1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000
1.2 +++ b/epoc32/include/stdapis/boost/optional/optional.hpp Tue Mar 16 16:12:26 2010 +0000
1.3 @@ -0,0 +1,922 @@
1.4 +// Copyright (C) 2003, Fernando Luis Cacciola Carballal.
1.5 +//
1.6 +// Use, modification, and distribution is subject to the Boost Software
1.7 +// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
1.8 +// http://www.boost.org/LICENSE_1_0.txt)
1.9 +//
1.10 +// See http://www.boost.org/lib/optional for documentation.
1.11 +//
1.12 +// You are welcome to contact the author at:
1.13 +// fernando_cacciola@hotmail.com
1.14 +//
1.15 +#ifndef BOOST_OPTIONAL_OPTIONAL_FLC_19NOV2002_HPP
1.16 +#define BOOST_OPTIONAL_OPTIONAL_FLC_19NOV2002_HPP
1.17 +
1.18 +#include<new>
1.19 +#include<algorithm>
1.20 +
1.21 +#include "boost/config.hpp"
1.22 +#include "boost/assert.hpp"
1.23 +#include "boost/type.hpp"
1.24 +#include "boost/type_traits/alignment_of.hpp"
1.25 +#include "boost/type_traits/type_with_alignment.hpp"
1.26 +#include "boost/type_traits/remove_reference.hpp"
1.27 +#include "boost/type_traits/is_reference.hpp"
1.28 +#include "boost/mpl/if.hpp"
1.29 +#include "boost/mpl/bool.hpp"
1.30 +#include "boost/mpl/not.hpp"
1.31 +#include "boost/detail/reference_content.hpp"
1.32 +#include "boost/none.hpp"
1.33 +#include "boost/utility/compare_pointees.hpp"
1.34 +
1.35 +#include "boost/optional/optional_fwd.hpp"
1.36 +
1.37 +#if BOOST_WORKAROUND(BOOST_MSVC, == 1200)
1.38 +// VC6.0 has the following bug:
1.39 +// When a templated assignment operator exist, an implicit conversion
1.40 +// constructing an optional<T> is used when assigment of the form:
1.41 +// optional<T> opt ; opt = T(...);
1.42 +// is compiled.
1.43 +// However, optional's ctor is _explicit_ and the assignemt shouldn't compile.
1.44 +// Therefore, for VC6.0 templated assignment is disabled.
1.45 +//
1.46 +#define BOOST_OPTIONAL_NO_CONVERTING_ASSIGNMENT
1.47 +#endif
1.48 +
1.49 +#if BOOST_WORKAROUND(BOOST_MSVC, == 1300)
1.50 +// VC7.0 has the following bug:
1.51 +// When both a non-template and a template copy-ctor exist
1.52 +// and the templated version is made 'explicit', the explicit is also
1.53 +// given to the non-templated version, making the class non-implicitely-copyable.
1.54 +//
1.55 +#define BOOST_OPTIONAL_NO_CONVERTING_COPY_CTOR
1.56 +#endif
1.57 +
1.58 +#if BOOST_WORKAROUND(BOOST_MSVC, <= 1300) || BOOST_WORKAROUND(BOOST_INTEL_CXX_VERSION,<=700)
1.59 +// AFAICT only VC7.1 correctly resolves the overload set
1.60 +// that includes the in-place factory taking functions,
1.61 +// so for the other VC versions, in-place factory support
1.62 +// is disabled
1.63 +#define BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
1.64 +#endif
1.65 +
1.66 +#if BOOST_WORKAROUND(__BORLANDC__, <= 0x551)
1.67 +// BCB (5.5.1) cannot parse the nested template struct in an inplace factory.
1.68 +#define BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
1.69 +#endif
1.70 +
1.71 +#if !defined(BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT) \
1.72 + && BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581) )
1.73 +// BCB (up to 5.64) has the following bug:
1.74 +// If there is a member function/operator template of the form
1.75 +// template<class Expr> mfunc( Expr expr ) ;
1.76 +// some calls are resolved to this even if there are other better matches.
1.77 +// The effect of this bug is that calls to converting ctors and assignments
1.78 +// are incrorrectly sink to this general catch-all member function template as shown above.
1.79 +#define BOOST_OPTIONAL_WEAK_OVERLOAD_RESOLUTION
1.80 +#endif
1.81 +
1.82 +// Daniel Wallin discovered that bind/apply.hpp badly interacts with the apply<>
1.83 +// member template of a factory as used in the optional<> implementation.
1.84 +// He proposed this simple fix which is to move the call to apply<> outside
1.85 +// namespace boost.
1.86 +namespace boost_optional_detail
1.87 +{
1.88 + template <class T, class Factory>
1.89 + void construct(Factory const& factory, void* address)
1.90 + {
1.91 + factory.BOOST_NESTED_TEMPLATE apply<T>(address);
1.92 + }
1.93 +}
1.94 +
1.95 +
1.96 +namespace boost {
1.97 +
1.98 +class in_place_factory_base ;
1.99 +class typed_in_place_factory_base ;
1.100 +
1.101 +namespace optional_detail {
1.102 +
1.103 +// This local class is used instead of that in "aligned_storage.hpp"
1.104 +// because I've found the 'official' class to ICE BCB5.5
1.105 +// when some types are used with optional<>
1.106 +// (due to sizeof() passed down as a non-type template parameter)
1.107 +template <class T>
1.108 +class aligned_storage
1.109 +{
1.110 + // Borland ICEs if unnamed unions are used for this!
1.111 + union dummy_u
1.112 + {
1.113 + char data[ sizeof(T) ];
1.114 + BOOST_DEDUCED_TYPENAME type_with_alignment<
1.115 + ::boost::alignment_of<T>::value >::type aligner_;
1.116 + } dummy_ ;
1.117 +
1.118 + public:
1.119 +
1.120 + void const* address() const { return &dummy_.data[0]; }
1.121 + void * address() { return &dummy_.data[0]; }
1.122 +} ;
1.123 +
1.124 +template<class T>
1.125 +struct types_when_isnt_ref
1.126 +{
1.127 + typedef T const& reference_const_type ;
1.128 + typedef T & reference_type ;
1.129 + typedef T const* pointer_const_type ;
1.130 + typedef T * pointer_type ;
1.131 + typedef T const& argument_type ;
1.132 +} ;
1.133 +template<class T>
1.134 +struct types_when_is_ref
1.135 +{
1.136 + typedef BOOST_DEDUCED_TYPENAME remove_reference<T>::type raw_type ;
1.137 +
1.138 + typedef raw_type& reference_const_type ;
1.139 + typedef raw_type& reference_type ;
1.140 + typedef raw_type* pointer_const_type ;
1.141 + typedef raw_type* pointer_type ;
1.142 + typedef raw_type& argument_type ;
1.143 +} ;
1.144 +
1.145 +struct optional_tag {} ;
1.146 +
1.147 +template<class T>
1.148 +class optional_base : public optional_tag
1.149 +{
1.150 + private :
1.151 +
1.152 + typedef
1.153 +#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
1.154 + BOOST_DEDUCED_TYPENAME
1.155 +#endif
1.156 + ::boost::detail::make_reference_content<T>::type internal_type ;
1.157 +
1.158 + typedef aligned_storage<internal_type> storage_type ;
1.159 +
1.160 + typedef types_when_isnt_ref<T> types_when_not_ref ;
1.161 + typedef types_when_is_ref<T> types_when_ref ;
1.162 +
1.163 + typedef optional_base<T> this_type ;
1.164 +
1.165 + protected :
1.166 +
1.167 + typedef T value_type ;
1.168 +
1.169 + typedef mpl::true_ is_reference_tag ;
1.170 + typedef mpl::false_ is_not_reference_tag ;
1.171 +
1.172 + typedef BOOST_DEDUCED_TYPENAME is_reference<T>::type is_reference_predicate ;
1.173 +
1.174 + typedef BOOST_DEDUCED_TYPENAME mpl::if_<is_reference_predicate,types_when_ref,types_when_not_ref>::type types ;
1.175 +
1.176 + typedef bool (this_type::*unspecified_bool_type)() const;
1.177 +
1.178 + typedef BOOST_DEDUCED_TYPENAME types::reference_type reference_type ;
1.179 + typedef BOOST_DEDUCED_TYPENAME types::reference_const_type reference_const_type ;
1.180 + typedef BOOST_DEDUCED_TYPENAME types::pointer_type pointer_type ;
1.181 + typedef BOOST_DEDUCED_TYPENAME types::pointer_const_type pointer_const_type ;
1.182 + typedef BOOST_DEDUCED_TYPENAME types::argument_type argument_type ;
1.183 +
1.184 + // Creates an optional<T> uninitialized.
1.185 + // No-throw
1.186 + optional_base()
1.187 + :
1.188 + m_initialized(false) {}
1.189 +
1.190 + // Creates an optional<T> uninitialized.
1.191 + // No-throw
1.192 + optional_base ( none_t )
1.193 + :
1.194 + m_initialized(false) {}
1.195 +
1.196 + // Creates an optional<T> initialized with 'val'.
1.197 + // Can throw if T::T(T const&) does
1.198 + optional_base ( argument_type val )
1.199 + :
1.200 + m_initialized(false)
1.201 + {
1.202 + construct(val);
1.203 + }
1.204 +
1.205 + // Creates an optional<T> initialized with 'val' IFF cond is true, otherwise creates an uninitialzed optional<T>.
1.206 + // Can throw if T::T(T const&) does
1.207 + optional_base ( bool cond, argument_type val )
1.208 + :
1.209 + m_initialized(false)
1.210 + {
1.211 + if ( cond )
1.212 + construct(val);
1.213 + }
1.214 +
1.215 + // Creates a deep copy of another optional<T>
1.216 + // Can throw if T::T(T const&) does
1.217 + optional_base ( optional_base const& rhs )
1.218 + :
1.219 + m_initialized(false)
1.220 + {
1.221 + if ( rhs.is_initialized() )
1.222 + construct(rhs.get_impl());
1.223 + }
1.224 +
1.225 +
1.226 + // This is used for both converting and in-place constructions.
1.227 + // Derived classes use the 'tag' to select the appropriate
1.228 + // implementation (the correct 'construct()' overload)
1.229 + template<class Expr>
1.230 + explicit optional_base ( Expr const& expr, Expr const* tag )
1.231 + :
1.232 + m_initialized(false)
1.233 + {
1.234 + construct(expr,tag);
1.235 + }
1.236 +
1.237 +
1.238 +
1.239 + // No-throw (assuming T::~T() doesn't)
1.240 + ~optional_base() { destroy() ; }
1.241 +
1.242 + // Assigns from another optional<T> (deep-copies the rhs value)
1.243 + void assign ( optional_base const& rhs )
1.244 + {
1.245 + if (is_initialized())
1.246 + {
1.247 + if ( rhs.is_initialized() )
1.248 + assign_value(rhs.get_impl(), is_reference_predicate() );
1.249 + else destroy();
1.250 + }
1.251 + else
1.252 + {
1.253 + if ( rhs.is_initialized() )
1.254 + construct(rhs.get_impl());
1.255 + }
1.256 + }
1.257 +
1.258 + // Assigns from another _convertible_ optional<U> (deep-copies the rhs value)
1.259 + template<class U>
1.260 + void assign ( optional<U> const& rhs )
1.261 + {
1.262 + if (is_initialized())
1.263 + {
1.264 + if ( rhs.is_initialized() )
1.265 + assign_value(static_cast<value_type>(rhs.get()), is_reference_predicate() );
1.266 + else destroy();
1.267 + }
1.268 + else
1.269 + {
1.270 + if ( rhs.is_initialized() )
1.271 + construct(static_cast<value_type>(rhs.get()));
1.272 + }
1.273 + }
1.274 +
1.275 + // Assigns from a T (deep-copies the rhs value)
1.276 + void assign ( argument_type val )
1.277 + {
1.278 + if (is_initialized())
1.279 + assign_value(val, is_reference_predicate() );
1.280 + else construct(val);
1.281 + }
1.282 +
1.283 + // Assigns from "none", destroying the current value, if any, leaving this UNINITIALIZED
1.284 + // No-throw (assuming T::~T() doesn't)
1.285 + void assign ( none_t ) { destroy(); }
1.286 +
1.287 +#ifndef BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
1.288 + template<class Expr>
1.289 + void assign_expr ( Expr const& expr, Expr const* tag )
1.290 + {
1.291 + if (is_initialized())
1.292 + assign_expr_to_initialized(expr,tag);
1.293 + else construct(expr,tag);
1.294 + }
1.295 +#endif
1.296 +
1.297 + public :
1.298 +
1.299 + // Destroys the current value, if any, leaving this UNINITIALIZED
1.300 + // No-throw (assuming T::~T() doesn't)
1.301 + void reset() { destroy(); }
1.302 +
1.303 + // Replaces the current value -if any- with 'val'
1.304 + void reset ( argument_type val ) { assign(val); }
1.305 +
1.306 + // Returns a pointer to the value if this is initialized, otherwise,
1.307 + // returns NULL.
1.308 + // No-throw
1.309 + pointer_const_type get_ptr() const { return m_initialized ? get_ptr_impl() : 0 ; }
1.310 + pointer_type get_ptr() { return m_initialized ? get_ptr_impl() : 0 ; }
1.311 +
1.312 + bool is_initialized() const { return m_initialized ; }
1.313 +
1.314 + protected :
1.315 +
1.316 + void construct ( argument_type val )
1.317 + {
1.318 + new (m_storage.address()) internal_type(val) ;
1.319 + m_initialized = true ;
1.320 + }
1.321 +
1.322 +#ifndef BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
1.323 + // Constructs in-place using the given factory
1.324 + template<class Expr>
1.325 + void construct ( Expr const& factory, in_place_factory_base const* )
1.326 + {
1.327 + BOOST_STATIC_ASSERT ( ::boost::mpl::not_<is_reference_predicate>::value ) ;
1.328 + boost_optional_detail::construct<value_type>(factory, m_storage.address());
1.329 + m_initialized = true ;
1.330 + }
1.331 +
1.332 + // Constructs in-place using the given typed factory
1.333 + template<class Expr>
1.334 + void construct ( Expr const& factory, typed_in_place_factory_base const* )
1.335 + {
1.336 + BOOST_STATIC_ASSERT ( ::boost::mpl::not_<is_reference_predicate>::value ) ;
1.337 + factory.apply(m_storage.address()) ;
1.338 + m_initialized = true ;
1.339 + }
1.340 +
1.341 + template<class Expr>
1.342 + void assign_expr_to_initialized ( Expr const& factory, in_place_factory_base const* tag )
1.343 + {
1.344 + destroy();
1.345 + construct(factory,tag);
1.346 + }
1.347 +
1.348 + // Constructs in-place using the given typed factory
1.349 + template<class Expr>
1.350 + void assign_expr_to_initialized ( Expr const& factory, typed_in_place_factory_base const* tag )
1.351 + {
1.352 + destroy();
1.353 + construct(factory,tag);
1.354 + }
1.355 +#endif
1.356 +
1.357 + // Constructs using any expression implicitely convertible to the single argument
1.358 + // of a one-argument T constructor.
1.359 + // Converting constructions of optional<T> from optional<U> uses this function with
1.360 + // 'Expr' being of type 'U' and relying on a converting constructor of T from U.
1.361 + template<class Expr>
1.362 + void construct ( Expr const& expr, void const* )
1.363 + {
1.364 + new (m_storage.address()) internal_type(expr) ;
1.365 + m_initialized = true ;
1.366 + }
1.367 +
1.368 + // Assigns using a form any expression implicitely convertible to the single argument
1.369 + // of a T's assignment operator.
1.370 + // Converting assignments of optional<T> from optional<U> uses this function with
1.371 + // 'Expr' being of type 'U' and relying on a converting assignment of T from U.
1.372 + template<class Expr>
1.373 + void assign_expr_to_initialized ( Expr const& expr, void const* )
1.374 + {
1.375 + assign_value(expr, is_reference_predicate());
1.376 + }
1.377 +
1.378 +#ifdef BOOST_OPTIONAL_WEAK_OVERLOAD_RESOLUTION
1.379 + // BCB5.64 (and probably lower versions) workaround.
1.380 + // The in-place factories are supported by means of catch-all constructors
1.381 + // and assignment operators (the functions are parameterized in terms of
1.382 + // an arbitrary 'Expr' type)
1.383 + // This compiler incorrectly resolves the overload set and sinks optional<T> and optional<U>
1.384 + // to the 'Expr'-taking functions even though explicit overloads are present for them.
1.385 + // Thus, the following overload is needed to properly handle the case when the 'lhs'
1.386 + // is another optional.
1.387 + //
1.388 + // For VC<=70 compilers this workaround dosen't work becasue the comnpiler issues and error
1.389 + // instead of choosing the wrong overload
1.390 + //
1.391 + // Notice that 'Expr' will be optional<T> or optional<U> (but not optional_base<..>)
1.392 + template<class Expr>
1.393 + void construct ( Expr const& expr, optional_tag const* )
1.394 + {
1.395 + if ( expr.is_initialized() )
1.396 + {
1.397 + // An exception can be thrown here.
1.398 + // It it happens, THIS will be left uninitialized.
1.399 + new (m_storage.address()) internal_type(expr.get()) ;
1.400 + m_initialized = true ;
1.401 + }
1.402 + }
1.403 +#endif
1.404 +
1.405 + void assign_value ( argument_type val, is_not_reference_tag ) { get_impl() = val; }
1.406 + void assign_value ( argument_type val, is_reference_tag ) { construct(val); }
1.407 +
1.408 + void destroy()
1.409 + {
1.410 + if ( m_initialized )
1.411 + destroy_impl(is_reference_predicate()) ;
1.412 + }
1.413 +
1.414 + unspecified_bool_type safe_bool() const { return m_initialized ? &this_type::is_initialized : 0 ; }
1.415 +
1.416 + reference_const_type get_impl() const { return dereference(get_object(), is_reference_predicate() ) ; }
1.417 + reference_type get_impl() { return dereference(get_object(), is_reference_predicate() ) ; }
1.418 +
1.419 + pointer_const_type get_ptr_impl() const { return cast_ptr(get_object(), is_reference_predicate() ) ; }
1.420 + pointer_type get_ptr_impl() { return cast_ptr(get_object(), is_reference_predicate() ) ; }
1.421 +
1.422 + private :
1.423 +
1.424 + // internal_type can be either T or reference_content<T>
1.425 + internal_type const* get_object() const { return static_cast<internal_type const*>(m_storage.address()); }
1.426 + internal_type * get_object() { return static_cast<internal_type *> (m_storage.address()); }
1.427 +
1.428 + // reference_content<T> lacks an implicit conversion to T&, so the following is needed to obtain a proper reference.
1.429 + reference_const_type dereference( internal_type const* p, is_not_reference_tag ) const { return *p ; }
1.430 + reference_type dereference( internal_type* p, is_not_reference_tag ) { return *p ; }
1.431 + reference_const_type dereference( internal_type const* p, is_reference_tag ) const { return p->get() ; }
1.432 + reference_type dereference( internal_type* p, is_reference_tag ) { return p->get() ; }
1.433 +
1.434 +#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
1.435 + void destroy_impl ( is_not_reference_tag ) { get_ptr_impl()->internal_type::~internal_type() ; m_initialized = false ; }
1.436 +#else
1.437 + void destroy_impl ( is_not_reference_tag ) { get_ptr_impl()->T::~T() ; m_initialized = false ; }
1.438 +#endif
1.439 +
1.440 + void destroy_impl ( is_reference_tag ) { m_initialized = false ; }
1.441 +
1.442 + // If T is of reference type, trying to get a pointer to the held value must result in a compile-time error.
1.443 + // Decent compilers should disallow conversions from reference_content<T>* to T*, but just in case,
1.444 + // the following olverloads are used to filter out the case and guarantee an error in case of T being a reference.
1.445 + pointer_const_type cast_ptr( internal_type const* p, is_not_reference_tag ) const { return p ; }
1.446 + pointer_type cast_ptr( internal_type * p, is_not_reference_tag ) { return p ; }
1.447 + pointer_const_type cast_ptr( internal_type const* p, is_reference_tag ) const { return &p->get() ; }
1.448 + pointer_type cast_ptr( internal_type * p, is_reference_tag ) { return &p->get() ; }
1.449 +
1.450 + bool m_initialized ;
1.451 + storage_type m_storage ;
1.452 +} ;
1.453 +
1.454 +} // namespace optional_detail
1.455 +
1.456 +template<class T>
1.457 +class optional : public optional_detail::optional_base<T>
1.458 +{
1.459 + typedef optional_detail::optional_base<T> base ;
1.460 +
1.461 + typedef BOOST_DEDUCED_TYPENAME base::unspecified_bool_type unspecified_bool_type ;
1.462 +
1.463 + public :
1.464 +
1.465 + typedef optional<T> this_type ;
1.466 +
1.467 + typedef BOOST_DEDUCED_TYPENAME base::value_type value_type ;
1.468 + typedef BOOST_DEDUCED_TYPENAME base::reference_type reference_type ;
1.469 + typedef BOOST_DEDUCED_TYPENAME base::reference_const_type reference_const_type ;
1.470 + typedef BOOST_DEDUCED_TYPENAME base::pointer_type pointer_type ;
1.471 + typedef BOOST_DEDUCED_TYPENAME base::pointer_const_type pointer_const_type ;
1.472 + typedef BOOST_DEDUCED_TYPENAME base::argument_type argument_type ;
1.473 +
1.474 + // Creates an optional<T> uninitialized.
1.475 + // No-throw
1.476 + optional() : base() {}
1.477 +
1.478 + // Creates an optional<T> uninitialized.
1.479 + // No-throw
1.480 + optional( none_t none_ ) : base(none_) {}
1.481 +
1.482 + // Creates an optional<T> initialized with 'val'.
1.483 + // Can throw if T::T(T const&) does
1.484 + optional ( argument_type val ) : base(val) {}
1.485 +
1.486 + // Creates an optional<T> initialized with 'val' IFF cond is true, otherwise creates an uninitialized optional.
1.487 + // Can throw if T::T(T const&) does
1.488 + optional ( bool cond, argument_type val ) : base(cond,val) {}
1.489 +
1.490 +#ifndef BOOST_OPTIONAL_NO_CONVERTING_COPY_CTOR
1.491 + // NOTE: MSVC needs templated versions first
1.492 +
1.493 + // Creates a deep copy of another convertible optional<U>
1.494 + // Requires a valid conversion from U to T.
1.495 + // Can throw if T::T(U const&) does
1.496 + template<class U>
1.497 + explicit optional ( optional<U> const& rhs )
1.498 + :
1.499 + base()
1.500 + {
1.501 + if ( rhs.is_initialized() )
1.502 + this->construct(rhs.get());
1.503 + }
1.504 +#endif
1.505 +
1.506 +#ifndef BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
1.507 + // Creates an optional<T> with an expression which can be either
1.508 + // (a) An instance of InPlaceFactory (i.e. in_place(a,b,...,n);
1.509 + // (b) An instance of TypedInPlaceFactory ( i.e. in_place<T>(a,b,...,n);
1.510 + // (c) Any expression implicitely convertible to the single type
1.511 + // of a one-argument T's constructor.
1.512 + // (d*) Weak compilers (BCB) might also resolved Expr as optional<T> and optional<U>
1.513 + // even though explicit overloads are present for these.
1.514 + // Depending on the above some T ctor is called.
1.515 + // Can throw is the resolved T ctor throws.
1.516 + template<class Expr>
1.517 + explicit optional ( Expr const& expr ) : base(expr,&expr) {}
1.518 +#endif
1.519 +
1.520 + // Creates a deep copy of another optional<T>
1.521 + // Can throw if T::T(T const&) does
1.522 + optional ( optional const& rhs ) : base(rhs) {}
1.523 +
1.524 + // No-throw (assuming T::~T() doesn't)
1.525 + ~optional() {}
1.526 +
1.527 +#if !defined(BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT) && !defined(BOOST_OPTIONAL_WEAK_OVERLOAD_RESOLUTION)
1.528 + // Assigns from an expression. See corresponding constructor.
1.529 + // Basic Guarantee: If the resolved T ctor throws, this is left UNINITIALIZED
1.530 + template<class Expr>
1.531 + optional& operator= ( Expr expr )
1.532 + {
1.533 + this->assign_expr(expr,&expr);
1.534 + return *this ;
1.535 + }
1.536 +#endif
1.537 +
1.538 +
1.539 +#ifndef BOOST_OPTIONAL_NO_CONVERTING_ASSIGNMENT
1.540 + // Assigns from another convertible optional<U> (converts && deep-copies the rhs value)
1.541 + // Requires a valid conversion from U to T.
1.542 + // Basic Guarantee: If T::T( U const& ) throws, this is left UNINITIALIZED
1.543 + template<class U>
1.544 + optional& operator= ( optional<U> const& rhs )
1.545 + {
1.546 + this->assign(rhs);
1.547 + return *this ;
1.548 + }
1.549 +#endif
1.550 +
1.551 + // Assigns from another optional<T> (deep-copies the rhs value)
1.552 + // Basic Guarantee: If T::T( T const& ) throws, this is left UNINITIALIZED
1.553 + // (NOTE: On BCB, this operator is not actually called and left is left UNMODIFIED in case of a throw)
1.554 + optional& operator= ( optional const& rhs )
1.555 + {
1.556 + this->assign( rhs ) ;
1.557 + return *this ;
1.558 + }
1.559 +
1.560 + // Assigns from a T (deep-copies the rhs value)
1.561 + // Basic Guarantee: If T::( T const& ) throws, this is left UNINITIALIZED
1.562 + optional& operator= ( argument_type val )
1.563 + {
1.564 + this->assign( val ) ;
1.565 + return *this ;
1.566 + }
1.567 +
1.568 + // Assigns from a "none"
1.569 + // Which destroys the current value, if any, leaving this UNINITIALIZED
1.570 + // No-throw (assuming T::~T() doesn't)
1.571 + optional& operator= ( none_t none_ )
1.572 + {
1.573 + this->assign( none_ ) ;
1.574 + return *this ;
1.575 + }
1.576 +
1.577 + // Returns a reference to the value if this is initialized, otherwise,
1.578 + // the behaviour is UNDEFINED
1.579 + // No-throw
1.580 + reference_const_type get() const { BOOST_ASSERT(this->is_initialized()) ; return this->get_impl(); }
1.581 + reference_type get() { BOOST_ASSERT(this->is_initialized()) ; return this->get_impl(); }
1.582 +
1.583 + // Returns a copy of the value if this is initialized, 'v' otherwise
1.584 + reference_const_type get_value_or ( reference_const_type v ) const { return this->is_initialized() ? get() : v ; }
1.585 + reference_type get_value_or ( reference_type v ) { return this->is_initialized() ? get() : v ; }
1.586 +
1.587 + // Returns a pointer to the value if this is initialized, otherwise,
1.588 + // the behaviour is UNDEFINED
1.589 + // No-throw
1.590 + pointer_const_type operator->() const { BOOST_ASSERT(this->is_initialized()) ; return this->get_ptr_impl() ; }
1.591 + pointer_type operator->() { BOOST_ASSERT(this->is_initialized()) ; return this->get_ptr_impl() ; }
1.592 +
1.593 + // Returns a reference to the value if this is initialized, otherwise,
1.594 + // the behaviour is UNDEFINED
1.595 + // No-throw
1.596 + reference_const_type operator *() const { return this->get() ; }
1.597 + reference_type operator *() { return this->get() ; }
1.598 +
1.599 + // implicit conversion to "bool"
1.600 + // No-throw
1.601 + operator unspecified_bool_type() const { return this->safe_bool() ; }
1.602 +
1.603 + // This is provided for those compilers which don't like the conversion to bool
1.604 + // on some contexts.
1.605 + bool operator!() const { return !this->is_initialized() ; }
1.606 +} ;
1.607 +
1.608 +// Returns optional<T>(v)
1.609 +template<class T>
1.610 +inline
1.611 +optional<T> make_optional ( T const& v )
1.612 +{
1.613 + return optional<T>(v);
1.614 +}
1.615 +
1.616 +// Returns optional<T>(cond,v)
1.617 +template<class T>
1.618 +inline
1.619 +optional<T> make_optional ( bool cond, T const& v )
1.620 +{
1.621 + return optional<T>(cond,v);
1.622 +}
1.623 +
1.624 +// Returns a reference to the value if this is initialized, otherwise, the behaviour is UNDEFINED.
1.625 +// No-throw
1.626 +template<class T>
1.627 +inline
1.628 +BOOST_DEDUCED_TYPENAME optional<T>::reference_const_type
1.629 +get ( optional<T> const& opt )
1.630 +{
1.631 + return opt.get() ;
1.632 +}
1.633 +
1.634 +template<class T>
1.635 +inline
1.636 +BOOST_DEDUCED_TYPENAME optional<T>::reference_type
1.637 +get ( optional<T>& opt )
1.638 +{
1.639 + return opt.get() ;
1.640 +}
1.641 +
1.642 +// Returns a pointer to the value if this is initialized, otherwise, returns NULL.
1.643 +// No-throw
1.644 +template<class T>
1.645 +inline
1.646 +BOOST_DEDUCED_TYPENAME optional<T>::pointer_const_type
1.647 +get ( optional<T> const* opt )
1.648 +{
1.649 + return opt->get_ptr() ;
1.650 +}
1.651 +
1.652 +template<class T>
1.653 +inline
1.654 +BOOST_DEDUCED_TYPENAME optional<T>::pointer_type
1.655 +get ( optional<T>* opt )
1.656 +{
1.657 + return opt->get_ptr() ;
1.658 +}
1.659 +
1.660 +// Returns a reference to the value if this is initialized, otherwise, the behaviour is UNDEFINED.
1.661 +// No-throw
1.662 +template<class T>
1.663 +inline
1.664 +BOOST_DEDUCED_TYPENAME optional<T>::reference_const_type
1.665 +get_optional_value_or ( optional<T> const& opt, BOOST_DEDUCED_TYPENAME optional<T>::reference_const_type v )
1.666 +{
1.667 + return opt.get_value_or(v) ;
1.668 +}
1.669 +
1.670 +template<class T>
1.671 +inline
1.672 +BOOST_DEDUCED_TYPENAME optional<T>::reference_type
1.673 +get_optional_value_or ( optional<T>& opt, BOOST_DEDUCED_TYPENAME optional<T>::reference_type v )
1.674 +{
1.675 + return opt.get_value_or(v) ;
1.676 +}
1.677 +
1.678 +// Returns a pointer to the value if this is initialized, otherwise, returns NULL.
1.679 +// No-throw
1.680 +template<class T>
1.681 +inline
1.682 +BOOST_DEDUCED_TYPENAME optional<T>::pointer_const_type
1.683 +get_pointer ( optional<T> const& opt )
1.684 +{
1.685 + return opt.get_ptr() ;
1.686 +}
1.687 +
1.688 +template<class T>
1.689 +inline
1.690 +BOOST_DEDUCED_TYPENAME optional<T>::pointer_type
1.691 +get_pointer ( optional<T>& opt )
1.692 +{
1.693 + return opt.get_ptr() ;
1.694 +}
1.695 +
1.696 +// optional's relational operators ( ==, !=, <, >, <=, >= ) have deep-semantics (compare values).
1.697 +// WARNING: This is UNLIKE pointers. Use equal_pointees()/less_pointess() in generic code instead.
1.698 +
1.699 +
1.700 +//
1.701 +// optional<T> vs optional<T> cases
1.702 +//
1.703 +
1.704 +template<class T>
1.705 +inline
1.706 +bool operator == ( optional<T> const& x, optional<T> const& y )
1.707 +{ return equal_pointees(x,y); }
1.708 +
1.709 +template<class T>
1.710 +inline
1.711 +bool operator < ( optional<T> const& x, optional<T> const& y )
1.712 +{ return less_pointees(x,y); }
1.713 +
1.714 +template<class T>
1.715 +inline
1.716 +bool operator != ( optional<T> const& x, optional<T> const& y )
1.717 +{ return !( x == y ) ; }
1.718 +
1.719 +template<class T>
1.720 +inline
1.721 +bool operator > ( optional<T> const& x, optional<T> const& y )
1.722 +{ return y < x ; }
1.723 +
1.724 +template<class T>
1.725 +inline
1.726 +bool operator <= ( optional<T> const& x, optional<T> const& y )
1.727 +{ return !( y < x ) ; }
1.728 +
1.729 +template<class T>
1.730 +inline
1.731 +bool operator >= ( optional<T> const& x, optional<T> const& y )
1.732 +{ return !( x < y ) ; }
1.733 +
1.734 +
1.735 +//
1.736 +// optional<T> vs T cases
1.737 +//
1.738 +template<class T>
1.739 +inline
1.740 +bool operator == ( optional<T> const& x, T const& y )
1.741 +{ return equal_pointees(x, optional<T>(y)); }
1.742 +
1.743 +template<class T>
1.744 +inline
1.745 +bool operator < ( optional<T> const& x, T const& y )
1.746 +{ return less_pointees(x, optional<T>(y)); }
1.747 +
1.748 +template<class T>
1.749 +inline
1.750 +bool operator != ( optional<T> const& x, T const& y )
1.751 +{ return !( x == y ) ; }
1.752 +
1.753 +template<class T>
1.754 +inline
1.755 +bool operator > ( optional<T> const& x, T const& y )
1.756 +{ return y < x ; }
1.757 +
1.758 +template<class T>
1.759 +inline
1.760 +bool operator <= ( optional<T> const& x, T const& y )
1.761 +{ return !( y < x ) ; }
1.762 +
1.763 +template<class T>
1.764 +inline
1.765 +bool operator >= ( optional<T> const& x, T const& y )
1.766 +{ return !( x < y ) ; }
1.767 +
1.768 +//
1.769 +// T vs optional<T> cases
1.770 +//
1.771 +
1.772 +template<class T>
1.773 +inline
1.774 +bool operator == ( T const& x, optional<T> const& y )
1.775 +{ return equal_pointees( optional<T>(x), y ); }
1.776 +
1.777 +template<class T>
1.778 +inline
1.779 +bool operator < ( T const& x, optional<T> const& y )
1.780 +{ return less_pointees( optional<T>(x), y ); }
1.781 +
1.782 +template<class T>
1.783 +inline
1.784 +bool operator != ( T const& x, optional<T> const& y )
1.785 +{ return !( x == y ) ; }
1.786 +
1.787 +template<class T>
1.788 +inline
1.789 +bool operator > ( T const& x, optional<T> const& y )
1.790 +{ return y < x ; }
1.791 +
1.792 +template<class T>
1.793 +inline
1.794 +bool operator <= ( T const& x, optional<T> const& y )
1.795 +{ return !( y < x ) ; }
1.796 +
1.797 +template<class T>
1.798 +inline
1.799 +bool operator >= ( T const& x, optional<T> const& y )
1.800 +{ return !( x < y ) ; }
1.801 +
1.802 +
1.803 +//
1.804 +// optional<T> vs none cases
1.805 +//
1.806 +
1.807 +template<class T>
1.808 +inline
1.809 +bool operator == ( optional<T> const& x, none_t )
1.810 +{ return equal_pointees(x, optional<T>() ); }
1.811 +
1.812 +template<class T>
1.813 +inline
1.814 +bool operator < ( optional<T> const& x, none_t )
1.815 +{ return less_pointees(x,optional<T>() ); }
1.816 +
1.817 +template<class T>
1.818 +inline
1.819 +bool operator != ( optional<T> const& x, none_t y )
1.820 +{ return !( x == y ) ; }
1.821 +
1.822 +template<class T>
1.823 +inline
1.824 +bool operator > ( optional<T> const& x, none_t y )
1.825 +{ return y < x ; }
1.826 +
1.827 +template<class T>
1.828 +inline
1.829 +bool operator <= ( optional<T> const& x, none_t y )
1.830 +{ return !( y < x ) ; }
1.831 +
1.832 +template<class T>
1.833 +inline
1.834 +bool operator >= ( optional<T> const& x, none_t y )
1.835 +{ return !( x < y ) ; }
1.836 +
1.837 +//
1.838 +// none vs optional<T> cases
1.839 +//
1.840 +
1.841 +template<class T>
1.842 +inline
1.843 +bool operator == ( none_t x, optional<T> const& y )
1.844 +{ return equal_pointees(optional<T>() ,y); }
1.845 +
1.846 +template<class T>
1.847 +inline
1.848 +bool operator < ( none_t x, optional<T> const& y )
1.849 +{ return less_pointees(optional<T>() ,y); }
1.850 +
1.851 +template<class T>
1.852 +inline
1.853 +bool operator != ( none_t x, optional<T> const& y )
1.854 +{ return !( x == y ) ; }
1.855 +
1.856 +template<class T>
1.857 +inline
1.858 +bool operator > ( none_t x, optional<T> const& y )
1.859 +{ return y < x ; }
1.860 +
1.861 +template<class T>
1.862 +inline
1.863 +bool operator <= ( none_t x, optional<T> const& y )
1.864 +{ return !( y < x ) ; }
1.865 +
1.866 +template<class T>
1.867 +inline
1.868 +bool operator >= ( none_t x, optional<T> const& y )
1.869 +{ return !( x < y ) ; }
1.870 +
1.871 +//
1.872 +// The following swap implementation follows the GCC workaround as found in
1.873 +// "boost/detail/compressed_pair.hpp"
1.874 +//
1.875 +namespace optional_detail {
1.876 +
1.877 +// GCC < 3.2 gets the using declaration at namespace scope (FLC, DWA)
1.878 +#if BOOST_WORKAROUND(__GNUC__, < 3) \
1.879 + || BOOST_WORKAROUND(__GNUC__, == 3) && __GNUC_MINOR__ <= 2
1.880 + using std::swap;
1.881 +#define BOOST_OPTIONAL_STD_SWAP_INTRODUCED_AT_NS_SCOPE
1.882 +#endif
1.883 +
1.884 +// optional's swap:
1.885 +// If both are initialized, calls swap(T&, T&). If this swap throws, both will remain initialized but their values are now unspecified.
1.886 +// If only one is initialized, calls U.reset(*I), THEN I.reset().
1.887 +// If U.reset(*I) throws, both are left UNCHANGED (U is kept uinitialized and I is never reset)
1.888 +// If both are uninitialized, do nothing (no-throw)
1.889 +template<class T>
1.890 +inline
1.891 +void optional_swap ( optional<T>& x, optional<T>& y )
1.892 +{
1.893 + if ( !x && !!y )
1.894 + {
1.895 + x.reset(*y);
1.896 + y.reset();
1.897 + }
1.898 + else if ( !!x && !y )
1.899 + {
1.900 + y.reset(*x);
1.901 + x.reset();
1.902 + }
1.903 + else if ( !!x && !!y )
1.904 + {
1.905 +// GCC > 3.2 and all other compilers have the using declaration at function scope (FLC)
1.906 +#ifndef BOOST_OPTIONAL_STD_SWAP_INTRODUCED_AT_NS_SCOPE
1.907 + // allow for Koenig lookup
1.908 + using std::swap ;
1.909 +#endif
1.910 + swap(*x,*y);
1.911 + }
1.912 +}
1.913 +
1.914 +} // namespace optional_detail
1.915 +
1.916 +template<class T> inline void swap ( optional<T>& x, optional<T>& y )
1.917 +{
1.918 + optional_detail::optional_swap(x,y);
1.919 +}
1.920 +
1.921 +
1.922 +} // namespace boost
1.923 +
1.924 +#endif
1.925 +