epoc32/include/stdapis/boost/optional.hpp
branchSymbian2
changeset 3 e1b950c65cb4
parent 2 2fe1408b6811
child 4 837f303aceeb
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/epoc32/include/stdapis/boost/optional.hpp	Wed Mar 31 12:27:01 2010 +0100
     1.3 @@ -0,0 +1,922 @@
     1.4 +// Copyright (C) 2003, Fernando Luis Cacciola Carballal.
     1.5 +//
     1.6 +// Use, modification, and distribution is subject to the Boost Software
     1.7 +// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
     1.8 +// http://www.boost.org/LICENSE_1_0.txt)
     1.9 +//
    1.10 +// See http://www.boost.org/lib/optional for documentation.
    1.11 +//
    1.12 +// You are welcome to contact the author at:
    1.13 +//  fernando_cacciola@hotmail.com
    1.14 +//
    1.15 +#ifndef BOOST_OPTIONAL_OPTIONAL_FLC_19NOV2002_HPP
    1.16 +#define BOOST_OPTIONAL_OPTIONAL_FLC_19NOV2002_HPP
    1.17 +
    1.18 +#include<new>
    1.19 +#include<algorithm>
    1.20 +
    1.21 +#include "boost/config.hpp"
    1.22 +#include "boost/assert.hpp"
    1.23 +#include "boost/type.hpp"
    1.24 +#include "boost/type_traits/alignment_of.hpp"
    1.25 +#include "boost/type_traits/type_with_alignment.hpp"
    1.26 +#include "boost/type_traits/remove_reference.hpp"
    1.27 +#include "boost/type_traits/is_reference.hpp"
    1.28 +#include "boost/mpl/if.hpp"
    1.29 +#include "boost/mpl/bool.hpp"
    1.30 +#include "boost/mpl/not.hpp"
    1.31 +#include "boost/detail/reference_content.hpp"
    1.32 +#include "boost/none.hpp"
    1.33 +#include "boost/utility/compare_pointees.hpp"
    1.34 +
    1.35 +#include "boost/optional/optional_fwd.hpp"
    1.36 +
    1.37 +#if BOOST_WORKAROUND(BOOST_MSVC, == 1200)
    1.38 +// VC6.0 has the following bug:
    1.39 +//   When a templated assignment operator exist, an implicit conversion
    1.40 +//   constructing an optional<T> is used when assigment of the form:
    1.41 +//     optional<T> opt ; opt = T(...);
    1.42 +//   is compiled.
    1.43 +//   However, optional's ctor is _explicit_ and the assignemt shouldn't compile.
    1.44 +//   Therefore, for VC6.0 templated assignment is disabled.
    1.45 +//
    1.46 +#define BOOST_OPTIONAL_NO_CONVERTING_ASSIGNMENT
    1.47 +#endif
    1.48 +
    1.49 +#if BOOST_WORKAROUND(BOOST_MSVC, == 1300)
    1.50 +// VC7.0 has the following bug:
    1.51 +//   When both a non-template and a template copy-ctor exist
    1.52 +//   and the templated version is made 'explicit', the explicit is also
    1.53 +//   given to the non-templated version, making the class non-implicitely-copyable.
    1.54 +//
    1.55 +#define BOOST_OPTIONAL_NO_CONVERTING_COPY_CTOR
    1.56 +#endif
    1.57 +
    1.58 +#if BOOST_WORKAROUND(BOOST_MSVC, <= 1300) || BOOST_WORKAROUND(BOOST_INTEL_CXX_VERSION,<=700)
    1.59 +// AFAICT only VC7.1 correctly resolves the overload set
    1.60 +// that includes the in-place factory taking functions,
    1.61 +// so for the other VC versions, in-place factory support
    1.62 +// is disabled
    1.63 +#define BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
    1.64 +#endif
    1.65 +
    1.66 +#if BOOST_WORKAROUND(__BORLANDC__, <= 0x551)
    1.67 +// BCB (5.5.1) cannot parse the nested template struct in an inplace factory.
    1.68 +#define BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
    1.69 +#endif
    1.70 +
    1.71 +#if !defined(BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT) \
    1.72 +    && BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581) )
    1.73 +// BCB (up to 5.64) has the following bug:
    1.74 +//   If there is a member function/operator template of the form
    1.75 +//     template<class Expr> mfunc( Expr expr ) ;
    1.76 +//   some calls are resolved to this even if there are other better matches.
    1.77 +//   The effect of this bug is that calls to converting ctors and assignments
    1.78 +//   are incrorrectly sink to this general catch-all member function template as shown above.
    1.79 +#define BOOST_OPTIONAL_WEAK_OVERLOAD_RESOLUTION
    1.80 +#endif
    1.81 +
    1.82 +// Daniel Wallin discovered that bind/apply.hpp badly interacts with the apply<>
    1.83 +// member template of a factory as used in the optional<> implementation.
    1.84 +// He proposed this simple fix which is to move the call to apply<> outside
    1.85 +// namespace boost.
    1.86 +namespace boost_optional_detail
    1.87 +{
    1.88 +  template <class T, class Factory>
    1.89 +  void construct(Factory const& factory, void* address)
    1.90 +  {
    1.91 +    factory.BOOST_NESTED_TEMPLATE apply<T>(address);
    1.92 +  }
    1.93 +}
    1.94 +
    1.95 +
    1.96 +namespace boost {
    1.97 +
    1.98 +class in_place_factory_base ;
    1.99 +class typed_in_place_factory_base ;
   1.100 +
   1.101 +namespace optional_detail {
   1.102 +
   1.103 +// This local class is used instead of that in "aligned_storage.hpp"
   1.104 +// because I've found the 'official' class to ICE BCB5.5
   1.105 +// when some types are used with optional<>
   1.106 +// (due to sizeof() passed down as a non-type template parameter)
   1.107 +template <class T>
   1.108 +class aligned_storage
   1.109 +{
   1.110 +    // Borland ICEs if unnamed unions are used for this!
   1.111 +    union dummy_u
   1.112 +    {
   1.113 +        char data[ sizeof(T) ];
   1.114 +        BOOST_DEDUCED_TYPENAME type_with_alignment<
   1.115 +          ::boost::alignment_of<T>::value >::type aligner_;
   1.116 +    } dummy_ ;
   1.117 +
   1.118 +  public:
   1.119 +
   1.120 +    void const* address() const { return &dummy_.data[0]; }
   1.121 +    void      * address()       { return &dummy_.data[0]; }
   1.122 +} ;
   1.123 +
   1.124 +template<class T>
   1.125 +struct types_when_isnt_ref
   1.126 +{
   1.127 +  typedef T const& reference_const_type ;
   1.128 +  typedef T &      reference_type ;
   1.129 +  typedef T const* pointer_const_type ;
   1.130 +  typedef T *      pointer_type ;
   1.131 +  typedef T const& argument_type ;
   1.132 +} ;
   1.133 +template<class T>
   1.134 +struct types_when_is_ref
   1.135 +{
   1.136 +  typedef BOOST_DEDUCED_TYPENAME remove_reference<T>::type raw_type ;
   1.137 +
   1.138 +  typedef raw_type& reference_const_type ;
   1.139 +  typedef raw_type& reference_type ;
   1.140 +  typedef raw_type* pointer_const_type ;
   1.141 +  typedef raw_type* pointer_type ;
   1.142 +  typedef raw_type& argument_type ;
   1.143 +} ;
   1.144 +
   1.145 +struct optional_tag {} ;
   1.146 +
   1.147 +template<class T>
   1.148 +class optional_base : public optional_tag
   1.149 +{
   1.150 +  private :
   1.151 +
   1.152 +    typedef
   1.153 +#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
   1.154 +    BOOST_DEDUCED_TYPENAME
   1.155 +#endif 
   1.156 +    ::boost::detail::make_reference_content<T>::type internal_type ;
   1.157 +
   1.158 +    typedef aligned_storage<internal_type> storage_type ;
   1.159 +
   1.160 +    typedef types_when_isnt_ref<T> types_when_not_ref ;
   1.161 +    typedef types_when_is_ref<T>   types_when_ref   ;
   1.162 +
   1.163 +    typedef optional_base<T> this_type ;
   1.164 +
   1.165 +  protected :
   1.166 +
   1.167 +    typedef T value_type ;
   1.168 +
   1.169 +    typedef mpl::true_  is_reference_tag ;
   1.170 +    typedef mpl::false_ is_not_reference_tag ;
   1.171 +
   1.172 +    typedef BOOST_DEDUCED_TYPENAME is_reference<T>::type is_reference_predicate ;
   1.173 +
   1.174 +    typedef BOOST_DEDUCED_TYPENAME mpl::if_<is_reference_predicate,types_when_ref,types_when_not_ref>::type types ;
   1.175 +
   1.176 +    typedef bool (this_type::*unspecified_bool_type)() const;
   1.177 +
   1.178 +    typedef BOOST_DEDUCED_TYPENAME types::reference_type       reference_type ;
   1.179 +    typedef BOOST_DEDUCED_TYPENAME types::reference_const_type reference_const_type ;
   1.180 +    typedef BOOST_DEDUCED_TYPENAME types::pointer_type         pointer_type ;
   1.181 +    typedef BOOST_DEDUCED_TYPENAME types::pointer_const_type   pointer_const_type ;
   1.182 +    typedef BOOST_DEDUCED_TYPENAME types::argument_type        argument_type ;
   1.183 +
   1.184 +    // Creates an optional<T> uninitialized.
   1.185 +    // No-throw
   1.186 +    optional_base()
   1.187 +      :
   1.188 +      m_initialized(false) {}
   1.189 +
   1.190 +    // Creates an optional<T> uninitialized.
   1.191 +    // No-throw
   1.192 +    optional_base ( none_t )
   1.193 +      :
   1.194 +      m_initialized(false) {}
   1.195 +
   1.196 +    // Creates an optional<T> initialized with 'val'.
   1.197 +    // Can throw if T::T(T const&) does
   1.198 +    optional_base ( argument_type val )
   1.199 +      :
   1.200 +      m_initialized(false)
   1.201 +    {
   1.202 +      construct(val);
   1.203 +    }
   1.204 +    
   1.205 +    // Creates an optional<T> initialized with 'val' IFF cond is true, otherwise creates an uninitialzed optional<T>.
   1.206 +    // Can throw if T::T(T const&) does
   1.207 +    optional_base ( bool cond, argument_type val )
   1.208 +      :
   1.209 +      m_initialized(false)
   1.210 +    {
   1.211 +      if ( cond )
   1.212 +        construct(val);
   1.213 +    }
   1.214 +
   1.215 +    // Creates a deep copy of another optional<T>
   1.216 +    // Can throw if T::T(T const&) does
   1.217 +    optional_base ( optional_base const& rhs )
   1.218 +      :
   1.219 +      m_initialized(false)
   1.220 +    {
   1.221 +      if ( rhs.is_initialized() )
   1.222 +        construct(rhs.get_impl());
   1.223 +    }
   1.224 +
   1.225 +
   1.226 +    // This is used for both converting and in-place constructions.
   1.227 +    // Derived classes use the 'tag' to select the appropriate
   1.228 +    // implementation (the correct 'construct()' overload)
   1.229 +    template<class Expr>
   1.230 +    explicit optional_base ( Expr const& expr, Expr const* tag )
   1.231 +      :
   1.232 +      m_initialized(false)
   1.233 +    {
   1.234 +      construct(expr,tag);
   1.235 +    }
   1.236 +
   1.237 +
   1.238 +
   1.239 +    // No-throw (assuming T::~T() doesn't)
   1.240 +    ~optional_base() { destroy() ; }
   1.241 +
   1.242 +    // Assigns from another optional<T> (deep-copies the rhs value)
   1.243 +    void assign ( optional_base const& rhs )
   1.244 +    {
   1.245 +      if (is_initialized())
   1.246 +      {
   1.247 +        if ( rhs.is_initialized() )
   1.248 +             assign_value(rhs.get_impl(), is_reference_predicate() );
   1.249 +        else destroy();
   1.250 +      }
   1.251 +      else
   1.252 +      {
   1.253 +        if ( rhs.is_initialized() )
   1.254 +          construct(rhs.get_impl());
   1.255 +      }
   1.256 +    }
   1.257 +
   1.258 +    // Assigns from another _convertible_ optional<U> (deep-copies the rhs value)
   1.259 +    template<class U>
   1.260 +    void assign ( optional<U> const& rhs )
   1.261 +    {
   1.262 +      if (is_initialized())
   1.263 +      {
   1.264 +        if ( rhs.is_initialized() )
   1.265 +             assign_value(static_cast<value_type>(rhs.get()), is_reference_predicate() );
   1.266 +        else destroy();
   1.267 +      }
   1.268 +      else
   1.269 +      {
   1.270 +        if ( rhs.is_initialized() )
   1.271 +          construct(static_cast<value_type>(rhs.get()));
   1.272 +      }
   1.273 +    }
   1.274 +
   1.275 +    // Assigns from a T (deep-copies the rhs value)
   1.276 +    void assign ( argument_type val )
   1.277 +    {
   1.278 +      if (is_initialized())
   1.279 +           assign_value(val, is_reference_predicate() );
   1.280 +      else construct(val);
   1.281 +    }
   1.282 +
   1.283 +    // Assigns from "none", destroying the current value, if any, leaving this UNINITIALIZED
   1.284 +    // No-throw (assuming T::~T() doesn't)
   1.285 +    void assign ( none_t ) { destroy(); }
   1.286 +
   1.287 +#ifndef BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
   1.288 +    template<class Expr>
   1.289 +    void assign_expr ( Expr const& expr, Expr const* tag )
   1.290 +      {
   1.291 +        if (is_initialized())
   1.292 +             assign_expr_to_initialized(expr,tag);
   1.293 +        else construct(expr,tag);
   1.294 +      }
   1.295 +#endif
   1.296 +
   1.297 +  public :
   1.298 +
   1.299 +    // Destroys the current value, if any, leaving this UNINITIALIZED
   1.300 +    // No-throw (assuming T::~T() doesn't)
   1.301 +    void reset() { destroy(); }
   1.302 +
   1.303 +    // Replaces the current value -if any- with 'val'
   1.304 +    void reset ( argument_type val ) { assign(val); }
   1.305 +
   1.306 +    // Returns a pointer to the value if this is initialized, otherwise,
   1.307 +    // returns NULL.
   1.308 +    // No-throw
   1.309 +    pointer_const_type get_ptr() const { return m_initialized ? get_ptr_impl() : 0 ; }
   1.310 +    pointer_type       get_ptr()       { return m_initialized ? get_ptr_impl() : 0 ; }
   1.311 +
   1.312 +    bool is_initialized() const { return m_initialized ; }
   1.313 +
   1.314 +  protected :
   1.315 +
   1.316 +    void construct ( argument_type val )
   1.317 +     {
   1.318 +       new (m_storage.address()) internal_type(val) ;
   1.319 +       m_initialized = true ;
   1.320 +     }
   1.321 +
   1.322 +#ifndef BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
   1.323 +    // Constructs in-place using the given factory
   1.324 +    template<class Expr>
   1.325 +    void construct ( Expr const& factory, in_place_factory_base const* )
   1.326 +     {
   1.327 +       BOOST_STATIC_ASSERT ( ::boost::mpl::not_<is_reference_predicate>::value ) ;
   1.328 +       boost_optional_detail::construct<value_type>(factory, m_storage.address());
   1.329 +       m_initialized = true ;
   1.330 +     }
   1.331 +
   1.332 +    // Constructs in-place using the given typed factory
   1.333 +    template<class Expr>
   1.334 +    void construct ( Expr const& factory, typed_in_place_factory_base const* )
   1.335 +     {
   1.336 +       BOOST_STATIC_ASSERT ( ::boost::mpl::not_<is_reference_predicate>::value ) ;
   1.337 +       factory.apply(m_storage.address()) ;
   1.338 +       m_initialized = true ;
   1.339 +     }
   1.340 +
   1.341 +    template<class Expr>
   1.342 +    void assign_expr_to_initialized ( Expr const& factory, in_place_factory_base const* tag )
   1.343 +     {
   1.344 +       destroy();
   1.345 +       construct(factory,tag);
   1.346 +     }
   1.347 +
   1.348 +    // Constructs in-place using the given typed factory
   1.349 +    template<class Expr>
   1.350 +    void assign_expr_to_initialized ( Expr const& factory, typed_in_place_factory_base const* tag )
   1.351 +     {
   1.352 +       destroy();
   1.353 +       construct(factory,tag);
   1.354 +     }
   1.355 +#endif
   1.356 +
   1.357 +    // Constructs using any expression implicitely convertible to the single argument
   1.358 +    // of a one-argument T constructor.
   1.359 +    // Converting constructions of optional<T> from optional<U> uses this function with
   1.360 +    // 'Expr' being of type 'U' and relying on a converting constructor of T from U.
   1.361 +    template<class Expr>
   1.362 +    void construct ( Expr const& expr, void const* )
   1.363 +     {
   1.364 +       new (m_storage.address()) internal_type(expr) ;
   1.365 +       m_initialized = true ;
   1.366 +     }
   1.367 +
   1.368 +    // Assigns using a form any expression implicitely convertible to the single argument
   1.369 +    // of a T's assignment operator.
   1.370 +    // Converting assignments of optional<T> from optional<U> uses this function with
   1.371 +    // 'Expr' being of type 'U' and relying on a converting assignment of T from U.
   1.372 +    template<class Expr>
   1.373 +    void assign_expr_to_initialized ( Expr const& expr, void const* )
   1.374 +     {
   1.375 +       assign_value(expr, is_reference_predicate());
   1.376 +     }
   1.377 +
   1.378 +#ifdef BOOST_OPTIONAL_WEAK_OVERLOAD_RESOLUTION
   1.379 +    // BCB5.64 (and probably lower versions) workaround.
   1.380 +    //   The in-place factories are supported by means of catch-all constructors
   1.381 +    //   and assignment operators (the functions are parameterized in terms of
   1.382 +    //   an arbitrary 'Expr' type)
   1.383 +    //   This compiler incorrectly resolves the overload set and sinks optional<T> and optional<U>
   1.384 +    //   to the 'Expr'-taking functions even though explicit overloads are present for them.
   1.385 +    //   Thus, the following overload is needed to properly handle the case when the 'lhs'
   1.386 +    //   is another optional.
   1.387 +    //
   1.388 +    // For VC<=70 compilers this workaround dosen't work becasue the comnpiler issues and error
   1.389 +    // instead of choosing the wrong overload
   1.390 +    //
   1.391 +    // Notice that 'Expr' will be optional<T> or optional<U> (but not optional_base<..>)
   1.392 +    template<class Expr>
   1.393 +    void construct ( Expr const& expr, optional_tag const* )
   1.394 +     {
   1.395 +       if ( expr.is_initialized() )
   1.396 +       {
   1.397 +         // An exception can be thrown here.
   1.398 +         // It it happens, THIS will be left uninitialized.
   1.399 +         new (m_storage.address()) internal_type(expr.get()) ;
   1.400 +         m_initialized = true ;
   1.401 +       }
   1.402 +     }
   1.403 +#endif
   1.404 +
   1.405 +    void assign_value ( argument_type val, is_not_reference_tag ) { get_impl() = val; }
   1.406 +    void assign_value ( argument_type val, is_reference_tag     ) { construct(val); }
   1.407 +
   1.408 +    void destroy()
   1.409 +    {
   1.410 +      if ( m_initialized )
   1.411 +        destroy_impl(is_reference_predicate()) ;
   1.412 +    }
   1.413 +
   1.414 +    unspecified_bool_type safe_bool() const { return m_initialized ? &this_type::is_initialized : 0 ; }
   1.415 +
   1.416 +    reference_const_type get_impl() const { return dereference(get_object(), is_reference_predicate() ) ; }
   1.417 +    reference_type       get_impl()       { return dereference(get_object(), is_reference_predicate() ) ; }
   1.418 +
   1.419 +    pointer_const_type get_ptr_impl() const { return cast_ptr(get_object(), is_reference_predicate() ) ; }
   1.420 +    pointer_type       get_ptr_impl()       { return cast_ptr(get_object(), is_reference_predicate() ) ; }
   1.421 +
   1.422 +  private :
   1.423 +
   1.424 +    // internal_type can be either T or reference_content<T>
   1.425 +    internal_type const* get_object() const { return static_cast<internal_type const*>(m_storage.address()); }
   1.426 +    internal_type *      get_object()       { return static_cast<internal_type *>     (m_storage.address()); }
   1.427 +
   1.428 +    // reference_content<T> lacks an implicit conversion to T&, so the following is needed to obtain a proper reference.
   1.429 +    reference_const_type dereference( internal_type const* p, is_not_reference_tag ) const { return *p ; }
   1.430 +    reference_type       dereference( internal_type*       p, is_not_reference_tag )       { return *p ; }
   1.431 +    reference_const_type dereference( internal_type const* p, is_reference_tag     ) const { return p->get() ; }
   1.432 +    reference_type       dereference( internal_type*       p, is_reference_tag     )       { return p->get() ; }
   1.433 +
   1.434 +#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
   1.435 +    void destroy_impl ( is_not_reference_tag ) { get_ptr_impl()->internal_type::~internal_type() ; m_initialized = false ; }
   1.436 +#else
   1.437 +    void destroy_impl ( is_not_reference_tag ) { get_ptr_impl()->T::~T() ; m_initialized = false ; }
   1.438 +#endif
   1.439 +
   1.440 +    void destroy_impl ( is_reference_tag     ) { m_initialized = false ; }
   1.441 +
   1.442 +    // If T is of reference type, trying to get a pointer to the held value must result in a compile-time error.
   1.443 +    // Decent compilers should disallow conversions from reference_content<T>* to T*, but just in case,
   1.444 +    // the following olverloads are used to filter out the case and guarantee an error in case of T being a reference.
   1.445 +    pointer_const_type cast_ptr( internal_type const* p, is_not_reference_tag ) const { return p ; }
   1.446 +    pointer_type       cast_ptr( internal_type *      p, is_not_reference_tag )       { return p ; }
   1.447 +    pointer_const_type cast_ptr( internal_type const* p, is_reference_tag     ) const { return &p->get() ; }
   1.448 +    pointer_type       cast_ptr( internal_type *      p, is_reference_tag     )       { return &p->get() ; }
   1.449 +
   1.450 +    bool m_initialized ;
   1.451 +    storage_type m_storage ;
   1.452 +} ;
   1.453 +
   1.454 +} // namespace optional_detail
   1.455 +
   1.456 +template<class T>
   1.457 +class optional : public optional_detail::optional_base<T>
   1.458 +{
   1.459 +    typedef optional_detail::optional_base<T> base ;
   1.460 +
   1.461 +    typedef BOOST_DEDUCED_TYPENAME base::unspecified_bool_type  unspecified_bool_type ;
   1.462 +
   1.463 +  public :
   1.464 +
   1.465 +    typedef optional<T> this_type ;
   1.466 +
   1.467 +    typedef BOOST_DEDUCED_TYPENAME base::value_type           value_type ;
   1.468 +    typedef BOOST_DEDUCED_TYPENAME base::reference_type       reference_type ;
   1.469 +    typedef BOOST_DEDUCED_TYPENAME base::reference_const_type reference_const_type ;
   1.470 +    typedef BOOST_DEDUCED_TYPENAME base::pointer_type         pointer_type ;
   1.471 +    typedef BOOST_DEDUCED_TYPENAME base::pointer_const_type   pointer_const_type ;
   1.472 +    typedef BOOST_DEDUCED_TYPENAME base::argument_type        argument_type ;
   1.473 +
   1.474 +    // Creates an optional<T> uninitialized.
   1.475 +    // No-throw
   1.476 +    optional() : base() {}
   1.477 +
   1.478 +    // Creates an optional<T> uninitialized.
   1.479 +    // No-throw
   1.480 +    optional( none_t none_ ) : base(none_) {}
   1.481 +
   1.482 +    // Creates an optional<T> initialized with 'val'.
   1.483 +    // Can throw if T::T(T const&) does
   1.484 +    optional ( argument_type val ) : base(val) {}
   1.485 +
   1.486 +    // Creates an optional<T> initialized with 'val' IFF cond is true, otherwise creates an uninitialized optional.
   1.487 +    // Can throw if T::T(T const&) does
   1.488 +    optional ( bool cond, argument_type val ) : base(cond,val) {}
   1.489 +
   1.490 +#ifndef BOOST_OPTIONAL_NO_CONVERTING_COPY_CTOR
   1.491 +    // NOTE: MSVC needs templated versions first
   1.492 +
   1.493 +    // Creates a deep copy of another convertible optional<U>
   1.494 +    // Requires a valid conversion from U to T.
   1.495 +    // Can throw if T::T(U const&) does
   1.496 +    template<class U>
   1.497 +    explicit optional ( optional<U> const& rhs )
   1.498 +      :
   1.499 +      base()
   1.500 +    {
   1.501 +      if ( rhs.is_initialized() )
   1.502 +        this->construct(rhs.get());
   1.503 +    }
   1.504 +#endif
   1.505 +
   1.506 +#ifndef BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
   1.507 +    // Creates an optional<T> with an expression which can be either
   1.508 +    //  (a) An instance of InPlaceFactory (i.e. in_place(a,b,...,n);
   1.509 +    //  (b) An instance of TypedInPlaceFactory ( i.e. in_place<T>(a,b,...,n);
   1.510 +    //  (c) Any expression implicitely convertible to the single type
   1.511 +    //      of a one-argument T's constructor.
   1.512 +    //  (d*) Weak compilers (BCB) might also resolved Expr as optional<T> and optional<U>
   1.513 +    //       even though explicit overloads are present for these.
   1.514 +    // Depending on the above some T ctor is called.
   1.515 +    // Can throw is the resolved T ctor throws.
   1.516 +    template<class Expr>
   1.517 +    explicit optional ( Expr const& expr ) : base(expr,&expr) {}
   1.518 +#endif
   1.519 +
   1.520 +    // Creates a deep copy of another optional<T>
   1.521 +    // Can throw if T::T(T const&) does
   1.522 +    optional ( optional const& rhs ) : base(rhs) {}
   1.523 +
   1.524 +   // No-throw (assuming T::~T() doesn't)
   1.525 +    ~optional() {}
   1.526 +
   1.527 +#if !defined(BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT) && !defined(BOOST_OPTIONAL_WEAK_OVERLOAD_RESOLUTION)
   1.528 +    // Assigns from an expression. See corresponding constructor.
   1.529 +    // Basic Guarantee: If the resolved T ctor throws, this is left UNINITIALIZED
   1.530 +    template<class Expr>
   1.531 +    optional& operator= ( Expr expr )
   1.532 +      {
   1.533 +        this->assign_expr(expr,&expr);
   1.534 +        return *this ;
   1.535 +      }
   1.536 +#endif
   1.537 +
   1.538 +
   1.539 +#ifndef BOOST_OPTIONAL_NO_CONVERTING_ASSIGNMENT
   1.540 +    // Assigns from another convertible optional<U> (converts && deep-copies the rhs value)
   1.541 +    // Requires a valid conversion from U to T.
   1.542 +    // Basic Guarantee: If T::T( U const& ) throws, this is left UNINITIALIZED
   1.543 +    template<class U>
   1.544 +    optional& operator= ( optional<U> const& rhs )
   1.545 +      {
   1.546 +        this->assign(rhs);
   1.547 +        return *this ;
   1.548 +      }
   1.549 +#endif
   1.550 +
   1.551 +    // Assigns from another optional<T> (deep-copies the rhs value)
   1.552 +    // Basic Guarantee: If T::T( T const& ) throws, this is left UNINITIALIZED
   1.553 +    //  (NOTE: On BCB, this operator is not actually called and left is left UNMODIFIED in case of a throw)
   1.554 +    optional& operator= ( optional const& rhs )
   1.555 +      {
   1.556 +        this->assign( rhs ) ;
   1.557 +        return *this ;
   1.558 +      }
   1.559 +
   1.560 +    // Assigns from a T (deep-copies the rhs value)
   1.561 +    // Basic Guarantee: If T::( T const& ) throws, this is left UNINITIALIZED
   1.562 +    optional& operator= ( argument_type val )
   1.563 +      {
   1.564 +        this->assign( val ) ;
   1.565 +        return *this ;
   1.566 +      }
   1.567 +
   1.568 +    // Assigns from a "none"
   1.569 +    // Which destroys the current value, if any, leaving this UNINITIALIZED
   1.570 +    // No-throw (assuming T::~T() doesn't)
   1.571 +    optional& operator= ( none_t none_ )
   1.572 +      {
   1.573 +        this->assign( none_ ) ;
   1.574 +        return *this ;
   1.575 +      }
   1.576 +
   1.577 +    // Returns a reference to the value if this is initialized, otherwise,
   1.578 +    // the behaviour is UNDEFINED
   1.579 +    // No-throw
   1.580 +    reference_const_type get() const { BOOST_ASSERT(this->is_initialized()) ; return this->get_impl(); }
   1.581 +    reference_type       get()       { BOOST_ASSERT(this->is_initialized()) ; return this->get_impl(); }
   1.582 +
   1.583 +    // Returns a copy of the value if this is initialized, 'v' otherwise
   1.584 +    reference_const_type get_value_or ( reference_const_type v ) const { return this->is_initialized() ? get() : v ; }
   1.585 +    reference_type       get_value_or ( reference_type       v )       { return this->is_initialized() ? get() : v ; }
   1.586 +    
   1.587 +    // Returns a pointer to the value if this is initialized, otherwise,
   1.588 +    // the behaviour is UNDEFINED
   1.589 +    // No-throw
   1.590 +    pointer_const_type operator->() const { BOOST_ASSERT(this->is_initialized()) ; return this->get_ptr_impl() ; }
   1.591 +    pointer_type       operator->()       { BOOST_ASSERT(this->is_initialized()) ; return this->get_ptr_impl() ; }
   1.592 +
   1.593 +    // Returns a reference to the value if this is initialized, otherwise,
   1.594 +    // the behaviour is UNDEFINED
   1.595 +    // No-throw
   1.596 +    reference_const_type operator *() const { return this->get() ; }
   1.597 +    reference_type       operator *()       { return this->get() ; }
   1.598 +
   1.599 +    // implicit conversion to "bool"
   1.600 +    // No-throw
   1.601 +    operator unspecified_bool_type() const { return this->safe_bool() ; }
   1.602 +
   1.603 +       // This is provided for those compilers which don't like the conversion to bool
   1.604 +       // on some contexts.
   1.605 +       bool operator!() const { return !this->is_initialized() ; }
   1.606 +} ;
   1.607 +
   1.608 +// Returns optional<T>(v)
   1.609 +template<class T> 
   1.610 +inline 
   1.611 +optional<T> make_optional ( T const& v  )
   1.612 +{
   1.613 +  return optional<T>(v);
   1.614 +}
   1.615 +
   1.616 +// Returns optional<T>(cond,v)
   1.617 +template<class T> 
   1.618 +inline 
   1.619 +optional<T> make_optional ( bool cond, T const& v )
   1.620 +{
   1.621 +  return optional<T>(cond,v);
   1.622 +}
   1.623 +
   1.624 +// Returns a reference to the value if this is initialized, otherwise, the behaviour is UNDEFINED.
   1.625 +// No-throw
   1.626 +template<class T>
   1.627 +inline
   1.628 +BOOST_DEDUCED_TYPENAME optional<T>::reference_const_type
   1.629 +get ( optional<T> const& opt )
   1.630 +{
   1.631 +  return opt.get() ;
   1.632 +}
   1.633 +
   1.634 +template<class T>
   1.635 +inline
   1.636 +BOOST_DEDUCED_TYPENAME optional<T>::reference_type
   1.637 +get ( optional<T>& opt )
   1.638 +{
   1.639 +  return opt.get() ;
   1.640 +}
   1.641 +
   1.642 +// Returns a pointer to the value if this is initialized, otherwise, returns NULL.
   1.643 +// No-throw
   1.644 +template<class T>
   1.645 +inline
   1.646 +BOOST_DEDUCED_TYPENAME optional<T>::pointer_const_type
   1.647 +get ( optional<T> const* opt )
   1.648 +{
   1.649 +  return opt->get_ptr() ;
   1.650 +}
   1.651 +
   1.652 +template<class T>
   1.653 +inline
   1.654 +BOOST_DEDUCED_TYPENAME optional<T>::pointer_type
   1.655 +get ( optional<T>* opt )
   1.656 +{
   1.657 +  return opt->get_ptr() ;
   1.658 +}
   1.659 +
   1.660 +// Returns a reference to the value if this is initialized, otherwise, the behaviour is UNDEFINED.
   1.661 +// No-throw
   1.662 +template<class T>
   1.663 +inline
   1.664 +BOOST_DEDUCED_TYPENAME optional<T>::reference_const_type
   1.665 +get_optional_value_or ( optional<T> const& opt, BOOST_DEDUCED_TYPENAME optional<T>::reference_const_type v )
   1.666 +{
   1.667 +  return opt.get_value_or(v) ;
   1.668 +}
   1.669 +
   1.670 +template<class T>
   1.671 +inline
   1.672 +BOOST_DEDUCED_TYPENAME optional<T>::reference_type
   1.673 +get_optional_value_or ( optional<T>& opt, BOOST_DEDUCED_TYPENAME optional<T>::reference_type v )
   1.674 +{
   1.675 +  return opt.get_value_or(v) ;
   1.676 +}
   1.677 +
   1.678 +// Returns a pointer to the value if this is initialized, otherwise, returns NULL.
   1.679 +// No-throw
   1.680 +template<class T>
   1.681 +inline
   1.682 +BOOST_DEDUCED_TYPENAME optional<T>::pointer_const_type
   1.683 +get_pointer ( optional<T> const& opt )
   1.684 +{
   1.685 +  return opt.get_ptr() ;
   1.686 +}
   1.687 +
   1.688 +template<class T>
   1.689 +inline
   1.690 +BOOST_DEDUCED_TYPENAME optional<T>::pointer_type
   1.691 +get_pointer ( optional<T>& opt )
   1.692 +{
   1.693 +  return opt.get_ptr() ;
   1.694 +}
   1.695 +
   1.696 +// optional's relational operators ( ==, !=, <, >, <=, >= ) have deep-semantics (compare values).
   1.697 +// WARNING: This is UNLIKE pointers. Use equal_pointees()/less_pointess() in generic code instead.
   1.698 +
   1.699 +
   1.700 +//
   1.701 +// optional<T> vs optional<T> cases
   1.702 +//
   1.703 +
   1.704 +template<class T>
   1.705 +inline
   1.706 +bool operator == ( optional<T> const& x, optional<T> const& y )
   1.707 +{ return equal_pointees(x,y); }
   1.708 +
   1.709 +template<class T>
   1.710 +inline
   1.711 +bool operator < ( optional<T> const& x, optional<T> const& y )
   1.712 +{ return less_pointees(x,y); }
   1.713 +
   1.714 +template<class T>
   1.715 +inline
   1.716 +bool operator != ( optional<T> const& x, optional<T> const& y )
   1.717 +{ return !( x == y ) ; }
   1.718 +
   1.719 +template<class T>
   1.720 +inline
   1.721 +bool operator > ( optional<T> const& x, optional<T> const& y )
   1.722 +{ return y < x ; }
   1.723 +
   1.724 +template<class T>
   1.725 +inline
   1.726 +bool operator <= ( optional<T> const& x, optional<T> const& y )
   1.727 +{ return !( y < x ) ; }
   1.728 +
   1.729 +template<class T>
   1.730 +inline
   1.731 +bool operator >= ( optional<T> const& x, optional<T> const& y )
   1.732 +{ return !( x < y ) ; }
   1.733 +
   1.734 +
   1.735 +//
   1.736 +// optional<T> vs T cases
   1.737 +//
   1.738 +template<class T>
   1.739 +inline
   1.740 +bool operator == ( optional<T> const& x, T const& y )
   1.741 +{ return equal_pointees(x, optional<T>(y)); }
   1.742 +
   1.743 +template<class T>
   1.744 +inline
   1.745 +bool operator < ( optional<T> const& x, T const& y )
   1.746 +{ return less_pointees(x, optional<T>(y)); }
   1.747 +
   1.748 +template<class T>
   1.749 +inline
   1.750 +bool operator != ( optional<T> const& x, T const& y )
   1.751 +{ return !( x == y ) ; }
   1.752 +
   1.753 +template<class T>
   1.754 +inline
   1.755 +bool operator > ( optional<T> const& x, T const& y )
   1.756 +{ return y < x ; }
   1.757 +
   1.758 +template<class T>
   1.759 +inline
   1.760 +bool operator <= ( optional<T> const& x, T const& y )
   1.761 +{ return !( y < x ) ; }
   1.762 +
   1.763 +template<class T>
   1.764 +inline
   1.765 +bool operator >= ( optional<T> const& x, T const& y )
   1.766 +{ return !( x < y ) ; }
   1.767 +
   1.768 +//
   1.769 +// T vs optional<T> cases
   1.770 +//
   1.771 +
   1.772 +template<class T>
   1.773 +inline
   1.774 +bool operator == ( T const& x, optional<T> const& y )
   1.775 +{ return equal_pointees( optional<T>(x), y ); }
   1.776 +
   1.777 +template<class T>
   1.778 +inline
   1.779 +bool operator < ( T const& x, optional<T> const& y )
   1.780 +{ return less_pointees( optional<T>(x), y ); }
   1.781 +
   1.782 +template<class T>
   1.783 +inline
   1.784 +bool operator != ( T const& x, optional<T> const& y )
   1.785 +{ return !( x == y ) ; }
   1.786 +
   1.787 +template<class T>
   1.788 +inline
   1.789 +bool operator > ( T const& x, optional<T> const& y )
   1.790 +{ return y < x ; }
   1.791 +
   1.792 +template<class T>
   1.793 +inline
   1.794 +bool operator <= ( T const& x, optional<T> const& y )
   1.795 +{ return !( y < x ) ; }
   1.796 +
   1.797 +template<class T>
   1.798 +inline
   1.799 +bool operator >= ( T const& x, optional<T> const& y )
   1.800 +{ return !( x < y ) ; }
   1.801 +
   1.802 +
   1.803 +//
   1.804 +// optional<T> vs none cases
   1.805 +//
   1.806 +
   1.807 +template<class T>
   1.808 +inline
   1.809 +bool operator == ( optional<T> const& x, none_t )
   1.810 +{ return equal_pointees(x, optional<T>() ); }
   1.811 +
   1.812 +template<class T>
   1.813 +inline
   1.814 +bool operator < ( optional<T> const& x, none_t )
   1.815 +{ return less_pointees(x,optional<T>() ); }
   1.816 +
   1.817 +template<class T>
   1.818 +inline
   1.819 +bool operator != ( optional<T> const& x, none_t y )
   1.820 +{ return !( x == y ) ; }
   1.821 +
   1.822 +template<class T>
   1.823 +inline
   1.824 +bool operator > ( optional<T> const& x, none_t y )
   1.825 +{ return y < x ; }
   1.826 +
   1.827 +template<class T>
   1.828 +inline
   1.829 +bool operator <= ( optional<T> const& x, none_t y )
   1.830 +{ return !( y < x ) ; }
   1.831 +
   1.832 +template<class T>
   1.833 +inline
   1.834 +bool operator >= ( optional<T> const& x, none_t y )
   1.835 +{ return !( x < y ) ; }
   1.836 +
   1.837 +//
   1.838 +// none vs optional<T> cases
   1.839 +//
   1.840 +
   1.841 +template<class T>
   1.842 +inline
   1.843 +bool operator == ( none_t x, optional<T> const& y )
   1.844 +{ return equal_pointees(optional<T>() ,y); }
   1.845 +
   1.846 +template<class T>
   1.847 +inline
   1.848 +bool operator < ( none_t x, optional<T> const& y )
   1.849 +{ return less_pointees(optional<T>() ,y); }
   1.850 +
   1.851 +template<class T>
   1.852 +inline
   1.853 +bool operator != ( none_t x, optional<T> const& y )
   1.854 +{ return !( x == y ) ; }
   1.855 +
   1.856 +template<class T>
   1.857 +inline
   1.858 +bool operator > ( none_t x, optional<T> const& y )
   1.859 +{ return y < x ; }
   1.860 +
   1.861 +template<class T>
   1.862 +inline
   1.863 +bool operator <= ( none_t x, optional<T> const& y )
   1.864 +{ return !( y < x ) ; }
   1.865 +
   1.866 +template<class T>
   1.867 +inline
   1.868 +bool operator >= ( none_t x, optional<T> const& y )
   1.869 +{ return !( x < y ) ; }
   1.870 +
   1.871 +//
   1.872 +// The following swap implementation follows the GCC workaround as found in
   1.873 +//  "boost/detail/compressed_pair.hpp"
   1.874 +//
   1.875 +namespace optional_detail {
   1.876 +
   1.877 +// GCC < 3.2 gets the using declaration at namespace scope (FLC, DWA)
   1.878 +#if BOOST_WORKAROUND(__GNUC__, < 3)                             \
   1.879 +    || BOOST_WORKAROUND(__GNUC__, == 3) && __GNUC_MINOR__ <= 2
   1.880 +   using std::swap;
   1.881 +#define BOOST_OPTIONAL_STD_SWAP_INTRODUCED_AT_NS_SCOPE
   1.882 +#endif
   1.883 +
   1.884 +// optional's swap:
   1.885 +// If both are initialized, calls swap(T&, T&). If this swap throws, both will remain initialized but their values are now unspecified.
   1.886 +// If only one is initialized, calls U.reset(*I), THEN I.reset().
   1.887 +// If U.reset(*I) throws, both are left UNCHANGED (U is kept uinitialized and I is never reset)
   1.888 +// If both are uninitialized, do nothing (no-throw)
   1.889 +template<class T>
   1.890 +inline
   1.891 +void optional_swap ( optional<T>& x, optional<T>& y )
   1.892 +{
   1.893 +  if ( !x && !!y )
   1.894 +  {
   1.895 +    x.reset(*y);
   1.896 +    y.reset();
   1.897 +  }
   1.898 +  else if ( !!x && !y )
   1.899 +  {
   1.900 +    y.reset(*x);
   1.901 +    x.reset();
   1.902 +  }
   1.903 +  else if ( !!x && !!y )
   1.904 +  {
   1.905 +// GCC > 3.2 and all other compilers have the using declaration at function scope (FLC)
   1.906 +#ifndef BOOST_OPTIONAL_STD_SWAP_INTRODUCED_AT_NS_SCOPE
   1.907 +    // allow for Koenig lookup
   1.908 +    using std::swap ;
   1.909 +#endif
   1.910 +    swap(*x,*y);
   1.911 +  }
   1.912 +}
   1.913 +
   1.914 +} // namespace optional_detail
   1.915 +
   1.916 +template<class T> inline void swap ( optional<T>& x, optional<T>& y )
   1.917 +{
   1.918 +  optional_detail::optional_swap(x,y);
   1.919 +}
   1.920 +
   1.921 +
   1.922 +} // namespace boost
   1.923 +
   1.924 +#endif
   1.925 +