sl@0: /* sl@0: ** 2001 September 15 sl@0: ** sl@0: ** The author disclaims copyright to this source code. In place of sl@0: ** a legal notice, here is a blessing: sl@0: ** sl@0: ** May you do good and not evil. sl@0: ** May you find forgiveness for yourself and forgive others. sl@0: ** May you share freely, never taking more than you give. sl@0: ** sl@0: ************************************************************************* sl@0: ** This file contains routines used for analyzing expressions and sl@0: ** for generating VDBE code that evaluates expressions in SQLite. sl@0: ** sl@0: ** $Id: expr.c,v 1.387 2008/07/28 19:34:53 drh Exp $ sl@0: */ sl@0: #include "sqliteInt.h" sl@0: #include sl@0: sl@0: /* sl@0: ** Return the 'affinity' of the expression pExpr if any. sl@0: ** sl@0: ** If pExpr is a column, a reference to a column via an 'AS' alias, sl@0: ** or a sub-select with a column as the return value, then the sl@0: ** affinity of that column is returned. Otherwise, 0x00 is returned, sl@0: ** indicating no affinity for the expression. sl@0: ** sl@0: ** i.e. the WHERE clause expresssions in the following statements all sl@0: ** have an affinity: sl@0: ** sl@0: ** CREATE TABLE t1(a); sl@0: ** SELECT * FROM t1 WHERE a; sl@0: ** SELECT a AS b FROM t1 WHERE b; sl@0: ** SELECT * FROM t1 WHERE (select a from t1); sl@0: */ sl@0: char sqlite3ExprAffinity(Expr *pExpr){ sl@0: int op = pExpr->op; sl@0: if( op==TK_SELECT ){ sl@0: return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); sl@0: } sl@0: #ifndef SQLITE_OMIT_CAST sl@0: if( op==TK_CAST ){ sl@0: return sqlite3AffinityType(&pExpr->token); sl@0: } sl@0: #endif sl@0: return pExpr->affinity; sl@0: } sl@0: sl@0: /* sl@0: ** Set the collating sequence for expression pExpr to be the collating sl@0: ** sequence named by pToken. Return a pointer to the revised expression. sl@0: ** The collating sequence is marked as "explicit" using the EP_ExpCollate sl@0: ** flag. An explicit collating sequence will override implicit sl@0: ** collating sequences. sl@0: */ sl@0: Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){ sl@0: char *zColl = 0; /* Dequoted name of collation sequence */ sl@0: CollSeq *pColl; sl@0: sqlite3 *db = pParse->db; sl@0: zColl = sqlite3NameFromToken(db, pName); sl@0: if( pExpr && zColl ){ sl@0: pColl = sqlite3LocateCollSeq(pParse, zColl, -1); sl@0: if( pColl ){ sl@0: pExpr->pColl = pColl; sl@0: pExpr->flags |= EP_ExpCollate; sl@0: } sl@0: } sl@0: sqlite3DbFree(db, zColl); sl@0: return pExpr; sl@0: } sl@0: sl@0: /* sl@0: ** Return the default collation sequence for the expression pExpr. If sl@0: ** there is no default collation type, return 0. sl@0: */ sl@0: CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ sl@0: CollSeq *pColl = 0; sl@0: if( pExpr ){ sl@0: int op; sl@0: pColl = pExpr->pColl; sl@0: op = pExpr->op; sl@0: if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){ sl@0: return sqlite3ExprCollSeq(pParse, pExpr->pLeft); sl@0: } sl@0: } sl@0: if( sqlite3CheckCollSeq(pParse, pColl) ){ sl@0: pColl = 0; sl@0: } sl@0: return pColl; sl@0: } sl@0: sl@0: /* sl@0: ** pExpr is an operand of a comparison operator. aff2 is the sl@0: ** type affinity of the other operand. This routine returns the sl@0: ** type affinity that should be used for the comparison operator. sl@0: */ sl@0: char sqlite3CompareAffinity(Expr *pExpr, char aff2){ sl@0: char aff1 = sqlite3ExprAffinity(pExpr); sl@0: if( aff1 && aff2 ){ sl@0: /* Both sides of the comparison are columns. If one has numeric sl@0: ** affinity, use that. Otherwise use no affinity. sl@0: */ sl@0: if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ sl@0: return SQLITE_AFF_NUMERIC; sl@0: }else{ sl@0: return SQLITE_AFF_NONE; sl@0: } sl@0: }else if( !aff1 && !aff2 ){ sl@0: /* Neither side of the comparison is a column. Compare the sl@0: ** results directly. sl@0: */ sl@0: return SQLITE_AFF_NONE; sl@0: }else{ sl@0: /* One side is a column, the other is not. Use the columns affinity. */ sl@0: assert( aff1==0 || aff2==0 ); sl@0: return (aff1 + aff2); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** pExpr is a comparison operator. Return the type affinity that should sl@0: ** be applied to both operands prior to doing the comparison. sl@0: */ sl@0: static char comparisonAffinity(Expr *pExpr){ sl@0: char aff; sl@0: assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || sl@0: pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || sl@0: pExpr->op==TK_NE ); sl@0: assert( pExpr->pLeft ); sl@0: aff = sqlite3ExprAffinity(pExpr->pLeft); sl@0: if( pExpr->pRight ){ sl@0: aff = sqlite3CompareAffinity(pExpr->pRight, aff); sl@0: } sl@0: else if( pExpr->pSelect ){ sl@0: aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); sl@0: } sl@0: else if( !aff ){ sl@0: aff = SQLITE_AFF_NONE; sl@0: } sl@0: return aff; sl@0: } sl@0: sl@0: /* sl@0: ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. sl@0: ** idx_affinity is the affinity of an indexed column. Return true sl@0: ** if the index with affinity idx_affinity may be used to implement sl@0: ** the comparison in pExpr. sl@0: */ sl@0: int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ sl@0: char aff = comparisonAffinity(pExpr); sl@0: switch( aff ){ sl@0: case SQLITE_AFF_NONE: sl@0: return 1; sl@0: case SQLITE_AFF_TEXT: sl@0: return idx_affinity==SQLITE_AFF_TEXT; sl@0: default: sl@0: return sqlite3IsNumericAffinity(idx_affinity); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Return the P5 value that should be used for a binary comparison sl@0: ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. sl@0: */ sl@0: static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ sl@0: u8 aff = (char)sqlite3ExprAffinity(pExpr2); sl@0: aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull; sl@0: return aff; sl@0: } sl@0: sl@0: /* sl@0: ** Return a pointer to the collation sequence that should be used by sl@0: ** a binary comparison operator comparing pLeft and pRight. sl@0: ** sl@0: ** If the left hand expression has a collating sequence type, then it is sl@0: ** used. Otherwise the collation sequence for the right hand expression sl@0: ** is used, or the default (BINARY) if neither expression has a collating sl@0: ** type. sl@0: ** sl@0: ** Argument pRight (but not pLeft) may be a null pointer. In this case, sl@0: ** it is not considered. sl@0: */ sl@0: CollSeq *sqlite3BinaryCompareCollSeq( sl@0: Parse *pParse, sl@0: Expr *pLeft, sl@0: Expr *pRight sl@0: ){ sl@0: CollSeq *pColl; sl@0: assert( pLeft ); sl@0: if( pLeft->flags & EP_ExpCollate ){ sl@0: assert( pLeft->pColl ); sl@0: pColl = pLeft->pColl; sl@0: }else if( pRight && pRight->flags & EP_ExpCollate ){ sl@0: assert( pRight->pColl ); sl@0: pColl = pRight->pColl; sl@0: }else{ sl@0: pColl = sqlite3ExprCollSeq(pParse, pLeft); sl@0: if( !pColl ){ sl@0: pColl = sqlite3ExprCollSeq(pParse, pRight); sl@0: } sl@0: } sl@0: return pColl; sl@0: } sl@0: sl@0: /* sl@0: ** Generate the operands for a comparison operation. Before sl@0: ** generating the code for each operand, set the EP_AnyAff sl@0: ** flag on the expression so that it will be able to used a sl@0: ** cached column value that has previously undergone an sl@0: ** affinity change. sl@0: */ sl@0: static void codeCompareOperands( sl@0: Parse *pParse, /* Parsing and code generating context */ sl@0: Expr *pLeft, /* The left operand */ sl@0: int *pRegLeft, /* Register where left operand is stored */ sl@0: int *pFreeLeft, /* Free this register when done */ sl@0: Expr *pRight, /* The right operand */ sl@0: int *pRegRight, /* Register where right operand is stored */ sl@0: int *pFreeRight /* Write temp register for right operand there */ sl@0: ){ sl@0: while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft; sl@0: pLeft->flags |= EP_AnyAff; sl@0: *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft); sl@0: while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft; sl@0: pRight->flags |= EP_AnyAff; sl@0: *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight); sl@0: } sl@0: sl@0: /* sl@0: ** Generate code for a comparison operator. sl@0: */ sl@0: static int codeCompare( sl@0: Parse *pParse, /* The parsing (and code generating) context */ sl@0: Expr *pLeft, /* The left operand */ sl@0: Expr *pRight, /* The right operand */ sl@0: int opcode, /* The comparison opcode */ sl@0: int in1, int in2, /* Register holding operands */ sl@0: int dest, /* Jump here if true. */ sl@0: int jumpIfNull /* If true, jump if either operand is NULL */ sl@0: ){ sl@0: int p5; sl@0: int addr; sl@0: CollSeq *p4; sl@0: sl@0: p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); sl@0: p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); sl@0: addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, sl@0: (void*)p4, P4_COLLSEQ); sl@0: sqlite3VdbeChangeP5(pParse->pVdbe, p5); sl@0: if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){ sl@0: sqlite3ExprCacheAffinityChange(pParse, in1, 1); sl@0: sqlite3ExprCacheAffinityChange(pParse, in2, 1); sl@0: } sl@0: return addr; sl@0: } sl@0: sl@0: #if SQLITE_MAX_EXPR_DEPTH>0 sl@0: /* sl@0: ** Check that argument nHeight is less than or equal to the maximum sl@0: ** expression depth allowed. If it is not, leave an error message in sl@0: ** pParse. sl@0: */ sl@0: static int checkExprHeight(Parse *pParse, int nHeight){ sl@0: int rc = SQLITE_OK; sl@0: int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; sl@0: if( nHeight>mxHeight ){ sl@0: sqlite3ErrorMsg(pParse, sl@0: "Expression tree is too large (maximum depth %d)", mxHeight sl@0: ); sl@0: rc = SQLITE_ERROR; sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* The following three functions, heightOfExpr(), heightOfExprList() sl@0: ** and heightOfSelect(), are used to determine the maximum height sl@0: ** of any expression tree referenced by the structure passed as the sl@0: ** first argument. sl@0: ** sl@0: ** If this maximum height is greater than the current value pointed sl@0: ** to by pnHeight, the second parameter, then set *pnHeight to that sl@0: ** value. sl@0: */ sl@0: static void heightOfExpr(Expr *p, int *pnHeight){ sl@0: if( p ){ sl@0: if( p->nHeight>*pnHeight ){ sl@0: *pnHeight = p->nHeight; sl@0: } sl@0: } sl@0: } sl@0: static void heightOfExprList(ExprList *p, int *pnHeight){ sl@0: if( p ){ sl@0: int i; sl@0: for(i=0; inExpr; i++){ sl@0: heightOfExpr(p->a[i].pExpr, pnHeight); sl@0: } sl@0: } sl@0: } sl@0: static void heightOfSelect(Select *p, int *pnHeight){ sl@0: if( p ){ sl@0: heightOfExpr(p->pWhere, pnHeight); sl@0: heightOfExpr(p->pHaving, pnHeight); sl@0: heightOfExpr(p->pLimit, pnHeight); sl@0: heightOfExpr(p->pOffset, pnHeight); sl@0: heightOfExprList(p->pEList, pnHeight); sl@0: heightOfExprList(p->pGroupBy, pnHeight); sl@0: heightOfExprList(p->pOrderBy, pnHeight); sl@0: heightOfSelect(p->pPrior, pnHeight); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Set the Expr.nHeight variable in the structure passed as an sl@0: ** argument. An expression with no children, Expr.pList or sl@0: ** Expr.pSelect member has a height of 1. Any other expression sl@0: ** has a height equal to the maximum height of any other sl@0: ** referenced Expr plus one. sl@0: */ sl@0: static void exprSetHeight(Expr *p){ sl@0: int nHeight = 0; sl@0: heightOfExpr(p->pLeft, &nHeight); sl@0: heightOfExpr(p->pRight, &nHeight); sl@0: heightOfExprList(p->pList, &nHeight); sl@0: heightOfSelect(p->pSelect, &nHeight); sl@0: p->nHeight = nHeight + 1; sl@0: } sl@0: sl@0: /* sl@0: ** Set the Expr.nHeight variable using the exprSetHeight() function. If sl@0: ** the height is greater than the maximum allowed expression depth, sl@0: ** leave an error in pParse. sl@0: */ sl@0: void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ sl@0: exprSetHeight(p); sl@0: checkExprHeight(pParse, p->nHeight); sl@0: } sl@0: sl@0: /* sl@0: ** Return the maximum height of any expression tree referenced sl@0: ** by the select statement passed as an argument. sl@0: */ sl@0: int sqlite3SelectExprHeight(Select *p){ sl@0: int nHeight = 0; sl@0: heightOfSelect(p, &nHeight); sl@0: return nHeight; sl@0: } sl@0: #else sl@0: #define checkExprHeight(x,y) sl@0: #define exprSetHeight(y) sl@0: #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ sl@0: sl@0: /* sl@0: ** Construct a new expression node and return a pointer to it. Memory sl@0: ** for this node is obtained from sqlite3_malloc(). The calling function sl@0: ** is responsible for making sure the node eventually gets freed. sl@0: */ sl@0: Expr *sqlite3Expr( sl@0: sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ sl@0: int op, /* Expression opcode */ sl@0: Expr *pLeft, /* Left operand */ sl@0: Expr *pRight, /* Right operand */ sl@0: const Token *pToken /* Argument token */ sl@0: ){ sl@0: Expr *pNew; sl@0: pNew = sqlite3DbMallocZero(db, sizeof(Expr)); sl@0: if( pNew==0 ){ sl@0: /* When malloc fails, delete pLeft and pRight. Expressions passed to sl@0: ** this function must always be allocated with sqlite3Expr() for this sl@0: ** reason. sl@0: */ sl@0: sqlite3ExprDelete(db, pLeft); sl@0: sqlite3ExprDelete(db, pRight); sl@0: return 0; sl@0: } sl@0: pNew->op = op; sl@0: pNew->pLeft = pLeft; sl@0: pNew->pRight = pRight; sl@0: pNew->iAgg = -1; sl@0: pNew->span.z = (u8*)""; sl@0: if( pToken ){ sl@0: assert( pToken->dyn==0 ); sl@0: pNew->span = pNew->token = *pToken; sl@0: }else if( pLeft ){ sl@0: if( pRight ){ sl@0: if( pRight->span.dyn==0 && pLeft->span.dyn==0 ){ sl@0: sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); sl@0: } sl@0: if( pRight->flags & EP_ExpCollate ){ sl@0: pNew->flags |= EP_ExpCollate; sl@0: pNew->pColl = pRight->pColl; sl@0: } sl@0: } sl@0: if( pLeft->flags & EP_ExpCollate ){ sl@0: pNew->flags |= EP_ExpCollate; sl@0: pNew->pColl = pLeft->pColl; sl@0: } sl@0: } sl@0: sl@0: exprSetHeight(pNew); sl@0: return pNew; sl@0: } sl@0: sl@0: /* sl@0: ** Works like sqlite3Expr() except that it takes an extra Parse* sl@0: ** argument and notifies the associated connection object if malloc fails. sl@0: */ sl@0: Expr *sqlite3PExpr( sl@0: Parse *pParse, /* Parsing context */ sl@0: int op, /* Expression opcode */ sl@0: Expr *pLeft, /* Left operand */ sl@0: Expr *pRight, /* Right operand */ sl@0: const Token *pToken /* Argument token */ sl@0: ){ sl@0: Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken); sl@0: if( p ){ sl@0: checkExprHeight(pParse, p->nHeight); sl@0: } sl@0: return p; sl@0: } sl@0: sl@0: /* sl@0: ** When doing a nested parse, you can include terms in an expression sl@0: ** that look like this: #1 #2 ... These terms refer to registers sl@0: ** in the virtual machine. #N is the N-th register. sl@0: ** sl@0: ** This routine is called by the parser to deal with on of those terms. sl@0: ** It immediately generates code to store the value in a memory location. sl@0: ** The returns an expression that will code to extract the value from sl@0: ** that memory location as needed. sl@0: */ sl@0: Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ sl@0: Vdbe *v = pParse->pVdbe; sl@0: Expr *p; sl@0: if( pParse->nested==0 ){ sl@0: sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); sl@0: return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); sl@0: } sl@0: if( v==0 ) return 0; sl@0: p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken); sl@0: if( p==0 ){ sl@0: return 0; /* Malloc failed */ sl@0: } sl@0: p->iTable = atoi((char*)&pToken->z[1]); sl@0: return p; sl@0: } sl@0: sl@0: /* sl@0: ** Join two expressions using an AND operator. If either expression is sl@0: ** NULL, then just return the other expression. sl@0: */ sl@0: Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ sl@0: if( pLeft==0 ){ sl@0: return pRight; sl@0: }else if( pRight==0 ){ sl@0: return pLeft; sl@0: }else{ sl@0: return sqlite3Expr(db, TK_AND, pLeft, pRight, 0); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Set the Expr.span field of the given expression to span all sl@0: ** text between the two given tokens. Both tokens must be pointing sl@0: ** at the same string. sl@0: */ sl@0: void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ sl@0: assert( pRight!=0 ); sl@0: assert( pLeft!=0 ); sl@0: if( pExpr ){ sl@0: pExpr->span.z = pLeft->z; sl@0: pExpr->span.n = pRight->n + (pRight->z - pLeft->z); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Construct a new expression node for a function with multiple sl@0: ** arguments. sl@0: */ sl@0: Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ sl@0: Expr *pNew; sl@0: sqlite3 *db = pParse->db; sl@0: assert( pToken ); sl@0: pNew = sqlite3DbMallocZero(db, sizeof(Expr) ); sl@0: if( pNew==0 ){ sl@0: sqlite3ExprListDelete(db, pList); /* Avoid leaking memory when malloc fails */ sl@0: return 0; sl@0: } sl@0: pNew->op = TK_FUNCTION; sl@0: pNew->pList = pList; sl@0: assert( pToken->dyn==0 ); sl@0: pNew->token = *pToken; sl@0: pNew->span = pNew->token; sl@0: sl@0: sqlite3ExprSetHeight(pParse, pNew); sl@0: return pNew; sl@0: } sl@0: sl@0: /* sl@0: ** Assign a variable number to an expression that encodes a wildcard sl@0: ** in the original SQL statement. sl@0: ** sl@0: ** Wildcards consisting of a single "?" are assigned the next sequential sl@0: ** variable number. sl@0: ** sl@0: ** Wildcards of the form "?nnn" are assigned the number "nnn". We make sl@0: ** sure "nnn" is not too be to avoid a denial of service attack when sl@0: ** the SQL statement comes from an external source. sl@0: ** sl@0: ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number sl@0: ** as the previous instance of the same wildcard. Or if this is the first sl@0: ** instance of the wildcard, the next sequenial variable number is sl@0: ** assigned. sl@0: */ sl@0: void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ sl@0: Token *pToken; sl@0: sqlite3 *db = pParse->db; sl@0: sl@0: if( pExpr==0 ) return; sl@0: pToken = &pExpr->token; sl@0: assert( pToken->n>=1 ); sl@0: assert( pToken->z!=0 ); sl@0: assert( pToken->z[0]!=0 ); sl@0: if( pToken->n==1 ){ sl@0: /* Wildcard of the form "?". Assign the next variable number */ sl@0: pExpr->iTable = ++pParse->nVar; sl@0: }else if( pToken->z[0]=='?' ){ sl@0: /* Wildcard of the form "?nnn". Convert "nnn" to an integer and sl@0: ** use it as the variable number */ sl@0: int i; sl@0: pExpr->iTable = i = atoi((char*)&pToken->z[1]); sl@0: testcase( i==0 ); sl@0: testcase( i==1 ); sl@0: testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); sl@0: testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); sl@0: if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ sl@0: sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", sl@0: db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); sl@0: } sl@0: if( i>pParse->nVar ){ sl@0: pParse->nVar = i; sl@0: } sl@0: }else{ sl@0: /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable sl@0: ** number as the prior appearance of the same name, or if the name sl@0: ** has never appeared before, reuse the same variable number sl@0: */ sl@0: int i, n; sl@0: n = pToken->n; sl@0: for(i=0; inVarExpr; i++){ sl@0: Expr *pE; sl@0: if( (pE = pParse->apVarExpr[i])!=0 sl@0: && pE->token.n==n sl@0: && memcmp(pE->token.z, pToken->z, n)==0 ){ sl@0: pExpr->iTable = pE->iTable; sl@0: break; sl@0: } sl@0: } sl@0: if( i>=pParse->nVarExpr ){ sl@0: pExpr->iTable = ++pParse->nVar; sl@0: if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ sl@0: pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; sl@0: pParse->apVarExpr = sl@0: sqlite3DbReallocOrFree( sl@0: db, sl@0: pParse->apVarExpr, sl@0: pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) sl@0: ); sl@0: } sl@0: if( !db->mallocFailed ){ sl@0: assert( pParse->apVarExpr!=0 ); sl@0: pParse->apVarExpr[pParse->nVarExpr++] = pExpr; sl@0: } sl@0: } sl@0: } sl@0: if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ sl@0: sqlite3ErrorMsg(pParse, "too many SQL variables"); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Recursively delete an expression tree. sl@0: */ sl@0: void sqlite3ExprDelete(sqlite3 *db, Expr *p){ sl@0: if( p==0 ) return; sl@0: if( p->span.dyn ) sqlite3DbFree(db, (char*)p->span.z); sl@0: if( p->token.dyn ) sqlite3DbFree(db, (char*)p->token.z); sl@0: sqlite3ExprDelete(db, p->pLeft); sl@0: sqlite3ExprDelete(db, p->pRight); sl@0: sqlite3ExprListDelete(db, p->pList); sl@0: sqlite3SelectDelete(db, p->pSelect); sl@0: sqlite3DbFree(db, p); sl@0: } sl@0: sl@0: /* sl@0: ** The Expr.token field might be a string literal that is quoted. sl@0: ** If so, remove the quotation marks. sl@0: */ sl@0: void sqlite3DequoteExpr(sqlite3 *db, Expr *p){ sl@0: if( ExprHasAnyProperty(p, EP_Dequoted) ){ sl@0: return; sl@0: } sl@0: ExprSetProperty(p, EP_Dequoted); sl@0: if( p->token.dyn==0 ){ sl@0: sqlite3TokenCopy(db, &p->token, &p->token); sl@0: } sl@0: sqlite3Dequote((char*)p->token.z); sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** The following group of routines make deep copies of expressions, sl@0: ** expression lists, ID lists, and select statements. The copies can sl@0: ** be deleted (by being passed to their respective ...Delete() routines) sl@0: ** without effecting the originals. sl@0: ** sl@0: ** The expression list, ID, and source lists return by sqlite3ExprListDup(), sl@0: ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded sl@0: ** by subsequent calls to sqlite*ListAppend() routines. sl@0: ** sl@0: ** Any tables that the SrcList might point to are not duplicated. sl@0: */ sl@0: Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){ sl@0: Expr *pNew; sl@0: if( p==0 ) return 0; sl@0: pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); sl@0: if( pNew==0 ) return 0; sl@0: memcpy(pNew, p, sizeof(*pNew)); sl@0: if( p->token.z!=0 ){ sl@0: pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n); sl@0: pNew->token.dyn = 1; sl@0: }else{ sl@0: assert( pNew->token.z==0 ); sl@0: } sl@0: pNew->span.z = 0; sl@0: pNew->pLeft = sqlite3ExprDup(db, p->pLeft); sl@0: pNew->pRight = sqlite3ExprDup(db, p->pRight); sl@0: pNew->pList = sqlite3ExprListDup(db, p->pList); sl@0: pNew->pSelect = sqlite3SelectDup(db, p->pSelect); sl@0: return pNew; sl@0: } sl@0: void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){ sl@0: if( pTo->dyn ) sqlite3DbFree(db, (char*)pTo->z); sl@0: if( pFrom->z ){ sl@0: pTo->n = pFrom->n; sl@0: pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n); sl@0: pTo->dyn = 1; sl@0: }else{ sl@0: pTo->z = 0; sl@0: } sl@0: } sl@0: ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){ sl@0: ExprList *pNew; sl@0: struct ExprList_item *pItem, *pOldItem; sl@0: int i; sl@0: if( p==0 ) return 0; sl@0: pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); sl@0: if( pNew==0 ) return 0; sl@0: pNew->iECursor = 0; sl@0: pNew->nExpr = pNew->nAlloc = p->nExpr; sl@0: pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); sl@0: if( pItem==0 ){ sl@0: sqlite3DbFree(db, pNew); sl@0: return 0; sl@0: } sl@0: pOldItem = p->a; sl@0: for(i=0; inExpr; i++, pItem++, pOldItem++){ sl@0: Expr *pNewExpr, *pOldExpr; sl@0: pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr); sl@0: if( pOldExpr->span.z!=0 && pNewExpr ){ sl@0: /* Always make a copy of the span for top-level expressions in the sl@0: ** expression list. The logic in SELECT processing that determines sl@0: ** the names of columns in the result set needs this information */ sl@0: sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span); sl@0: } sl@0: assert( pNewExpr==0 || pNewExpr->span.z!=0 sl@0: || pOldExpr->span.z==0 sl@0: || db->mallocFailed ); sl@0: pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); sl@0: pItem->sortOrder = pOldItem->sortOrder; sl@0: pItem->isAgg = pOldItem->isAgg; sl@0: pItem->done = 0; sl@0: } sl@0: return pNew; sl@0: } sl@0: sl@0: /* sl@0: ** If cursors, triggers, views and subqueries are all omitted from sl@0: ** the build, then none of the following routines, except for sl@0: ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes sl@0: ** called with a NULL argument. sl@0: */ sl@0: #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ sl@0: || !defined(SQLITE_OMIT_SUBQUERY) sl@0: SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){ sl@0: SrcList *pNew; sl@0: int i; sl@0: int nByte; sl@0: if( p==0 ) return 0; sl@0: nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); sl@0: pNew = sqlite3DbMallocRaw(db, nByte ); sl@0: if( pNew==0 ) return 0; sl@0: pNew->nSrc = pNew->nAlloc = p->nSrc; sl@0: for(i=0; inSrc; i++){ sl@0: struct SrcList_item *pNewItem = &pNew->a[i]; sl@0: struct SrcList_item *pOldItem = &p->a[i]; sl@0: Table *pTab; sl@0: pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); sl@0: pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); sl@0: pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); sl@0: pNewItem->jointype = pOldItem->jointype; sl@0: pNewItem->iCursor = pOldItem->iCursor; sl@0: pNewItem->isPopulated = pOldItem->isPopulated; sl@0: pTab = pNewItem->pTab = pOldItem->pTab; sl@0: if( pTab ){ sl@0: pTab->nRef++; sl@0: } sl@0: pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect); sl@0: pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn); sl@0: pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); sl@0: pNewItem->colUsed = pOldItem->colUsed; sl@0: } sl@0: return pNew; sl@0: } sl@0: IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ sl@0: IdList *pNew; sl@0: int i; sl@0: if( p==0 ) return 0; sl@0: pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); sl@0: if( pNew==0 ) return 0; sl@0: pNew->nId = pNew->nAlloc = p->nId; sl@0: pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); sl@0: if( pNew->a==0 ){ sl@0: sqlite3DbFree(db, pNew); sl@0: return 0; sl@0: } sl@0: for(i=0; inId; i++){ sl@0: struct IdList_item *pNewItem = &pNew->a[i]; sl@0: struct IdList_item *pOldItem = &p->a[i]; sl@0: pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); sl@0: pNewItem->idx = pOldItem->idx; sl@0: } sl@0: return pNew; sl@0: } sl@0: Select *sqlite3SelectDup(sqlite3 *db, Select *p){ sl@0: Select *pNew; sl@0: if( p==0 ) return 0; sl@0: pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); sl@0: if( pNew==0 ) return 0; sl@0: pNew->isDistinct = p->isDistinct; sl@0: pNew->pEList = sqlite3ExprListDup(db, p->pEList); sl@0: pNew->pSrc = sqlite3SrcListDup(db, p->pSrc); sl@0: pNew->pWhere = sqlite3ExprDup(db, p->pWhere); sl@0: pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy); sl@0: pNew->pHaving = sqlite3ExprDup(db, p->pHaving); sl@0: pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy); sl@0: pNew->op = p->op; sl@0: pNew->pPrior = sqlite3SelectDup(db, p->pPrior); sl@0: pNew->pLimit = sqlite3ExprDup(db, p->pLimit); sl@0: pNew->pOffset = sqlite3ExprDup(db, p->pOffset); sl@0: pNew->iLimit = 0; sl@0: pNew->iOffset = 0; sl@0: pNew->isResolved = p->isResolved; sl@0: pNew->isAgg = p->isAgg; sl@0: pNew->usesEphm = 0; sl@0: pNew->disallowOrderBy = 0; sl@0: pNew->pRightmost = 0; sl@0: pNew->addrOpenEphm[0] = -1; sl@0: pNew->addrOpenEphm[1] = -1; sl@0: pNew->addrOpenEphm[2] = -1; sl@0: return pNew; sl@0: } sl@0: #else sl@0: Select *sqlite3SelectDup(sqlite3 *db, Select *p){ sl@0: assert( p==0 ); sl@0: return 0; sl@0: } sl@0: #endif sl@0: sl@0: sl@0: /* sl@0: ** Add a new element to the end of an expression list. If pList is sl@0: ** initially NULL, then create a new expression list. sl@0: */ sl@0: ExprList *sqlite3ExprListAppend( sl@0: Parse *pParse, /* Parsing context */ sl@0: ExprList *pList, /* List to which to append. Might be NULL */ sl@0: Expr *pExpr, /* Expression to be appended */ sl@0: Token *pName /* AS keyword for the expression */ sl@0: ){ sl@0: sqlite3 *db = pParse->db; sl@0: if( pList==0 ){ sl@0: pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); sl@0: if( pList==0 ){ sl@0: goto no_mem; sl@0: } sl@0: assert( pList->nAlloc==0 ); sl@0: } sl@0: if( pList->nAlloc<=pList->nExpr ){ sl@0: struct ExprList_item *a; sl@0: int n = pList->nAlloc*2 + 4; sl@0: a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); sl@0: if( a==0 ){ sl@0: goto no_mem; sl@0: } sl@0: pList->a = a; sl@0: pList->nAlloc = n; sl@0: } sl@0: assert( pList->a!=0 ); sl@0: if( pExpr || pName ){ sl@0: struct ExprList_item *pItem = &pList->a[pList->nExpr++]; sl@0: memset(pItem, 0, sizeof(*pItem)); sl@0: pItem->zName = sqlite3NameFromToken(db, pName); sl@0: pItem->pExpr = pExpr; sl@0: } sl@0: return pList; sl@0: sl@0: no_mem: sl@0: /* Avoid leaking memory if malloc has failed. */ sl@0: sqlite3ExprDelete(db, pExpr); sl@0: sqlite3ExprListDelete(db, pList); sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: ** If the expression list pEList contains more than iLimit elements, sl@0: ** leave an error message in pParse. sl@0: */ sl@0: void sqlite3ExprListCheckLength( sl@0: Parse *pParse, sl@0: ExprList *pEList, sl@0: const char *zObject sl@0: ){ sl@0: int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; sl@0: testcase( pEList && pEList->nExpr==mx ); sl@0: testcase( pEList && pEList->nExpr==mx+1 ); sl@0: if( pEList && pEList->nExpr>mx ){ sl@0: sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Delete an entire expression list. sl@0: */ sl@0: void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ sl@0: int i; sl@0: struct ExprList_item *pItem; sl@0: if( pList==0 ) return; sl@0: assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); sl@0: assert( pList->nExpr<=pList->nAlloc ); sl@0: for(pItem=pList->a, i=0; inExpr; i++, pItem++){ sl@0: sqlite3ExprDelete(db, pItem->pExpr); sl@0: sqlite3DbFree(db, pItem->zName); sl@0: } sl@0: sqlite3DbFree(db, pList->a); sl@0: sqlite3DbFree(db, pList); sl@0: } sl@0: sl@0: /* sl@0: ** Walk an expression tree. Call xFunc for each node visited. xFunc sl@0: ** is called on the node before xFunc is called on the nodes children. sl@0: ** sl@0: ** The return value from xFunc determines whether the tree walk continues. sl@0: ** 0 means continue walking the tree. 1 means do not walk children sl@0: ** of the current node but continue with siblings. 2 means abandon sl@0: ** the tree walk completely. sl@0: ** sl@0: ** The return value from this routine is 1 to abandon the tree walk sl@0: ** and 0 to continue. sl@0: ** sl@0: ** NOTICE: This routine does *not* descend into subqueries. sl@0: */ sl@0: static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); sl@0: static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ sl@0: int rc; sl@0: if( pExpr==0 ) return 0; sl@0: rc = (*xFunc)(pArg, pExpr); sl@0: if( rc==0 ){ sl@0: if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; sl@0: if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; sl@0: if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; sl@0: } sl@0: return rc>1; sl@0: } sl@0: sl@0: /* sl@0: ** Call walkExprTree() for every expression in list p. sl@0: */ sl@0: static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ sl@0: int i; sl@0: struct ExprList_item *pItem; sl@0: if( !p ) return 0; sl@0: for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ sl@0: if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: ** Call walkExprTree() for every expression in Select p, not including sl@0: ** expressions that are part of sub-selects in any FROM clause or the LIMIT sl@0: ** or OFFSET expressions.. sl@0: */ sl@0: static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ sl@0: walkExprList(p->pEList, xFunc, pArg); sl@0: walkExprTree(p->pWhere, xFunc, pArg); sl@0: walkExprList(p->pGroupBy, xFunc, pArg); sl@0: walkExprTree(p->pHaving, xFunc, pArg); sl@0: walkExprList(p->pOrderBy, xFunc, pArg); sl@0: if( p->pPrior ){ sl@0: walkSelectExpr(p->pPrior, xFunc, pArg); sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** This routine is designed as an xFunc for walkExprTree(). sl@0: ** sl@0: ** pArg is really a pointer to an integer. If we can tell by looking sl@0: ** at pExpr that the expression that contains pExpr is not a constant sl@0: ** expression, then set *pArg to 0 and return 2 to abandon the tree walk. sl@0: ** If pExpr does does not disqualify the expression from being a constant sl@0: ** then do nothing. sl@0: ** sl@0: ** After walking the whole tree, if no nodes are found that disqualify sl@0: ** the expression as constant, then we assume the whole expression sl@0: ** is constant. See sqlite3ExprIsConstant() for additional information. sl@0: */ sl@0: static int exprNodeIsConstant(void *pArg, Expr *pExpr){ sl@0: int *pN = (int*)pArg; sl@0: sl@0: /* If *pArg is 3 then any term of the expression that comes from sl@0: ** the ON or USING clauses of a join disqualifies the expression sl@0: ** from being considered constant. */ sl@0: if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ sl@0: *pN = 0; sl@0: return 2; sl@0: } sl@0: sl@0: switch( pExpr->op ){ sl@0: /* Consider functions to be constant if all their arguments are constant sl@0: ** and *pArg==2 */ sl@0: case TK_FUNCTION: sl@0: if( (*pN)==2 ) return 0; sl@0: /* Fall through */ sl@0: case TK_ID: sl@0: case TK_COLUMN: sl@0: case TK_DOT: sl@0: case TK_AGG_FUNCTION: sl@0: case TK_AGG_COLUMN: sl@0: #ifndef SQLITE_OMIT_SUBQUERY sl@0: case TK_SELECT: sl@0: case TK_EXISTS: sl@0: testcase( pExpr->op==TK_SELECT ); sl@0: testcase( pExpr->op==TK_EXISTS ); sl@0: #endif sl@0: testcase( pExpr->op==TK_ID ); sl@0: testcase( pExpr->op==TK_COLUMN ); sl@0: testcase( pExpr->op==TK_DOT ); sl@0: testcase( pExpr->op==TK_AGG_FUNCTION ); sl@0: testcase( pExpr->op==TK_AGG_COLUMN ); sl@0: *pN = 0; sl@0: return 2; sl@0: case TK_IN: sl@0: if( pExpr->pSelect ){ sl@0: *pN = 0; sl@0: return 2; sl@0: } sl@0: default: sl@0: return 0; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Walk an expression tree. Return 1 if the expression is constant sl@0: ** and 0 if it involves variables or function calls. sl@0: ** sl@0: ** For the purposes of this function, a double-quoted string (ex: "abc") sl@0: ** is considered a variable but a single-quoted string (ex: 'abc') is sl@0: ** a constant. sl@0: */ sl@0: int sqlite3ExprIsConstant(Expr *p){ sl@0: int isConst = 1; sl@0: walkExprTree(p, exprNodeIsConstant, &isConst); sl@0: return isConst; sl@0: } sl@0: sl@0: /* sl@0: ** Walk an expression tree. Return 1 if the expression is constant sl@0: ** that does no originate from the ON or USING clauses of a join. sl@0: ** Return 0 if it involves variables or function calls or terms from sl@0: ** an ON or USING clause. sl@0: */ sl@0: int sqlite3ExprIsConstantNotJoin(Expr *p){ sl@0: int isConst = 3; sl@0: walkExprTree(p, exprNodeIsConstant, &isConst); sl@0: return isConst!=0; sl@0: } sl@0: sl@0: /* sl@0: ** Walk an expression tree. Return 1 if the expression is constant sl@0: ** or a function call with constant arguments. Return and 0 if there sl@0: ** are any variables. sl@0: ** sl@0: ** For the purposes of this function, a double-quoted string (ex: "abc") sl@0: ** is considered a variable but a single-quoted string (ex: 'abc') is sl@0: ** a constant. sl@0: */ sl@0: int sqlite3ExprIsConstantOrFunction(Expr *p){ sl@0: int isConst = 2; sl@0: walkExprTree(p, exprNodeIsConstant, &isConst); sl@0: return isConst!=0; sl@0: } sl@0: sl@0: /* sl@0: ** If the expression p codes a constant integer that is small enough sl@0: ** to fit in a 32-bit integer, return 1 and put the value of the integer sl@0: ** in *pValue. If the expression is not an integer or if it is too big sl@0: ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. sl@0: */ sl@0: int sqlite3ExprIsInteger(Expr *p, int *pValue){ sl@0: int rc = 0; sl@0: if( p->flags & EP_IntValue ){ sl@0: *pValue = p->iTable; sl@0: return 1; sl@0: } sl@0: switch( p->op ){ sl@0: case TK_INTEGER: { sl@0: rc = sqlite3GetInt32((char*)p->token.z, pValue); sl@0: break; sl@0: } sl@0: case TK_UPLUS: { sl@0: rc = sqlite3ExprIsInteger(p->pLeft, pValue); sl@0: break; sl@0: } sl@0: case TK_UMINUS: { sl@0: int v; sl@0: if( sqlite3ExprIsInteger(p->pLeft, &v) ){ sl@0: *pValue = -v; sl@0: rc = 1; sl@0: } sl@0: break; sl@0: } sl@0: default: break; sl@0: } sl@0: if( rc ){ sl@0: p->op = TK_INTEGER; sl@0: p->flags |= EP_IntValue; sl@0: p->iTable = *pValue; sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Return TRUE if the given string is a row-id column name. sl@0: */ sl@0: int sqlite3IsRowid(const char *z){ sl@0: if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; sl@0: if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; sl@0: if( sqlite3StrICmp(z, "OID")==0 ) return 1; sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up sl@0: ** that name in the set of source tables in pSrcList and make the pExpr sl@0: ** expression node refer back to that source column. The following changes sl@0: ** are made to pExpr: sl@0: ** sl@0: ** pExpr->iDb Set the index in db->aDb[] of the database holding sl@0: ** the table. sl@0: ** pExpr->iTable Set to the cursor number for the table obtained sl@0: ** from pSrcList. sl@0: ** pExpr->iColumn Set to the column number within the table. sl@0: ** pExpr->op Set to TK_COLUMN. sl@0: ** pExpr->pLeft Any expression this points to is deleted sl@0: ** pExpr->pRight Any expression this points to is deleted. sl@0: ** sl@0: ** The pDbToken is the name of the database (the "X"). This value may be sl@0: ** NULL meaning that name is of the form Y.Z or Z. Any available database sl@0: ** can be used. The pTableToken is the name of the table (the "Y"). This sl@0: ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it sl@0: ** means that the form of the name is Z and that columns from any table sl@0: ** can be used. sl@0: ** sl@0: ** If the name cannot be resolved unambiguously, leave an error message sl@0: ** in pParse and return non-zero. Return zero on success. sl@0: */ sl@0: static int lookupName( sl@0: Parse *pParse, /* The parsing context */ sl@0: Token *pDbToken, /* Name of the database containing table, or NULL */ sl@0: Token *pTableToken, /* Name of table containing column, or NULL */ sl@0: Token *pColumnToken, /* Name of the column. */ sl@0: NameContext *pNC, /* The name context used to resolve the name */ sl@0: Expr *pExpr /* Make this EXPR node point to the selected column */ sl@0: ){ sl@0: char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ sl@0: char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ sl@0: char *zCol = 0; /* Name of the column. The "Z" */ sl@0: int i, j; /* Loop counters */ sl@0: int cnt = 0; /* Number of matching column names */ sl@0: int cntTab = 0; /* Number of matching table names */ sl@0: sqlite3 *db = pParse->db; /* The database */ sl@0: struct SrcList_item *pItem; /* Use for looping over pSrcList items */ sl@0: struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ sl@0: NameContext *pTopNC = pNC; /* First namecontext in the list */ sl@0: Schema *pSchema = 0; /* Schema of the expression */ sl@0: sl@0: assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ sl@0: zDb = sqlite3NameFromToken(db, pDbToken); sl@0: zTab = sqlite3NameFromToken(db, pTableToken); sl@0: zCol = sqlite3NameFromToken(db, pColumnToken); sl@0: if( db->mallocFailed ){ sl@0: goto lookupname_end; sl@0: } sl@0: sl@0: pExpr->iTable = -1; sl@0: while( pNC && cnt==0 ){ sl@0: ExprList *pEList; sl@0: SrcList *pSrcList = pNC->pSrcList; sl@0: sl@0: if( pSrcList ){ sl@0: for(i=0, pItem=pSrcList->a; inSrc; i++, pItem++){ sl@0: Table *pTab; sl@0: int iDb; sl@0: Column *pCol; sl@0: sl@0: pTab = pItem->pTab; sl@0: assert( pTab!=0 ); sl@0: iDb = sqlite3SchemaToIndex(db, pTab->pSchema); sl@0: assert( pTab->nCol>0 ); sl@0: if( zTab ){ sl@0: if( pItem->zAlias ){ sl@0: char *zTabName = pItem->zAlias; sl@0: if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; sl@0: }else{ sl@0: char *zTabName = pTab->zName; sl@0: if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; sl@0: if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ sl@0: continue; sl@0: } sl@0: } sl@0: } sl@0: if( 0==(cntTab++) ){ sl@0: pExpr->iTable = pItem->iCursor; sl@0: pSchema = pTab->pSchema; sl@0: pMatch = pItem; sl@0: } sl@0: for(j=0, pCol=pTab->aCol; jnCol; j++, pCol++){ sl@0: if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ sl@0: const char *zColl = pTab->aCol[j].zColl; sl@0: IdList *pUsing; sl@0: cnt++; sl@0: pExpr->iTable = pItem->iCursor; sl@0: pMatch = pItem; sl@0: pSchema = pTab->pSchema; sl@0: /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ sl@0: pExpr->iColumn = j==pTab->iPKey ? -1 : j; sl@0: pExpr->affinity = pTab->aCol[j].affinity; sl@0: if( (pExpr->flags & EP_ExpCollate)==0 ){ sl@0: pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); sl@0: } sl@0: if( inSrc-1 ){ sl@0: if( pItem[1].jointype & JT_NATURAL ){ sl@0: /* If this match occurred in the left table of a natural join, sl@0: ** then skip the right table to avoid a duplicate match */ sl@0: pItem++; sl@0: i++; sl@0: }else if( (pUsing = pItem[1].pUsing)!=0 ){ sl@0: /* If this match occurs on a column that is in the USING clause sl@0: ** of a join, skip the search of the right table of the join sl@0: ** to avoid a duplicate match there. */ sl@0: int k; sl@0: for(k=0; knId; k++){ sl@0: if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ sl@0: pItem++; sl@0: i++; sl@0: break; sl@0: } sl@0: } sl@0: } sl@0: } sl@0: break; sl@0: } sl@0: } sl@0: } sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_TRIGGER sl@0: /* If we have not already resolved the name, then maybe sl@0: ** it is a new.* or old.* trigger argument reference sl@0: */ sl@0: if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ sl@0: TriggerStack *pTriggerStack = pParse->trigStack; sl@0: Table *pTab = 0; sl@0: u32 *piColMask; sl@0: if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ sl@0: pExpr->iTable = pTriggerStack->newIdx; sl@0: assert( pTriggerStack->pTab ); sl@0: pTab = pTriggerStack->pTab; sl@0: piColMask = &(pTriggerStack->newColMask); sl@0: }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ sl@0: pExpr->iTable = pTriggerStack->oldIdx; sl@0: assert( pTriggerStack->pTab ); sl@0: pTab = pTriggerStack->pTab; sl@0: piColMask = &(pTriggerStack->oldColMask); sl@0: } sl@0: sl@0: if( pTab ){ sl@0: int iCol; sl@0: Column *pCol = pTab->aCol; sl@0: sl@0: pSchema = pTab->pSchema; sl@0: cntTab++; sl@0: for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) { sl@0: if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ sl@0: const char *zColl = pTab->aCol[iCol].zColl; sl@0: cnt++; sl@0: pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol; sl@0: pExpr->affinity = pTab->aCol[iCol].affinity; sl@0: if( (pExpr->flags & EP_ExpCollate)==0 ){ sl@0: pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); sl@0: } sl@0: pExpr->pTab = pTab; sl@0: if( iCol>=0 ){ sl@0: testcase( iCol==31 ); sl@0: testcase( iCol==32 ); sl@0: *piColMask |= ((u32)1<=32?0xffffffff:0); sl@0: } sl@0: break; sl@0: } sl@0: } sl@0: } sl@0: } sl@0: #endif /* !defined(SQLITE_OMIT_TRIGGER) */ sl@0: sl@0: /* sl@0: ** Perhaps the name is a reference to the ROWID sl@0: */ sl@0: if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ sl@0: cnt = 1; sl@0: pExpr->iColumn = -1; sl@0: pExpr->affinity = SQLITE_AFF_INTEGER; sl@0: } sl@0: sl@0: /* sl@0: ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z sl@0: ** might refer to an result-set alias. This happens, for example, when sl@0: ** we are resolving names in the WHERE clause of the following command: sl@0: ** sl@0: ** SELECT a+b AS x FROM table WHERE x<10; sl@0: ** sl@0: ** In cases like this, replace pExpr with a copy of the expression that sl@0: ** forms the result set entry ("a+b" in the example) and return immediately. sl@0: ** Note that the expression in the result set should have already been sl@0: ** resolved by the time the WHERE clause is resolved. sl@0: */ sl@0: if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ sl@0: for(j=0; jnExpr; j++){ sl@0: char *zAs = pEList->a[j].zName; sl@0: if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ sl@0: Expr *pDup, *pOrig; sl@0: assert( pExpr->pLeft==0 && pExpr->pRight==0 ); sl@0: assert( pExpr->pList==0 ); sl@0: assert( pExpr->pSelect==0 ); sl@0: pOrig = pEList->a[j].pExpr; sl@0: if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){ sl@0: sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); sl@0: sqlite3DbFree(db, zCol); sl@0: return 2; sl@0: } sl@0: pDup = sqlite3ExprDup(db, pOrig); sl@0: if( pExpr->flags & EP_ExpCollate ){ sl@0: pDup->pColl = pExpr->pColl; sl@0: pDup->flags |= EP_ExpCollate; sl@0: } sl@0: if( pExpr->span.dyn ) sqlite3DbFree(db, (char*)pExpr->span.z); sl@0: if( pExpr->token.dyn ) sqlite3DbFree(db, (char*)pExpr->token.z); sl@0: memcpy(pExpr, pDup, sizeof(*pExpr)); sl@0: sqlite3DbFree(db, pDup); sl@0: cnt = 1; sl@0: pMatch = 0; sl@0: assert( zTab==0 && zDb==0 ); sl@0: goto lookupname_end_2; sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* Advance to the next name context. The loop will exit when either sl@0: ** we have a match (cnt>0) or when we run out of name contexts. sl@0: */ sl@0: if( cnt==0 ){ sl@0: pNC = pNC->pNext; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** If X and Y are NULL (in other words if only the column name Z is sl@0: ** supplied) and the value of Z is enclosed in double-quotes, then sl@0: ** Z is a string literal if it doesn't match any column names. In that sl@0: ** case, we need to return right away and not make any changes to sl@0: ** pExpr. sl@0: ** sl@0: ** Because no reference was made to outer contexts, the pNC->nRef sl@0: ** fields are not changed in any context. sl@0: */ sl@0: if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ sl@0: sqlite3DbFree(db, zCol); sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: ** cnt==0 means there was not match. cnt>1 means there were two or sl@0: ** more matches. Either way, we have an error. sl@0: */ sl@0: if( cnt!=1 ){ sl@0: const char *zErr; sl@0: zErr = cnt==0 ? "no such column" : "ambiguous column name"; sl@0: if( zDb ){ sl@0: sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol); sl@0: }else if( zTab ){ sl@0: sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol); sl@0: }else{ sl@0: sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol); sl@0: } sl@0: pTopNC->nErr++; sl@0: } sl@0: sl@0: /* If a column from a table in pSrcList is referenced, then record sl@0: ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes sl@0: ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the sl@0: ** column number is greater than the number of bits in the bitmask sl@0: ** then set the high-order bit of the bitmask. sl@0: */ sl@0: if( pExpr->iColumn>=0 && pMatch!=0 ){ sl@0: int n = pExpr->iColumn; sl@0: testcase( n==sizeof(Bitmask)*8-1 ); sl@0: if( n>=sizeof(Bitmask)*8 ){ sl@0: n = sizeof(Bitmask)*8-1; sl@0: } sl@0: assert( pMatch->iCursor==pExpr->iTable ); sl@0: pMatch->colUsed |= ((Bitmask)1)<pLeft); sl@0: pExpr->pLeft = 0; sl@0: sqlite3ExprDelete(db, pExpr->pRight); sl@0: pExpr->pRight = 0; sl@0: pExpr->op = TK_COLUMN; sl@0: lookupname_end_2: sl@0: sqlite3DbFree(db, zCol); sl@0: if( cnt==1 ){ sl@0: assert( pNC!=0 ); sl@0: sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); sl@0: if( pMatch && !pMatch->pSelect ){ sl@0: pExpr->pTab = pMatch->pTab; sl@0: } sl@0: /* Increment the nRef value on all name contexts from TopNC up to sl@0: ** the point where the name matched. */ sl@0: for(;;){ sl@0: assert( pTopNC!=0 ); sl@0: pTopNC->nRef++; sl@0: if( pTopNC==pNC ) break; sl@0: pTopNC = pTopNC->pNext; sl@0: } sl@0: return 0; sl@0: } else { sl@0: return 1; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** This routine is designed as an xFunc for walkExprTree(). sl@0: ** sl@0: ** Resolve symbolic names into TK_COLUMN operators for the current sl@0: ** node in the expression tree. Return 0 to continue the search down sl@0: ** the tree or 2 to abort the tree walk. sl@0: ** sl@0: ** This routine also does error checking and name resolution for sl@0: ** function names. The operator for aggregate functions is changed sl@0: ** to TK_AGG_FUNCTION. sl@0: */ sl@0: static int nameResolverStep(void *pArg, Expr *pExpr){ sl@0: NameContext *pNC = (NameContext*)pArg; sl@0: Parse *pParse; sl@0: sl@0: if( pExpr==0 ) return 1; sl@0: assert( pNC!=0 ); sl@0: pParse = pNC->pParse; sl@0: sl@0: if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; sl@0: ExprSetProperty(pExpr, EP_Resolved); sl@0: #ifndef NDEBUG sl@0: if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ sl@0: SrcList *pSrcList = pNC->pSrcList; sl@0: int i; sl@0: for(i=0; ipSrcList->nSrc; i++){ sl@0: assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursornTab); sl@0: } sl@0: } sl@0: #endif sl@0: switch( pExpr->op ){ sl@0: /* Double-quoted strings (ex: "abc") are used as identifiers if sl@0: ** possible. Otherwise they remain as strings. Single-quoted sl@0: ** strings (ex: 'abc') are always string literals. sl@0: */ sl@0: case TK_STRING: { sl@0: if( pExpr->token.z[0]=='\'' ) break; sl@0: /* Fall thru into the TK_ID case if this is a double-quoted string */ sl@0: } sl@0: /* A lone identifier is the name of a column. sl@0: */ sl@0: case TK_ID: { sl@0: lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); sl@0: return 1; sl@0: } sl@0: sl@0: /* A table name and column name: ID.ID sl@0: ** Or a database, table and column: ID.ID.ID sl@0: */ sl@0: case TK_DOT: { sl@0: Token *pColumn; sl@0: Token *pTable; sl@0: Token *pDb; sl@0: Expr *pRight; sl@0: sl@0: /* if( pSrcList==0 ) break; */ sl@0: pRight = pExpr->pRight; sl@0: if( pRight->op==TK_ID ){ sl@0: pDb = 0; sl@0: pTable = &pExpr->pLeft->token; sl@0: pColumn = &pRight->token; sl@0: }else{ sl@0: assert( pRight->op==TK_DOT ); sl@0: pDb = &pExpr->pLeft->token; sl@0: pTable = &pRight->pLeft->token; sl@0: pColumn = &pRight->pRight->token; sl@0: } sl@0: lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); sl@0: return 1; sl@0: } sl@0: sl@0: /* Resolve function names sl@0: */ sl@0: case TK_CONST_FUNC: sl@0: case TK_FUNCTION: { sl@0: ExprList *pList = pExpr->pList; /* The argument list */ sl@0: int n = pList ? pList->nExpr : 0; /* Number of arguments */ sl@0: int no_such_func = 0; /* True if no such function exists */ sl@0: int wrong_num_args = 0; /* True if wrong number of arguments */ sl@0: int is_agg = 0; /* True if is an aggregate function */ sl@0: int i; sl@0: int auth; /* Authorization to use the function */ sl@0: int nId; /* Number of characters in function name */ sl@0: const char *zId; /* The function name. */ sl@0: FuncDef *pDef; /* Information about the function */ sl@0: int enc = ENC(pParse->db); /* The database encoding */ sl@0: sl@0: zId = (char*)pExpr->token.z; sl@0: nId = pExpr->token.n; sl@0: pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); sl@0: if( pDef==0 ){ sl@0: pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); sl@0: if( pDef==0 ){ sl@0: no_such_func = 1; sl@0: }else{ sl@0: wrong_num_args = 1; sl@0: } sl@0: }else{ sl@0: is_agg = pDef->xFunc==0; sl@0: } sl@0: #ifndef SQLITE_OMIT_AUTHORIZATION sl@0: if( pDef ){ sl@0: auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); sl@0: if( auth!=SQLITE_OK ){ sl@0: if( auth==SQLITE_DENY ){ sl@0: sqlite3ErrorMsg(pParse, "not authorized to use function: %s", sl@0: pDef->zName); sl@0: pNC->nErr++; sl@0: } sl@0: pExpr->op = TK_NULL; sl@0: return 1; sl@0: } sl@0: } sl@0: #endif sl@0: if( is_agg && !pNC->allowAgg ){ sl@0: sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); sl@0: pNC->nErr++; sl@0: is_agg = 0; sl@0: }else if( no_such_func ){ sl@0: sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); sl@0: pNC->nErr++; sl@0: }else if( wrong_num_args ){ sl@0: sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", sl@0: nId, zId); sl@0: pNC->nErr++; sl@0: } sl@0: if( is_agg ){ sl@0: pExpr->op = TK_AGG_FUNCTION; sl@0: pNC->hasAgg = 1; sl@0: } sl@0: if( is_agg ) pNC->allowAgg = 0; sl@0: for(i=0; pNC->nErr==0 && ia[i].pExpr, nameResolverStep, pNC); sl@0: } sl@0: if( is_agg ) pNC->allowAgg = 1; sl@0: /* FIX ME: Compute pExpr->affinity based on the expected return sl@0: ** type of the function sl@0: */ sl@0: return is_agg; sl@0: } sl@0: #ifndef SQLITE_OMIT_SUBQUERY sl@0: case TK_SELECT: sl@0: case TK_EXISTS: sl@0: #endif sl@0: case TK_IN: { sl@0: if( pExpr->pSelect ){ sl@0: int nRef = pNC->nRef; sl@0: #ifndef SQLITE_OMIT_CHECK sl@0: if( pNC->isCheck ){ sl@0: sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); sl@0: } sl@0: #endif sl@0: sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); sl@0: assert( pNC->nRef>=nRef ); sl@0: if( nRef!=pNC->nRef ){ sl@0: ExprSetProperty(pExpr, EP_VarSelect); sl@0: } sl@0: } sl@0: break; sl@0: } sl@0: #ifndef SQLITE_OMIT_CHECK sl@0: case TK_VARIABLE: { sl@0: if( pNC->isCheck ){ sl@0: sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); sl@0: } sl@0: break; sl@0: } sl@0: #endif sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: ** This routine walks an expression tree and resolves references to sl@0: ** table columns. Nodes of the form ID.ID or ID resolve into an sl@0: ** index to the table in the table list and a column offset. The sl@0: ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable sl@0: ** value is changed to the index of the referenced table in pTabList sl@0: ** plus the "base" value. The base value will ultimately become the sl@0: ** VDBE cursor number for a cursor that is pointing into the referenced sl@0: ** table. The Expr.iColumn value is changed to the index of the column sl@0: ** of the referenced table. The Expr.iColumn value for the special sl@0: ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an sl@0: ** alias for ROWID. sl@0: ** sl@0: ** Also resolve function names and check the functions for proper sl@0: ** usage. Make sure all function names are recognized and all functions sl@0: ** have the correct number of arguments. Leave an error message sl@0: ** in pParse->zErrMsg if anything is amiss. Return the number of errors. sl@0: ** sl@0: ** If the expression contains aggregate functions then set the EP_Agg sl@0: ** property on the expression. sl@0: */ sl@0: int sqlite3ExprResolveNames( sl@0: NameContext *pNC, /* Namespace to resolve expressions in. */ sl@0: Expr *pExpr /* The expression to be analyzed. */ sl@0: ){ sl@0: int savedHasAgg; sl@0: sl@0: if( pExpr==0 ) return 0; sl@0: #if SQLITE_MAX_EXPR_DEPTH>0 sl@0: { sl@0: if( checkExprHeight(pNC->pParse, pExpr->nHeight + pNC->pParse->nHeight) ){ sl@0: return 1; sl@0: } sl@0: pNC->pParse->nHeight += pExpr->nHeight; sl@0: } sl@0: #endif sl@0: savedHasAgg = pNC->hasAgg; sl@0: pNC->hasAgg = 0; sl@0: walkExprTree(pExpr, nameResolverStep, pNC); sl@0: #if SQLITE_MAX_EXPR_DEPTH>0 sl@0: pNC->pParse->nHeight -= pExpr->nHeight; sl@0: #endif sl@0: if( pNC->nErr>0 ){ sl@0: ExprSetProperty(pExpr, EP_Error); sl@0: } sl@0: if( pNC->hasAgg ){ sl@0: ExprSetProperty(pExpr, EP_Agg); sl@0: }else if( savedHasAgg ){ sl@0: pNC->hasAgg = 1; sl@0: } sl@0: return ExprHasProperty(pExpr, EP_Error); sl@0: } sl@0: sl@0: /* sl@0: ** A pointer instance of this structure is used to pass information sl@0: ** through walkExprTree into codeSubqueryStep(). sl@0: */ sl@0: typedef struct QueryCoder QueryCoder; sl@0: struct QueryCoder { sl@0: Parse *pParse; /* The parsing context */ sl@0: NameContext *pNC; /* Namespace of first enclosing query */ sl@0: }; sl@0: sl@0: #ifdef SQLITE_TEST sl@0: int sqlite3_enable_in_opt = 1; sl@0: #else sl@0: #define sqlite3_enable_in_opt 1 sl@0: #endif sl@0: sl@0: /* sl@0: ** Return true if the IN operator optimization is enabled and sl@0: ** the SELECT statement p exists and is of the sl@0: ** simple form: sl@0: ** sl@0: ** SELECT FROM sl@0: ** sl@0: ** If this is the case, it may be possible to use an existing table sl@0: ** or index instead of generating an epheremal table. sl@0: */ sl@0: #ifndef SQLITE_OMIT_SUBQUERY sl@0: static int isCandidateForInOpt(Select *p){ sl@0: SrcList *pSrc; sl@0: ExprList *pEList; sl@0: Table *pTab; sl@0: if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */ sl@0: if( p==0 ) return 0; /* right-hand side of IN is SELECT */ sl@0: if( p->pPrior ) return 0; /* Not a compound SELECT */ sl@0: if( p->isDistinct ) return 0; /* No DISTINCT keyword */ sl@0: if( p->isAgg ) return 0; /* Contains no aggregate functions */ sl@0: if( p->pGroupBy ) return 0; /* Has no GROUP BY clause */ sl@0: if( p->pLimit ) return 0; /* Has no LIMIT clause */ sl@0: if( p->pOffset ) return 0; sl@0: if( p->pWhere ) return 0; /* Has no WHERE clause */ sl@0: pSrc = p->pSrc; sl@0: if( pSrc==0 ) return 0; /* A single table in the FROM clause */ sl@0: if( pSrc->nSrc!=1 ) return 0; sl@0: if( pSrc->a[0].pSelect ) return 0; /* FROM clause is not a subquery */ sl@0: pTab = pSrc->a[0].pTab; sl@0: if( pTab==0 ) return 0; sl@0: if( pTab->pSelect ) return 0; /* FROM clause is not a view */ sl@0: if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ sl@0: pEList = p->pEList; sl@0: if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ sl@0: if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ sl@0: return 1; sl@0: } sl@0: #endif /* SQLITE_OMIT_SUBQUERY */ sl@0: sl@0: /* sl@0: ** This function is used by the implementation of the IN (...) operator. sl@0: ** It's job is to find or create a b-tree structure that may be used sl@0: ** either to test for membership of the (...) set or to iterate through sl@0: ** its members, skipping duplicates. sl@0: ** sl@0: ** The cursor opened on the structure (database table, database index sl@0: ** or ephermal table) is stored in pX->iTable before this function returns. sl@0: ** The returned value indicates the structure type, as follows: sl@0: ** sl@0: ** IN_INDEX_ROWID - The cursor was opened on a database table. sl@0: ** IN_INDEX_INDEX - The cursor was opened on a database index. sl@0: ** IN_INDEX_EPH - The cursor was opened on a specially created and sl@0: ** populated epheremal table. sl@0: ** sl@0: ** An existing structure may only be used if the SELECT is of the simple sl@0: ** form: sl@0: ** sl@0: ** SELECT FROM
sl@0: ** sl@0: ** If prNotFound parameter is 0, then the structure will be used to iterate sl@0: ** through the set members, skipping any duplicates. In this case an sl@0: ** epheremal table must be used unless the selected is guaranteed sl@0: ** to be unique - either because it is an INTEGER PRIMARY KEY or it sl@0: ** is unique by virtue of a constraint or implicit index. sl@0: ** sl@0: ** If the prNotFound parameter is not 0, then the structure will be used sl@0: ** for fast set membership tests. In this case an epheremal table must sl@0: ** be used unless is an INTEGER PRIMARY KEY or an index can sl@0: ** be found with as its left-most column. sl@0: ** sl@0: ** When the structure is being used for set membership tests, the user sl@0: ** needs to know whether or not the structure contains an SQL NULL sl@0: ** value in order to correctly evaluate expressions like "X IN (Y, Z)". sl@0: ** If there is a chance that the structure may contain a NULL value at sl@0: ** runtime, then a register is allocated and the register number written sl@0: ** to *prNotFound. If there is no chance that the structure contains a sl@0: ** NULL value, then *prNotFound is left unchanged. sl@0: ** sl@0: ** If a register is allocated and its location stored in *prNotFound, then sl@0: ** its initial value is NULL. If the structure does not remain constant sl@0: ** for the duration of the query (i.e. the set is a correlated sub-select), sl@0: ** the value of the allocated register is reset to NULL each time the sl@0: ** structure is repopulated. This allows the caller to use vdbe code sl@0: ** equivalent to the following: sl@0: ** sl@0: ** if( register==NULL ){ sl@0: ** has_null = sl@0: ** register = 1 sl@0: ** } sl@0: ** sl@0: ** in order to avoid running the sl@0: ** test more often than is necessary. sl@0: */ sl@0: #ifndef SQLITE_OMIT_SUBQUERY sl@0: int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ sl@0: Select *p; sl@0: int eType = 0; sl@0: int iTab = pParse->nTab++; sl@0: int mustBeUnique = !prNotFound; sl@0: sl@0: /* The follwing if(...) expression is true if the SELECT is of the sl@0: ** simple form: sl@0: ** sl@0: ** SELECT FROM
sl@0: ** sl@0: ** If this is the case, it may be possible to use an existing table sl@0: ** or index instead of generating an epheremal table. sl@0: */ sl@0: p = pX->pSelect; sl@0: if( isCandidateForInOpt(p) ){ sl@0: sqlite3 *db = pParse->db; sl@0: Index *pIdx; sl@0: Expr *pExpr = p->pEList->a[0].pExpr; sl@0: int iCol = pExpr->iColumn; sl@0: Vdbe *v = sqlite3GetVdbe(pParse); sl@0: sl@0: /* This function is only called from two places. In both cases the vdbe sl@0: ** has already been allocated. So assume sqlite3GetVdbe() is always sl@0: ** successful here. sl@0: */ sl@0: assert(v); sl@0: if( iCol<0 ){ sl@0: int iMem = ++pParse->nMem; sl@0: int iAddr; sl@0: Table *pTab = p->pSrc->a[0].pTab; sl@0: int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); sl@0: sqlite3VdbeUsesBtree(v, iDb); sl@0: sl@0: iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); sl@0: sl@0: sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); sl@0: eType = IN_INDEX_ROWID; sl@0: sl@0: sqlite3VdbeJumpHere(v, iAddr); sl@0: }else{ sl@0: /* The collation sequence used by the comparison. If an index is to sl@0: ** be used in place of a temp-table, it must be ordered according sl@0: ** to this collation sequence. sl@0: */ sl@0: CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); sl@0: sl@0: /* Check that the affinity that will be used to perform the sl@0: ** comparison is the same as the affinity of the column. If sl@0: ** it is not, it is not possible to use any index. sl@0: */ sl@0: Table *pTab = p->pSrc->a[0].pTab; sl@0: char aff = comparisonAffinity(pX); sl@0: int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); sl@0: sl@0: for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ sl@0: if( (pIdx->aiColumn[0]==iCol) sl@0: && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0)) sl@0: && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) sl@0: ){ sl@0: int iDb; sl@0: int iMem = ++pParse->nMem; sl@0: int iAddr; sl@0: char *pKey; sl@0: sl@0: pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); sl@0: iDb = sqlite3SchemaToIndex(db, pIdx->pSchema); sl@0: sqlite3VdbeUsesBtree(v, iDb); sl@0: sl@0: iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); sl@0: sl@0: sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn); sl@0: sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, sl@0: pKey,P4_KEYINFO_HANDOFF); sl@0: VdbeComment((v, "%s", pIdx->zName)); sl@0: eType = IN_INDEX_INDEX; sl@0: sl@0: sqlite3VdbeJumpHere(v, iAddr); sl@0: if( prNotFound && !pTab->aCol[iCol].notNull ){ sl@0: *prNotFound = ++pParse->nMem; sl@0: } sl@0: } sl@0: } sl@0: } sl@0: } sl@0: sl@0: if( eType==0 ){ sl@0: int rMayHaveNull = 0; sl@0: if( prNotFound ){ sl@0: *prNotFound = rMayHaveNull = ++pParse->nMem; sl@0: } sl@0: sqlite3CodeSubselect(pParse, pX, rMayHaveNull); sl@0: eType = IN_INDEX_EPH; sl@0: }else{ sl@0: pX->iTable = iTab; sl@0: } sl@0: return eType; sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** Generate code for scalar subqueries used as an expression sl@0: ** and IN operators. Examples: sl@0: ** sl@0: ** (SELECT a FROM b) -- subquery sl@0: ** EXISTS (SELECT a FROM b) -- EXISTS subquery sl@0: ** x IN (4,5,11) -- IN operator with list on right-hand side sl@0: ** x IN (SELECT a FROM b) -- IN operator with subquery on the right sl@0: ** sl@0: ** The pExpr parameter describes the expression that contains the IN sl@0: ** operator or subquery. sl@0: */ sl@0: #ifndef SQLITE_OMIT_SUBQUERY sl@0: void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr, int rMayHaveNull){ sl@0: int testAddr = 0; /* One-time test address */ sl@0: Vdbe *v = sqlite3GetVdbe(pParse); sl@0: if( v==0 ) return; sl@0: sl@0: sl@0: /* This code must be run in its entirety every time it is encountered sl@0: ** if any of the following is true: sl@0: ** sl@0: ** * The right-hand side is a correlated subquery sl@0: ** * The right-hand side is an expression list containing variables sl@0: ** * We are inside a trigger sl@0: ** sl@0: ** If all of the above are false, then we can run this code just once sl@0: ** save the results, and reuse the same result on subsequent invocations. sl@0: */ sl@0: if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ sl@0: int mem = ++pParse->nMem; sl@0: sqlite3VdbeAddOp1(v, OP_If, mem); sl@0: testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem); sl@0: assert( testAddr>0 || pParse->db->mallocFailed ); sl@0: } sl@0: sl@0: switch( pExpr->op ){ sl@0: case TK_IN: { sl@0: char affinity; sl@0: KeyInfo keyInfo; sl@0: int addr; /* Address of OP_OpenEphemeral instruction */ sl@0: sl@0: if( rMayHaveNull ){ sl@0: sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); sl@0: } sl@0: sl@0: affinity = sqlite3ExprAffinity(pExpr->pLeft); sl@0: sl@0: /* Whether this is an 'x IN(SELECT...)' or an 'x IN()' sl@0: ** expression it is handled the same way. A virtual table is sl@0: ** filled with single-field index keys representing the results sl@0: ** from the SELECT or the . sl@0: ** sl@0: ** If the 'x' expression is a column value, or the SELECT... sl@0: ** statement returns a column value, then the affinity of that sl@0: ** column is used to build the index keys. If both 'x' and the sl@0: ** SELECT... statement are columns, then numeric affinity is used sl@0: ** if either column has NUMERIC or INTEGER affinity. If neither sl@0: ** 'x' nor the SELECT... statement are columns, then numeric affinity sl@0: ** is used. sl@0: */ sl@0: pExpr->iTable = pParse->nTab++; sl@0: addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, 1); sl@0: memset(&keyInfo, 0, sizeof(keyInfo)); sl@0: keyInfo.nField = 1; sl@0: sl@0: if( pExpr->pSelect ){ sl@0: /* Case 1: expr IN (SELECT ...) sl@0: ** sl@0: ** Generate code to write the results of the select into the temporary sl@0: ** table allocated and opened above. sl@0: */ sl@0: SelectDest dest; sl@0: ExprList *pEList; sl@0: sl@0: sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); sl@0: dest.affinity = (int)affinity; sl@0: assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); sl@0: if( sqlite3Select(pParse, pExpr->pSelect, &dest, 0, 0, 0) ){ sl@0: return; sl@0: } sl@0: pEList = pExpr->pSelect->pEList; sl@0: if( pEList && pEList->nExpr>0 ){ sl@0: keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, sl@0: pEList->a[0].pExpr); sl@0: } sl@0: }else if( pExpr->pList ){ sl@0: /* Case 2: expr IN (exprlist) sl@0: ** sl@0: ** For each expression, build an index key from the evaluation and sl@0: ** store it in the temporary table. If is a column, then use sl@0: ** that columns affinity when building index keys. If is not sl@0: ** a column, use numeric affinity. sl@0: */ sl@0: int i; sl@0: ExprList *pList = pExpr->pList; sl@0: struct ExprList_item *pItem; sl@0: int r1, r2, r3; sl@0: sl@0: if( !affinity ){ sl@0: affinity = SQLITE_AFF_NONE; sl@0: } sl@0: keyInfo.aColl[0] = pExpr->pLeft->pColl; sl@0: sl@0: /* Loop through each expression in . */ sl@0: r1 = sqlite3GetTempReg(pParse); sl@0: r2 = sqlite3GetTempReg(pParse); sl@0: for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ sl@0: Expr *pE2 = pItem->pExpr; sl@0: sl@0: /* If the expression is not constant then we will need to sl@0: ** disable the test that was generated above that makes sure sl@0: ** this code only executes once. Because for a non-constant sl@0: ** expression we need to rerun this code each time. sl@0: */ sl@0: if( testAddr && !sqlite3ExprIsConstant(pE2) ){ sl@0: sqlite3VdbeChangeToNoop(v, testAddr-1, 2); sl@0: testAddr = 0; sl@0: } sl@0: sl@0: /* Evaluate the expression and insert it into the temp table */ sl@0: pParse->disableColCache++; sl@0: r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); sl@0: assert( pParse->disableColCache>0 ); sl@0: pParse->disableColCache--; sl@0: sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); sl@0: sqlite3ExprCacheAffinityChange(pParse, r3, 1); sl@0: sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); sl@0: } sl@0: sqlite3ReleaseTempReg(pParse, r1); sl@0: sqlite3ReleaseTempReg(pParse, r2); sl@0: } sl@0: sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); sl@0: break; sl@0: } sl@0: sl@0: case TK_EXISTS: sl@0: case TK_SELECT: { sl@0: /* This has to be a scalar SELECT. Generate code to put the sl@0: ** value of this select in a memory cell and record the number sl@0: ** of the memory cell in iColumn. sl@0: */ sl@0: static const Token one = { (u8*)"1", 0, 1 }; sl@0: Select *pSel; sl@0: SelectDest dest; sl@0: sl@0: pSel = pExpr->pSelect; sl@0: sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); sl@0: if( pExpr->op==TK_SELECT ){ sl@0: dest.eDest = SRT_Mem; sl@0: sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); sl@0: VdbeComment((v, "Init subquery result")); sl@0: }else{ sl@0: dest.eDest = SRT_Exists; sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); sl@0: VdbeComment((v, "Init EXISTS result")); sl@0: } sl@0: sqlite3ExprDelete(pParse->db, pSel->pLimit); sl@0: pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); sl@0: if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0) ){ sl@0: return; sl@0: } sl@0: pExpr->iColumn = dest.iParm; sl@0: break; sl@0: } sl@0: } sl@0: sl@0: if( testAddr ){ sl@0: sqlite3VdbeJumpHere(v, testAddr-1); sl@0: } sl@0: sl@0: return; sl@0: } sl@0: #endif /* SQLITE_OMIT_SUBQUERY */ sl@0: sl@0: /* sl@0: ** Duplicate an 8-byte value sl@0: */ sl@0: static char *dup8bytes(Vdbe *v, const char *in){ sl@0: char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); sl@0: if( out ){ sl@0: memcpy(out, in, 8); sl@0: } sl@0: return out; sl@0: } sl@0: sl@0: /* sl@0: ** Generate an instruction that will put the floating point sl@0: ** value described by z[0..n-1] into register iMem. sl@0: ** sl@0: ** The z[] string will probably not be zero-terminated. But the sl@0: ** z[n] character is guaranteed to be something that does not look sl@0: ** like the continuation of the number. sl@0: */ sl@0: static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){ sl@0: assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); sl@0: if( z ){ sl@0: double value; sl@0: char *zV; sl@0: assert( !isdigit(z[n]) ); sl@0: sqlite3AtoF(z, &value); sl@0: if( sqlite3IsNaN(value) ){ sl@0: sqlite3VdbeAddOp2(v, OP_Null, 0, iMem); sl@0: }else{ sl@0: if( negateFlag ) value = -value; sl@0: zV = dup8bytes(v, (char*)&value); sl@0: sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); sl@0: } sl@0: } sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Generate an instruction that will put the integer describe by sl@0: ** text z[0..n-1] into register iMem. sl@0: ** sl@0: ** The z[] string will probably not be zero-terminated. But the sl@0: ** z[n] character is guaranteed to be something that does not look sl@0: ** like the continuation of the number. sl@0: */ sl@0: static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){ sl@0: const char *z; sl@0: if( pExpr->flags & EP_IntValue ){ sl@0: int i = pExpr->iTable; sl@0: if( negFlag ) i = -i; sl@0: sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); sl@0: }else if( (z = (char*)pExpr->token.z)!=0 ){ sl@0: int i; sl@0: int n = pExpr->token.n; sl@0: assert( !isdigit(z[n]) ); sl@0: if( sqlite3GetInt32(z, &i) ){ sl@0: if( negFlag ) i = -i; sl@0: sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); sl@0: }else if( sqlite3FitsIn64Bits(z, negFlag) ){ sl@0: i64 value; sl@0: char *zV; sl@0: sqlite3Atoi64(z, &value); sl@0: if( negFlag ) value = -value; sl@0: zV = dup8bytes(v, (char*)&value); sl@0: sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); sl@0: }else{ sl@0: codeReal(v, z, n, negFlag, iMem); sl@0: } sl@0: } sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Generate code that will extract the iColumn-th column from sl@0: ** table pTab and store the column value in a register. An effort sl@0: ** is made to store the column value in register iReg, but this is sl@0: ** not guaranteed. The location of the column value is returned. sl@0: ** sl@0: ** There must be an open cursor to pTab in iTable when this routine sl@0: ** is called. If iColumn<0 then code is generated that extracts the rowid. sl@0: ** sl@0: ** This routine might attempt to reuse the value of the column that sl@0: ** has already been loaded into a register. The value will always sl@0: ** be used if it has not undergone any affinity changes. But if sl@0: ** an affinity change has occurred, then the cached value will only be sl@0: ** used if allowAffChng is true. sl@0: */ sl@0: int sqlite3ExprCodeGetColumn( sl@0: Parse *pParse, /* Parsing and code generating context */ sl@0: Table *pTab, /* Description of the table we are reading from */ sl@0: int iColumn, /* Index of the table column */ sl@0: int iTable, /* The cursor pointing to the table */ sl@0: int iReg, /* Store results here */ sl@0: int allowAffChng /* True if prior affinity changes are OK */ sl@0: ){ sl@0: Vdbe *v = pParse->pVdbe; sl@0: int i; sl@0: struct yColCache *p; sl@0: sl@0: for(i=0, p=pParse->aColCache; inColCache; i++, p++){ sl@0: if( p->iTable==iTable && p->iColumn==iColumn sl@0: && (!p->affChange || allowAffChng) ){ sl@0: #if 0 sl@0: sqlite3VdbeAddOp0(v, OP_Noop); sl@0: VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg)); sl@0: #endif sl@0: return p->iReg; sl@0: } sl@0: } sl@0: assert( v!=0 ); sl@0: if( iColumn<0 ){ sl@0: int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; sl@0: sqlite3VdbeAddOp2(v, op, iTable, iReg); sl@0: }else if( pTab==0 ){ sl@0: sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg); sl@0: }else{ sl@0: int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; sl@0: sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg); sl@0: sqlite3ColumnDefault(v, pTab, iColumn); sl@0: #ifndef SQLITE_OMIT_FLOATING_POINT sl@0: if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){ sl@0: sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); sl@0: } sl@0: #endif sl@0: } sl@0: if( pParse->disableColCache==0 ){ sl@0: i = pParse->iColCache; sl@0: p = &pParse->aColCache[i]; sl@0: p->iTable = iTable; sl@0: p->iColumn = iColumn; sl@0: p->iReg = iReg; sl@0: p->affChange = 0; sl@0: i++; sl@0: if( i>=ArraySize(pParse->aColCache) ) i = 0; sl@0: if( i>pParse->nColCache ) pParse->nColCache = i; sl@0: pParse->iColCache = i; sl@0: } sl@0: return iReg; sl@0: } sl@0: sl@0: /* sl@0: ** Clear all column cache entries associated with the vdbe sl@0: ** cursor with cursor number iTable. sl@0: */ sl@0: void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){ sl@0: if( iTable<0 ){ sl@0: pParse->nColCache = 0; sl@0: pParse->iColCache = 0; sl@0: }else{ sl@0: int i; sl@0: for(i=0; inColCache; i++){ sl@0: if( pParse->aColCache[i].iTable==iTable ){ sl@0: testcase( i==pParse->nColCache-1 ); sl@0: pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache]; sl@0: pParse->iColCache = pParse->nColCache; sl@0: } sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Record the fact that an affinity change has occurred on iCount sl@0: ** registers starting with iStart. sl@0: */ sl@0: void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ sl@0: int iEnd = iStart + iCount - 1; sl@0: int i; sl@0: for(i=0; inColCache; i++){ sl@0: int r = pParse->aColCache[i].iReg; sl@0: if( r>=iStart && r<=iEnd ){ sl@0: pParse->aColCache[i].affChange = 1; sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Generate code to move content from registers iFrom...iFrom+nReg-1 sl@0: ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. sl@0: */ sl@0: void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ sl@0: int i; sl@0: if( iFrom==iTo ) return; sl@0: sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); sl@0: for(i=0; inColCache; i++){ sl@0: int x = pParse->aColCache[i].iReg; sl@0: if( x>=iFrom && xaColCache[i].iReg += iTo-iFrom; sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Generate code to copy content from registers iFrom...iFrom+nReg-1 sl@0: ** over to iTo..iTo+nReg-1. sl@0: */ sl@0: void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){ sl@0: int i; sl@0: if( iFrom==iTo ) return; sl@0: for(i=0; ipVdbe, OP_Copy, iFrom+i, iTo+i); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Return true if any register in the range iFrom..iTo (inclusive) sl@0: ** is used as part of the column cache. sl@0: */ sl@0: static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ sl@0: int i; sl@0: for(i=0; inColCache; i++){ sl@0: int r = pParse->aColCache[i].iReg; sl@0: if( r>=iFrom && r<=iTo ) return 1; sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: ** Theres is a value in register iCurrent. We ultimately want sl@0: ** the value to be in register iTarget. It might be that sl@0: ** iCurrent and iTarget are the same register. sl@0: ** sl@0: ** We are going to modify the value, so we need to make sure it sl@0: ** is not a cached register. If iCurrent is a cached register, sl@0: ** then try to move the value over to iTarget. If iTarget is a sl@0: ** cached register, then clear the corresponding cache line. sl@0: ** sl@0: ** Return the register that the value ends up in. sl@0: */ sl@0: int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){ sl@0: int i; sl@0: assert( pParse->pVdbe!=0 ); sl@0: if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){ sl@0: return iCurrent; sl@0: } sl@0: if( iCurrent!=iTarget ){ sl@0: sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget); sl@0: } sl@0: for(i=0; inColCache; i++){ sl@0: if( pParse->aColCache[i].iReg==iTarget ){ sl@0: pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache]; sl@0: pParse->iColCache = pParse->nColCache; sl@0: } sl@0: } sl@0: return iTarget; sl@0: } sl@0: sl@0: /* sl@0: ** If the last instruction coded is an ephemeral copy of any of sl@0: ** the registers in the nReg registers beginning with iReg, then sl@0: ** convert the last instruction from OP_SCopy to OP_Copy. sl@0: */ sl@0: void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){ sl@0: int addr; sl@0: VdbeOp *pOp; sl@0: Vdbe *v; sl@0: sl@0: v = pParse->pVdbe; sl@0: addr = sqlite3VdbeCurrentAddr(v); sl@0: pOp = sqlite3VdbeGetOp(v, addr-1); sl@0: assert( pOp || pParse->db->mallocFailed ); sl@0: if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1opcode = OP_Copy; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Generate code into the current Vdbe to evaluate the given sl@0: ** expression. Attempt to store the results in register "target". sl@0: ** Return the register where results are stored. sl@0: ** sl@0: ** With this routine, there is no guaranteed that results will sl@0: ** be stored in target. The result might be stored in some other sl@0: ** register if it is convenient to do so. The calling function sl@0: ** must check the return code and move the results to the desired sl@0: ** register. sl@0: */ sl@0: int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ sl@0: Vdbe *v = pParse->pVdbe; /* The VM under construction */ sl@0: int op; /* The opcode being coded */ sl@0: int inReg = target; /* Results stored in register inReg */ sl@0: int regFree1 = 0; /* If non-zero free this temporary register */ sl@0: int regFree2 = 0; /* If non-zero free this temporary register */ sl@0: int r1, r2, r3, r4; /* Various register numbers */ sl@0: sl@0: assert( v!=0 || pParse->db->mallocFailed ); sl@0: assert( target>0 && target<=pParse->nMem ); sl@0: if( v==0 ) return 0; sl@0: sl@0: if( pExpr==0 ){ sl@0: op = TK_NULL; sl@0: }else{ sl@0: op = pExpr->op; sl@0: } sl@0: switch( op ){ sl@0: case TK_AGG_COLUMN: { sl@0: AggInfo *pAggInfo = pExpr->pAggInfo; sl@0: struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; sl@0: if( !pAggInfo->directMode ){ sl@0: assert( pCol->iMem>0 ); sl@0: inReg = pCol->iMem; sl@0: break; sl@0: }else if( pAggInfo->useSortingIdx ){ sl@0: sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx, sl@0: pCol->iSorterColumn, target); sl@0: break; sl@0: } sl@0: /* Otherwise, fall thru into the TK_COLUMN case */ sl@0: } sl@0: case TK_COLUMN: { sl@0: if( pExpr->iTable<0 ){ sl@0: /* This only happens when coding check constraints */ sl@0: assert( pParse->ckBase>0 ); sl@0: inReg = pExpr->iColumn + pParse->ckBase; sl@0: }else{ sl@0: testcase( (pExpr->flags & EP_AnyAff)!=0 ); sl@0: inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, sl@0: pExpr->iColumn, pExpr->iTable, target, sl@0: pExpr->flags & EP_AnyAff); sl@0: } sl@0: break; sl@0: } sl@0: case TK_INTEGER: { sl@0: codeInteger(v, pExpr, 0, target); sl@0: break; sl@0: } sl@0: case TK_FLOAT: { sl@0: codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target); sl@0: break; sl@0: } sl@0: case TK_STRING: { sl@0: sqlite3DequoteExpr(pParse->db, pExpr); sl@0: sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0, sl@0: (char*)pExpr->token.z, pExpr->token.n); sl@0: break; sl@0: } sl@0: case TK_NULL: { sl@0: sqlite3VdbeAddOp2(v, OP_Null, 0, target); sl@0: break; sl@0: } sl@0: #ifndef SQLITE_OMIT_BLOB_LITERAL sl@0: case TK_BLOB: { sl@0: int n; sl@0: const char *z; sl@0: char *zBlob; sl@0: assert( pExpr->token.n>=3 ); sl@0: assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' ); sl@0: assert( pExpr->token.z[1]=='\'' ); sl@0: assert( pExpr->token.z[pExpr->token.n-1]=='\'' ); sl@0: n = pExpr->token.n - 3; sl@0: z = (char*)pExpr->token.z + 2; sl@0: zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); sl@0: sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); sl@0: break; sl@0: } sl@0: #endif sl@0: case TK_VARIABLE: { sl@0: sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target); sl@0: if( pExpr->token.n>1 ){ sl@0: sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n); sl@0: } sl@0: break; sl@0: } sl@0: case TK_REGISTER: { sl@0: inReg = pExpr->iTable; sl@0: break; sl@0: } sl@0: #ifndef SQLITE_OMIT_CAST sl@0: case TK_CAST: { sl@0: /* Expressions of the form: CAST(pLeft AS token) */ sl@0: int aff, to_op; sl@0: inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); sl@0: aff = sqlite3AffinityType(&pExpr->token); sl@0: to_op = aff - SQLITE_AFF_TEXT + OP_ToText; sl@0: assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); sl@0: assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); sl@0: assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); sl@0: assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); sl@0: assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); sl@0: testcase( to_op==OP_ToText ); sl@0: testcase( to_op==OP_ToBlob ); sl@0: testcase( to_op==OP_ToNumeric ); sl@0: testcase( to_op==OP_ToInt ); sl@0: testcase( to_op==OP_ToReal ); sl@0: sqlite3VdbeAddOp1(v, to_op, inReg); sl@0: testcase( usedAsColumnCache(pParse, inReg, inReg) ); sl@0: sqlite3ExprCacheAffinityChange(pParse, inReg, 1); sl@0: break; sl@0: } sl@0: #endif /* SQLITE_OMIT_CAST */ sl@0: case TK_LT: sl@0: case TK_LE: sl@0: case TK_GT: sl@0: case TK_GE: sl@0: case TK_NE: sl@0: case TK_EQ: { sl@0: assert( TK_LT==OP_Lt ); sl@0: assert( TK_LE==OP_Le ); sl@0: assert( TK_GT==OP_Gt ); sl@0: assert( TK_GE==OP_Ge ); sl@0: assert( TK_EQ==OP_Eq ); sl@0: assert( TK_NE==OP_Ne ); sl@0: testcase( op==TK_LT ); sl@0: testcase( op==TK_LE ); sl@0: testcase( op==TK_GT ); sl@0: testcase( op==TK_GE ); sl@0: testcase( op==TK_EQ ); sl@0: testcase( op==TK_NE ); sl@0: codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, sl@0: pExpr->pRight, &r2, ®Free2); sl@0: codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, sl@0: r1, r2, inReg, SQLITE_STOREP2); sl@0: testcase( regFree1==0 ); sl@0: testcase( regFree2==0 ); sl@0: break; sl@0: } sl@0: case TK_AND: sl@0: case TK_OR: sl@0: case TK_PLUS: sl@0: case TK_STAR: sl@0: case TK_MINUS: sl@0: case TK_REM: sl@0: case TK_BITAND: sl@0: case TK_BITOR: sl@0: case TK_SLASH: sl@0: case TK_LSHIFT: sl@0: case TK_RSHIFT: sl@0: case TK_CONCAT: { sl@0: assert( TK_AND==OP_And ); sl@0: assert( TK_OR==OP_Or ); sl@0: assert( TK_PLUS==OP_Add ); sl@0: assert( TK_MINUS==OP_Subtract ); sl@0: assert( TK_REM==OP_Remainder ); sl@0: assert( TK_BITAND==OP_BitAnd ); sl@0: assert( TK_BITOR==OP_BitOr ); sl@0: assert( TK_SLASH==OP_Divide ); sl@0: assert( TK_LSHIFT==OP_ShiftLeft ); sl@0: assert( TK_RSHIFT==OP_ShiftRight ); sl@0: assert( TK_CONCAT==OP_Concat ); sl@0: testcase( op==TK_AND ); sl@0: testcase( op==TK_OR ); sl@0: testcase( op==TK_PLUS ); sl@0: testcase( op==TK_MINUS ); sl@0: testcase( op==TK_REM ); sl@0: testcase( op==TK_BITAND ); sl@0: testcase( op==TK_BITOR ); sl@0: testcase( op==TK_SLASH ); sl@0: testcase( op==TK_LSHIFT ); sl@0: testcase( op==TK_RSHIFT ); sl@0: testcase( op==TK_CONCAT ); sl@0: r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); sl@0: r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); sl@0: sqlite3VdbeAddOp3(v, op, r2, r1, target); sl@0: testcase( regFree1==0 ); sl@0: testcase( regFree2==0 ); sl@0: break; sl@0: } sl@0: case TK_UMINUS: { sl@0: Expr *pLeft = pExpr->pLeft; sl@0: assert( pLeft ); sl@0: if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ sl@0: if( pLeft->op==TK_FLOAT ){ sl@0: codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target); sl@0: }else{ sl@0: codeInteger(v, pLeft, 1, target); sl@0: } sl@0: }else{ sl@0: regFree1 = r1 = sqlite3GetTempReg(pParse); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); sl@0: r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); sl@0: sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); sl@0: testcase( regFree2==0 ); sl@0: } sl@0: inReg = target; sl@0: break; sl@0: } sl@0: case TK_BITNOT: sl@0: case TK_NOT: { sl@0: assert( TK_BITNOT==OP_BitNot ); sl@0: assert( TK_NOT==OP_Not ); sl@0: testcase( op==TK_BITNOT ); sl@0: testcase( op==TK_NOT ); sl@0: inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); sl@0: testcase( inReg==target ); sl@0: testcase( usedAsColumnCache(pParse, inReg, inReg) ); sl@0: inReg = sqlite3ExprWritableRegister(pParse, inReg, target); sl@0: sqlite3VdbeAddOp1(v, op, inReg); sl@0: break; sl@0: } sl@0: case TK_ISNULL: sl@0: case TK_NOTNULL: { sl@0: int addr; sl@0: assert( TK_ISNULL==OP_IsNull ); sl@0: assert( TK_NOTNULL==OP_NotNull ); sl@0: testcase( op==TK_ISNULL ); sl@0: testcase( op==TK_NOTNULL ); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 1, target); sl@0: r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); sl@0: testcase( regFree1==0 ); sl@0: addr = sqlite3VdbeAddOp1(v, op, r1); sl@0: sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); sl@0: sqlite3VdbeJumpHere(v, addr); sl@0: break; sl@0: } sl@0: case TK_AGG_FUNCTION: { sl@0: AggInfo *pInfo = pExpr->pAggInfo; sl@0: if( pInfo==0 ){ sl@0: sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", sl@0: &pExpr->span); sl@0: }else{ sl@0: inReg = pInfo->aFunc[pExpr->iAgg].iMem; sl@0: } sl@0: break; sl@0: } sl@0: case TK_CONST_FUNC: sl@0: case TK_FUNCTION: { sl@0: ExprList *pList = pExpr->pList; sl@0: int nExpr = pList ? pList->nExpr : 0; sl@0: FuncDef *pDef; sl@0: int nId; sl@0: const char *zId; sl@0: int constMask = 0; sl@0: int i; sl@0: sqlite3 *db = pParse->db; sl@0: u8 enc = ENC(db); sl@0: CollSeq *pColl = 0; sl@0: sl@0: testcase( op==TK_CONST_FUNC ); sl@0: testcase( op==TK_FUNCTION ); sl@0: zId = (char*)pExpr->token.z; sl@0: nId = pExpr->token.n; sl@0: pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); sl@0: assert( pDef!=0 ); sl@0: if( pList ){ sl@0: nExpr = pList->nExpr; sl@0: r1 = sqlite3GetTempRange(pParse, nExpr); sl@0: sqlite3ExprCodeExprList(pParse, pList, r1, 1); sl@0: }else{ sl@0: nExpr = r1 = 0; sl@0: } sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: /* Possibly overload the function if the first argument is sl@0: ** a virtual table column. sl@0: ** sl@0: ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the sl@0: ** second argument, not the first, as the argument to test to sl@0: ** see if it is a column in a virtual table. This is done because sl@0: ** the left operand of infix functions (the operand we want to sl@0: ** control overloading) ends up as the second argument to the sl@0: ** function. The expression "A glob B" is equivalent to sl@0: ** "glob(B,A). We want to use the A in "A glob B" to test sl@0: ** for function overloading. But we use the B term in "glob(B,A)". sl@0: */ sl@0: if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ sl@0: pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr); sl@0: }else if( nExpr>0 ){ sl@0: pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr); sl@0: } sl@0: #endif sl@0: for(i=0; ia[i].pExpr) ){ sl@0: constMask |= (1<needCollSeq && !pColl ){ sl@0: pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); sl@0: } sl@0: } sl@0: if( pDef->needCollSeq ){ sl@0: if( !pColl ) pColl = pParse->db->pDfltColl; sl@0: sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); sl@0: } sl@0: sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, sl@0: (char*)pDef, P4_FUNCDEF); sl@0: sqlite3VdbeChangeP5(v, nExpr); sl@0: if( nExpr ){ sl@0: sqlite3ReleaseTempRange(pParse, r1, nExpr); sl@0: } sl@0: sqlite3ExprCacheAffinityChange(pParse, r1, nExpr); sl@0: break; sl@0: } sl@0: #ifndef SQLITE_OMIT_SUBQUERY sl@0: case TK_EXISTS: sl@0: case TK_SELECT: { sl@0: testcase( op==TK_EXISTS ); sl@0: testcase( op==TK_SELECT ); sl@0: if( pExpr->iColumn==0 ){ sl@0: sqlite3CodeSubselect(pParse, pExpr, 0); sl@0: } sl@0: inReg = pExpr->iColumn; sl@0: break; sl@0: } sl@0: case TK_IN: { sl@0: int rNotFound = 0; sl@0: int rMayHaveNull = 0; sl@0: int j2, j3, j4, j5; sl@0: char affinity; sl@0: int eType; sl@0: sl@0: VdbeNoopComment((v, "begin IN expr r%d", target)); sl@0: eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull); sl@0: if( rMayHaveNull ){ sl@0: rNotFound = ++pParse->nMem; sl@0: } sl@0: sl@0: /* Figure out the affinity to use to create a key from the results sl@0: ** of the expression. affinityStr stores a static string suitable for sl@0: ** P4 of OP_MakeRecord. sl@0: */ sl@0: affinity = comparisonAffinity(pExpr); sl@0: sl@0: sl@0: /* Code the from " IN (...)". The temporary table sl@0: ** pExpr->iTable contains the values that make up the (...) set. sl@0: */ sl@0: pParse->disableColCache++; sl@0: sqlite3ExprCode(pParse, pExpr->pLeft, target); sl@0: pParse->disableColCache--; sl@0: j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target); sl@0: if( eType==IN_INDEX_ROWID ){ sl@0: j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target); sl@0: j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 1, target); sl@0: j5 = sqlite3VdbeAddOp0(v, OP_Goto); sl@0: sqlite3VdbeJumpHere(v, j3); sl@0: sqlite3VdbeJumpHere(v, j4); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 0, target); sl@0: }else{ sl@0: r2 = regFree2 = sqlite3GetTempReg(pParse); sl@0: sl@0: /* Create a record and test for set membership. If the set contains sl@0: ** the value, then jump to the end of the test code. The target sl@0: ** register still contains the true (1) value written to it earlier. sl@0: */ sl@0: sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 1, target); sl@0: j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2); sl@0: sl@0: /* If the set membership test fails, then the result of the sl@0: ** "x IN (...)" expression must be either 0 or NULL. If the set sl@0: ** contains no NULL values, then the result is 0. If the set sl@0: ** contains one or more NULL values, then the result of the sl@0: ** expression is also NULL. sl@0: */ sl@0: if( rNotFound==0 ){ sl@0: /* This branch runs if it is known at compile time (now) that sl@0: ** the set contains no NULL values. This happens as the result sl@0: ** of a "NOT NULL" constraint in the database schema. No need sl@0: ** to test the data structure at runtime in this case. sl@0: */ sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 0, target); sl@0: }else{ sl@0: /* This block populates the rNotFound register with either NULL sl@0: ** or 0 (an integer value). If the data structure contains one sl@0: ** or more NULLs, then set rNotFound to NULL. Otherwise, set it sl@0: ** to 0. If register rMayHaveNull is already set to some value sl@0: ** other than NULL, then the test has already been run and sl@0: ** rNotFound is already populated. sl@0: */ sl@0: static const char nullRecord[] = { 0x02, 0x00 }; sl@0: j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull); sl@0: sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound); sl@0: sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0, sl@0: nullRecord, P4_STATIC); sl@0: j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound); sl@0: sqlite3VdbeJumpHere(v, j4); sl@0: sqlite3VdbeJumpHere(v, j3); sl@0: sl@0: /* Copy the value of register rNotFound (which is either NULL or 0) sl@0: ** into the target register. This will be the result of the sl@0: ** expression. sl@0: */ sl@0: sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target); sl@0: } sl@0: } sl@0: sqlite3VdbeJumpHere(v, j2); sl@0: sqlite3VdbeJumpHere(v, j5); sl@0: VdbeComment((v, "end IN expr r%d", target)); sl@0: break; sl@0: } sl@0: #endif sl@0: /* sl@0: ** x BETWEEN y AND z sl@0: ** sl@0: ** This is equivalent to sl@0: ** sl@0: ** x>=y AND x<=z sl@0: ** sl@0: ** X is stored in pExpr->pLeft. sl@0: ** Y is stored in pExpr->pList->a[0].pExpr. sl@0: ** Z is stored in pExpr->pList->a[1].pExpr. sl@0: */ sl@0: case TK_BETWEEN: { sl@0: Expr *pLeft = pExpr->pLeft; sl@0: struct ExprList_item *pLItem = pExpr->pList->a; sl@0: Expr *pRight = pLItem->pExpr; sl@0: sl@0: codeCompareOperands(pParse, pLeft, &r1, ®Free1, sl@0: pRight, &r2, ®Free2); sl@0: testcase( regFree1==0 ); sl@0: testcase( regFree2==0 ); sl@0: r3 = sqlite3GetTempReg(pParse); sl@0: r4 = sqlite3GetTempReg(pParse); sl@0: codeCompare(pParse, pLeft, pRight, OP_Ge, sl@0: r1, r2, r3, SQLITE_STOREP2); sl@0: pLItem++; sl@0: pRight = pLItem->pExpr; sl@0: sqlite3ReleaseTempReg(pParse, regFree2); sl@0: r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); sl@0: testcase( regFree2==0 ); sl@0: codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); sl@0: sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); sl@0: sqlite3ReleaseTempReg(pParse, r3); sl@0: sqlite3ReleaseTempReg(pParse, r4); sl@0: break; sl@0: } sl@0: case TK_UPLUS: { sl@0: inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); sl@0: break; sl@0: } sl@0: sl@0: /* sl@0: ** Form A: sl@0: ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END sl@0: ** sl@0: ** Form B: sl@0: ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END sl@0: ** sl@0: ** Form A is can be transformed into the equivalent form B as follows: sl@0: ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... sl@0: ** WHEN x=eN THEN rN ELSE y END sl@0: ** sl@0: ** X (if it exists) is in pExpr->pLeft. sl@0: ** Y is in pExpr->pRight. The Y is also optional. If there is no sl@0: ** ELSE clause and no other term matches, then the result of the sl@0: ** exprssion is NULL. sl@0: ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. sl@0: ** sl@0: ** The result of the expression is the Ri for the first matching Ei, sl@0: ** or if there is no matching Ei, the ELSE term Y, or if there is sl@0: ** no ELSE term, NULL. sl@0: */ sl@0: case TK_CASE: { sl@0: int endLabel; /* GOTO label for end of CASE stmt */ sl@0: int nextCase; /* GOTO label for next WHEN clause */ sl@0: int nExpr; /* 2x number of WHEN terms */ sl@0: int i; /* Loop counter */ sl@0: ExprList *pEList; /* List of WHEN terms */ sl@0: struct ExprList_item *aListelem; /* Array of WHEN terms */ sl@0: Expr opCompare; /* The X==Ei expression */ sl@0: Expr cacheX; /* Cached expression X */ sl@0: Expr *pX; /* The X expression */ sl@0: Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ sl@0: sl@0: assert(pExpr->pList); sl@0: assert((pExpr->pList->nExpr % 2) == 0); sl@0: assert(pExpr->pList->nExpr > 0); sl@0: pEList = pExpr->pList; sl@0: aListelem = pEList->a; sl@0: nExpr = pEList->nExpr; sl@0: endLabel = sqlite3VdbeMakeLabel(v); sl@0: if( (pX = pExpr->pLeft)!=0 ){ sl@0: cacheX = *pX; sl@0: testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER ); sl@0: cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); sl@0: testcase( regFree1==0 ); sl@0: cacheX.op = TK_REGISTER; sl@0: cacheX.iColumn = 0; sl@0: opCompare.op = TK_EQ; sl@0: opCompare.pLeft = &cacheX; sl@0: pTest = &opCompare; sl@0: } sl@0: pParse->disableColCache++; sl@0: for(i=0; iop==TK_COLUMN || pTest->op==TK_REGISTER ); sl@0: sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); sl@0: testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); sl@0: testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); sl@0: sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); sl@0: sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); sl@0: sqlite3VdbeResolveLabel(v, nextCase); sl@0: } sl@0: if( pExpr->pRight ){ sl@0: sqlite3ExprCode(pParse, pExpr->pRight, target); sl@0: }else{ sl@0: sqlite3VdbeAddOp2(v, OP_Null, 0, target); sl@0: } sl@0: sqlite3VdbeResolveLabel(v, endLabel); sl@0: assert( pParse->disableColCache>0 ); sl@0: pParse->disableColCache--; sl@0: break; sl@0: } sl@0: #ifndef SQLITE_OMIT_TRIGGER sl@0: case TK_RAISE: { sl@0: if( !pParse->trigStack ){ sl@0: sqlite3ErrorMsg(pParse, sl@0: "RAISE() may only be used within a trigger-program"); sl@0: return 0; sl@0: } sl@0: if( pExpr->iColumn!=OE_Ignore ){ sl@0: assert( pExpr->iColumn==OE_Rollback || sl@0: pExpr->iColumn == OE_Abort || sl@0: pExpr->iColumn == OE_Fail ); sl@0: sqlite3DequoteExpr(pParse->db, pExpr); sl@0: sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0, sl@0: (char*)pExpr->token.z, pExpr->token.n); sl@0: } else { sl@0: assert( pExpr->iColumn == OE_Ignore ); sl@0: sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0); sl@0: sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump); sl@0: VdbeComment((v, "raise(IGNORE)")); sl@0: } sl@0: break; sl@0: } sl@0: #endif sl@0: } sl@0: sqlite3ReleaseTempReg(pParse, regFree1); sl@0: sqlite3ReleaseTempReg(pParse, regFree2); sl@0: return inReg; sl@0: } sl@0: sl@0: /* sl@0: ** Generate code to evaluate an expression and store the results sl@0: ** into a register. Return the register number where the results sl@0: ** are stored. sl@0: ** sl@0: ** If the register is a temporary register that can be deallocated, sl@0: ** then write its number into *pReg. If the result register is not sl@0: ** a temporary, then set *pReg to zero. sl@0: */ sl@0: int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ sl@0: int r1 = sqlite3GetTempReg(pParse); sl@0: int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); sl@0: if( r2==r1 ){ sl@0: *pReg = r1; sl@0: }else{ sl@0: sqlite3ReleaseTempReg(pParse, r1); sl@0: *pReg = 0; sl@0: } sl@0: return r2; sl@0: } sl@0: sl@0: /* sl@0: ** Generate code that will evaluate expression pExpr and store the sl@0: ** results in register target. The results are guaranteed to appear sl@0: ** in register target. sl@0: */ sl@0: int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ sl@0: int inReg; sl@0: sl@0: assert( target>0 && target<=pParse->nMem ); sl@0: inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); sl@0: assert( pParse->pVdbe || pParse->db->mallocFailed ); sl@0: if( inReg!=target && pParse->pVdbe ){ sl@0: sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); sl@0: } sl@0: return target; sl@0: } sl@0: sl@0: /* sl@0: ** Generate code that evalutes the given expression and puts the result sl@0: ** in register target. sl@0: ** sl@0: ** Also make a copy of the expression results into another "cache" register sl@0: ** and modify the expression so that the next time it is evaluated, sl@0: ** the result is a copy of the cache register. sl@0: ** sl@0: ** This routine is used for expressions that are used multiple sl@0: ** times. They are evaluated once and the results of the expression sl@0: ** are reused. sl@0: */ sl@0: int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ sl@0: Vdbe *v = pParse->pVdbe; sl@0: int inReg; sl@0: inReg = sqlite3ExprCode(pParse, pExpr, target); sl@0: assert( target>0 ); sl@0: if( pExpr->op!=TK_REGISTER ){ sl@0: int iMem; sl@0: iMem = ++pParse->nMem; sl@0: sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); sl@0: pExpr->iTable = iMem; sl@0: pExpr->iColumn = pExpr->op; sl@0: pExpr->op = TK_REGISTER; sl@0: } sl@0: return inReg; sl@0: } sl@0: sl@0: /* sl@0: ** Return TRUE if pExpr is an constant expression that is appropriate sl@0: ** for factoring out of a loop. Appropriate expressions are: sl@0: ** sl@0: ** * Any expression that evaluates to two or more opcodes. sl@0: ** sl@0: ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, sl@0: ** or OP_Variable that does not need to be placed in a sl@0: ** specific register. sl@0: ** sl@0: ** There is no point in factoring out single-instruction constant sl@0: ** expressions that need to be placed in a particular register. sl@0: ** We could factor them out, but then we would end up adding an sl@0: ** OP_SCopy instruction to move the value into the correct register sl@0: ** later. We might as well just use the original instruction and sl@0: ** avoid the OP_SCopy. sl@0: */ sl@0: static int isAppropriateForFactoring(Expr *p){ sl@0: if( !sqlite3ExprIsConstantNotJoin(p) ){ sl@0: return 0; /* Only constant expressions are appropriate for factoring */ sl@0: } sl@0: if( (p->flags & EP_FixedDest)==0 ){ sl@0: return 1; /* Any constant without a fixed destination is appropriate */ sl@0: } sl@0: while( p->op==TK_UPLUS ) p = p->pLeft; sl@0: switch( p->op ){ sl@0: #ifndef SQLITE_OMIT_BLOB_LITERAL sl@0: case TK_BLOB: sl@0: #endif sl@0: case TK_VARIABLE: sl@0: case TK_INTEGER: sl@0: case TK_FLOAT: sl@0: case TK_NULL: sl@0: case TK_STRING: { sl@0: testcase( p->op==TK_BLOB ); sl@0: testcase( p->op==TK_VARIABLE ); sl@0: testcase( p->op==TK_INTEGER ); sl@0: testcase( p->op==TK_FLOAT ); sl@0: testcase( p->op==TK_NULL ); sl@0: testcase( p->op==TK_STRING ); sl@0: /* Single-instruction constants with a fixed destination are sl@0: ** better done in-line. If we factor them, they will just end sl@0: ** up generating an OP_SCopy to move the value to the destination sl@0: ** register. */ sl@0: return 0; sl@0: } sl@0: case TK_UMINUS: { sl@0: if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ sl@0: return 0; sl@0: } sl@0: break; sl@0: } sl@0: default: { sl@0: break; sl@0: } sl@0: } sl@0: return 1; sl@0: } sl@0: sl@0: /* sl@0: ** If pExpr is a constant expression that is appropriate for sl@0: ** factoring out of a loop, then evaluate the expression sl@0: ** into a register and convert the expression into a TK_REGISTER sl@0: ** expression. sl@0: */ sl@0: static int evalConstExpr(void *pArg, Expr *pExpr){ sl@0: Parse *pParse = (Parse*)pArg; sl@0: switch( pExpr->op ){ sl@0: case TK_REGISTER: { sl@0: return 1; sl@0: } sl@0: case TK_FUNCTION: sl@0: case TK_AGG_FUNCTION: sl@0: case TK_CONST_FUNC: { sl@0: /* The arguments to a function have a fixed destination. sl@0: ** Mark them this way to avoid generated unneeded OP_SCopy sl@0: ** instructions. sl@0: */ sl@0: ExprList *pList = pExpr->pList; sl@0: if( pList ){ sl@0: int i = pList->nExpr; sl@0: struct ExprList_item *pItem = pList->a; sl@0: for(; i>0; i--, pItem++){ sl@0: if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest; sl@0: } sl@0: } sl@0: break; sl@0: } sl@0: } sl@0: if( isAppropriateForFactoring(pExpr) ){ sl@0: int r1 = ++pParse->nMem; sl@0: int r2; sl@0: r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); sl@0: if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1); sl@0: pExpr->iColumn = pExpr->op; sl@0: pExpr->op = TK_REGISTER; sl@0: pExpr->iTable = r2; sl@0: return 1; sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: ** Preevaluate constant subexpressions within pExpr and store the sl@0: ** results in registers. Modify pExpr so that the constant subexpresions sl@0: ** are TK_REGISTER opcodes that refer to the precomputed values. sl@0: */ sl@0: void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ sl@0: walkExprTree(pExpr, evalConstExpr, pParse); sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Generate code that pushes the value of every element of the given sl@0: ** expression list into a sequence of registers beginning at target. sl@0: ** sl@0: ** Return the number of elements evaluated. sl@0: */ sl@0: int sqlite3ExprCodeExprList( sl@0: Parse *pParse, /* Parsing context */ sl@0: ExprList *pList, /* The expression list to be coded */ sl@0: int target, /* Where to write results */ sl@0: int doHardCopy /* Call sqlite3ExprHardCopy on each element if true */ sl@0: ){ sl@0: struct ExprList_item *pItem; sl@0: int i, n; sl@0: assert( pList!=0 || pParse->db->mallocFailed ); sl@0: if( pList==0 ){ sl@0: return 0; sl@0: } sl@0: assert( target>0 ); sl@0: n = pList->nExpr; sl@0: for(pItem=pList->a, i=0; ipExpr, target+i); sl@0: if( doHardCopy ) sqlite3ExprHardCopy(pParse, target, n); sl@0: } sl@0: return n; sl@0: } sl@0: sl@0: /* sl@0: ** Generate code for a boolean expression such that a jump is made sl@0: ** to the label "dest" if the expression is true but execution sl@0: ** continues straight thru if the expression is false. sl@0: ** sl@0: ** If the expression evaluates to NULL (neither true nor false), then sl@0: ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. sl@0: ** sl@0: ** This code depends on the fact that certain token values (ex: TK_EQ) sl@0: ** are the same as opcode values (ex: OP_Eq) that implement the corresponding sl@0: ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in sl@0: ** the make process cause these values to align. Assert()s in the code sl@0: ** below verify that the numbers are aligned correctly. sl@0: */ sl@0: void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ sl@0: Vdbe *v = pParse->pVdbe; sl@0: int op = 0; sl@0: int regFree1 = 0; sl@0: int regFree2 = 0; sl@0: int r1, r2; sl@0: sl@0: assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); sl@0: if( v==0 || pExpr==0 ) return; sl@0: op = pExpr->op; sl@0: switch( op ){ sl@0: case TK_AND: { sl@0: int d2 = sqlite3VdbeMakeLabel(v); sl@0: testcase( jumpIfNull==0 ); sl@0: testcase( pParse->disableColCache==0 ); sl@0: sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); sl@0: pParse->disableColCache++; sl@0: sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); sl@0: assert( pParse->disableColCache>0 ); sl@0: pParse->disableColCache--; sl@0: sqlite3VdbeResolveLabel(v, d2); sl@0: break; sl@0: } sl@0: case TK_OR: { sl@0: testcase( jumpIfNull==0 ); sl@0: testcase( pParse->disableColCache==0 ); sl@0: sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); sl@0: pParse->disableColCache++; sl@0: sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); sl@0: assert( pParse->disableColCache>0 ); sl@0: pParse->disableColCache--; sl@0: break; sl@0: } sl@0: case TK_NOT: { sl@0: testcase( jumpIfNull==0 ); sl@0: sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); sl@0: break; sl@0: } sl@0: case TK_LT: sl@0: case TK_LE: sl@0: case TK_GT: sl@0: case TK_GE: sl@0: case TK_NE: sl@0: case TK_EQ: { sl@0: assert( TK_LT==OP_Lt ); sl@0: assert( TK_LE==OP_Le ); sl@0: assert( TK_GT==OP_Gt ); sl@0: assert( TK_GE==OP_Ge ); sl@0: assert( TK_EQ==OP_Eq ); sl@0: assert( TK_NE==OP_Ne ); sl@0: testcase( op==TK_LT ); sl@0: testcase( op==TK_LE ); sl@0: testcase( op==TK_GT ); sl@0: testcase( op==TK_GE ); sl@0: testcase( op==TK_EQ ); sl@0: testcase( op==TK_NE ); sl@0: testcase( jumpIfNull==0 ); sl@0: codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, sl@0: pExpr->pRight, &r2, ®Free2); sl@0: codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, sl@0: r1, r2, dest, jumpIfNull); sl@0: testcase( regFree1==0 ); sl@0: testcase( regFree2==0 ); sl@0: break; sl@0: } sl@0: case TK_ISNULL: sl@0: case TK_NOTNULL: { sl@0: assert( TK_ISNULL==OP_IsNull ); sl@0: assert( TK_NOTNULL==OP_NotNull ); sl@0: testcase( op==TK_ISNULL ); sl@0: testcase( op==TK_NOTNULL ); sl@0: r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); sl@0: sqlite3VdbeAddOp2(v, op, r1, dest); sl@0: testcase( regFree1==0 ); sl@0: break; sl@0: } sl@0: case TK_BETWEEN: { sl@0: /* x BETWEEN y AND z sl@0: ** sl@0: ** Is equivalent to sl@0: ** sl@0: ** x>=y AND x<=z sl@0: ** sl@0: ** Code it as such, taking care to do the common subexpression sl@0: ** elementation of x. sl@0: */ sl@0: Expr exprAnd; sl@0: Expr compLeft; sl@0: Expr compRight; sl@0: Expr exprX; sl@0: sl@0: exprX = *pExpr->pLeft; sl@0: exprAnd.op = TK_AND; sl@0: exprAnd.pLeft = &compLeft; sl@0: exprAnd.pRight = &compRight; sl@0: compLeft.op = TK_GE; sl@0: compLeft.pLeft = &exprX; sl@0: compLeft.pRight = pExpr->pList->a[0].pExpr; sl@0: compRight.op = TK_LE; sl@0: compRight.pLeft = &exprX; sl@0: compRight.pRight = pExpr->pList->a[1].pExpr; sl@0: exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); sl@0: testcase( regFree1==0 ); sl@0: exprX.op = TK_REGISTER; sl@0: testcase( jumpIfNull==0 ); sl@0: sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); sl@0: break; sl@0: } sl@0: default: { sl@0: r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sl@0: sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); sl@0: testcase( regFree1==0 ); sl@0: testcase( jumpIfNull==0 ); sl@0: break; sl@0: } sl@0: } sl@0: sqlite3ReleaseTempReg(pParse, regFree1); sl@0: sqlite3ReleaseTempReg(pParse, regFree2); sl@0: } sl@0: sl@0: /* sl@0: ** Generate code for a boolean expression such that a jump is made sl@0: ** to the label "dest" if the expression is false but execution sl@0: ** continues straight thru if the expression is true. sl@0: ** sl@0: ** If the expression evaluates to NULL (neither true nor false) then sl@0: ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull sl@0: ** is 0. sl@0: */ sl@0: void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ sl@0: Vdbe *v = pParse->pVdbe; sl@0: int op = 0; sl@0: int regFree1 = 0; sl@0: int regFree2 = 0; sl@0: int r1, r2; sl@0: sl@0: assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); sl@0: if( v==0 || pExpr==0 ) return; sl@0: sl@0: /* The value of pExpr->op and op are related as follows: sl@0: ** sl@0: ** pExpr->op op sl@0: ** --------- ---------- sl@0: ** TK_ISNULL OP_NotNull sl@0: ** TK_NOTNULL OP_IsNull sl@0: ** TK_NE OP_Eq sl@0: ** TK_EQ OP_Ne sl@0: ** TK_GT OP_Le sl@0: ** TK_LE OP_Gt sl@0: ** TK_GE OP_Lt sl@0: ** TK_LT OP_Ge sl@0: ** sl@0: ** For other values of pExpr->op, op is undefined and unused. sl@0: ** The value of TK_ and OP_ constants are arranged such that we sl@0: ** can compute the mapping above using the following expression. sl@0: ** Assert()s verify that the computation is correct. sl@0: */ sl@0: op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); sl@0: sl@0: /* Verify correct alignment of TK_ and OP_ constants sl@0: */ sl@0: assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); sl@0: assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); sl@0: assert( pExpr->op!=TK_NE || op==OP_Eq ); sl@0: assert( pExpr->op!=TK_EQ || op==OP_Ne ); sl@0: assert( pExpr->op!=TK_LT || op==OP_Ge ); sl@0: assert( pExpr->op!=TK_LE || op==OP_Gt ); sl@0: assert( pExpr->op!=TK_GT || op==OP_Le ); sl@0: assert( pExpr->op!=TK_GE || op==OP_Lt ); sl@0: sl@0: switch( pExpr->op ){ sl@0: case TK_AND: { sl@0: testcase( jumpIfNull==0 ); sl@0: testcase( pParse->disableColCache==0 ); sl@0: sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); sl@0: pParse->disableColCache++; sl@0: sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); sl@0: assert( pParse->disableColCache>0 ); sl@0: pParse->disableColCache--; sl@0: break; sl@0: } sl@0: case TK_OR: { sl@0: int d2 = sqlite3VdbeMakeLabel(v); sl@0: testcase( jumpIfNull==0 ); sl@0: testcase( pParse->disableColCache==0 ); sl@0: sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); sl@0: pParse->disableColCache++; sl@0: sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); sl@0: assert( pParse->disableColCache>0 ); sl@0: pParse->disableColCache--; sl@0: sqlite3VdbeResolveLabel(v, d2); sl@0: break; sl@0: } sl@0: case TK_NOT: { sl@0: sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); sl@0: break; sl@0: } sl@0: case TK_LT: sl@0: case TK_LE: sl@0: case TK_GT: sl@0: case TK_GE: sl@0: case TK_NE: sl@0: case TK_EQ: { sl@0: testcase( op==TK_LT ); sl@0: testcase( op==TK_LE ); sl@0: testcase( op==TK_GT ); sl@0: testcase( op==TK_GE ); sl@0: testcase( op==TK_EQ ); sl@0: testcase( op==TK_NE ); sl@0: testcase( jumpIfNull==0 ); sl@0: codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, sl@0: pExpr->pRight, &r2, ®Free2); sl@0: codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, sl@0: r1, r2, dest, jumpIfNull); sl@0: testcase( regFree1==0 ); sl@0: testcase( regFree2==0 ); sl@0: break; sl@0: } sl@0: case TK_ISNULL: sl@0: case TK_NOTNULL: { sl@0: testcase( op==TK_ISNULL ); sl@0: testcase( op==TK_NOTNULL ); sl@0: r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); sl@0: sqlite3VdbeAddOp2(v, op, r1, dest); sl@0: testcase( regFree1==0 ); sl@0: break; sl@0: } sl@0: case TK_BETWEEN: { sl@0: /* x BETWEEN y AND z sl@0: ** sl@0: ** Is equivalent to sl@0: ** sl@0: ** x>=y AND x<=z sl@0: ** sl@0: ** Code it as such, taking care to do the common subexpression sl@0: ** elementation of x. sl@0: */ sl@0: Expr exprAnd; sl@0: Expr compLeft; sl@0: Expr compRight; sl@0: Expr exprX; sl@0: sl@0: exprX = *pExpr->pLeft; sl@0: exprAnd.op = TK_AND; sl@0: exprAnd.pLeft = &compLeft; sl@0: exprAnd.pRight = &compRight; sl@0: compLeft.op = TK_GE; sl@0: compLeft.pLeft = &exprX; sl@0: compLeft.pRight = pExpr->pList->a[0].pExpr; sl@0: compRight.op = TK_LE; sl@0: compRight.pLeft = &exprX; sl@0: compRight.pRight = pExpr->pList->a[1].pExpr; sl@0: exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); sl@0: testcase( regFree1==0 ); sl@0: exprX.op = TK_REGISTER; sl@0: testcase( jumpIfNull==0 ); sl@0: sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); sl@0: break; sl@0: } sl@0: default: { sl@0: r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sl@0: sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); sl@0: testcase( regFree1==0 ); sl@0: testcase( jumpIfNull==0 ); sl@0: break; sl@0: } sl@0: } sl@0: sqlite3ReleaseTempReg(pParse, regFree1); sl@0: sqlite3ReleaseTempReg(pParse, regFree2); sl@0: } sl@0: sl@0: /* sl@0: ** Do a deep comparison of two expression trees. Return TRUE (non-zero) sl@0: ** if they are identical and return FALSE if they differ in any way. sl@0: ** sl@0: ** Sometimes this routine will return FALSE even if the two expressions sl@0: ** really are equivalent. If we cannot prove that the expressions are sl@0: ** identical, we return FALSE just to be safe. So if this routine sl@0: ** returns false, then you do not really know for certain if the two sl@0: ** expressions are the same. But if you get a TRUE return, then you sl@0: ** can be sure the expressions are the same. In the places where sl@0: ** this routine is used, it does not hurt to get an extra FALSE - that sl@0: ** just might result in some slightly slower code. But returning sl@0: ** an incorrect TRUE could lead to a malfunction. sl@0: */ sl@0: int sqlite3ExprCompare(Expr *pA, Expr *pB){ sl@0: int i; sl@0: if( pA==0||pB==0 ){ sl@0: return pB==pA; sl@0: } sl@0: if( pA->op!=pB->op ) return 0; sl@0: if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; sl@0: if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; sl@0: if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; sl@0: if( pA->pList ){ sl@0: if( pB->pList==0 ) return 0; sl@0: if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; sl@0: for(i=0; ipList->nExpr; i++){ sl@0: if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ sl@0: return 0; sl@0: } sl@0: } sl@0: }else if( pB->pList ){ sl@0: return 0; sl@0: } sl@0: if( pA->pSelect || pB->pSelect ) return 0; sl@0: if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; sl@0: if( pA->op!=TK_COLUMN && pA->token.z ){ sl@0: if( pB->token.z==0 ) return 0; sl@0: if( pB->token.n!=pA->token.n ) return 0; sl@0: if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ sl@0: return 0; sl@0: } sl@0: } sl@0: return 1; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Add a new element to the pAggInfo->aCol[] array. Return the index of sl@0: ** the new element. Return a negative number if malloc fails. sl@0: */ sl@0: static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ sl@0: int i; sl@0: pInfo->aCol = sqlite3ArrayAllocate( sl@0: db, sl@0: pInfo->aCol, sl@0: sizeof(pInfo->aCol[0]), sl@0: 3, sl@0: &pInfo->nColumn, sl@0: &pInfo->nColumnAlloc, sl@0: &i sl@0: ); sl@0: return i; sl@0: } sl@0: sl@0: /* sl@0: ** Add a new element to the pAggInfo->aFunc[] array. Return the index of sl@0: ** the new element. Return a negative number if malloc fails. sl@0: */ sl@0: static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ sl@0: int i; sl@0: pInfo->aFunc = sqlite3ArrayAllocate( sl@0: db, sl@0: pInfo->aFunc, sl@0: sizeof(pInfo->aFunc[0]), sl@0: 3, sl@0: &pInfo->nFunc, sl@0: &pInfo->nFuncAlloc, sl@0: &i sl@0: ); sl@0: return i; sl@0: } sl@0: sl@0: /* sl@0: ** This is an xFunc for walkExprTree() used to implement sl@0: ** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates sl@0: ** for additional information. sl@0: ** sl@0: ** This routine analyzes the aggregate function at pExpr. sl@0: */ sl@0: static int analyzeAggregate(void *pArg, Expr *pExpr){ sl@0: int i; sl@0: NameContext *pNC = (NameContext *)pArg; sl@0: Parse *pParse = pNC->pParse; sl@0: SrcList *pSrcList = pNC->pSrcList; sl@0: AggInfo *pAggInfo = pNC->pAggInfo; sl@0: sl@0: switch( pExpr->op ){ sl@0: case TK_AGG_COLUMN: sl@0: case TK_COLUMN: { sl@0: /* Check to see if the column is in one of the tables in the FROM sl@0: ** clause of the aggregate query */ sl@0: if( pSrcList ){ sl@0: struct SrcList_item *pItem = pSrcList->a; sl@0: for(i=0; inSrc; i++, pItem++){ sl@0: struct AggInfo_col *pCol; sl@0: if( pExpr->iTable==pItem->iCursor ){ sl@0: /* If we reach this point, it means that pExpr refers to a table sl@0: ** that is in the FROM clause of the aggregate query. sl@0: ** sl@0: ** Make an entry for the column in pAggInfo->aCol[] if there sl@0: ** is not an entry there already. sl@0: */ sl@0: int k; sl@0: pCol = pAggInfo->aCol; sl@0: for(k=0; knColumn; k++, pCol++){ sl@0: if( pCol->iTable==pExpr->iTable && sl@0: pCol->iColumn==pExpr->iColumn ){ sl@0: break; sl@0: } sl@0: } sl@0: if( (k>=pAggInfo->nColumn) sl@0: && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 sl@0: ){ sl@0: pCol = &pAggInfo->aCol[k]; sl@0: pCol->pTab = pExpr->pTab; sl@0: pCol->iTable = pExpr->iTable; sl@0: pCol->iColumn = pExpr->iColumn; sl@0: pCol->iMem = ++pParse->nMem; sl@0: pCol->iSorterColumn = -1; sl@0: pCol->pExpr = pExpr; sl@0: if( pAggInfo->pGroupBy ){ sl@0: int j, n; sl@0: ExprList *pGB = pAggInfo->pGroupBy; sl@0: struct ExprList_item *pTerm = pGB->a; sl@0: n = pGB->nExpr; sl@0: for(j=0; jpExpr; sl@0: if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && sl@0: pE->iColumn==pExpr->iColumn ){ sl@0: pCol->iSorterColumn = j; sl@0: break; sl@0: } sl@0: } sl@0: } sl@0: if( pCol->iSorterColumn<0 ){ sl@0: pCol->iSorterColumn = pAggInfo->nSortingColumn++; sl@0: } sl@0: } sl@0: /* There is now an entry for pExpr in pAggInfo->aCol[] (either sl@0: ** because it was there before or because we just created it). sl@0: ** Convert the pExpr to be a TK_AGG_COLUMN referring to that sl@0: ** pAggInfo->aCol[] entry. sl@0: */ sl@0: pExpr->pAggInfo = pAggInfo; sl@0: pExpr->op = TK_AGG_COLUMN; sl@0: pExpr->iAgg = k; sl@0: break; sl@0: } /* endif pExpr->iTable==pItem->iCursor */ sl@0: } /* end loop over pSrcList */ sl@0: } sl@0: return 1; sl@0: } sl@0: case TK_AGG_FUNCTION: { sl@0: /* The pNC->nDepth==0 test causes aggregate functions in subqueries sl@0: ** to be ignored */ sl@0: if( pNC->nDepth==0 ){ sl@0: /* Check to see if pExpr is a duplicate of another aggregate sl@0: ** function that is already in the pAggInfo structure sl@0: */ sl@0: struct AggInfo_func *pItem = pAggInfo->aFunc; sl@0: for(i=0; inFunc; i++, pItem++){ sl@0: if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ sl@0: break; sl@0: } sl@0: } sl@0: if( i>=pAggInfo->nFunc ){ sl@0: /* pExpr is original. Make a new entry in pAggInfo->aFunc[] sl@0: */ sl@0: u8 enc = ENC(pParse->db); sl@0: i = addAggInfoFunc(pParse->db, pAggInfo); sl@0: if( i>=0 ){ sl@0: pItem = &pAggInfo->aFunc[i]; sl@0: pItem->pExpr = pExpr; sl@0: pItem->iMem = ++pParse->nMem; sl@0: pItem->pFunc = sqlite3FindFunction(pParse->db, sl@0: (char*)pExpr->token.z, pExpr->token.n, sl@0: pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); sl@0: if( pExpr->flags & EP_Distinct ){ sl@0: pItem->iDistinct = pParse->nTab++; sl@0: }else{ sl@0: pItem->iDistinct = -1; sl@0: } sl@0: } sl@0: } sl@0: /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry sl@0: */ sl@0: pExpr->iAgg = i; sl@0: pExpr->pAggInfo = pAggInfo; sl@0: return 1; sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* Recursively walk subqueries looking for TK_COLUMN nodes that need sl@0: ** to be changed to TK_AGG_COLUMN. But increment nDepth so that sl@0: ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. sl@0: */ sl@0: if( pExpr->pSelect ){ sl@0: pNC->nDepth++; sl@0: walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); sl@0: pNC->nDepth--; sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: ** Analyze the given expression looking for aggregate functions and sl@0: ** for variables that need to be added to the pParse->aAgg[] array. sl@0: ** Make additional entries to the pParse->aAgg[] array as necessary. sl@0: ** sl@0: ** This routine should only be called after the expression has been sl@0: ** analyzed by sqlite3ExprResolveNames(). sl@0: */ sl@0: void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ sl@0: walkExprTree(pExpr, analyzeAggregate, pNC); sl@0: } sl@0: sl@0: /* sl@0: ** Call sqlite3ExprAnalyzeAggregates() for every expression in an sl@0: ** expression list. Return the number of errors. sl@0: ** sl@0: ** If an error is found, the analysis is cut short. sl@0: */ sl@0: void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ sl@0: struct ExprList_item *pItem; sl@0: int i; sl@0: if( pList ){ sl@0: for(pItem=pList->a, i=0; inExpr; i++, pItem++){ sl@0: sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Allocate or deallocate temporary use registers during code generation. sl@0: */ sl@0: int sqlite3GetTempReg(Parse *pParse){ sl@0: if( pParse->nTempReg==0 ){ sl@0: return ++pParse->nMem; sl@0: } sl@0: return pParse->aTempReg[--pParse->nTempReg]; sl@0: } sl@0: void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ sl@0: if( iReg && pParse->nTempRegaTempReg) ){ sl@0: sqlite3ExprWritableRegister(pParse, iReg, iReg); sl@0: pParse->aTempReg[pParse->nTempReg++] = iReg; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Allocate or deallocate a block of nReg consecutive registers sl@0: */ sl@0: int sqlite3GetTempRange(Parse *pParse, int nReg){ sl@0: int i, n; sl@0: i = pParse->iRangeReg; sl@0: n = pParse->nRangeReg; sl@0: if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){ sl@0: pParse->iRangeReg += nReg; sl@0: pParse->nRangeReg -= nReg; sl@0: }else{ sl@0: i = pParse->nMem+1; sl@0: pParse->nMem += nReg; sl@0: } sl@0: return i; sl@0: } sl@0: void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ sl@0: if( nReg>pParse->nRangeReg ){ sl@0: pParse->nRangeReg = nReg; sl@0: pParse->iRangeReg = iReg; sl@0: } sl@0: }