
  3536 **
  3537 ** If an error is found, the analysis is cut short.
  3538 */
  3539 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
  3540   struct ExprList_item *pItem;
  3541   int i;
  3542   if( pList ){
  3543     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
  3544       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
  3545     }
  3546   }
  3547 }
  3548 
  3549 /*
  3550 ** Allocate or deallocate temporary use registers during code generation.
  3551 */
  3552 int sqlite3GetTempReg(Parse *pParse){
  3553   if( pParse->nTempReg==0 ){
  3554     return ++pParse->nMem;
  3555   }
  3556   return pParse->aTempReg[--pParse->nTempReg];
  3557 }
  3558 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
  3559   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
  3560     sqlite3ExprWritableRegister(pParse, iReg, iReg);
  3561     pParse->aTempReg[pParse->nTempReg++] = iReg;
  3562   }
  3563 }
  3564 
  3565 /*
  3566 ** Allocate or deallocate a block of nReg consecutive registers
  3567 */
  3568 int sqlite3GetTempRange(Parse *pParse, int nReg){
  3569   int i, n;
  3570   i = pParse->iRangeReg;
  3571   n = pParse->nRangeReg;
  3572   if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
  3573     pParse->iRangeReg += nReg;
  3574     pParse->nRangeReg -= nReg;
  3575   }else{
  3576     i = pParse->nMem+1;
  3577     pParse->nMem += nReg;
  3578   }
  3579   return i;
  3580 }
  3581 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
  3582   if( nReg>pParse->nRangeReg ){
  3583     pParse->nRangeReg = nReg;
  3584     pParse->iRangeReg = iReg;
  3585   }
  3586 }