Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
18 ** $Id: vdbemem.c,v 1.123 2008/09/16 12:06:08 danielk1977 Exp $
20 #include "sqliteInt.h"
25 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
28 #define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
31 ** If pMem is an object with a valid string representation, this routine
32 ** ensures the internal encoding for the string representation is
33 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
35 ** If pMem is not a string object, or the encoding of the string
36 ** representation is already stored using the requested encoding, then this
37 ** routine is a no-op.
39 ** SQLITE_OK is returned if the conversion is successful (or not required).
40 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
43 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
45 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
48 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
49 #ifdef SQLITE_OMIT_UTF16
53 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
54 ** then the encoding of the value may not have changed.
56 rc = sqlite3VdbeMemTranslate(pMem, desiredEnc);
57 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
58 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
59 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
65 ** Make sure pMem->z points to a writable allocation of at least
68 ** If the memory cell currently contains string or blob data
69 ** and the third argument passed to this function is true, the
70 ** current content of the cell is preserved. Otherwise, it may
73 ** This function sets the MEM_Dyn flag and clears any xDel callback.
74 ** It also clears MEM_Ephem and MEM_Static. If the preserve flag is
75 ** not set, Mem.n is zeroed.
77 int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){
79 ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) +
80 (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) +
81 ((pMem->flags&MEM_Ephem) ? 1 : 0) +
82 ((pMem->flags&MEM_Static) ? 1 : 0)
86 if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){
87 if( preserve && pMem->z==pMem->zMalloc ){
88 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
90 pMem->flags = MEM_Null;
94 sqlite3DbFree(pMem->db, pMem->zMalloc);
95 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
99 if( preserve && pMem->z && pMem->zMalloc && pMem->z!=pMem->zMalloc ){
100 memcpy(pMem->zMalloc, pMem->z, pMem->n);
102 if( pMem->flags&MEM_Dyn && pMem->xDel ){
103 pMem->xDel((void *)(pMem->z));
106 pMem->z = pMem->zMalloc;
107 pMem->flags &= ~(MEM_Ephem|MEM_Static);
109 return (pMem->z ? SQLITE_OK : SQLITE_NOMEM);
113 ** Make the given Mem object MEM_Dyn. In other words, make it so
114 ** that any TEXT or BLOB content is stored in memory obtained from
115 ** malloc(). In this way, we know that the memory is safe to be
116 ** overwritten or altered.
118 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
120 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
122 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
125 if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){
126 if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
129 pMem->z[pMem->n] = 0;
130 pMem->z[pMem->n+1] = 0;
131 pMem->flags |= MEM_Term;
138 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
139 ** blob stored in dynamically allocated space.
141 #ifndef SQLITE_OMIT_INCRBLOB
142 int sqlite3VdbeMemExpandBlob(Mem *pMem){
143 if( pMem->flags & MEM_Zero ){
145 assert( pMem->flags&MEM_Blob );
146 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
148 /* Set nByte to the number of bytes required to store the expanded blob. */
149 nByte = pMem->n + pMem->u.i;
153 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
157 memset(&pMem->z[pMem->n], 0, pMem->u.i);
158 pMem->n += pMem->u.i;
159 pMem->flags &= ~(MEM_Zero|MEM_Term);
167 ** Make sure the given Mem is \u0000 terminated.
169 int sqlite3VdbeMemNulTerminate(Mem *pMem){
170 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
171 if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
172 return SQLITE_OK; /* Nothing to do */
174 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
177 pMem->z[pMem->n] = 0;
178 pMem->z[pMem->n+1] = 0;
179 pMem->flags |= MEM_Term;
184 ** Add MEM_Str to the set of representations for the given Mem. Numbers
185 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string
188 ** Existing representations MEM_Int and MEM_Real are *not* invalidated.
190 ** A MEM_Null value will never be passed to this function. This function is
191 ** used for converting values to text for returning to the user (i.e. via
192 ** sqlite3_value_text()), or for ensuring that values to be used as btree
193 ** keys are strings. In the former case a NULL pointer is returned the
194 ** user and the later is an internal programming error.
196 int sqlite3VdbeMemStringify(Mem *pMem, int enc){
198 int fg = pMem->flags;
199 const int nByte = 32;
201 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
202 assert( !(fg&MEM_Zero) );
203 assert( !(fg&(MEM_Str|MEM_Blob)) );
204 assert( fg&(MEM_Int|MEM_Real) );
206 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
210 /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8
211 ** string representation of the value. Then, if the required encoding
212 ** is UTF-16le or UTF-16be do a translation.
214 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
217 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
219 assert( fg & MEM_Real );
220 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r);
222 pMem->n = strlen(pMem->z);
223 pMem->enc = SQLITE_UTF8;
224 pMem->flags |= MEM_Str|MEM_Term;
225 sqlite3VdbeChangeEncoding(pMem, enc);
230 ** Memory cell pMem contains the context of an aggregate function.
231 ** This routine calls the finalize method for that function. The
232 ** result of the aggregate is stored back into pMem.
234 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
237 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
239 if( pFunc && pFunc->xFinalize ){
241 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
242 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
243 memset(&ctx, 0, sizeof(ctx));
244 ctx.s.flags = MEM_Null;
248 pFunc->xFinalize(&ctx);
249 assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel );
250 sqlite3DbFree(pMem->db, pMem->zMalloc);
252 rc = (ctx.isError?SQLITE_ERROR:SQLITE_OK);
258 ** If the memory cell contains a string value that must be freed by
259 ** invoking an external callback, free it now. Calling this function
260 ** does not free any Mem.zMalloc buffer.
262 void sqlite3VdbeMemReleaseExternal(Mem *p){
263 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
264 if( p->flags&MEM_Agg ){
265 sqlite3VdbeMemFinalize(p, p->u.pDef);
266 assert( (p->flags & MEM_Agg)==0 );
267 sqlite3VdbeMemRelease(p);
268 }else if( p->flags&MEM_Dyn && p->xDel ){
269 p->xDel((void *)p->z);
275 ** Release any memory held by the Mem. This may leave the Mem in an
276 ** inconsistent state, for example with (Mem.z==0) and
277 ** (Mem.type==SQLITE_TEXT).
279 void sqlite3VdbeMemRelease(Mem *p){
280 sqlite3VdbeMemReleaseExternal(p);
281 sqlite3DbFree(p->db, p->zMalloc);
288 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
289 ** If the double is too large, return 0x8000000000000000.
291 ** Most systems appear to do this simply by assigning
292 ** variables and without the extra range tests. But
293 ** there are reports that windows throws an expection
294 ** if the floating point value is out of range. (See ticket #2880.)
295 ** Because we do not completely understand the problem, we will
296 ** take the conservative approach and always do range tests
297 ** before attempting the conversion.
299 static i64 doubleToInt64(double r){
301 ** Many compilers we encounter do not define constants for the
302 ** minimum and maximum 64-bit integers, or they define them
303 ** inconsistently. And many do not understand the "LL" notation.
304 ** So we define our own static constants here using nothing
305 ** larger than a 32-bit integer constant.
307 static const i64 maxInt = LARGEST_INT64;
308 static const i64 minInt = SMALLEST_INT64;
310 if( r<(double)minInt ){
312 }else if( r>(double)maxInt ){
320 ** Return some kind of integer value which is the best we can do
321 ** at representing the value that *pMem describes as an integer.
322 ** If pMem is an integer, then the value is exact. If pMem is
323 ** a floating-point then the value returned is the integer part.
324 ** If pMem is a string or blob, then we make an attempt to convert
325 ** it into a integer and return that. If pMem is NULL, return 0.
327 ** If pMem is a string, its encoding might be changed.
329 i64 sqlite3VdbeIntValue(Mem *pMem){
331 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
333 if( flags & MEM_Int ){
335 }else if( flags & MEM_Real ){
336 return doubleToInt64(pMem->r);
337 }else if( flags & (MEM_Str|MEM_Blob) ){
339 pMem->flags |= MEM_Str;
340 if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
341 || sqlite3VdbeMemNulTerminate(pMem) ){
345 sqlite3Atoi64(pMem->z, &value);
353 ** Return the best representation of pMem that we can get into a
354 ** double. If pMem is already a double or an integer, return its
355 ** value. If it is a string or blob, try to convert it to a double.
356 ** If it is a NULL, return 0.0.
358 double sqlite3VdbeRealValue(Mem *pMem){
359 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
360 if( pMem->flags & MEM_Real ){
362 }else if( pMem->flags & MEM_Int ){
363 return (double)pMem->u.i;
364 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
366 pMem->flags |= MEM_Str;
367 if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
368 || sqlite3VdbeMemNulTerminate(pMem) ){
372 sqlite3AtoF(pMem->z, &val);
380 ** The MEM structure is already a MEM_Real. Try to also make it a
381 ** MEM_Int if we can.
383 void sqlite3VdbeIntegerAffinity(Mem *pMem){
384 assert( pMem->flags & MEM_Real );
385 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
387 pMem->u.i = doubleToInt64(pMem->r);
388 if( pMem->r==(double)pMem->u.i ){
389 pMem->flags |= MEM_Int;
393 static void setTypeFlag(Mem *pMem, int f){
394 MemSetTypeFlag(pMem, f);
398 ** Convert pMem to type integer. Invalidate any prior representations.
400 int sqlite3VdbeMemIntegerify(Mem *pMem){
401 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
402 pMem->u.i = sqlite3VdbeIntValue(pMem);
403 setTypeFlag(pMem, MEM_Int);
408 ** Convert pMem so that it is of type MEM_Real.
409 ** Invalidate any prior representations.
411 int sqlite3VdbeMemRealify(Mem *pMem){
412 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
413 pMem->r = sqlite3VdbeRealValue(pMem);
414 setTypeFlag(pMem, MEM_Real);
419 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
420 ** Invalidate any prior representations.
422 int sqlite3VdbeMemNumerify(Mem *pMem){
425 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 );
426 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
427 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
428 r1 = sqlite3VdbeRealValue(pMem);
429 i = doubleToInt64(r1);
432 sqlite3VdbeMemIntegerify(pMem);
435 setTypeFlag(pMem, MEM_Real);
441 ** Delete any previous value and set the value stored in *pMem to NULL.
443 void sqlite3VdbeMemSetNull(Mem *pMem){
444 setTypeFlag(pMem, MEM_Null);
445 pMem->type = SQLITE_NULL;
449 ** Delete any previous value and set the value to be a BLOB of length
450 ** n containing all zeros.
452 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
453 sqlite3VdbeMemRelease(pMem);
454 setTypeFlag(pMem, MEM_Blob);
455 pMem->flags = MEM_Blob|MEM_Zero;
456 pMem->type = SQLITE_BLOB;
460 pMem->enc = SQLITE_UTF8;
464 ** Delete any previous value and set the value stored in *pMem to val,
465 ** manifest type INTEGER.
467 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
468 sqlite3VdbeMemRelease(pMem);
470 pMem->flags = MEM_Int;
471 pMem->type = SQLITE_INTEGER;
475 ** Delete any previous value and set the value stored in *pMem to val,
476 ** manifest type REAL.
478 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
479 if( sqlite3IsNaN(val) ){
480 sqlite3VdbeMemSetNull(pMem);
482 sqlite3VdbeMemRelease(pMem);
484 pMem->flags = MEM_Real;
485 pMem->type = SQLITE_FLOAT;
490 ** Return true if the Mem object contains a TEXT or BLOB that is
491 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
493 int sqlite3VdbeMemTooBig(Mem *p){
495 if( p->flags & (MEM_Str|MEM_Blob) ){
497 if( p->flags & MEM_Zero ){
500 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
506 ** Size of struct Mem not including the Mem.zMalloc member.
508 #define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc))
511 ** Make an shallow copy of pFrom into pTo. Prior contents of
512 ** pTo are freed. The pFrom->z field is not duplicated. If
513 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
514 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
516 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
517 sqlite3VdbeMemReleaseExternal(pTo);
518 memcpy(pTo, pFrom, MEMCELLSIZE);
520 if( (pFrom->flags&MEM_Dyn)!=0 || pFrom->z==pFrom->zMalloc ){
521 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
522 assert( srcType==MEM_Ephem || srcType==MEM_Static );
523 pTo->flags |= srcType;
528 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
529 ** freed before the copy is made.
531 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
534 sqlite3VdbeMemReleaseExternal(pTo);
535 memcpy(pTo, pFrom, MEMCELLSIZE);
536 pTo->flags &= ~MEM_Dyn;
538 if( pTo->flags&(MEM_Str|MEM_Blob) ){
539 if( 0==(pFrom->flags&MEM_Static) ){
540 pTo->flags |= MEM_Ephem;
541 rc = sqlite3VdbeMemMakeWriteable(pTo);
549 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
550 ** freed. If pFrom contains ephemeral data, a copy is made.
552 ** pFrom contains an SQL NULL when this routine returns.
554 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
555 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
556 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
557 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
559 sqlite3VdbeMemRelease(pTo);
560 memcpy(pTo, pFrom, sizeof(Mem));
561 pFrom->flags = MEM_Null;
567 ** Change the value of a Mem to be a string or a BLOB.
569 ** The memory management strategy depends on the value of the xDel
570 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
571 ** string is copied into a (possibly existing) buffer managed by the
572 ** Mem structure. Otherwise, any existing buffer is freed and the
575 int sqlite3VdbeMemSetStr(
576 Mem *pMem, /* Memory cell to set to string value */
577 const char *z, /* String pointer */
578 int n, /* Bytes in string, or negative */
579 u8 enc, /* Encoding of z. 0 for BLOBs */
580 void (*xDel)(void*) /* Destructor function */
582 int nByte = n; /* New value for pMem->n */
583 int iLimit; /* Maximum allowed string or blob size */
584 int flags = 0; /* New value for pMem->flags */
586 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
588 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
590 sqlite3VdbeMemSetNull(pMem);
595 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
597 iLimit = SQLITE_MAX_LENGTH;
599 flags = (enc==0?MEM_Blob:MEM_Str);
602 if( enc==SQLITE_UTF8 ){
603 for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){}
605 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
610 return SQLITE_TOOBIG;
613 /* The following block sets the new values of Mem.z and Mem.xDel. It
614 ** also sets a flag in local variable "flags" to indicate the memory
615 ** management (one of MEM_Dyn or MEM_Static).
617 if( xDel==SQLITE_TRANSIENT ){
619 if( flags&MEM_Term ){
620 nAlloc += (enc==SQLITE_UTF8?1:2);
622 if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
625 memcpy(pMem->z, z, nAlloc);
626 }else if( xDel==SQLITE_DYNAMIC ){
627 sqlite3VdbeMemRelease(pMem);
628 pMem->zMalloc = pMem->z = (char *)z;
631 sqlite3VdbeMemRelease(pMem);
634 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
639 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
640 pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT);
642 #ifndef SQLITE_OMIT_UTF16
643 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
652 ** Compare the values contained by the two memory cells, returning
653 ** negative, zero or positive if pMem1 is less than, equal to, or greater
654 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
655 ** and reals) sorted numerically, followed by text ordered by the collating
656 ** sequence pColl and finally blob's ordered by memcmp().
658 ** Two NULL values are considered equal by this function.
660 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
665 /* Interchange pMem1 and pMem2 if the collating sequence specifies
670 combined_flags = f1|f2;
672 /* If one value is NULL, it is less than the other. If both values
673 ** are NULL, return 0.
675 if( combined_flags&MEM_Null ){
676 return (f2&MEM_Null) - (f1&MEM_Null);
679 /* If one value is a number and the other is not, the number is less.
680 ** If both are numbers, compare as reals if one is a real, or as integers
681 ** if both values are integers.
683 if( combined_flags&(MEM_Int|MEM_Real) ){
684 if( !(f1&(MEM_Int|MEM_Real)) ){
687 if( !(f2&(MEM_Int|MEM_Real)) ){
690 if( (f1 & f2 & MEM_Int)==0 ){
692 if( (f1&MEM_Real)==0 ){
697 if( (f2&MEM_Real)==0 ){
702 if( r1<r2 ) return -1;
703 if( r1>r2 ) return 1;
706 assert( f1&MEM_Int );
707 assert( f2&MEM_Int );
708 if( pMem1->u.i < pMem2->u.i ) return -1;
709 if( pMem1->u.i > pMem2->u.i ) return 1;
714 /* If one value is a string and the other is a blob, the string is less.
715 ** If both are strings, compare using the collating functions.
717 if( combined_flags&MEM_Str ){
718 if( (f1 & MEM_Str)==0 ){
721 if( (f2 & MEM_Str)==0 ){
725 assert( pMem1->enc==pMem2->enc );
726 assert( pMem1->enc==SQLITE_UTF8 ||
727 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
729 /* The collation sequence must be defined at this point, even if
730 ** the user deletes the collation sequence after the vdbe program is
731 ** compiled (this was not always the case).
733 assert( !pColl || pColl->xCmp );
736 if( pMem1->enc==pColl->enc ){
737 /* The strings are already in the correct encoding. Call the
738 ** comparison function directly */
739 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
745 memset(&c1, 0, sizeof(c1));
746 memset(&c2, 0, sizeof(c2));
747 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
748 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
749 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
750 n1 = v1==0 ? 0 : c1.n;
751 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
752 n2 = v2==0 ? 0 : c2.n;
753 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
754 sqlite3VdbeMemRelease(&c1);
755 sqlite3VdbeMemRelease(&c2);
759 /* If a NULL pointer was passed as the collate function, fall through
760 ** to the blob case and use memcmp(). */
763 /* Both values must be blobs. Compare using memcmp(). */
764 rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
766 rc = pMem1->n - pMem2->n;
772 ** Move data out of a btree key or data field and into a Mem structure.
773 ** The data or key is taken from the entry that pCur is currently pointing
774 ** to. offset and amt determine what portion of the data or key to retrieve.
775 ** key is true to get the key or false to get data. The result is written
776 ** into the pMem element.
778 ** The pMem structure is assumed to be uninitialized. Any prior content
779 ** is overwritten without being freed.
781 ** If this routine fails for any reason (malloc returns NULL or unable
782 ** to read from the disk) then the pMem is left in an inconsistent state.
784 int sqlite3VdbeMemFromBtree(
785 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
786 int offset, /* Offset from the start of data to return bytes from. */
787 int amt, /* Number of bytes to return. */
788 int key, /* If true, retrieve from the btree key, not data. */
789 Mem *pMem /* OUT: Return data in this Mem structure. */
791 char *zData; /* Data from the btree layer */
792 int available = 0; /* Number of bytes available on the local btree page */
793 sqlite3 *db; /* Database connection */
796 db = sqlite3BtreeCursorDb(pCur);
797 assert( sqlite3_mutex_held(db->mutex) );
799 zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
801 zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
805 if( offset+amt<=available && ((pMem->flags&MEM_Dyn)==0 || pMem->xDel) ){
806 sqlite3VdbeMemRelease(pMem);
807 pMem->z = &zData[offset];
808 pMem->flags = MEM_Blob|MEM_Ephem;
809 }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
810 pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
812 pMem->type = SQLITE_BLOB;
814 rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
816 rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
821 sqlite3VdbeMemRelease(pMem);
831 ** Perform various checks on the memory cell pMem. An assert() will
832 ** fail if pMem is internally inconsistent.
834 void sqlite3VdbeMemSanity(Mem *pMem){
835 int flags = pMem->flags;
836 assert( flags!=0 ); /* Must define some type */
837 if( flags & (MEM_Str|MEM_Blob) ){
838 int x = flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
839 assert( x!=0 ); /* Strings must define a string subtype */
840 assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */
841 assert( pMem->z!=0 ); /* Strings must have a value */
842 /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
843 assert( (x & MEM_Short)==0 || pMem->z==pMem->zShort );
844 assert( (x & MEM_Short)!=0 || pMem->z!=pMem->zShort );
845 /* No destructor unless there is MEM_Dyn */
846 assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 );
848 if( (flags & MEM_Str) ){
849 assert( pMem->enc==SQLITE_UTF8 ||
850 pMem->enc==SQLITE_UTF16BE ||
851 pMem->enc==SQLITE_UTF16LE
853 /* If the string is UTF-8 encoded and nul terminated, then pMem->n
854 ** must be the length of the string. (Later:) If the database file
855 ** has been corrupted, '\000' characters might have been inserted
856 ** into the middle of the string. In that case, the strlen() might
859 if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){
860 assert( strlen(pMem->z)<=pMem->n );
861 assert( pMem->z[pMem->n]==0 );
865 /* Cannot define a string subtype for non-string objects */
866 assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
867 assert( pMem->xDel==0 );
869 /* MEM_Null excludes all other types */
870 assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0
871 || (pMem->flags&MEM_Null)==0 );
872 /* If the MEM is both real and integer, the values are equal */
873 assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real)
874 || pMem->r==pMem->u.i );
878 /* This function is only available internally, it is not part of the
879 ** external API. It works in a similar way to sqlite3_value_text(),
880 ** except the data returned is in the encoding specified by the second
881 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
884 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
885 ** If that is the case, then the result must be aligned on an even byte
888 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
889 if( !pVal ) return 0;
891 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
892 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
894 if( pVal->flags&MEM_Null ){
897 assert( (MEM_Blob>>3) == MEM_Str );
898 pVal->flags |= (pVal->flags & MEM_Blob)>>3;
900 if( pVal->flags&MEM_Str ){
901 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
902 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
903 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
904 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
908 sqlite3VdbeMemNulTerminate(pVal);
910 assert( (pVal->flags&MEM_Blob)==0 );
911 sqlite3VdbeMemStringify(pVal, enc);
912 assert( 0==(1&(int)pVal->z) );
914 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
915 || pVal->db->mallocFailed );
916 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
924 ** Create a new sqlite3_value object.
926 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
927 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
930 p->type = SQLITE_NULL;
937 ** Create a new sqlite3_value object, containing the value of pExpr.
939 ** This only works for very simple expressions that consist of one constant
940 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
941 ** be converted directly into a value, then the value is allocated and
942 ** a pointer written to *ppVal. The caller is responsible for deallocating
943 ** the value by passing it to sqlite3ValueFree() later on. If the expression
944 ** cannot be converted to a value, then *ppVal is set to NULL.
946 int sqlite3ValueFromExpr(
947 sqlite3 *db, /* The database connection */
948 Expr *pExpr, /* The expression to evaluate */
949 u8 enc, /* Encoding to use */
950 u8 affinity, /* Affinity to use */
951 sqlite3_value **ppVal /* Write the new value here */
955 sqlite3_value *pVal = 0;
963 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
964 zVal = sqlite3DbStrNDup(db, (char*)pExpr->token.z, pExpr->token.n);
965 pVal = sqlite3ValueNew(db);
966 if( !zVal || !pVal ) goto no_mem;
967 sqlite3Dequote(zVal);
968 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
969 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
970 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);
972 sqlite3ValueApplyAffinity(pVal, affinity, enc);
974 }else if( op==TK_UMINUS ) {
975 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
976 pVal->u.i = -1 * pVal->u.i;
977 pVal->r = -1.0 * pVal->r;
980 #ifndef SQLITE_OMIT_BLOB_LITERAL
981 else if( op==TK_BLOB ){
983 assert( pExpr->token.n>=3 );
984 assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
985 assert( pExpr->token.z[1]=='\'' );
986 assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
987 pVal = sqlite3ValueNew(db);
988 nVal = pExpr->token.n - 3;
989 zVal = (char*)pExpr->token.z + 2;
990 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
999 db->mallocFailed = 1;
1000 sqlite3DbFree(db, zVal);
1001 sqlite3ValueFree(pVal);
1003 return SQLITE_NOMEM;
1007 ** Change the string value of an sqlite3_value object
1009 void sqlite3ValueSetStr(
1010 sqlite3_value *v, /* Value to be set */
1011 int n, /* Length of string z */
1012 const void *z, /* Text of the new string */
1013 u8 enc, /* Encoding to use */
1014 void (*xDel)(void*) /* Destructor for the string */
1016 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1020 ** Free an sqlite3_value object
1022 void sqlite3ValueFree(sqlite3_value *v){
1024 sqlite3VdbeMemRelease((Mem *)v);
1025 sqlite3DbFree(((Mem*)v)->db, v);
1029 ** Return the number of bytes in the sqlite3_value object assuming
1030 ** that it uses the encoding "enc"
1032 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1033 Mem *p = (Mem*)pVal;
1034 if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
1035 if( p->flags & MEM_Zero ){