sl@0: /* Portions Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
sl@0:  * All rights reserved.
sl@0:  */
sl@0: 
sl@0: /* zran.c -- example of zlib/gzip stream indexing and random access
sl@0:  * Copyright (C) 2005 Mark Adler
sl@0:  * For conditions of distribution and use, see copyright notice in zlib.h
sl@0:    Version 1.0  29 May 2005  Mark Adler */
sl@0: 
sl@0: /* Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
sl@0:    for random access of a compressed file.  A file containing a zlib or gzip
sl@0:    stream is provided on the command line.  The compressed stream is decoded in
sl@0:    its entirety, and an index built with access points about every SPAN bytes
sl@0:    in the uncompressed output.  The compressed file is left open, and can then
sl@0:    be read randomly, having to decompress on the average SPAN/2 uncompressed
sl@0:    bytes before getting to the desired block of data.
sl@0: 
sl@0:    An access point can be created at the start of any deflate block, by saving
sl@0:    the starting file offset and bit of that block, and the 32K bytes of
sl@0:    uncompressed data that precede that block.  Also the uncompressed offset of
sl@0:    that block is saved to provide a referece for locating a desired starting
sl@0:    point in the uncompressed stream.  build_index() works by decompressing the
sl@0:    input zlib or gzip stream a block at a time, and at the end of each block
sl@0:    deciding if enough uncompressed data has gone by to justify the creation of
sl@0:    a new access point.  If so, that point is saved in a data structure that
sl@0:    grows as needed to accommodate the points.
sl@0: 
sl@0:    To use the index, an offset in the uncompressed data is provided, for which
sl@0:    the latest access point at or preceding that offset is located in the index.
sl@0:    The input file is positioned to the specified location in the index, and if
sl@0:    necessary the first few bits of the compressed data is read from the file.
sl@0:    inflate is initialized with those bits and the 32K of uncompressed data, and
sl@0:    the decompression then proceeds until the desired offset in the file is
sl@0:    reached.  Then the decompression continues to read the desired uncompressed
sl@0:    data from the file.
sl@0: 
sl@0:    Another approach would be to generate the index on demand.  In that case,
sl@0:    requests for random access reads from the compressed data would try to use
sl@0:    the index, but if a read far enough past the end of the index is required,
sl@0:    then further index entries would be generated and added.
sl@0: 
sl@0:    There is some fair bit of overhead to starting inflation for the random
sl@0:    access, mainly copying the 32K byte dictionary.  So if small pieces of the
sl@0:    file are being accessed, it would make sense to implement a cache to hold
sl@0:    some lookahead and avoid many calls to extract() for small lengths.
sl@0: 
sl@0:    Another way to build an index would be to use inflateCopy().  That would
sl@0:    not be constrained to have access points at block boundaries, but requires
sl@0:    more memory per access point, and also cannot be saved to file due to the
sl@0:    use of pointers in the state.  The approach here allows for storage of the
sl@0:    index in a file.
sl@0:  */
sl@0: 
sl@0: #include <e32test.h>
sl@0: #include <stdio.h>
sl@0: #include <stdlib.h>
sl@0: #include <string.h>
sl@0: #include <fcntl.h>
sl@0: #include <zlib.h>
sl@0: 
sl@0: _LIT(KTestTitle, "inflatePrime() Test.");
sl@0: 
sl@0: RTest test(_L("inflateprimetest.exe"));
sl@0: const int numTestFiles = 2;
sl@0: const char *filePath = "z:\\test\\inflateprimetest\\\0";
sl@0: const char *testFile[numTestFiles] = {"gzipped.gz\0", "zipped.zip\0"};
sl@0: 
sl@0: /* Test macro and function */
sl@0: void Check(TInt aValue, TInt aExpected, TInt aLine)
sl@0: 	{
sl@0:     if (aValue != aExpected)
sl@0:     	{
sl@0:         test.Printf(_L("*** Expected error: %d, got: %d\r\n"), aExpected, aValue);
sl@0:         test.operator()(EFalse, aLine);
sl@0:         }
sl@0:     }
sl@0: #define test2(a, b) Check(a, b, __LINE__)
sl@0: 
sl@0: #define SPAN 1048576L       /* desired distance between access points */
sl@0: #define WINSIZE 32768U      /* sliding window size */
sl@0: #define CHUNK 128         /* file input buffer size */
sl@0: 
sl@0: /* access point entry */
sl@0: struct point {
sl@0:     off_t out;          /* corresponding offset in uncompressed data */
sl@0:     off_t in;           /* offset in input file of first full byte */
sl@0:     int bits;           /* number of bits (1-7) from byte at in - 1, or 0 */
sl@0:     unsigned char window[WINSIZE];  /* preceding 32K of uncompressed data */
sl@0: };
sl@0: 
sl@0: /* access point list */
sl@0: struct access {
sl@0:     int have;           /* number of list entries filled in */
sl@0:     int size;           /* number of list entries allocated */
sl@0:     struct point *list; /* allocated list */
sl@0: };
sl@0: 
sl@0: /* Deallocate an index built by build_index() */
sl@0: void free_index(struct access *index)
sl@0: {
sl@0:     if (index != NULL) {
sl@0:         free(index->list);
sl@0:         free(index);
sl@0:     }
sl@0: }
sl@0: 
sl@0: /* Add an entry to the access point list.  If out of memory, deallocate the
sl@0:    existing list and return NULL. */
sl@0: struct access *addpoint(struct access *index, int bits,
sl@0:     off_t in, off_t out, unsigned left, unsigned char *window)
sl@0: {
sl@0:     struct point *next;
sl@0: 
sl@0:     // if list is empty, create it (start with eight points)
sl@0:     if (index == NULL) {
sl@0:         index = (struct access *)malloc(sizeof(struct access));
sl@0:         if (index == NULL) return NULL;
sl@0:         index->list = (struct point *)malloc(sizeof(struct point) << 3);
sl@0:         if (index->list == NULL) {
sl@0:             free(index);
sl@0:             return NULL;
sl@0:         }
sl@0:         index->size = 8;
sl@0:         index->have = 0;
sl@0:     }
sl@0: 
sl@0:     // if list is full, make it bigger
sl@0:     else if (index->have == index->size) {
sl@0:         index->size <<= 1;
sl@0:         next = (struct point *)realloc(index->list, sizeof(struct point) * index->size);
sl@0:         if (next == NULL) {
sl@0:             free_index(index);
sl@0:             return NULL;
sl@0:         }
sl@0:         index->list = next;
sl@0:     }
sl@0: 
sl@0:     // fill in entry and increment how many we have
sl@0:     next = index->list + index->have;
sl@0:     next->bits = bits;
sl@0:     next->in = in;
sl@0:     next->out = out;
sl@0:     if (left)
sl@0:         memcpy(next->window, window + WINSIZE - left, left);
sl@0:     if (left < WINSIZE)
sl@0:         memcpy(next->window + left, window, WINSIZE - left);
sl@0:     index->have++;
sl@0: 
sl@0:     /* return list, possibly reallocated */
sl@0:     return index;
sl@0: }
sl@0: 
sl@0: /* Make one entire pass through the compressed stream and build an index, with
sl@0:    access points about every span bytes of uncompressed output -- span is
sl@0:    chosen to balance the speed of random access against the memory requirements
sl@0:    of the list, about 32K bytes per access point.  Note that data after the end
sl@0:    of the first zlib or gzip stream in the file is ignored.  build_index()
sl@0:    returns the number of access points on success (>= 1), Z_MEM_ERROR for out
sl@0:    of memory, Z_DATA_ERROR for an error in the input file, or Z_ERRNO for a
sl@0:    file read error.  On success, *built points to the resulting index. */
sl@0: int build_index(FILE *in, off_t span, struct access **built)
sl@0: {
sl@0:     int ret;
sl@0:     off_t totin, totout;        /* our own total counters to avoid 4GB limit */
sl@0:     off_t last;                 /* totout value of last access point */
sl@0:     struct access *index;       /* access points being generated */
sl@0:     z_stream strm;
sl@0:     unsigned char input[CHUNK];
sl@0:     unsigned char window[WINSIZE];
sl@0: 	struct point *next = NULL;
sl@0: 
sl@0:     /* initialize inflate */
sl@0:     strm.zalloc = Z_NULL;
sl@0:     strm.zfree = Z_NULL;
sl@0:     strm.opaque = Z_NULL;
sl@0:     strm.avail_in = 0;
sl@0:     strm.next_in = Z_NULL;
sl@0:     ret = inflateInit2(&strm, 47);      /* automatic zlib or gzip decoding */
sl@0:     if (ret != Z_OK)
sl@0:         return ret;
sl@0: 
sl@0:     /* inflate the input, maintain a sliding window, and build an index -- this
sl@0:        also validates the integrity of the compressed data using the check
sl@0:        information at the end of the gzip or zlib stream */
sl@0:     totin = totout = last = 0;
sl@0:     index = NULL;               /* will be allocated by first addpoint() */
sl@0:     strm.avail_out = 0;
sl@0:     do {
sl@0:         /* get some compressed data from input file */
sl@0:         strm.avail_in = fread(input, 1, CHUNK, in);
sl@0:         if (ferror(in)) {
sl@0:             ret = Z_ERRNO;
sl@0:             goto build_index_error;
sl@0:         }
sl@0:         if (strm.avail_in == 0) {
sl@0:             ret = Z_DATA_ERROR;
sl@0:             goto build_index_error;
sl@0:         }
sl@0:         strm.next_in = input;
sl@0: 
sl@0:         /* process all of that, or until end of stream */
sl@0:         do {
sl@0:             /* reset sliding window if necessary */
sl@0:             if (strm.avail_out == 0) {
sl@0:                 strm.avail_out = WINSIZE;
sl@0:                 strm.next_out = window;
sl@0:             }
sl@0: 
sl@0:             /* inflate until out of input, output, or at end of block --
sl@0:                update the total input and output counters */
sl@0:             totin += strm.avail_in;
sl@0:             totout += strm.avail_out;
sl@0:             ret = inflate(&strm, Z_BLOCK);      /* return at end of block */
sl@0:             totin -= strm.avail_in;
sl@0:             totout -= strm.avail_out;
sl@0:             if (ret == Z_NEED_DICT)
sl@0:                 ret = Z_DATA_ERROR;
sl@0:             if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
sl@0:                 goto build_index_error;
sl@0:             if (ret == Z_STREAM_END)
sl@0:                 break;
sl@0: 
sl@0:             /* if at end of block, consider adding an index entry (note that if
sl@0:                data_type indicates an end-of-block, then all of the
sl@0:                uncompressed data from that block has been delivered, and none
sl@0:                of the compressed data after that block has been consumed,
sl@0:                except for up to seven bits) -- the totout == 0 provides an
sl@0:                entry point after the zlib or gzip header, and assures that the
sl@0:                index always has at least one access point; we avoid creating an
sl@0:                access point after the last block by checking bit 6 of data_type
sl@0:              */
sl@0:             if ((strm.data_type & 128) && !(strm.data_type & 64) &&
sl@0:                 (totout == 0 || totout - last > span)) {
sl@0:                 index = addpoint(index, strm.data_type & 7, totin,
sl@0:                                  totout, strm.avail_out, window);
sl@0:                 if (index == NULL) {
sl@0:                     ret = Z_MEM_ERROR;
sl@0:                     goto build_index_error;
sl@0:                 }
sl@0:                 last = totout;
sl@0:             }
sl@0:         } while (strm.avail_in != 0);
sl@0:     } while (ret != Z_STREAM_END);
sl@0: 
sl@0:     /* clean up and return index (release unused entries in list) */
sl@0:     (void)inflateEnd(&strm);
sl@0:     
sl@0:     next = (struct point *)realloc(index->list, sizeof(struct point) * index->have);
sl@0:     if (next == NULL) {
sl@0:         free_index(index);
sl@0:         return Z_MEM_ERROR;
sl@0:     }
sl@0:     index->list = next;
sl@0:     index->size = index->have;
sl@0:     *built = index;
sl@0:     return index->size;
sl@0: 
sl@0:     /* return error */
sl@0:   build_index_error:
sl@0:     (void)inflateEnd(&strm);
sl@0:     if (index != NULL)
sl@0:         free_index(index);
sl@0:     return ret;
sl@0: }
sl@0: 
sl@0: /* Use the index to read len bytes from offset into buf, return bytes read or
sl@0:    negative for error (Z_DATA_ERROR or Z_MEM_ERROR).  If data is requested past
sl@0:    the end of the uncompressed data, then extract() will return a value less
sl@0:    than len, indicating how much as actually read into buf.  This function
sl@0:    should not return a data error unless the file was modified since the index
sl@0:    was generated.  extract() may also return Z_ERRNO if there is an error on
sl@0:    reading or seeking the input file. */
sl@0: int extract(FILE *in, struct access *index, off_t offset,
sl@0:                   unsigned char *buf, int len)
sl@0: {
sl@0:     int ret, skip, value;
sl@0:     z_stream strm;
sl@0:     struct point *here;
sl@0:     unsigned char input[CHUNK];
sl@0:     //unsigned char discard[WINSIZE]; /* No longer required. See comments below. */
sl@0: 
sl@0:     /* proceed only if something reasonable to do */
sl@0:     if (len < 0)
sl@0:         return 0;
sl@0: 
sl@0:     /* find where in stream to start */
sl@0:     here = index->list;
sl@0:     ret = index->have;
sl@0:     while (--ret && here[1].out <= offset)
sl@0:         here++;
sl@0: 
sl@0:     /* initialize file and inflate state to start there */
sl@0:     strm.zalloc = Z_NULL;
sl@0:     strm.zfree = Z_NULL;
sl@0:     strm.opaque = Z_NULL;
sl@0:     strm.avail_in = 0;
sl@0:     strm.next_in = Z_NULL;
sl@0:     ret = inflateInit2(&strm, -15);         /* raw inflate */
sl@0:     if (ret != Z_OK)
sl@0:         return ret;
sl@0:     ret = fseek(in, here->in - (here->bits ? 1 : 0), SEEK_SET);
sl@0:     if (ret == -1)
sl@0:         goto extract_ret;
sl@0:     
sl@0:     ret = getc(in);
sl@0:     if (ret == -1) {
sl@0:         ret = ferror(in) ? Z_ERRNO : Z_DATA_ERROR;
sl@0:         goto extract_ret;
sl@0:     }
sl@0:     
sl@0:     // If bits is > 0 set the value as done in the original zran.c
sl@0:     // else set the value to the next byte to prove that inflatePrime
sl@0:     // is not adding anything to the start of the stream when bits is
sl@0:     // set to 0. It is then necessary to unget the byte.
sl@0: 	if(here->bits) {	
sl@0: 	    value = ret >> (8 - here->bits);
sl@0: 	}
sl@0: 	else {
sl@0: 		value = ret;
sl@0: 		ungetc(ret, in);	
sl@0: 	}	
sl@0: 	
sl@0: 	ret = inflatePrime(&strm, here->bits, value);
sl@0: 	if(ret != Z_OK) {
sl@0: 		goto extract_ret;
sl@0: 	}
sl@0: 	test.Printf(_L("zran: bits = %d\n"), here->bits);
sl@0:     test.Printf(_L("zran: value = %d\n"), value); 
sl@0:     
sl@0:     (void)inflateSetDictionary(&strm, here->window, WINSIZE);
sl@0: 
sl@0: 	/* No longer required. See comment below.
sl@0: 	 *
sl@0:      * skip uncompressed bytes until offset reached, then satisfy request
sl@0:     offset -= here->out;
sl@0:      */
sl@0:     strm.avail_in = 0;
sl@0:     skip = 1;                               /* while skipping to offset */
sl@0:     do {
sl@0:         /* define where to put uncompressed data, and how much */
sl@0:         if (skip) {          /* at offset now */
sl@0:             strm.avail_out = len;
sl@0:             strm.next_out = buf;
sl@0:             skip = 0;                       /* only do this once */
sl@0:         }
sl@0:         
sl@0:         /* This code is not required in this test as it is used
sl@0:          * to discard decompressed data between the current
sl@0:          * access point and the offset(place in the file from
sl@0:          * which we wish to decompress data).
sl@0:          * 
sl@0:         if (offset > WINSIZE) {             // skip WINSIZE bytes
sl@0:             strm.avail_out = WINSIZE;
sl@0:             strm.next_out = discard;
sl@0:             offset -= WINSIZE;
sl@0:         }
sl@0:         else if (offset != 0) {             // last skip
sl@0:             strm.avail_out = (unsigned)offset;
sl@0:             strm.next_out = discard;
sl@0:             offset = 0;
sl@0:         }
sl@0: 		*/
sl@0: 		
sl@0:         /* uncompress until avail_out filled, or end of stream */
sl@0:         do {
sl@0:             if (strm.avail_in == 0) {
sl@0:                 strm.avail_in = fread(input, 1, CHUNK, in);
sl@0:                 if (ferror(in)) {
sl@0:                     ret = Z_ERRNO;
sl@0:                     goto extract_ret;
sl@0:                 }
sl@0:                 if (strm.avail_in == 0) {
sl@0:                     ret = Z_DATA_ERROR;
sl@0:                     goto extract_ret;
sl@0:                 }
sl@0:                 strm.next_in = input;
sl@0:             }
sl@0:             ret = inflate(&strm, Z_NO_FLUSH);       /* normal inflate */
sl@0:             if (ret == Z_NEED_DICT)
sl@0:                 ret = Z_DATA_ERROR;
sl@0:             if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
sl@0:                 goto extract_ret;
sl@0:             if (ret == Z_STREAM_END)
sl@0:                 break;
sl@0:         } while (strm.avail_out != 0);
sl@0: 
sl@0:         /* if reach end of stream, then don't keep trying to get more */
sl@0:         if (ret == Z_STREAM_END)
sl@0:             break;
sl@0: 
sl@0:         /* do until offset reached and requested data read, or stream ends */
sl@0:     } while (skip);
sl@0: 
sl@0:     /* compute number of uncompressed bytes read after offset */
sl@0:     ret = skip ? 0 : len - strm.avail_out;
sl@0: 
sl@0:     /* clean up and return bytes read or error */
sl@0:   extract_ret:
sl@0:     (void)inflateEnd(&strm);
sl@0:     return ret;
sl@0: }
sl@0: 
sl@0: /* Demonstrate the use of build_index() and extract() by processing the file
sl@0:    provided and then extracting CHUNK bytes at each access point. */
sl@0: int TestInflatePrime(char *file)
sl@0: 	{
sl@0:     int len;
sl@0:     FILE *in;
sl@0:     struct access *index;
sl@0:     unsigned char buf[CHUNK];
sl@0: 
sl@0:     in = fopen(file, "rb");
sl@0:     if (in == NULL) 
sl@0:     	{
sl@0:         return KErrPathNotFound;
sl@0:     	}
sl@0: 
sl@0:     // build index
sl@0:     len = build_index(in, SPAN, &index);
sl@0:     if (len < 0) 
sl@0:     	{
sl@0:         fclose(in);
sl@0:         test.Printf(_L("error: %d\n"), len);
sl@0:         return KErrGeneral;
sl@0:     	}
sl@0:     test.Printf(_L("zran: built index with %d access points\n"), len);
sl@0: 
sl@0: 	// Extract some data at the start of each access point. This is done
sl@0: 	// so that we can try extracting some data that does not necessarily 
sl@0: 	// start at a byte boundary ie it might start mid byte.
sl@0:     for(int i = 0; i < index->have; i++)
sl@0: 	    {
sl@0: 	    len = extract(in, index, index->list[i].out, buf, CHUNK);
sl@0: 	    if (len < 0)
sl@0: 	    	{
sl@0: 	    	test.Printf(_L("zran: extraction failed: "));
sl@0: 
sl@0: 	    	if(len == Z_MEM_ERROR)
sl@0:                 {
sl@0:                 test.Printf(_L("out of memory error\n"));
sl@0:                 }
sl@0:             else
sl@0:                 {
sl@0:                 test.Printf(_L("input corrupted error\n"));
sl@0:                 }
sl@0:             }
sl@0: 	    else 
sl@0: 	    	{
sl@0: 	        test.Printf(_L("zran: extracted %d bytes at %Lu\n"), len, index->list[i].out);
sl@0: 	    	}	
sl@0: 	    }    
sl@0: 
sl@0:     // clean up and exit
sl@0:     free_index(index);
sl@0:     fclose(in);
sl@0:     
sl@0:     return KErrNone;
sl@0: 	}
sl@0: 
sl@0: /**
sl@0: @SYMTestCaseID       	SYSLIB-EZLIB2-UT-4273
sl@0: @SYMTestCaseDesc     	To check that data can be decompressed at various points in a 
sl@0:                         compressed file (i.e. decompression may start part of the way 
sl@0:                         through a byte) via the use of inflatePrime().
sl@0: @SYMTestPriority     	Low
sl@0: @SYMTestActions      	1.	Open a compressed file for reading.
sl@0:                         2.	Create an inflate stream and initialise it using inflateInit2(), 
sl@0:                             setting windowBits to 47 (automatic gzip/zip header detection).
sl@0:                         3.	Inflate the data in the file using inflate(). During inflation 
sl@0:                             create access points using structure Point which maps points 
sl@0:                             in the uncompressed data with points in the compressed data. 
sl@0:                             The first access point should be at the start of the data 
sl@0:                             i.e. after the header.
sl@0:                             
sl@0:                             Structure  Point consist of : 
sl@0:                             •	UPoint(in bytes) – this is the point in the uncompressed data 
sl@0:                             •	CPoint(in bytes) – this is the point in the compressed data
sl@0:                             •	bits(in bits) – this is the point in the compressed data
sl@0:                         4.	Cleanup the inflate stream using inflateEnd().
sl@0:                         5.	For each access point do the following:
sl@0:                             a.	Initialise the inflate stream using inflateInit2(), 
sl@0:                                 setting windowBits to -15.
sl@0:                             b.	Move the file pointer to CPoint - 1 in the input file.
sl@0:                             c.	Calculate the value which will be passed to inflatePrime(). 
sl@0:                                 The algorithm used to calculate value can be seen in the 
sl@0:                                 attached diagram (in the test spec).
sl@0:                             d.	Call inflatePrime() with the bits and value.
sl@0:                             e.	Inflate a small section of in the input file using inflate().
sl@0:                             f.	Cleanup the inflate stream using inflateEnd().
sl@0:                         6.	Close the compressed file and cleanup any allocated memory.
sl@0:                         
sl@0:                         Note: This test should be completed using a zlib file and a gzip 
sl@0:                               file. These files should be 500 – 1000KB in size.
sl@0: @SYMTestExpectedResults inflatePrime() should return Z_OK and the data should be 
sl@0:                         decompressed with no errors.
sl@0: @SYMDEF                 REQ7362
sl@0: */
sl@0: void RunTestL()
sl@0: 	{
sl@0: 	test.Next(_L(" @SYMTestCaseID:SYSLIB-EZLIB2-UT-4273 "));
sl@0: 	int err;	
sl@0: 	char file[KMaxFileName];
sl@0: 	
sl@0: 	for(int i = 0; i < numTestFiles; i++)
sl@0: 		{
sl@0: 		TBuf<40> testName(_L("inflatePrime test using file "));
sl@0: 		testName.AppendNum(i);
sl@0: 		test.Next(testName);
sl@0: 		
sl@0: 		strcpy(file, filePath);
sl@0: 		strcat(file, testFile[i]);
sl@0: 			
sl@0: 		err = TestInflatePrime(file);
sl@0: 			
sl@0: 		if(err == KErrPathNotFound)
sl@0: 			{
sl@0: 			test.Printf(_L("zran: could not open file number %d for reading\n"), i);
sl@0: 			User::Leave(err);
sl@0: 			}
sl@0: 		else if(err != KErrNone)
sl@0: 			{
sl@0: 			User::Leave(err);
sl@0: 			}
sl@0: 			
sl@0: 		test.Printf(_L("\n"));		
sl@0: 		}
sl@0: 	}
sl@0: 
sl@0: TInt E32Main()
sl@0: 	{
sl@0: 	__UHEAP_MARK;
sl@0: 
sl@0: 	test.Printf(_L("\n"));
sl@0: 	test.Title();
sl@0: 	test.Start(KTestTitle);
sl@0: 
sl@0: 	CTrapCleanup* cleanup = CTrapCleanup::New();
sl@0: 
sl@0: 	TRAPD(err, RunTestL());
sl@0: 	test2(err, KErrNone);
sl@0: 	
sl@0: 	test.End();
sl@0: 	test.Close();
sl@0: 	delete cleanup;
sl@0: 
sl@0: 	__UHEAP_MARKEND;
sl@0: 	return KErrNone;
sl@0: 	}