epoc32/include/stdapis/boost/optional.hpp
branchSymbian3
changeset 4 837f303aceeb
parent 3 e1b950c65cb4
     1.1 --- a/epoc32/include/stdapis/boost/optional.hpp	Wed Mar 31 12:27:01 2010 +0100
     1.2 +++ b/epoc32/include/stdapis/boost/optional.hpp	Wed Mar 31 12:33:34 2010 +0100
     1.3 @@ -9,914 +9,10 @@
     1.4  // You are welcome to contact the author at:
     1.5  //  fernando_cacciola@hotmail.com
     1.6  //
     1.7 -#ifndef BOOST_OPTIONAL_OPTIONAL_FLC_19NOV2002_HPP
     1.8 -#define BOOST_OPTIONAL_OPTIONAL_FLC_19NOV2002_HPP
     1.9 +#ifndef BOOST_OPTIONAL_FLC_19NOV2002_HPP
    1.10 +#define BOOST_OPTIONAL_FLC_19NOV2002_HPP
    1.11  
    1.12 -#include<new>
    1.13 -#include<algorithm>
    1.14 -
    1.15 -#include "boost/config.hpp"
    1.16 -#include "boost/assert.hpp"
    1.17 -#include "boost/type.hpp"
    1.18 -#include "boost/type_traits/alignment_of.hpp"
    1.19 -#include "boost/type_traits/type_with_alignment.hpp"
    1.20 -#include "boost/type_traits/remove_reference.hpp"
    1.21 -#include "boost/type_traits/is_reference.hpp"
    1.22 -#include "boost/mpl/if.hpp"
    1.23 -#include "boost/mpl/bool.hpp"
    1.24 -#include "boost/mpl/not.hpp"
    1.25 -#include "boost/detail/reference_content.hpp"
    1.26 -#include "boost/none.hpp"
    1.27 -#include "boost/utility/compare_pointees.hpp"
    1.28 -
    1.29 -#include "boost/optional/optional_fwd.hpp"
    1.30 -
    1.31 -#if BOOST_WORKAROUND(BOOST_MSVC, == 1200)
    1.32 -// VC6.0 has the following bug:
    1.33 -//   When a templated assignment operator exist, an implicit conversion
    1.34 -//   constructing an optional<T> is used when assigment of the form:
    1.35 -//     optional<T> opt ; opt = T(...);
    1.36 -//   is compiled.
    1.37 -//   However, optional's ctor is _explicit_ and the assignemt shouldn't compile.
    1.38 -//   Therefore, for VC6.0 templated assignment is disabled.
    1.39 -//
    1.40 -#define BOOST_OPTIONAL_NO_CONVERTING_ASSIGNMENT
    1.41 -#endif
    1.42 -
    1.43 -#if BOOST_WORKAROUND(BOOST_MSVC, == 1300)
    1.44 -// VC7.0 has the following bug:
    1.45 -//   When both a non-template and a template copy-ctor exist
    1.46 -//   and the templated version is made 'explicit', the explicit is also
    1.47 -//   given to the non-templated version, making the class non-implicitely-copyable.
    1.48 -//
    1.49 -#define BOOST_OPTIONAL_NO_CONVERTING_COPY_CTOR
    1.50 -#endif
    1.51 -
    1.52 -#if BOOST_WORKAROUND(BOOST_MSVC, <= 1300) || BOOST_WORKAROUND(BOOST_INTEL_CXX_VERSION,<=700)
    1.53 -// AFAICT only VC7.1 correctly resolves the overload set
    1.54 -// that includes the in-place factory taking functions,
    1.55 -// so for the other VC versions, in-place factory support
    1.56 -// is disabled
    1.57 -#define BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
    1.58 -#endif
    1.59 -
    1.60 -#if BOOST_WORKAROUND(__BORLANDC__, <= 0x551)
    1.61 -// BCB (5.5.1) cannot parse the nested template struct in an inplace factory.
    1.62 -#define BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
    1.63 -#endif
    1.64 -
    1.65 -#if !defined(BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT) \
    1.66 -    && BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581) )
    1.67 -// BCB (up to 5.64) has the following bug:
    1.68 -//   If there is a member function/operator template of the form
    1.69 -//     template<class Expr> mfunc( Expr expr ) ;
    1.70 -//   some calls are resolved to this even if there are other better matches.
    1.71 -//   The effect of this bug is that calls to converting ctors and assignments
    1.72 -//   are incrorrectly sink to this general catch-all member function template as shown above.
    1.73 -#define BOOST_OPTIONAL_WEAK_OVERLOAD_RESOLUTION
    1.74 -#endif
    1.75 -
    1.76 -// Daniel Wallin discovered that bind/apply.hpp badly interacts with the apply<>
    1.77 -// member template of a factory as used in the optional<> implementation.
    1.78 -// He proposed this simple fix which is to move the call to apply<> outside
    1.79 -// namespace boost.
    1.80 -namespace boost_optional_detail
    1.81 -{
    1.82 -  template <class T, class Factory>
    1.83 -  void construct(Factory const& factory, void* address)
    1.84 -  {
    1.85 -    factory.BOOST_NESTED_TEMPLATE apply<T>(address);
    1.86 -  }
    1.87 -}
    1.88 -
    1.89 -
    1.90 -namespace boost {
    1.91 -
    1.92 -class in_place_factory_base ;
    1.93 -class typed_in_place_factory_base ;
    1.94 -
    1.95 -namespace optional_detail {
    1.96 -
    1.97 -// This local class is used instead of that in "aligned_storage.hpp"
    1.98 -// because I've found the 'official' class to ICE BCB5.5
    1.99 -// when some types are used with optional<>
   1.100 -// (due to sizeof() passed down as a non-type template parameter)
   1.101 -template <class T>
   1.102 -class aligned_storage
   1.103 -{
   1.104 -    // Borland ICEs if unnamed unions are used for this!
   1.105 -    union dummy_u
   1.106 -    {
   1.107 -        char data[ sizeof(T) ];
   1.108 -        BOOST_DEDUCED_TYPENAME type_with_alignment<
   1.109 -          ::boost::alignment_of<T>::value >::type aligner_;
   1.110 -    } dummy_ ;
   1.111 -
   1.112 -  public:
   1.113 -
   1.114 -    void const* address() const { return &dummy_.data[0]; }
   1.115 -    void      * address()       { return &dummy_.data[0]; }
   1.116 -} ;
   1.117 -
   1.118 -template<class T>
   1.119 -struct types_when_isnt_ref
   1.120 -{
   1.121 -  typedef T const& reference_const_type ;
   1.122 -  typedef T &      reference_type ;
   1.123 -  typedef T const* pointer_const_type ;
   1.124 -  typedef T *      pointer_type ;
   1.125 -  typedef T const& argument_type ;
   1.126 -} ;
   1.127 -template<class T>
   1.128 -struct types_when_is_ref
   1.129 -{
   1.130 -  typedef BOOST_DEDUCED_TYPENAME remove_reference<T>::type raw_type ;
   1.131 -
   1.132 -  typedef raw_type& reference_const_type ;
   1.133 -  typedef raw_type& reference_type ;
   1.134 -  typedef raw_type* pointer_const_type ;
   1.135 -  typedef raw_type* pointer_type ;
   1.136 -  typedef raw_type& argument_type ;
   1.137 -} ;
   1.138 -
   1.139 -struct optional_tag {} ;
   1.140 -
   1.141 -template<class T>
   1.142 -class optional_base : public optional_tag
   1.143 -{
   1.144 -  private :
   1.145 -
   1.146 -    typedef
   1.147 -#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
   1.148 -    BOOST_DEDUCED_TYPENAME
   1.149 -#endif 
   1.150 -    ::boost::detail::make_reference_content<T>::type internal_type ;
   1.151 -
   1.152 -    typedef aligned_storage<internal_type> storage_type ;
   1.153 -
   1.154 -    typedef types_when_isnt_ref<T> types_when_not_ref ;
   1.155 -    typedef types_when_is_ref<T>   types_when_ref   ;
   1.156 -
   1.157 -    typedef optional_base<T> this_type ;
   1.158 -
   1.159 -  protected :
   1.160 -
   1.161 -    typedef T value_type ;
   1.162 -
   1.163 -    typedef mpl::true_  is_reference_tag ;
   1.164 -    typedef mpl::false_ is_not_reference_tag ;
   1.165 -
   1.166 -    typedef BOOST_DEDUCED_TYPENAME is_reference<T>::type is_reference_predicate ;
   1.167 -
   1.168 -    typedef BOOST_DEDUCED_TYPENAME mpl::if_<is_reference_predicate,types_when_ref,types_when_not_ref>::type types ;
   1.169 -
   1.170 -    typedef bool (this_type::*unspecified_bool_type)() const;
   1.171 -
   1.172 -    typedef BOOST_DEDUCED_TYPENAME types::reference_type       reference_type ;
   1.173 -    typedef BOOST_DEDUCED_TYPENAME types::reference_const_type reference_const_type ;
   1.174 -    typedef BOOST_DEDUCED_TYPENAME types::pointer_type         pointer_type ;
   1.175 -    typedef BOOST_DEDUCED_TYPENAME types::pointer_const_type   pointer_const_type ;
   1.176 -    typedef BOOST_DEDUCED_TYPENAME types::argument_type        argument_type ;
   1.177 -
   1.178 -    // Creates an optional<T> uninitialized.
   1.179 -    // No-throw
   1.180 -    optional_base()
   1.181 -      :
   1.182 -      m_initialized(false) {}
   1.183 -
   1.184 -    // Creates an optional<T> uninitialized.
   1.185 -    // No-throw
   1.186 -    optional_base ( none_t )
   1.187 -      :
   1.188 -      m_initialized(false) {}
   1.189 -
   1.190 -    // Creates an optional<T> initialized with 'val'.
   1.191 -    // Can throw if T::T(T const&) does
   1.192 -    optional_base ( argument_type val )
   1.193 -      :
   1.194 -      m_initialized(false)
   1.195 -    {
   1.196 -      construct(val);
   1.197 -    }
   1.198 -    
   1.199 -    // Creates an optional<T> initialized with 'val' IFF cond is true, otherwise creates an uninitialzed optional<T>.
   1.200 -    // Can throw if T::T(T const&) does
   1.201 -    optional_base ( bool cond, argument_type val )
   1.202 -      :
   1.203 -      m_initialized(false)
   1.204 -    {
   1.205 -      if ( cond )
   1.206 -        construct(val);
   1.207 -    }
   1.208 -
   1.209 -    // Creates a deep copy of another optional<T>
   1.210 -    // Can throw if T::T(T const&) does
   1.211 -    optional_base ( optional_base const& rhs )
   1.212 -      :
   1.213 -      m_initialized(false)
   1.214 -    {
   1.215 -      if ( rhs.is_initialized() )
   1.216 -        construct(rhs.get_impl());
   1.217 -    }
   1.218 -
   1.219 -
   1.220 -    // This is used for both converting and in-place constructions.
   1.221 -    // Derived classes use the 'tag' to select the appropriate
   1.222 -    // implementation (the correct 'construct()' overload)
   1.223 -    template<class Expr>
   1.224 -    explicit optional_base ( Expr const& expr, Expr const* tag )
   1.225 -      :
   1.226 -      m_initialized(false)
   1.227 -    {
   1.228 -      construct(expr,tag);
   1.229 -    }
   1.230 -
   1.231 -
   1.232 -
   1.233 -    // No-throw (assuming T::~T() doesn't)
   1.234 -    ~optional_base() { destroy() ; }
   1.235 -
   1.236 -    // Assigns from another optional<T> (deep-copies the rhs value)
   1.237 -    void assign ( optional_base const& rhs )
   1.238 -    {
   1.239 -      if (is_initialized())
   1.240 -      {
   1.241 -        if ( rhs.is_initialized() )
   1.242 -             assign_value(rhs.get_impl(), is_reference_predicate() );
   1.243 -        else destroy();
   1.244 -      }
   1.245 -      else
   1.246 -      {
   1.247 -        if ( rhs.is_initialized() )
   1.248 -          construct(rhs.get_impl());
   1.249 -      }
   1.250 -    }
   1.251 -
   1.252 -    // Assigns from another _convertible_ optional<U> (deep-copies the rhs value)
   1.253 -    template<class U>
   1.254 -    void assign ( optional<U> const& rhs )
   1.255 -    {
   1.256 -      if (is_initialized())
   1.257 -      {
   1.258 -        if ( rhs.is_initialized() )
   1.259 -             assign_value(static_cast<value_type>(rhs.get()), is_reference_predicate() );
   1.260 -        else destroy();
   1.261 -      }
   1.262 -      else
   1.263 -      {
   1.264 -        if ( rhs.is_initialized() )
   1.265 -          construct(static_cast<value_type>(rhs.get()));
   1.266 -      }
   1.267 -    }
   1.268 -
   1.269 -    // Assigns from a T (deep-copies the rhs value)
   1.270 -    void assign ( argument_type val )
   1.271 -    {
   1.272 -      if (is_initialized())
   1.273 -           assign_value(val, is_reference_predicate() );
   1.274 -      else construct(val);
   1.275 -    }
   1.276 -
   1.277 -    // Assigns from "none", destroying the current value, if any, leaving this UNINITIALIZED
   1.278 -    // No-throw (assuming T::~T() doesn't)
   1.279 -    void assign ( none_t ) { destroy(); }
   1.280 -
   1.281 -#ifndef BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
   1.282 -    template<class Expr>
   1.283 -    void assign_expr ( Expr const& expr, Expr const* tag )
   1.284 -      {
   1.285 -        if (is_initialized())
   1.286 -             assign_expr_to_initialized(expr,tag);
   1.287 -        else construct(expr,tag);
   1.288 -      }
   1.289 -#endif
   1.290 -
   1.291 -  public :
   1.292 -
   1.293 -    // Destroys the current value, if any, leaving this UNINITIALIZED
   1.294 -    // No-throw (assuming T::~T() doesn't)
   1.295 -    void reset() { destroy(); }
   1.296 -
   1.297 -    // Replaces the current value -if any- with 'val'
   1.298 -    void reset ( argument_type val ) { assign(val); }
   1.299 -
   1.300 -    // Returns a pointer to the value if this is initialized, otherwise,
   1.301 -    // returns NULL.
   1.302 -    // No-throw
   1.303 -    pointer_const_type get_ptr() const { return m_initialized ? get_ptr_impl() : 0 ; }
   1.304 -    pointer_type       get_ptr()       { return m_initialized ? get_ptr_impl() : 0 ; }
   1.305 -
   1.306 -    bool is_initialized() const { return m_initialized ; }
   1.307 -
   1.308 -  protected :
   1.309 -
   1.310 -    void construct ( argument_type val )
   1.311 -     {
   1.312 -       new (m_storage.address()) internal_type(val) ;
   1.313 -       m_initialized = true ;
   1.314 -     }
   1.315 -
   1.316 -#ifndef BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
   1.317 -    // Constructs in-place using the given factory
   1.318 -    template<class Expr>
   1.319 -    void construct ( Expr const& factory, in_place_factory_base const* )
   1.320 -     {
   1.321 -       BOOST_STATIC_ASSERT ( ::boost::mpl::not_<is_reference_predicate>::value ) ;
   1.322 -       boost_optional_detail::construct<value_type>(factory, m_storage.address());
   1.323 -       m_initialized = true ;
   1.324 -     }
   1.325 -
   1.326 -    // Constructs in-place using the given typed factory
   1.327 -    template<class Expr>
   1.328 -    void construct ( Expr const& factory, typed_in_place_factory_base const* )
   1.329 -     {
   1.330 -       BOOST_STATIC_ASSERT ( ::boost::mpl::not_<is_reference_predicate>::value ) ;
   1.331 -       factory.apply(m_storage.address()) ;
   1.332 -       m_initialized = true ;
   1.333 -     }
   1.334 -
   1.335 -    template<class Expr>
   1.336 -    void assign_expr_to_initialized ( Expr const& factory, in_place_factory_base const* tag )
   1.337 -     {
   1.338 -       destroy();
   1.339 -       construct(factory,tag);
   1.340 -     }
   1.341 -
   1.342 -    // Constructs in-place using the given typed factory
   1.343 -    template<class Expr>
   1.344 -    void assign_expr_to_initialized ( Expr const& factory, typed_in_place_factory_base const* tag )
   1.345 -     {
   1.346 -       destroy();
   1.347 -       construct(factory,tag);
   1.348 -     }
   1.349 -#endif
   1.350 -
   1.351 -    // Constructs using any expression implicitely convertible to the single argument
   1.352 -    // of a one-argument T constructor.
   1.353 -    // Converting constructions of optional<T> from optional<U> uses this function with
   1.354 -    // 'Expr' being of type 'U' and relying on a converting constructor of T from U.
   1.355 -    template<class Expr>
   1.356 -    void construct ( Expr const& expr, void const* )
   1.357 -     {
   1.358 -       new (m_storage.address()) internal_type(expr) ;
   1.359 -       m_initialized = true ;
   1.360 -     }
   1.361 -
   1.362 -    // Assigns using a form any expression implicitely convertible to the single argument
   1.363 -    // of a T's assignment operator.
   1.364 -    // Converting assignments of optional<T> from optional<U> uses this function with
   1.365 -    // 'Expr' being of type 'U' and relying on a converting assignment of T from U.
   1.366 -    template<class Expr>
   1.367 -    void assign_expr_to_initialized ( Expr const& expr, void const* )
   1.368 -     {
   1.369 -       assign_value(expr, is_reference_predicate());
   1.370 -     }
   1.371 -
   1.372 -#ifdef BOOST_OPTIONAL_WEAK_OVERLOAD_RESOLUTION
   1.373 -    // BCB5.64 (and probably lower versions) workaround.
   1.374 -    //   The in-place factories are supported by means of catch-all constructors
   1.375 -    //   and assignment operators (the functions are parameterized in terms of
   1.376 -    //   an arbitrary 'Expr' type)
   1.377 -    //   This compiler incorrectly resolves the overload set and sinks optional<T> and optional<U>
   1.378 -    //   to the 'Expr'-taking functions even though explicit overloads are present for them.
   1.379 -    //   Thus, the following overload is needed to properly handle the case when the 'lhs'
   1.380 -    //   is another optional.
   1.381 -    //
   1.382 -    // For VC<=70 compilers this workaround dosen't work becasue the comnpiler issues and error
   1.383 -    // instead of choosing the wrong overload
   1.384 -    //
   1.385 -    // Notice that 'Expr' will be optional<T> or optional<U> (but not optional_base<..>)
   1.386 -    template<class Expr>
   1.387 -    void construct ( Expr const& expr, optional_tag const* )
   1.388 -     {
   1.389 -       if ( expr.is_initialized() )
   1.390 -       {
   1.391 -         // An exception can be thrown here.
   1.392 -         // It it happens, THIS will be left uninitialized.
   1.393 -         new (m_storage.address()) internal_type(expr.get()) ;
   1.394 -         m_initialized = true ;
   1.395 -       }
   1.396 -     }
   1.397 -#endif
   1.398 -
   1.399 -    void assign_value ( argument_type val, is_not_reference_tag ) { get_impl() = val; }
   1.400 -    void assign_value ( argument_type val, is_reference_tag     ) { construct(val); }
   1.401 -
   1.402 -    void destroy()
   1.403 -    {
   1.404 -      if ( m_initialized )
   1.405 -        destroy_impl(is_reference_predicate()) ;
   1.406 -    }
   1.407 -
   1.408 -    unspecified_bool_type safe_bool() const { return m_initialized ? &this_type::is_initialized : 0 ; }
   1.409 -
   1.410 -    reference_const_type get_impl() const { return dereference(get_object(), is_reference_predicate() ) ; }
   1.411 -    reference_type       get_impl()       { return dereference(get_object(), is_reference_predicate() ) ; }
   1.412 -
   1.413 -    pointer_const_type get_ptr_impl() const { return cast_ptr(get_object(), is_reference_predicate() ) ; }
   1.414 -    pointer_type       get_ptr_impl()       { return cast_ptr(get_object(), is_reference_predicate() ) ; }
   1.415 -
   1.416 -  private :
   1.417 -
   1.418 -    // internal_type can be either T or reference_content<T>
   1.419 -    internal_type const* get_object() const { return static_cast<internal_type const*>(m_storage.address()); }
   1.420 -    internal_type *      get_object()       { return static_cast<internal_type *>     (m_storage.address()); }
   1.421 -
   1.422 -    // reference_content<T> lacks an implicit conversion to T&, so the following is needed to obtain a proper reference.
   1.423 -    reference_const_type dereference( internal_type const* p, is_not_reference_tag ) const { return *p ; }
   1.424 -    reference_type       dereference( internal_type*       p, is_not_reference_tag )       { return *p ; }
   1.425 -    reference_const_type dereference( internal_type const* p, is_reference_tag     ) const { return p->get() ; }
   1.426 -    reference_type       dereference( internal_type*       p, is_reference_tag     )       { return p->get() ; }
   1.427 -
   1.428 -#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
   1.429 -    void destroy_impl ( is_not_reference_tag ) { get_ptr_impl()->internal_type::~internal_type() ; m_initialized = false ; }
   1.430 -#else
   1.431 -    void destroy_impl ( is_not_reference_tag ) { get_ptr_impl()->T::~T() ; m_initialized = false ; }
   1.432 -#endif
   1.433 -
   1.434 -    void destroy_impl ( is_reference_tag     ) { m_initialized = false ; }
   1.435 -
   1.436 -    // If T is of reference type, trying to get a pointer to the held value must result in a compile-time error.
   1.437 -    // Decent compilers should disallow conversions from reference_content<T>* to T*, but just in case,
   1.438 -    // the following olverloads are used to filter out the case and guarantee an error in case of T being a reference.
   1.439 -    pointer_const_type cast_ptr( internal_type const* p, is_not_reference_tag ) const { return p ; }
   1.440 -    pointer_type       cast_ptr( internal_type *      p, is_not_reference_tag )       { return p ; }
   1.441 -    pointer_const_type cast_ptr( internal_type const* p, is_reference_tag     ) const { return &p->get() ; }
   1.442 -    pointer_type       cast_ptr( internal_type *      p, is_reference_tag     )       { return &p->get() ; }
   1.443 -
   1.444 -    bool m_initialized ;
   1.445 -    storage_type m_storage ;
   1.446 -} ;
   1.447 -
   1.448 -} // namespace optional_detail
   1.449 -
   1.450 -template<class T>
   1.451 -class optional : public optional_detail::optional_base<T>
   1.452 -{
   1.453 -    typedef optional_detail::optional_base<T> base ;
   1.454 -
   1.455 -    typedef BOOST_DEDUCED_TYPENAME base::unspecified_bool_type  unspecified_bool_type ;
   1.456 -
   1.457 -  public :
   1.458 -
   1.459 -    typedef optional<T> this_type ;
   1.460 -
   1.461 -    typedef BOOST_DEDUCED_TYPENAME base::value_type           value_type ;
   1.462 -    typedef BOOST_DEDUCED_TYPENAME base::reference_type       reference_type ;
   1.463 -    typedef BOOST_DEDUCED_TYPENAME base::reference_const_type reference_const_type ;
   1.464 -    typedef BOOST_DEDUCED_TYPENAME base::pointer_type         pointer_type ;
   1.465 -    typedef BOOST_DEDUCED_TYPENAME base::pointer_const_type   pointer_const_type ;
   1.466 -    typedef BOOST_DEDUCED_TYPENAME base::argument_type        argument_type ;
   1.467 -
   1.468 -    // Creates an optional<T> uninitialized.
   1.469 -    // No-throw
   1.470 -    optional() : base() {}
   1.471 -
   1.472 -    // Creates an optional<T> uninitialized.
   1.473 -    // No-throw
   1.474 -    optional( none_t none_ ) : base(none_) {}
   1.475 -
   1.476 -    // Creates an optional<T> initialized with 'val'.
   1.477 -    // Can throw if T::T(T const&) does
   1.478 -    optional ( argument_type val ) : base(val) {}
   1.479 -
   1.480 -    // Creates an optional<T> initialized with 'val' IFF cond is true, otherwise creates an uninitialized optional.
   1.481 -    // Can throw if T::T(T const&) does
   1.482 -    optional ( bool cond, argument_type val ) : base(cond,val) {}
   1.483 -
   1.484 -#ifndef BOOST_OPTIONAL_NO_CONVERTING_COPY_CTOR
   1.485 -    // NOTE: MSVC needs templated versions first
   1.486 -
   1.487 -    // Creates a deep copy of another convertible optional<U>
   1.488 -    // Requires a valid conversion from U to T.
   1.489 -    // Can throw if T::T(U const&) does
   1.490 -    template<class U>
   1.491 -    explicit optional ( optional<U> const& rhs )
   1.492 -      :
   1.493 -      base()
   1.494 -    {
   1.495 -      if ( rhs.is_initialized() )
   1.496 -        this->construct(rhs.get());
   1.497 -    }
   1.498 -#endif
   1.499 -
   1.500 -#ifndef BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
   1.501 -    // Creates an optional<T> with an expression which can be either
   1.502 -    //  (a) An instance of InPlaceFactory (i.e. in_place(a,b,...,n);
   1.503 -    //  (b) An instance of TypedInPlaceFactory ( i.e. in_place<T>(a,b,...,n);
   1.504 -    //  (c) Any expression implicitely convertible to the single type
   1.505 -    //      of a one-argument T's constructor.
   1.506 -    //  (d*) Weak compilers (BCB) might also resolved Expr as optional<T> and optional<U>
   1.507 -    //       even though explicit overloads are present for these.
   1.508 -    // Depending on the above some T ctor is called.
   1.509 -    // Can throw is the resolved T ctor throws.
   1.510 -    template<class Expr>
   1.511 -    explicit optional ( Expr const& expr ) : base(expr,&expr) {}
   1.512 -#endif
   1.513 -
   1.514 -    // Creates a deep copy of another optional<T>
   1.515 -    // Can throw if T::T(T const&) does
   1.516 -    optional ( optional const& rhs ) : base(rhs) {}
   1.517 -
   1.518 -   // No-throw (assuming T::~T() doesn't)
   1.519 -    ~optional() {}
   1.520 -
   1.521 -#if !defined(BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT) && !defined(BOOST_OPTIONAL_WEAK_OVERLOAD_RESOLUTION)
   1.522 -    // Assigns from an expression. See corresponding constructor.
   1.523 -    // Basic Guarantee: If the resolved T ctor throws, this is left UNINITIALIZED
   1.524 -    template<class Expr>
   1.525 -    optional& operator= ( Expr expr )
   1.526 -      {
   1.527 -        this->assign_expr(expr,&expr);
   1.528 -        return *this ;
   1.529 -      }
   1.530 -#endif
   1.531 -
   1.532 -
   1.533 -#ifndef BOOST_OPTIONAL_NO_CONVERTING_ASSIGNMENT
   1.534 -    // Assigns from another convertible optional<U> (converts && deep-copies the rhs value)
   1.535 -    // Requires a valid conversion from U to T.
   1.536 -    // Basic Guarantee: If T::T( U const& ) throws, this is left UNINITIALIZED
   1.537 -    template<class U>
   1.538 -    optional& operator= ( optional<U> const& rhs )
   1.539 -      {
   1.540 -        this->assign(rhs);
   1.541 -        return *this ;
   1.542 -      }
   1.543 -#endif
   1.544 -
   1.545 -    // Assigns from another optional<T> (deep-copies the rhs value)
   1.546 -    // Basic Guarantee: If T::T( T const& ) throws, this is left UNINITIALIZED
   1.547 -    //  (NOTE: On BCB, this operator is not actually called and left is left UNMODIFIED in case of a throw)
   1.548 -    optional& operator= ( optional const& rhs )
   1.549 -      {
   1.550 -        this->assign( rhs ) ;
   1.551 -        return *this ;
   1.552 -      }
   1.553 -
   1.554 -    // Assigns from a T (deep-copies the rhs value)
   1.555 -    // Basic Guarantee: If T::( T const& ) throws, this is left UNINITIALIZED
   1.556 -    optional& operator= ( argument_type val )
   1.557 -      {
   1.558 -        this->assign( val ) ;
   1.559 -        return *this ;
   1.560 -      }
   1.561 -
   1.562 -    // Assigns from a "none"
   1.563 -    // Which destroys the current value, if any, leaving this UNINITIALIZED
   1.564 -    // No-throw (assuming T::~T() doesn't)
   1.565 -    optional& operator= ( none_t none_ )
   1.566 -      {
   1.567 -        this->assign( none_ ) ;
   1.568 -        return *this ;
   1.569 -      }
   1.570 -
   1.571 -    // Returns a reference to the value if this is initialized, otherwise,
   1.572 -    // the behaviour is UNDEFINED
   1.573 -    // No-throw
   1.574 -    reference_const_type get() const { BOOST_ASSERT(this->is_initialized()) ; return this->get_impl(); }
   1.575 -    reference_type       get()       { BOOST_ASSERT(this->is_initialized()) ; return this->get_impl(); }
   1.576 -
   1.577 -    // Returns a copy of the value if this is initialized, 'v' otherwise
   1.578 -    reference_const_type get_value_or ( reference_const_type v ) const { return this->is_initialized() ? get() : v ; }
   1.579 -    reference_type       get_value_or ( reference_type       v )       { return this->is_initialized() ? get() : v ; }
   1.580 -    
   1.581 -    // Returns a pointer to the value if this is initialized, otherwise,
   1.582 -    // the behaviour is UNDEFINED
   1.583 -    // No-throw
   1.584 -    pointer_const_type operator->() const { BOOST_ASSERT(this->is_initialized()) ; return this->get_ptr_impl() ; }
   1.585 -    pointer_type       operator->()       { BOOST_ASSERT(this->is_initialized()) ; return this->get_ptr_impl() ; }
   1.586 -
   1.587 -    // Returns a reference to the value if this is initialized, otherwise,
   1.588 -    // the behaviour is UNDEFINED
   1.589 -    // No-throw
   1.590 -    reference_const_type operator *() const { return this->get() ; }
   1.591 -    reference_type       operator *()       { return this->get() ; }
   1.592 -
   1.593 -    // implicit conversion to "bool"
   1.594 -    // No-throw
   1.595 -    operator unspecified_bool_type() const { return this->safe_bool() ; }
   1.596 -
   1.597 -       // This is provided for those compilers which don't like the conversion to bool
   1.598 -       // on some contexts.
   1.599 -       bool operator!() const { return !this->is_initialized() ; }
   1.600 -} ;
   1.601 -
   1.602 -// Returns optional<T>(v)
   1.603 -template<class T> 
   1.604 -inline 
   1.605 -optional<T> make_optional ( T const& v  )
   1.606 -{
   1.607 -  return optional<T>(v);
   1.608 -}
   1.609 -
   1.610 -// Returns optional<T>(cond,v)
   1.611 -template<class T> 
   1.612 -inline 
   1.613 -optional<T> make_optional ( bool cond, T const& v )
   1.614 -{
   1.615 -  return optional<T>(cond,v);
   1.616 -}
   1.617 -
   1.618 -// Returns a reference to the value if this is initialized, otherwise, the behaviour is UNDEFINED.
   1.619 -// No-throw
   1.620 -template<class T>
   1.621 -inline
   1.622 -BOOST_DEDUCED_TYPENAME optional<T>::reference_const_type
   1.623 -get ( optional<T> const& opt )
   1.624 -{
   1.625 -  return opt.get() ;
   1.626 -}
   1.627 -
   1.628 -template<class T>
   1.629 -inline
   1.630 -BOOST_DEDUCED_TYPENAME optional<T>::reference_type
   1.631 -get ( optional<T>& opt )
   1.632 -{
   1.633 -  return opt.get() ;
   1.634 -}
   1.635 -
   1.636 -// Returns a pointer to the value if this is initialized, otherwise, returns NULL.
   1.637 -// No-throw
   1.638 -template<class T>
   1.639 -inline
   1.640 -BOOST_DEDUCED_TYPENAME optional<T>::pointer_const_type
   1.641 -get ( optional<T> const* opt )
   1.642 -{
   1.643 -  return opt->get_ptr() ;
   1.644 -}
   1.645 -
   1.646 -template<class T>
   1.647 -inline
   1.648 -BOOST_DEDUCED_TYPENAME optional<T>::pointer_type
   1.649 -get ( optional<T>* opt )
   1.650 -{
   1.651 -  return opt->get_ptr() ;
   1.652 -}
   1.653 -
   1.654 -// Returns a reference to the value if this is initialized, otherwise, the behaviour is UNDEFINED.
   1.655 -// No-throw
   1.656 -template<class T>
   1.657 -inline
   1.658 -BOOST_DEDUCED_TYPENAME optional<T>::reference_const_type
   1.659 -get_optional_value_or ( optional<T> const& opt, BOOST_DEDUCED_TYPENAME optional<T>::reference_const_type v )
   1.660 -{
   1.661 -  return opt.get_value_or(v) ;
   1.662 -}
   1.663 -
   1.664 -template<class T>
   1.665 -inline
   1.666 -BOOST_DEDUCED_TYPENAME optional<T>::reference_type
   1.667 -get_optional_value_or ( optional<T>& opt, BOOST_DEDUCED_TYPENAME optional<T>::reference_type v )
   1.668 -{
   1.669 -  return opt.get_value_or(v) ;
   1.670 -}
   1.671 -
   1.672 -// Returns a pointer to the value if this is initialized, otherwise, returns NULL.
   1.673 -// No-throw
   1.674 -template<class T>
   1.675 -inline
   1.676 -BOOST_DEDUCED_TYPENAME optional<T>::pointer_const_type
   1.677 -get_pointer ( optional<T> const& opt )
   1.678 -{
   1.679 -  return opt.get_ptr() ;
   1.680 -}
   1.681 -
   1.682 -template<class T>
   1.683 -inline
   1.684 -BOOST_DEDUCED_TYPENAME optional<T>::pointer_type
   1.685 -get_pointer ( optional<T>& opt )
   1.686 -{
   1.687 -  return opt.get_ptr() ;
   1.688 -}
   1.689 -
   1.690 -// optional's relational operators ( ==, !=, <, >, <=, >= ) have deep-semantics (compare values).
   1.691 -// WARNING: This is UNLIKE pointers. Use equal_pointees()/less_pointess() in generic code instead.
   1.692 -
   1.693 -
   1.694 -//
   1.695 -// optional<T> vs optional<T> cases
   1.696 -//
   1.697 -
   1.698 -template<class T>
   1.699 -inline
   1.700 -bool operator == ( optional<T> const& x, optional<T> const& y )
   1.701 -{ return equal_pointees(x,y); }
   1.702 -
   1.703 -template<class T>
   1.704 -inline
   1.705 -bool operator < ( optional<T> const& x, optional<T> const& y )
   1.706 -{ return less_pointees(x,y); }
   1.707 -
   1.708 -template<class T>
   1.709 -inline
   1.710 -bool operator != ( optional<T> const& x, optional<T> const& y )
   1.711 -{ return !( x == y ) ; }
   1.712 -
   1.713 -template<class T>
   1.714 -inline
   1.715 -bool operator > ( optional<T> const& x, optional<T> const& y )
   1.716 -{ return y < x ; }
   1.717 -
   1.718 -template<class T>
   1.719 -inline
   1.720 -bool operator <= ( optional<T> const& x, optional<T> const& y )
   1.721 -{ return !( y < x ) ; }
   1.722 -
   1.723 -template<class T>
   1.724 -inline
   1.725 -bool operator >= ( optional<T> const& x, optional<T> const& y )
   1.726 -{ return !( x < y ) ; }
   1.727 -
   1.728 -
   1.729 -//
   1.730 -// optional<T> vs T cases
   1.731 -//
   1.732 -template<class T>
   1.733 -inline
   1.734 -bool operator == ( optional<T> const& x, T const& y )
   1.735 -{ return equal_pointees(x, optional<T>(y)); }
   1.736 -
   1.737 -template<class T>
   1.738 -inline
   1.739 -bool operator < ( optional<T> const& x, T const& y )
   1.740 -{ return less_pointees(x, optional<T>(y)); }
   1.741 -
   1.742 -template<class T>
   1.743 -inline
   1.744 -bool operator != ( optional<T> const& x, T const& y )
   1.745 -{ return !( x == y ) ; }
   1.746 -
   1.747 -template<class T>
   1.748 -inline
   1.749 -bool operator > ( optional<T> const& x, T const& y )
   1.750 -{ return y < x ; }
   1.751 -
   1.752 -template<class T>
   1.753 -inline
   1.754 -bool operator <= ( optional<T> const& x, T const& y )
   1.755 -{ return !( y < x ) ; }
   1.756 -
   1.757 -template<class T>
   1.758 -inline
   1.759 -bool operator >= ( optional<T> const& x, T const& y )
   1.760 -{ return !( x < y ) ; }
   1.761 -
   1.762 -//
   1.763 -// T vs optional<T> cases
   1.764 -//
   1.765 -
   1.766 -template<class T>
   1.767 -inline
   1.768 -bool operator == ( T const& x, optional<T> const& y )
   1.769 -{ return equal_pointees( optional<T>(x), y ); }
   1.770 -
   1.771 -template<class T>
   1.772 -inline
   1.773 -bool operator < ( T const& x, optional<T> const& y )
   1.774 -{ return less_pointees( optional<T>(x), y ); }
   1.775 -
   1.776 -template<class T>
   1.777 -inline
   1.778 -bool operator != ( T const& x, optional<T> const& y )
   1.779 -{ return !( x == y ) ; }
   1.780 -
   1.781 -template<class T>
   1.782 -inline
   1.783 -bool operator > ( T const& x, optional<T> const& y )
   1.784 -{ return y < x ; }
   1.785 -
   1.786 -template<class T>
   1.787 -inline
   1.788 -bool operator <= ( T const& x, optional<T> const& y )
   1.789 -{ return !( y < x ) ; }
   1.790 -
   1.791 -template<class T>
   1.792 -inline
   1.793 -bool operator >= ( T const& x, optional<T> const& y )
   1.794 -{ return !( x < y ) ; }
   1.795 -
   1.796 -
   1.797 -//
   1.798 -// optional<T> vs none cases
   1.799 -//
   1.800 -
   1.801 -template<class T>
   1.802 -inline
   1.803 -bool operator == ( optional<T> const& x, none_t )
   1.804 -{ return equal_pointees(x, optional<T>() ); }
   1.805 -
   1.806 -template<class T>
   1.807 -inline
   1.808 -bool operator < ( optional<T> const& x, none_t )
   1.809 -{ return less_pointees(x,optional<T>() ); }
   1.810 -
   1.811 -template<class T>
   1.812 -inline
   1.813 -bool operator != ( optional<T> const& x, none_t y )
   1.814 -{ return !( x == y ) ; }
   1.815 -
   1.816 -template<class T>
   1.817 -inline
   1.818 -bool operator > ( optional<T> const& x, none_t y )
   1.819 -{ return y < x ; }
   1.820 -
   1.821 -template<class T>
   1.822 -inline
   1.823 -bool operator <= ( optional<T> const& x, none_t y )
   1.824 -{ return !( y < x ) ; }
   1.825 -
   1.826 -template<class T>
   1.827 -inline
   1.828 -bool operator >= ( optional<T> const& x, none_t y )
   1.829 -{ return !( x < y ) ; }
   1.830 -
   1.831 -//
   1.832 -// none vs optional<T> cases
   1.833 -//
   1.834 -
   1.835 -template<class T>
   1.836 -inline
   1.837 -bool operator == ( none_t x, optional<T> const& y )
   1.838 -{ return equal_pointees(optional<T>() ,y); }
   1.839 -
   1.840 -template<class T>
   1.841 -inline
   1.842 -bool operator < ( none_t x, optional<T> const& y )
   1.843 -{ return less_pointees(optional<T>() ,y); }
   1.844 -
   1.845 -template<class T>
   1.846 -inline
   1.847 -bool operator != ( none_t x, optional<T> const& y )
   1.848 -{ return !( x == y ) ; }
   1.849 -
   1.850 -template<class T>
   1.851 -inline
   1.852 -bool operator > ( none_t x, optional<T> const& y )
   1.853 -{ return y < x ; }
   1.854 -
   1.855 -template<class T>
   1.856 -inline
   1.857 -bool operator <= ( none_t x, optional<T> const& y )
   1.858 -{ return !( y < x ) ; }
   1.859 -
   1.860 -template<class T>
   1.861 -inline
   1.862 -bool operator >= ( none_t x, optional<T> const& y )
   1.863 -{ return !( x < y ) ; }
   1.864 -
   1.865 -//
   1.866 -// The following swap implementation follows the GCC workaround as found in
   1.867 -//  "boost/detail/compressed_pair.hpp"
   1.868 -//
   1.869 -namespace optional_detail {
   1.870 -
   1.871 -// GCC < 3.2 gets the using declaration at namespace scope (FLC, DWA)
   1.872 -#if BOOST_WORKAROUND(__GNUC__, < 3)                             \
   1.873 -    || BOOST_WORKAROUND(__GNUC__, == 3) && __GNUC_MINOR__ <= 2
   1.874 -   using std::swap;
   1.875 -#define BOOST_OPTIONAL_STD_SWAP_INTRODUCED_AT_NS_SCOPE
   1.876 -#endif
   1.877 -
   1.878 -// optional's swap:
   1.879 -// If both are initialized, calls swap(T&, T&). If this swap throws, both will remain initialized but their values are now unspecified.
   1.880 -// If only one is initialized, calls U.reset(*I), THEN I.reset().
   1.881 -// If U.reset(*I) throws, both are left UNCHANGED (U is kept uinitialized and I is never reset)
   1.882 -// If both are uninitialized, do nothing (no-throw)
   1.883 -template<class T>
   1.884 -inline
   1.885 -void optional_swap ( optional<T>& x, optional<T>& y )
   1.886 -{
   1.887 -  if ( !x && !!y )
   1.888 -  {
   1.889 -    x.reset(*y);
   1.890 -    y.reset();
   1.891 -  }
   1.892 -  else if ( !!x && !y )
   1.893 -  {
   1.894 -    y.reset(*x);
   1.895 -    x.reset();
   1.896 -  }
   1.897 -  else if ( !!x && !!y )
   1.898 -  {
   1.899 -// GCC > 3.2 and all other compilers have the using declaration at function scope (FLC)
   1.900 -#ifndef BOOST_OPTIONAL_STD_SWAP_INTRODUCED_AT_NS_SCOPE
   1.901 -    // allow for Koenig lookup
   1.902 -    using std::swap ;
   1.903 -#endif
   1.904 -    swap(*x,*y);
   1.905 -  }
   1.906 -}
   1.907 -
   1.908 -} // namespace optional_detail
   1.909 -
   1.910 -template<class T> inline void swap ( optional<T>& x, optional<T>& y )
   1.911 -{
   1.912 -  optional_detail::optional_swap(x,y);
   1.913 -}
   1.914 -
   1.915 -
   1.916 -} // namespace boost
   1.917 +#include "boost/optional/optional.hpp"
   1.918  
   1.919  #endif
   1.920