os/ossrv/compressionlibs/ziplib/test/rtest/inflateprimetest/zran.cpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/ossrv/compressionlibs/ziplib/test/rtest/inflateprimetest/zran.cpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,548 @@
     1.4 +/* Portions Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
     1.5 + * All rights reserved.
     1.6 + */
     1.7 +
     1.8 +/* zran.c -- example of zlib/gzip stream indexing and random access
     1.9 + * Copyright (C) 2005 Mark Adler
    1.10 + * For conditions of distribution and use, see copyright notice in zlib.h
    1.11 +   Version 1.0  29 May 2005  Mark Adler */
    1.12 +
    1.13 +/* Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
    1.14 +   for random access of a compressed file.  A file containing a zlib or gzip
    1.15 +   stream is provided on the command line.  The compressed stream is decoded in
    1.16 +   its entirety, and an index built with access points about every SPAN bytes
    1.17 +   in the uncompressed output.  The compressed file is left open, and can then
    1.18 +   be read randomly, having to decompress on the average SPAN/2 uncompressed
    1.19 +   bytes before getting to the desired block of data.
    1.20 +
    1.21 +   An access point can be created at the start of any deflate block, by saving
    1.22 +   the starting file offset and bit of that block, and the 32K bytes of
    1.23 +   uncompressed data that precede that block.  Also the uncompressed offset of
    1.24 +   that block is saved to provide a referece for locating a desired starting
    1.25 +   point in the uncompressed stream.  build_index() works by decompressing the
    1.26 +   input zlib or gzip stream a block at a time, and at the end of each block
    1.27 +   deciding if enough uncompressed data has gone by to justify the creation of
    1.28 +   a new access point.  If so, that point is saved in a data structure that
    1.29 +   grows as needed to accommodate the points.
    1.30 +
    1.31 +   To use the index, an offset in the uncompressed data is provided, for which
    1.32 +   the latest access point at or preceding that offset is located in the index.
    1.33 +   The input file is positioned to the specified location in the index, and if
    1.34 +   necessary the first few bits of the compressed data is read from the file.
    1.35 +   inflate is initialized with those bits and the 32K of uncompressed data, and
    1.36 +   the decompression then proceeds until the desired offset in the file is
    1.37 +   reached.  Then the decompression continues to read the desired uncompressed
    1.38 +   data from the file.
    1.39 +
    1.40 +   Another approach would be to generate the index on demand.  In that case,
    1.41 +   requests for random access reads from the compressed data would try to use
    1.42 +   the index, but if a read far enough past the end of the index is required,
    1.43 +   then further index entries would be generated and added.
    1.44 +
    1.45 +   There is some fair bit of overhead to starting inflation for the random
    1.46 +   access, mainly copying the 32K byte dictionary.  So if small pieces of the
    1.47 +   file are being accessed, it would make sense to implement a cache to hold
    1.48 +   some lookahead and avoid many calls to extract() for small lengths.
    1.49 +
    1.50 +   Another way to build an index would be to use inflateCopy().  That would
    1.51 +   not be constrained to have access points at block boundaries, but requires
    1.52 +   more memory per access point, and also cannot be saved to file due to the
    1.53 +   use of pointers in the state.  The approach here allows for storage of the
    1.54 +   index in a file.
    1.55 + */
    1.56 +
    1.57 +#include <e32test.h>
    1.58 +#include <stdio.h>
    1.59 +#include <stdlib.h>
    1.60 +#include <string.h>
    1.61 +#include <fcntl.h>
    1.62 +#include <zlib.h>
    1.63 +
    1.64 +_LIT(KTestTitle, "inflatePrime() Test.");
    1.65 +
    1.66 +RTest test(_L("inflateprimetest.exe"));
    1.67 +const int numTestFiles = 2;
    1.68 +const char *filePath = "z:\\test\\inflateprimetest\\\0";
    1.69 +const char *testFile[numTestFiles] = {"gzipped.gz\0", "zipped.zip\0"};
    1.70 +
    1.71 +/* Test macro and function */
    1.72 +void Check(TInt aValue, TInt aExpected, TInt aLine)
    1.73 +	{
    1.74 +    if (aValue != aExpected)
    1.75 +    	{
    1.76 +        test.Printf(_L("*** Expected error: %d, got: %d\r\n"), aExpected, aValue);
    1.77 +        test.operator()(EFalse, aLine);
    1.78 +        }
    1.79 +    }
    1.80 +#define test2(a, b) Check(a, b, __LINE__)
    1.81 +
    1.82 +#define SPAN 1048576L       /* desired distance between access points */
    1.83 +#define WINSIZE 32768U      /* sliding window size */
    1.84 +#define CHUNK 128         /* file input buffer size */
    1.85 +
    1.86 +/* access point entry */
    1.87 +struct point {
    1.88 +    off_t out;          /* corresponding offset in uncompressed data */
    1.89 +    off_t in;           /* offset in input file of first full byte */
    1.90 +    int bits;           /* number of bits (1-7) from byte at in - 1, or 0 */
    1.91 +    unsigned char window[WINSIZE];  /* preceding 32K of uncompressed data */
    1.92 +};
    1.93 +
    1.94 +/* access point list */
    1.95 +struct access {
    1.96 +    int have;           /* number of list entries filled in */
    1.97 +    int size;           /* number of list entries allocated */
    1.98 +    struct point *list; /* allocated list */
    1.99 +};
   1.100 +
   1.101 +/* Deallocate an index built by build_index() */
   1.102 +void free_index(struct access *index)
   1.103 +{
   1.104 +    if (index != NULL) {
   1.105 +        free(index->list);
   1.106 +        free(index);
   1.107 +    }
   1.108 +}
   1.109 +
   1.110 +/* Add an entry to the access point list.  If out of memory, deallocate the
   1.111 +   existing list and return NULL. */
   1.112 +struct access *addpoint(struct access *index, int bits,
   1.113 +    off_t in, off_t out, unsigned left, unsigned char *window)
   1.114 +{
   1.115 +    struct point *next;
   1.116 +
   1.117 +    // if list is empty, create it (start with eight points)
   1.118 +    if (index == NULL) {
   1.119 +        index = (struct access *)malloc(sizeof(struct access));
   1.120 +        if (index == NULL) return NULL;
   1.121 +        index->list = (struct point *)malloc(sizeof(struct point) << 3);
   1.122 +        if (index->list == NULL) {
   1.123 +            free(index);
   1.124 +            return NULL;
   1.125 +        }
   1.126 +        index->size = 8;
   1.127 +        index->have = 0;
   1.128 +    }
   1.129 +
   1.130 +    // if list is full, make it bigger
   1.131 +    else if (index->have == index->size) {
   1.132 +        index->size <<= 1;
   1.133 +        next = (struct point *)realloc(index->list, sizeof(struct point) * index->size);
   1.134 +        if (next == NULL) {
   1.135 +            free_index(index);
   1.136 +            return NULL;
   1.137 +        }
   1.138 +        index->list = next;
   1.139 +    }
   1.140 +
   1.141 +    // fill in entry and increment how many we have
   1.142 +    next = index->list + index->have;
   1.143 +    next->bits = bits;
   1.144 +    next->in = in;
   1.145 +    next->out = out;
   1.146 +    if (left)
   1.147 +        memcpy(next->window, window + WINSIZE - left, left);
   1.148 +    if (left < WINSIZE)
   1.149 +        memcpy(next->window + left, window, WINSIZE - left);
   1.150 +    index->have++;
   1.151 +
   1.152 +    /* return list, possibly reallocated */
   1.153 +    return index;
   1.154 +}
   1.155 +
   1.156 +/* Make one entire pass through the compressed stream and build an index, with
   1.157 +   access points about every span bytes of uncompressed output -- span is
   1.158 +   chosen to balance the speed of random access against the memory requirements
   1.159 +   of the list, about 32K bytes per access point.  Note that data after the end
   1.160 +   of the first zlib or gzip stream in the file is ignored.  build_index()
   1.161 +   returns the number of access points on success (>= 1), Z_MEM_ERROR for out
   1.162 +   of memory, Z_DATA_ERROR for an error in the input file, or Z_ERRNO for a
   1.163 +   file read error.  On success, *built points to the resulting index. */
   1.164 +int build_index(FILE *in, off_t span, struct access **built)
   1.165 +{
   1.166 +    int ret;
   1.167 +    off_t totin, totout;        /* our own total counters to avoid 4GB limit */
   1.168 +    off_t last;                 /* totout value of last access point */
   1.169 +    struct access *index;       /* access points being generated */
   1.170 +    z_stream strm;
   1.171 +    unsigned char input[CHUNK];
   1.172 +    unsigned char window[WINSIZE];
   1.173 +	struct point *next = NULL;
   1.174 +
   1.175 +    /* initialize inflate */
   1.176 +    strm.zalloc = Z_NULL;
   1.177 +    strm.zfree = Z_NULL;
   1.178 +    strm.opaque = Z_NULL;
   1.179 +    strm.avail_in = 0;
   1.180 +    strm.next_in = Z_NULL;
   1.181 +    ret = inflateInit2(&strm, 47);      /* automatic zlib or gzip decoding */
   1.182 +    if (ret != Z_OK)
   1.183 +        return ret;
   1.184 +
   1.185 +    /* inflate the input, maintain a sliding window, and build an index -- this
   1.186 +       also validates the integrity of the compressed data using the check
   1.187 +       information at the end of the gzip or zlib stream */
   1.188 +    totin = totout = last = 0;
   1.189 +    index = NULL;               /* will be allocated by first addpoint() */
   1.190 +    strm.avail_out = 0;
   1.191 +    do {
   1.192 +        /* get some compressed data from input file */
   1.193 +        strm.avail_in = fread(input, 1, CHUNK, in);
   1.194 +        if (ferror(in)) {
   1.195 +            ret = Z_ERRNO;
   1.196 +            goto build_index_error;
   1.197 +        }
   1.198 +        if (strm.avail_in == 0) {
   1.199 +            ret = Z_DATA_ERROR;
   1.200 +            goto build_index_error;
   1.201 +        }
   1.202 +        strm.next_in = input;
   1.203 +
   1.204 +        /* process all of that, or until end of stream */
   1.205 +        do {
   1.206 +            /* reset sliding window if necessary */
   1.207 +            if (strm.avail_out == 0) {
   1.208 +                strm.avail_out = WINSIZE;
   1.209 +                strm.next_out = window;
   1.210 +            }
   1.211 +
   1.212 +            /* inflate until out of input, output, or at end of block --
   1.213 +               update the total input and output counters */
   1.214 +            totin += strm.avail_in;
   1.215 +            totout += strm.avail_out;
   1.216 +            ret = inflate(&strm, Z_BLOCK);      /* return at end of block */
   1.217 +            totin -= strm.avail_in;
   1.218 +            totout -= strm.avail_out;
   1.219 +            if (ret == Z_NEED_DICT)
   1.220 +                ret = Z_DATA_ERROR;
   1.221 +            if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
   1.222 +                goto build_index_error;
   1.223 +            if (ret == Z_STREAM_END)
   1.224 +                break;
   1.225 +
   1.226 +            /* if at end of block, consider adding an index entry (note that if
   1.227 +               data_type indicates an end-of-block, then all of the
   1.228 +               uncompressed data from that block has been delivered, and none
   1.229 +               of the compressed data after that block has been consumed,
   1.230 +               except for up to seven bits) -- the totout == 0 provides an
   1.231 +               entry point after the zlib or gzip header, and assures that the
   1.232 +               index always has at least one access point; we avoid creating an
   1.233 +               access point after the last block by checking bit 6 of data_type
   1.234 +             */
   1.235 +            if ((strm.data_type & 128) && !(strm.data_type & 64) &&
   1.236 +                (totout == 0 || totout - last > span)) {
   1.237 +                index = addpoint(index, strm.data_type & 7, totin,
   1.238 +                                 totout, strm.avail_out, window);
   1.239 +                if (index == NULL) {
   1.240 +                    ret = Z_MEM_ERROR;
   1.241 +                    goto build_index_error;
   1.242 +                }
   1.243 +                last = totout;
   1.244 +            }
   1.245 +        } while (strm.avail_in != 0);
   1.246 +    } while (ret != Z_STREAM_END);
   1.247 +
   1.248 +    /* clean up and return index (release unused entries in list) */
   1.249 +    (void)inflateEnd(&strm);
   1.250 +    
   1.251 +    next = (struct point *)realloc(index->list, sizeof(struct point) * index->have);
   1.252 +    if (next == NULL) {
   1.253 +        free_index(index);
   1.254 +        return Z_MEM_ERROR;
   1.255 +    }
   1.256 +    index->list = next;
   1.257 +    index->size = index->have;
   1.258 +    *built = index;
   1.259 +    return index->size;
   1.260 +
   1.261 +    /* return error */
   1.262 +  build_index_error:
   1.263 +    (void)inflateEnd(&strm);
   1.264 +    if (index != NULL)
   1.265 +        free_index(index);
   1.266 +    return ret;
   1.267 +}
   1.268 +
   1.269 +/* Use the index to read len bytes from offset into buf, return bytes read or
   1.270 +   negative for error (Z_DATA_ERROR or Z_MEM_ERROR).  If data is requested past
   1.271 +   the end of the uncompressed data, then extract() will return a value less
   1.272 +   than len, indicating how much as actually read into buf.  This function
   1.273 +   should not return a data error unless the file was modified since the index
   1.274 +   was generated.  extract() may also return Z_ERRNO if there is an error on
   1.275 +   reading or seeking the input file. */
   1.276 +int extract(FILE *in, struct access *index, off_t offset,
   1.277 +                  unsigned char *buf, int len)
   1.278 +{
   1.279 +    int ret, skip, value;
   1.280 +    z_stream strm;
   1.281 +    struct point *here;
   1.282 +    unsigned char input[CHUNK];
   1.283 +    //unsigned char discard[WINSIZE]; /* No longer required. See comments below. */
   1.284 +
   1.285 +    /* proceed only if something reasonable to do */
   1.286 +    if (len < 0)
   1.287 +        return 0;
   1.288 +
   1.289 +    /* find where in stream to start */
   1.290 +    here = index->list;
   1.291 +    ret = index->have;
   1.292 +    while (--ret && here[1].out <= offset)
   1.293 +        here++;
   1.294 +
   1.295 +    /* initialize file and inflate state to start there */
   1.296 +    strm.zalloc = Z_NULL;
   1.297 +    strm.zfree = Z_NULL;
   1.298 +    strm.opaque = Z_NULL;
   1.299 +    strm.avail_in = 0;
   1.300 +    strm.next_in = Z_NULL;
   1.301 +    ret = inflateInit2(&strm, -15);         /* raw inflate */
   1.302 +    if (ret != Z_OK)
   1.303 +        return ret;
   1.304 +    ret = fseek(in, here->in - (here->bits ? 1 : 0), SEEK_SET);
   1.305 +    if (ret == -1)
   1.306 +        goto extract_ret;
   1.307 +    
   1.308 +    ret = getc(in);
   1.309 +    if (ret == -1) {
   1.310 +        ret = ferror(in) ? Z_ERRNO : Z_DATA_ERROR;
   1.311 +        goto extract_ret;
   1.312 +    }
   1.313 +    
   1.314 +    // If bits is > 0 set the value as done in the original zran.c
   1.315 +    // else set the value to the next byte to prove that inflatePrime
   1.316 +    // is not adding anything to the start of the stream when bits is
   1.317 +    // set to 0. It is then necessary to unget the byte.
   1.318 +	if(here->bits) {	
   1.319 +	    value = ret >> (8 - here->bits);
   1.320 +	}
   1.321 +	else {
   1.322 +		value = ret;
   1.323 +		ungetc(ret, in);	
   1.324 +	}	
   1.325 +	
   1.326 +	ret = inflatePrime(&strm, here->bits, value);
   1.327 +	if(ret != Z_OK) {
   1.328 +		goto extract_ret;
   1.329 +	}
   1.330 +	test.Printf(_L("zran: bits = %d\n"), here->bits);
   1.331 +    test.Printf(_L("zran: value = %d\n"), value); 
   1.332 +    
   1.333 +    (void)inflateSetDictionary(&strm, here->window, WINSIZE);
   1.334 +
   1.335 +	/* No longer required. See comment below.
   1.336 +	 *
   1.337 +     * skip uncompressed bytes until offset reached, then satisfy request
   1.338 +    offset -= here->out;
   1.339 +     */
   1.340 +    strm.avail_in = 0;
   1.341 +    skip = 1;                               /* while skipping to offset */
   1.342 +    do {
   1.343 +        /* define where to put uncompressed data, and how much */
   1.344 +        if (skip) {          /* at offset now */
   1.345 +            strm.avail_out = len;
   1.346 +            strm.next_out = buf;
   1.347 +            skip = 0;                       /* only do this once */
   1.348 +        }
   1.349 +        
   1.350 +        /* This code is not required in this test as it is used
   1.351 +         * to discard decompressed data between the current
   1.352 +         * access point and the offset(place in the file from
   1.353 +         * which we wish to decompress data).
   1.354 +         * 
   1.355 +        if (offset > WINSIZE) {             // skip WINSIZE bytes
   1.356 +            strm.avail_out = WINSIZE;
   1.357 +            strm.next_out = discard;
   1.358 +            offset -= WINSIZE;
   1.359 +        }
   1.360 +        else if (offset != 0) {             // last skip
   1.361 +            strm.avail_out = (unsigned)offset;
   1.362 +            strm.next_out = discard;
   1.363 +            offset = 0;
   1.364 +        }
   1.365 +		*/
   1.366 +		
   1.367 +        /* uncompress until avail_out filled, or end of stream */
   1.368 +        do {
   1.369 +            if (strm.avail_in == 0) {
   1.370 +                strm.avail_in = fread(input, 1, CHUNK, in);
   1.371 +                if (ferror(in)) {
   1.372 +                    ret = Z_ERRNO;
   1.373 +                    goto extract_ret;
   1.374 +                }
   1.375 +                if (strm.avail_in == 0) {
   1.376 +                    ret = Z_DATA_ERROR;
   1.377 +                    goto extract_ret;
   1.378 +                }
   1.379 +                strm.next_in = input;
   1.380 +            }
   1.381 +            ret = inflate(&strm, Z_NO_FLUSH);       /* normal inflate */
   1.382 +            if (ret == Z_NEED_DICT)
   1.383 +                ret = Z_DATA_ERROR;
   1.384 +            if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
   1.385 +                goto extract_ret;
   1.386 +            if (ret == Z_STREAM_END)
   1.387 +                break;
   1.388 +        } while (strm.avail_out != 0);
   1.389 +
   1.390 +        /* if reach end of stream, then don't keep trying to get more */
   1.391 +        if (ret == Z_STREAM_END)
   1.392 +            break;
   1.393 +
   1.394 +        /* do until offset reached and requested data read, or stream ends */
   1.395 +    } while (skip);
   1.396 +
   1.397 +    /* compute number of uncompressed bytes read after offset */
   1.398 +    ret = skip ? 0 : len - strm.avail_out;
   1.399 +
   1.400 +    /* clean up and return bytes read or error */
   1.401 +  extract_ret:
   1.402 +    (void)inflateEnd(&strm);
   1.403 +    return ret;
   1.404 +}
   1.405 +
   1.406 +/* Demonstrate the use of build_index() and extract() by processing the file
   1.407 +   provided and then extracting CHUNK bytes at each access point. */
   1.408 +int TestInflatePrime(char *file)
   1.409 +	{
   1.410 +    int len;
   1.411 +    FILE *in;
   1.412 +    struct access *index;
   1.413 +    unsigned char buf[CHUNK];
   1.414 +
   1.415 +    in = fopen(file, "rb");
   1.416 +    if (in == NULL) 
   1.417 +    	{
   1.418 +        return KErrPathNotFound;
   1.419 +    	}
   1.420 +
   1.421 +    // build index
   1.422 +    len = build_index(in, SPAN, &index);
   1.423 +    if (len < 0) 
   1.424 +    	{
   1.425 +        fclose(in);
   1.426 +        test.Printf(_L("error: %d\n"), len);
   1.427 +        return KErrGeneral;
   1.428 +    	}
   1.429 +    test.Printf(_L("zran: built index with %d access points\n"), len);
   1.430 +
   1.431 +	// Extract some data at the start of each access point. This is done
   1.432 +	// so that we can try extracting some data that does not necessarily 
   1.433 +	// start at a byte boundary ie it might start mid byte.
   1.434 +    for(int i = 0; i < index->have; i++)
   1.435 +	    {
   1.436 +	    len = extract(in, index, index->list[i].out, buf, CHUNK);
   1.437 +	    if (len < 0)
   1.438 +	    	{
   1.439 +	    	test.Printf(_L("zran: extraction failed: "));
   1.440 +
   1.441 +	    	if(len == Z_MEM_ERROR)
   1.442 +                {
   1.443 +                test.Printf(_L("out of memory error\n"));
   1.444 +                }
   1.445 +            else
   1.446 +                {
   1.447 +                test.Printf(_L("input corrupted error\n"));
   1.448 +                }
   1.449 +            }
   1.450 +	    else 
   1.451 +	    	{
   1.452 +	        test.Printf(_L("zran: extracted %d bytes at %Lu\n"), len, index->list[i].out);
   1.453 +	    	}	
   1.454 +	    }    
   1.455 +
   1.456 +    // clean up and exit
   1.457 +    free_index(index);
   1.458 +    fclose(in);
   1.459 +    
   1.460 +    return KErrNone;
   1.461 +	}
   1.462 +
   1.463 +/**
   1.464 +@SYMTestCaseID       	SYSLIB-EZLIB2-UT-4273
   1.465 +@SYMTestCaseDesc     	To check that data can be decompressed at various points in a 
   1.466 +                        compressed file (i.e. decompression may start part of the way 
   1.467 +                        through a byte) via the use of inflatePrime().
   1.468 +@SYMTestPriority     	Low
   1.469 +@SYMTestActions      	1.	Open a compressed file for reading.
   1.470 +                        2.	Create an inflate stream and initialise it using inflateInit2(), 
   1.471 +                            setting windowBits to 47 (automatic gzip/zip header detection).
   1.472 +                        3.	Inflate the data in the file using inflate(). During inflation 
   1.473 +                            create access points using structure Point which maps points 
   1.474 +                            in the uncompressed data with points in the compressed data. 
   1.475 +                            The first access point should be at the start of the data 
   1.476 +                            i.e. after the header.
   1.477 +                            
   1.478 +                            Structure  Point consist of : 
   1.479 +                            •	UPoint(in bytes) – this is the point in the uncompressed data 
   1.480 +                            •	CPoint(in bytes) – this is the point in the compressed data
   1.481 +                            •	bits(in bits) – this is the point in the compressed data
   1.482 +                        4.	Cleanup the inflate stream using inflateEnd().
   1.483 +                        5.	For each access point do the following:
   1.484 +                            a.	Initialise the inflate stream using inflateInit2(), 
   1.485 +                                setting windowBits to -15.
   1.486 +                            b.	Move the file pointer to CPoint - 1 in the input file.
   1.487 +                            c.	Calculate the value which will be passed to inflatePrime(). 
   1.488 +                                The algorithm used to calculate value can be seen in the 
   1.489 +                                attached diagram (in the test spec).
   1.490 +                            d.	Call inflatePrime() with the bits and value.
   1.491 +                            e.	Inflate a small section of in the input file using inflate().
   1.492 +                            f.	Cleanup the inflate stream using inflateEnd().
   1.493 +                        6.	Close the compressed file and cleanup any allocated memory.
   1.494 +                        
   1.495 +                        Note: This test should be completed using a zlib file and a gzip 
   1.496 +                              file. These files should be 500 – 1000KB in size.
   1.497 +@SYMTestExpectedResults inflatePrime() should return Z_OK and the data should be 
   1.498 +                        decompressed with no errors.
   1.499 +@SYMDEF                 REQ7362
   1.500 +*/
   1.501 +void RunTestL()
   1.502 +	{
   1.503 +	test.Next(_L(" @SYMTestCaseID:SYSLIB-EZLIB2-UT-4273 "));
   1.504 +	int err;	
   1.505 +	char file[KMaxFileName];
   1.506 +	
   1.507 +	for(int i = 0; i < numTestFiles; i++)
   1.508 +		{
   1.509 +		TBuf<40> testName(_L("inflatePrime test using file "));
   1.510 +		testName.AppendNum(i);
   1.511 +		test.Next(testName);
   1.512 +		
   1.513 +		strcpy(file, filePath);
   1.514 +		strcat(file, testFile[i]);
   1.515 +			
   1.516 +		err = TestInflatePrime(file);
   1.517 +			
   1.518 +		if(err == KErrPathNotFound)
   1.519 +			{
   1.520 +			test.Printf(_L("zran: could not open file number %d for reading\n"), i);
   1.521 +			User::Leave(err);
   1.522 +			}
   1.523 +		else if(err != KErrNone)
   1.524 +			{
   1.525 +			User::Leave(err);
   1.526 +			}
   1.527 +			
   1.528 +		test.Printf(_L("\n"));		
   1.529 +		}
   1.530 +	}
   1.531 +
   1.532 +TInt E32Main()
   1.533 +	{
   1.534 +	__UHEAP_MARK;
   1.535 +
   1.536 +	test.Printf(_L("\n"));
   1.537 +	test.Title();
   1.538 +	test.Start(KTestTitle);
   1.539 +
   1.540 +	CTrapCleanup* cleanup = CTrapCleanup::New();
   1.541 +
   1.542 +	TRAPD(err, RunTestL());
   1.543 +	test2(err, KErrNone);
   1.544 +	
   1.545 +	test.End();
   1.546 +	test.Close();
   1.547 +	delete cleanup;
   1.548 +
   1.549 +	__UHEAP_MARKEND;
   1.550 +	return KErrNone;
   1.551 +	}