os/ossrv/compressionlibs/ziplib/test/rtest/inflateprimetest/zran.cpp
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
sl@0
     1
/* Portions Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
sl@0
     2
 * All rights reserved.
sl@0
     3
 */
sl@0
     4
sl@0
     5
/* zran.c -- example of zlib/gzip stream indexing and random access
sl@0
     6
 * Copyright (C) 2005 Mark Adler
sl@0
     7
 * For conditions of distribution and use, see copyright notice in zlib.h
sl@0
     8
   Version 1.0  29 May 2005  Mark Adler */
sl@0
     9
sl@0
    10
/* Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
sl@0
    11
   for random access of a compressed file.  A file containing a zlib or gzip
sl@0
    12
   stream is provided on the command line.  The compressed stream is decoded in
sl@0
    13
   its entirety, and an index built with access points about every SPAN bytes
sl@0
    14
   in the uncompressed output.  The compressed file is left open, and can then
sl@0
    15
   be read randomly, having to decompress on the average SPAN/2 uncompressed
sl@0
    16
   bytes before getting to the desired block of data.
sl@0
    17
sl@0
    18
   An access point can be created at the start of any deflate block, by saving
sl@0
    19
   the starting file offset and bit of that block, and the 32K bytes of
sl@0
    20
   uncompressed data that precede that block.  Also the uncompressed offset of
sl@0
    21
   that block is saved to provide a referece for locating a desired starting
sl@0
    22
   point in the uncompressed stream.  build_index() works by decompressing the
sl@0
    23
   input zlib or gzip stream a block at a time, and at the end of each block
sl@0
    24
   deciding if enough uncompressed data has gone by to justify the creation of
sl@0
    25
   a new access point.  If so, that point is saved in a data structure that
sl@0
    26
   grows as needed to accommodate the points.
sl@0
    27
sl@0
    28
   To use the index, an offset in the uncompressed data is provided, for which
sl@0
    29
   the latest access point at or preceding that offset is located in the index.
sl@0
    30
   The input file is positioned to the specified location in the index, and if
sl@0
    31
   necessary the first few bits of the compressed data is read from the file.
sl@0
    32
   inflate is initialized with those bits and the 32K of uncompressed data, and
sl@0
    33
   the decompression then proceeds until the desired offset in the file is
sl@0
    34
   reached.  Then the decompression continues to read the desired uncompressed
sl@0
    35
   data from the file.
sl@0
    36
sl@0
    37
   Another approach would be to generate the index on demand.  In that case,
sl@0
    38
   requests for random access reads from the compressed data would try to use
sl@0
    39
   the index, but if a read far enough past the end of the index is required,
sl@0
    40
   then further index entries would be generated and added.
sl@0
    41
sl@0
    42
   There is some fair bit of overhead to starting inflation for the random
sl@0
    43
   access, mainly copying the 32K byte dictionary.  So if small pieces of the
sl@0
    44
   file are being accessed, it would make sense to implement a cache to hold
sl@0
    45
   some lookahead and avoid many calls to extract() for small lengths.
sl@0
    46
sl@0
    47
   Another way to build an index would be to use inflateCopy().  That would
sl@0
    48
   not be constrained to have access points at block boundaries, but requires
sl@0
    49
   more memory per access point, and also cannot be saved to file due to the
sl@0
    50
   use of pointers in the state.  The approach here allows for storage of the
sl@0
    51
   index in a file.
sl@0
    52
 */
sl@0
    53
sl@0
    54
#include <e32test.h>
sl@0
    55
#include <stdio.h>
sl@0
    56
#include <stdlib.h>
sl@0
    57
#include <string.h>
sl@0
    58
#include <fcntl.h>
sl@0
    59
#include <zlib.h>
sl@0
    60
sl@0
    61
_LIT(KTestTitle, "inflatePrime() Test.");
sl@0
    62
sl@0
    63
RTest test(_L("inflateprimetest.exe"));
sl@0
    64
const int numTestFiles = 2;
sl@0
    65
const char *filePath = "z:\\test\\inflateprimetest\\\0";
sl@0
    66
const char *testFile[numTestFiles] = {"gzipped.gz\0", "zipped.zip\0"};
sl@0
    67
sl@0
    68
/* Test macro and function */
sl@0
    69
void Check(TInt aValue, TInt aExpected, TInt aLine)
sl@0
    70
	{
sl@0
    71
    if (aValue != aExpected)
sl@0
    72
    	{
sl@0
    73
        test.Printf(_L("*** Expected error: %d, got: %d\r\n"), aExpected, aValue);
sl@0
    74
        test.operator()(EFalse, aLine);
sl@0
    75
        }
sl@0
    76
    }
sl@0
    77
#define test2(a, b) Check(a, b, __LINE__)
sl@0
    78
sl@0
    79
#define SPAN 1048576L       /* desired distance between access points */
sl@0
    80
#define WINSIZE 32768U      /* sliding window size */
sl@0
    81
#define CHUNK 128         /* file input buffer size */
sl@0
    82
sl@0
    83
/* access point entry */
sl@0
    84
struct point {
sl@0
    85
    off_t out;          /* corresponding offset in uncompressed data */
sl@0
    86
    off_t in;           /* offset in input file of first full byte */
sl@0
    87
    int bits;           /* number of bits (1-7) from byte at in - 1, or 0 */
sl@0
    88
    unsigned char window[WINSIZE];  /* preceding 32K of uncompressed data */
sl@0
    89
};
sl@0
    90
sl@0
    91
/* access point list */
sl@0
    92
struct access {
sl@0
    93
    int have;           /* number of list entries filled in */
sl@0
    94
    int size;           /* number of list entries allocated */
sl@0
    95
    struct point *list; /* allocated list */
sl@0
    96
};
sl@0
    97
sl@0
    98
/* Deallocate an index built by build_index() */
sl@0
    99
void free_index(struct access *index)
sl@0
   100
{
sl@0
   101
    if (index != NULL) {
sl@0
   102
        free(index->list);
sl@0
   103
        free(index);
sl@0
   104
    }
sl@0
   105
}
sl@0
   106
sl@0
   107
/* Add an entry to the access point list.  If out of memory, deallocate the
sl@0
   108
   existing list and return NULL. */
sl@0
   109
struct access *addpoint(struct access *index, int bits,
sl@0
   110
    off_t in, off_t out, unsigned left, unsigned char *window)
sl@0
   111
{
sl@0
   112
    struct point *next;
sl@0
   113
sl@0
   114
    // if list is empty, create it (start with eight points)
sl@0
   115
    if (index == NULL) {
sl@0
   116
        index = (struct access *)malloc(sizeof(struct access));
sl@0
   117
        if (index == NULL) return NULL;
sl@0
   118
        index->list = (struct point *)malloc(sizeof(struct point) << 3);
sl@0
   119
        if (index->list == NULL) {
sl@0
   120
            free(index);
sl@0
   121
            return NULL;
sl@0
   122
        }
sl@0
   123
        index->size = 8;
sl@0
   124
        index->have = 0;
sl@0
   125
    }
sl@0
   126
sl@0
   127
    // if list is full, make it bigger
sl@0
   128
    else if (index->have == index->size) {
sl@0
   129
        index->size <<= 1;
sl@0
   130
        next = (struct point *)realloc(index->list, sizeof(struct point) * index->size);
sl@0
   131
        if (next == NULL) {
sl@0
   132
            free_index(index);
sl@0
   133
            return NULL;
sl@0
   134
        }
sl@0
   135
        index->list = next;
sl@0
   136
    }
sl@0
   137
sl@0
   138
    // fill in entry and increment how many we have
sl@0
   139
    next = index->list + index->have;
sl@0
   140
    next->bits = bits;
sl@0
   141
    next->in = in;
sl@0
   142
    next->out = out;
sl@0
   143
    if (left)
sl@0
   144
        memcpy(next->window, window + WINSIZE - left, left);
sl@0
   145
    if (left < WINSIZE)
sl@0
   146
        memcpy(next->window + left, window, WINSIZE - left);
sl@0
   147
    index->have++;
sl@0
   148
sl@0
   149
    /* return list, possibly reallocated */
sl@0
   150
    return index;
sl@0
   151
}
sl@0
   152
sl@0
   153
/* Make one entire pass through the compressed stream and build an index, with
sl@0
   154
   access points about every span bytes of uncompressed output -- span is
sl@0
   155
   chosen to balance the speed of random access against the memory requirements
sl@0
   156
   of the list, about 32K bytes per access point.  Note that data after the end
sl@0
   157
   of the first zlib or gzip stream in the file is ignored.  build_index()
sl@0
   158
   returns the number of access points on success (>= 1), Z_MEM_ERROR for out
sl@0
   159
   of memory, Z_DATA_ERROR for an error in the input file, or Z_ERRNO for a
sl@0
   160
   file read error.  On success, *built points to the resulting index. */
sl@0
   161
int build_index(FILE *in, off_t span, struct access **built)
sl@0
   162
{
sl@0
   163
    int ret;
sl@0
   164
    off_t totin, totout;        /* our own total counters to avoid 4GB limit */
sl@0
   165
    off_t last;                 /* totout value of last access point */
sl@0
   166
    struct access *index;       /* access points being generated */
sl@0
   167
    z_stream strm;
sl@0
   168
    unsigned char input[CHUNK];
sl@0
   169
    unsigned char window[WINSIZE];
sl@0
   170
	struct point *next = NULL;
sl@0
   171
sl@0
   172
    /* initialize inflate */
sl@0
   173
    strm.zalloc = Z_NULL;
sl@0
   174
    strm.zfree = Z_NULL;
sl@0
   175
    strm.opaque = Z_NULL;
sl@0
   176
    strm.avail_in = 0;
sl@0
   177
    strm.next_in = Z_NULL;
sl@0
   178
    ret = inflateInit2(&strm, 47);      /* automatic zlib or gzip decoding */
sl@0
   179
    if (ret != Z_OK)
sl@0
   180
        return ret;
sl@0
   181
sl@0
   182
    /* inflate the input, maintain a sliding window, and build an index -- this
sl@0
   183
       also validates the integrity of the compressed data using the check
sl@0
   184
       information at the end of the gzip or zlib stream */
sl@0
   185
    totin = totout = last = 0;
sl@0
   186
    index = NULL;               /* will be allocated by first addpoint() */
sl@0
   187
    strm.avail_out = 0;
sl@0
   188
    do {
sl@0
   189
        /* get some compressed data from input file */
sl@0
   190
        strm.avail_in = fread(input, 1, CHUNK, in);
sl@0
   191
        if (ferror(in)) {
sl@0
   192
            ret = Z_ERRNO;
sl@0
   193
            goto build_index_error;
sl@0
   194
        }
sl@0
   195
        if (strm.avail_in == 0) {
sl@0
   196
            ret = Z_DATA_ERROR;
sl@0
   197
            goto build_index_error;
sl@0
   198
        }
sl@0
   199
        strm.next_in = input;
sl@0
   200
sl@0
   201
        /* process all of that, or until end of stream */
sl@0
   202
        do {
sl@0
   203
            /* reset sliding window if necessary */
sl@0
   204
            if (strm.avail_out == 0) {
sl@0
   205
                strm.avail_out = WINSIZE;
sl@0
   206
                strm.next_out = window;
sl@0
   207
            }
sl@0
   208
sl@0
   209
            /* inflate until out of input, output, or at end of block --
sl@0
   210
               update the total input and output counters */
sl@0
   211
            totin += strm.avail_in;
sl@0
   212
            totout += strm.avail_out;
sl@0
   213
            ret = inflate(&strm, Z_BLOCK);      /* return at end of block */
sl@0
   214
            totin -= strm.avail_in;
sl@0
   215
            totout -= strm.avail_out;
sl@0
   216
            if (ret == Z_NEED_DICT)
sl@0
   217
                ret = Z_DATA_ERROR;
sl@0
   218
            if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
sl@0
   219
                goto build_index_error;
sl@0
   220
            if (ret == Z_STREAM_END)
sl@0
   221
                break;
sl@0
   222
sl@0
   223
            /* if at end of block, consider adding an index entry (note that if
sl@0
   224
               data_type indicates an end-of-block, then all of the
sl@0
   225
               uncompressed data from that block has been delivered, and none
sl@0
   226
               of the compressed data after that block has been consumed,
sl@0
   227
               except for up to seven bits) -- the totout == 0 provides an
sl@0
   228
               entry point after the zlib or gzip header, and assures that the
sl@0
   229
               index always has at least one access point; we avoid creating an
sl@0
   230
               access point after the last block by checking bit 6 of data_type
sl@0
   231
             */
sl@0
   232
            if ((strm.data_type & 128) && !(strm.data_type & 64) &&
sl@0
   233
                (totout == 0 || totout - last > span)) {
sl@0
   234
                index = addpoint(index, strm.data_type & 7, totin,
sl@0
   235
                                 totout, strm.avail_out, window);
sl@0
   236
                if (index == NULL) {
sl@0
   237
                    ret = Z_MEM_ERROR;
sl@0
   238
                    goto build_index_error;
sl@0
   239
                }
sl@0
   240
                last = totout;
sl@0
   241
            }
sl@0
   242
        } while (strm.avail_in != 0);
sl@0
   243
    } while (ret != Z_STREAM_END);
sl@0
   244
sl@0
   245
    /* clean up and return index (release unused entries in list) */
sl@0
   246
    (void)inflateEnd(&strm);
sl@0
   247
    
sl@0
   248
    next = (struct point *)realloc(index->list, sizeof(struct point) * index->have);
sl@0
   249
    if (next == NULL) {
sl@0
   250
        free_index(index);
sl@0
   251
        return Z_MEM_ERROR;
sl@0
   252
    }
sl@0
   253
    index->list = next;
sl@0
   254
    index->size = index->have;
sl@0
   255
    *built = index;
sl@0
   256
    return index->size;
sl@0
   257
sl@0
   258
    /* return error */
sl@0
   259
  build_index_error:
sl@0
   260
    (void)inflateEnd(&strm);
sl@0
   261
    if (index != NULL)
sl@0
   262
        free_index(index);
sl@0
   263
    return ret;
sl@0
   264
}
sl@0
   265
sl@0
   266
/* Use the index to read len bytes from offset into buf, return bytes read or
sl@0
   267
   negative for error (Z_DATA_ERROR or Z_MEM_ERROR).  If data is requested past
sl@0
   268
   the end of the uncompressed data, then extract() will return a value less
sl@0
   269
   than len, indicating how much as actually read into buf.  This function
sl@0
   270
   should not return a data error unless the file was modified since the index
sl@0
   271
   was generated.  extract() may also return Z_ERRNO if there is an error on
sl@0
   272
   reading or seeking the input file. */
sl@0
   273
int extract(FILE *in, struct access *index, off_t offset,
sl@0
   274
                  unsigned char *buf, int len)
sl@0
   275
{
sl@0
   276
    int ret, skip, value;
sl@0
   277
    z_stream strm;
sl@0
   278
    struct point *here;
sl@0
   279
    unsigned char input[CHUNK];
sl@0
   280
    //unsigned char discard[WINSIZE]; /* No longer required. See comments below. */
sl@0
   281
sl@0
   282
    /* proceed only if something reasonable to do */
sl@0
   283
    if (len < 0)
sl@0
   284
        return 0;
sl@0
   285
sl@0
   286
    /* find where in stream to start */
sl@0
   287
    here = index->list;
sl@0
   288
    ret = index->have;
sl@0
   289
    while (--ret && here[1].out <= offset)
sl@0
   290
        here++;
sl@0
   291
sl@0
   292
    /* initialize file and inflate state to start there */
sl@0
   293
    strm.zalloc = Z_NULL;
sl@0
   294
    strm.zfree = Z_NULL;
sl@0
   295
    strm.opaque = Z_NULL;
sl@0
   296
    strm.avail_in = 0;
sl@0
   297
    strm.next_in = Z_NULL;
sl@0
   298
    ret = inflateInit2(&strm, -15);         /* raw inflate */
sl@0
   299
    if (ret != Z_OK)
sl@0
   300
        return ret;
sl@0
   301
    ret = fseek(in, here->in - (here->bits ? 1 : 0), SEEK_SET);
sl@0
   302
    if (ret == -1)
sl@0
   303
        goto extract_ret;
sl@0
   304
    
sl@0
   305
    ret = getc(in);
sl@0
   306
    if (ret == -1) {
sl@0
   307
        ret = ferror(in) ? Z_ERRNO : Z_DATA_ERROR;
sl@0
   308
        goto extract_ret;
sl@0
   309
    }
sl@0
   310
    
sl@0
   311
    // If bits is > 0 set the value as done in the original zran.c
sl@0
   312
    // else set the value to the next byte to prove that inflatePrime
sl@0
   313
    // is not adding anything to the start of the stream when bits is
sl@0
   314
    // set to 0. It is then necessary to unget the byte.
sl@0
   315
	if(here->bits) {	
sl@0
   316
	    value = ret >> (8 - here->bits);
sl@0
   317
	}
sl@0
   318
	else {
sl@0
   319
		value = ret;
sl@0
   320
		ungetc(ret, in);	
sl@0
   321
	}	
sl@0
   322
	
sl@0
   323
	ret = inflatePrime(&strm, here->bits, value);
sl@0
   324
	if(ret != Z_OK) {
sl@0
   325
		goto extract_ret;
sl@0
   326
	}
sl@0
   327
	test.Printf(_L("zran: bits = %d\n"), here->bits);
sl@0
   328
    test.Printf(_L("zran: value = %d\n"), value); 
sl@0
   329
    
sl@0
   330
    (void)inflateSetDictionary(&strm, here->window, WINSIZE);
sl@0
   331
sl@0
   332
	/* No longer required. See comment below.
sl@0
   333
	 *
sl@0
   334
     * skip uncompressed bytes until offset reached, then satisfy request
sl@0
   335
    offset -= here->out;
sl@0
   336
     */
sl@0
   337
    strm.avail_in = 0;
sl@0
   338
    skip = 1;                               /* while skipping to offset */
sl@0
   339
    do {
sl@0
   340
        /* define where to put uncompressed data, and how much */
sl@0
   341
        if (skip) {          /* at offset now */
sl@0
   342
            strm.avail_out = len;
sl@0
   343
            strm.next_out = buf;
sl@0
   344
            skip = 0;                       /* only do this once */
sl@0
   345
        }
sl@0
   346
        
sl@0
   347
        /* This code is not required in this test as it is used
sl@0
   348
         * to discard decompressed data between the current
sl@0
   349
         * access point and the offset(place in the file from
sl@0
   350
         * which we wish to decompress data).
sl@0
   351
         * 
sl@0
   352
        if (offset > WINSIZE) {             // skip WINSIZE bytes
sl@0
   353
            strm.avail_out = WINSIZE;
sl@0
   354
            strm.next_out = discard;
sl@0
   355
            offset -= WINSIZE;
sl@0
   356
        }
sl@0
   357
        else if (offset != 0) {             // last skip
sl@0
   358
            strm.avail_out = (unsigned)offset;
sl@0
   359
            strm.next_out = discard;
sl@0
   360
            offset = 0;
sl@0
   361
        }
sl@0
   362
		*/
sl@0
   363
		
sl@0
   364
        /* uncompress until avail_out filled, or end of stream */
sl@0
   365
        do {
sl@0
   366
            if (strm.avail_in == 0) {
sl@0
   367
                strm.avail_in = fread(input, 1, CHUNK, in);
sl@0
   368
                if (ferror(in)) {
sl@0
   369
                    ret = Z_ERRNO;
sl@0
   370
                    goto extract_ret;
sl@0
   371
                }
sl@0
   372
                if (strm.avail_in == 0) {
sl@0
   373
                    ret = Z_DATA_ERROR;
sl@0
   374
                    goto extract_ret;
sl@0
   375
                }
sl@0
   376
                strm.next_in = input;
sl@0
   377
            }
sl@0
   378
            ret = inflate(&strm, Z_NO_FLUSH);       /* normal inflate */
sl@0
   379
            if (ret == Z_NEED_DICT)
sl@0
   380
                ret = Z_DATA_ERROR;
sl@0
   381
            if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
sl@0
   382
                goto extract_ret;
sl@0
   383
            if (ret == Z_STREAM_END)
sl@0
   384
                break;
sl@0
   385
        } while (strm.avail_out != 0);
sl@0
   386
sl@0
   387
        /* if reach end of stream, then don't keep trying to get more */
sl@0
   388
        if (ret == Z_STREAM_END)
sl@0
   389
            break;
sl@0
   390
sl@0
   391
        /* do until offset reached and requested data read, or stream ends */
sl@0
   392
    } while (skip);
sl@0
   393
sl@0
   394
    /* compute number of uncompressed bytes read after offset */
sl@0
   395
    ret = skip ? 0 : len - strm.avail_out;
sl@0
   396
sl@0
   397
    /* clean up and return bytes read or error */
sl@0
   398
  extract_ret:
sl@0
   399
    (void)inflateEnd(&strm);
sl@0
   400
    return ret;
sl@0
   401
}
sl@0
   402
sl@0
   403
/* Demonstrate the use of build_index() and extract() by processing the file
sl@0
   404
   provided and then extracting CHUNK bytes at each access point. */
sl@0
   405
int TestInflatePrime(char *file)
sl@0
   406
	{
sl@0
   407
    int len;
sl@0
   408
    FILE *in;
sl@0
   409
    struct access *index;
sl@0
   410
    unsigned char buf[CHUNK];
sl@0
   411
sl@0
   412
    in = fopen(file, "rb");
sl@0
   413
    if (in == NULL) 
sl@0
   414
    	{
sl@0
   415
        return KErrPathNotFound;
sl@0
   416
    	}
sl@0
   417
sl@0
   418
    // build index
sl@0
   419
    len = build_index(in, SPAN, &index);
sl@0
   420
    if (len < 0) 
sl@0
   421
    	{
sl@0
   422
        fclose(in);
sl@0
   423
        test.Printf(_L("error: %d\n"), len);
sl@0
   424
        return KErrGeneral;
sl@0
   425
    	}
sl@0
   426
    test.Printf(_L("zran: built index with %d access points\n"), len);
sl@0
   427
sl@0
   428
	// Extract some data at the start of each access point. This is done
sl@0
   429
	// so that we can try extracting some data that does not necessarily 
sl@0
   430
	// start at a byte boundary ie it might start mid byte.
sl@0
   431
    for(int i = 0; i < index->have; i++)
sl@0
   432
	    {
sl@0
   433
	    len = extract(in, index, index->list[i].out, buf, CHUNK);
sl@0
   434
	    if (len < 0)
sl@0
   435
	    	{
sl@0
   436
	    	test.Printf(_L("zran: extraction failed: "));
sl@0
   437
sl@0
   438
	    	if(len == Z_MEM_ERROR)
sl@0
   439
                {
sl@0
   440
                test.Printf(_L("out of memory error\n"));
sl@0
   441
                }
sl@0
   442
            else
sl@0
   443
                {
sl@0
   444
                test.Printf(_L("input corrupted error\n"));
sl@0
   445
                }
sl@0
   446
            }
sl@0
   447
	    else 
sl@0
   448
	    	{
sl@0
   449
	        test.Printf(_L("zran: extracted %d bytes at %Lu\n"), len, index->list[i].out);
sl@0
   450
	    	}	
sl@0
   451
	    }    
sl@0
   452
sl@0
   453
    // clean up and exit
sl@0
   454
    free_index(index);
sl@0
   455
    fclose(in);
sl@0
   456
    
sl@0
   457
    return KErrNone;
sl@0
   458
	}
sl@0
   459
sl@0
   460
/**
sl@0
   461
@SYMTestCaseID       	SYSLIB-EZLIB2-UT-4273
sl@0
   462
@SYMTestCaseDesc     	To check that data can be decompressed at various points in a 
sl@0
   463
                        compressed file (i.e. decompression may start part of the way 
sl@0
   464
                        through a byte) via the use of inflatePrime().
sl@0
   465
@SYMTestPriority     	Low
sl@0
   466
@SYMTestActions      	1.	Open a compressed file for reading.
sl@0
   467
                        2.	Create an inflate stream and initialise it using inflateInit2(), 
sl@0
   468
                            setting windowBits to 47 (automatic gzip/zip header detection).
sl@0
   469
                        3.	Inflate the data in the file using inflate(). During inflation 
sl@0
   470
                            create access points using structure Point which maps points 
sl@0
   471
                            in the uncompressed data with points in the compressed data. 
sl@0
   472
                            The first access point should be at the start of the data 
sl@0
   473
                            i.e. after the header.
sl@0
   474
                            
sl@0
   475
                            Structure  Point consist of : 
sl@0
   476
                            •	UPoint(in bytes) – this is the point in the uncompressed data 
sl@0
   477
                            •	CPoint(in bytes) – this is the point in the compressed data
sl@0
   478
                            •	bits(in bits) – this is the point in the compressed data
sl@0
   479
                        4.	Cleanup the inflate stream using inflateEnd().
sl@0
   480
                        5.	For each access point do the following:
sl@0
   481
                            a.	Initialise the inflate stream using inflateInit2(), 
sl@0
   482
                                setting windowBits to -15.
sl@0
   483
                            b.	Move the file pointer to CPoint - 1 in the input file.
sl@0
   484
                            c.	Calculate the value which will be passed to inflatePrime(). 
sl@0
   485
                                The algorithm used to calculate value can be seen in the 
sl@0
   486
                                attached diagram (in the test spec).
sl@0
   487
                            d.	Call inflatePrime() with the bits and value.
sl@0
   488
                            e.	Inflate a small section of in the input file using inflate().
sl@0
   489
                            f.	Cleanup the inflate stream using inflateEnd().
sl@0
   490
                        6.	Close the compressed file and cleanup any allocated memory.
sl@0
   491
                        
sl@0
   492
                        Note: This test should be completed using a zlib file and a gzip 
sl@0
   493
                              file. These files should be 500 – 1000KB in size.
sl@0
   494
@SYMTestExpectedResults inflatePrime() should return Z_OK and the data should be 
sl@0
   495
                        decompressed with no errors.
sl@0
   496
@SYMDEF                 REQ7362
sl@0
   497
*/
sl@0
   498
void RunTestL()
sl@0
   499
	{
sl@0
   500
	test.Next(_L(" @SYMTestCaseID:SYSLIB-EZLIB2-UT-4273 "));
sl@0
   501
	int err;	
sl@0
   502
	char file[KMaxFileName];
sl@0
   503
	
sl@0
   504
	for(int i = 0; i < numTestFiles; i++)
sl@0
   505
		{
sl@0
   506
		TBuf<40> testName(_L("inflatePrime test using file "));
sl@0
   507
		testName.AppendNum(i);
sl@0
   508
		test.Next(testName);
sl@0
   509
		
sl@0
   510
		strcpy(file, filePath);
sl@0
   511
		strcat(file, testFile[i]);
sl@0
   512
			
sl@0
   513
		err = TestInflatePrime(file);
sl@0
   514
			
sl@0
   515
		if(err == KErrPathNotFound)
sl@0
   516
			{
sl@0
   517
			test.Printf(_L("zran: could not open file number %d for reading\n"), i);
sl@0
   518
			User::Leave(err);
sl@0
   519
			}
sl@0
   520
		else if(err != KErrNone)
sl@0
   521
			{
sl@0
   522
			User::Leave(err);
sl@0
   523
			}
sl@0
   524
			
sl@0
   525
		test.Printf(_L("\n"));		
sl@0
   526
		}
sl@0
   527
	}
sl@0
   528
sl@0
   529
TInt E32Main()
sl@0
   530
	{
sl@0
   531
	__UHEAP_MARK;
sl@0
   532
sl@0
   533
	test.Printf(_L("\n"));
sl@0
   534
	test.Title();
sl@0
   535
	test.Start(KTestTitle);
sl@0
   536
sl@0
   537
	CTrapCleanup* cleanup = CTrapCleanup::New();
sl@0
   538
sl@0
   539
	TRAPD(err, RunTestL());
sl@0
   540
	test2(err, KErrNone);
sl@0
   541
	
sl@0
   542
	test.End();
sl@0
   543
	test.Close();
sl@0
   544
	delete cleanup;
sl@0
   545
sl@0
   546
	__UHEAP_MARKEND;
sl@0
   547
	return KErrNone;
sl@0
   548
	}