sl@0
|
1 |
/*
|
sl@0
|
2 |
** 2004 May 26
|
sl@0
|
3 |
**
|
sl@0
|
4 |
** The author disclaims copyright to this source code. In place of
|
sl@0
|
5 |
** a legal notice, here is a blessing:
|
sl@0
|
6 |
**
|
sl@0
|
7 |
** May you do good and not evil.
|
sl@0
|
8 |
** May you find forgiveness for yourself and forgive others.
|
sl@0
|
9 |
** May you share freely, never taking more than you give.
|
sl@0
|
10 |
**
|
sl@0
|
11 |
*************************************************************************
|
sl@0
|
12 |
**
|
sl@0
|
13 |
** This file contains code use to manipulate "Mem" structure. A "Mem"
|
sl@0
|
14 |
** stores a single value in the VDBE. Mem is an opaque structure visible
|
sl@0
|
15 |
** only within the VDBE. Interface routines refer to a Mem using the
|
sl@0
|
16 |
** name sqlite_value
|
sl@0
|
17 |
**
|
sl@0
|
18 |
** $Id: vdbemem.c,v 1.123 2008/09/16 12:06:08 danielk1977 Exp $
|
sl@0
|
19 |
*/
|
sl@0
|
20 |
#include "sqliteInt.h"
|
sl@0
|
21 |
#include <ctype.h>
|
sl@0
|
22 |
#include "vdbeInt.h"
|
sl@0
|
23 |
|
sl@0
|
24 |
/*
|
sl@0
|
25 |
** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
|
sl@0
|
26 |
** P if required.
|
sl@0
|
27 |
*/
|
sl@0
|
28 |
#define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
|
sl@0
|
29 |
|
sl@0
|
30 |
/*
|
sl@0
|
31 |
** If pMem is an object with a valid string representation, this routine
|
sl@0
|
32 |
** ensures the internal encoding for the string representation is
|
sl@0
|
33 |
** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
|
sl@0
|
34 |
**
|
sl@0
|
35 |
** If pMem is not a string object, or the encoding of the string
|
sl@0
|
36 |
** representation is already stored using the requested encoding, then this
|
sl@0
|
37 |
** routine is a no-op.
|
sl@0
|
38 |
**
|
sl@0
|
39 |
** SQLITE_OK is returned if the conversion is successful (or not required).
|
sl@0
|
40 |
** SQLITE_NOMEM may be returned if a malloc() fails during conversion
|
sl@0
|
41 |
** between formats.
|
sl@0
|
42 |
*/
|
sl@0
|
43 |
int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
|
sl@0
|
44 |
int rc;
|
sl@0
|
45 |
if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
|
sl@0
|
46 |
return SQLITE_OK;
|
sl@0
|
47 |
}
|
sl@0
|
48 |
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
sl@0
|
49 |
#ifdef SQLITE_OMIT_UTF16
|
sl@0
|
50 |
return SQLITE_ERROR;
|
sl@0
|
51 |
#else
|
sl@0
|
52 |
|
sl@0
|
53 |
/* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
|
sl@0
|
54 |
** then the encoding of the value may not have changed.
|
sl@0
|
55 |
*/
|
sl@0
|
56 |
rc = sqlite3VdbeMemTranslate(pMem, desiredEnc);
|
sl@0
|
57 |
assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
|
sl@0
|
58 |
assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
|
sl@0
|
59 |
assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
|
sl@0
|
60 |
return rc;
|
sl@0
|
61 |
#endif
|
sl@0
|
62 |
}
|
sl@0
|
63 |
|
sl@0
|
64 |
/*
|
sl@0
|
65 |
** Make sure pMem->z points to a writable allocation of at least
|
sl@0
|
66 |
** n bytes.
|
sl@0
|
67 |
**
|
sl@0
|
68 |
** If the memory cell currently contains string or blob data
|
sl@0
|
69 |
** and the third argument passed to this function is true, the
|
sl@0
|
70 |
** current content of the cell is preserved. Otherwise, it may
|
sl@0
|
71 |
** be discarded.
|
sl@0
|
72 |
**
|
sl@0
|
73 |
** This function sets the MEM_Dyn flag and clears any xDel callback.
|
sl@0
|
74 |
** It also clears MEM_Ephem and MEM_Static. If the preserve flag is
|
sl@0
|
75 |
** not set, Mem.n is zeroed.
|
sl@0
|
76 |
*/
|
sl@0
|
77 |
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){
|
sl@0
|
78 |
assert( 1 >=
|
sl@0
|
79 |
((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) +
|
sl@0
|
80 |
(((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) +
|
sl@0
|
81 |
((pMem->flags&MEM_Ephem) ? 1 : 0) +
|
sl@0
|
82 |
((pMem->flags&MEM_Static) ? 1 : 0)
|
sl@0
|
83 |
);
|
sl@0
|
84 |
|
sl@0
|
85 |
if( n<32 ) n = 32;
|
sl@0
|
86 |
if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){
|
sl@0
|
87 |
if( preserve && pMem->z==pMem->zMalloc ){
|
sl@0
|
88 |
pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
|
sl@0
|
89 |
if( !pMem->z ){
|
sl@0
|
90 |
pMem->flags = MEM_Null;
|
sl@0
|
91 |
}
|
sl@0
|
92 |
preserve = 0;
|
sl@0
|
93 |
}else{
|
sl@0
|
94 |
sqlite3DbFree(pMem->db, pMem->zMalloc);
|
sl@0
|
95 |
pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
|
sl@0
|
96 |
}
|
sl@0
|
97 |
}
|
sl@0
|
98 |
|
sl@0
|
99 |
if( preserve && pMem->z && pMem->zMalloc && pMem->z!=pMem->zMalloc ){
|
sl@0
|
100 |
memcpy(pMem->zMalloc, pMem->z, pMem->n);
|
sl@0
|
101 |
}
|
sl@0
|
102 |
if( pMem->flags&MEM_Dyn && pMem->xDel ){
|
sl@0
|
103 |
pMem->xDel((void *)(pMem->z));
|
sl@0
|
104 |
}
|
sl@0
|
105 |
|
sl@0
|
106 |
pMem->z = pMem->zMalloc;
|
sl@0
|
107 |
pMem->flags &= ~(MEM_Ephem|MEM_Static);
|
sl@0
|
108 |
pMem->xDel = 0;
|
sl@0
|
109 |
return (pMem->z ? SQLITE_OK : SQLITE_NOMEM);
|
sl@0
|
110 |
}
|
sl@0
|
111 |
|
sl@0
|
112 |
/*
|
sl@0
|
113 |
** Make the given Mem object MEM_Dyn. In other words, make it so
|
sl@0
|
114 |
** that any TEXT or BLOB content is stored in memory obtained from
|
sl@0
|
115 |
** malloc(). In this way, we know that the memory is safe to be
|
sl@0
|
116 |
** overwritten or altered.
|
sl@0
|
117 |
**
|
sl@0
|
118 |
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
|
sl@0
|
119 |
*/
|
sl@0
|
120 |
int sqlite3VdbeMemMakeWriteable(Mem *pMem){
|
sl@0
|
121 |
int f;
|
sl@0
|
122 |
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
sl@0
|
123 |
expandBlob(pMem);
|
sl@0
|
124 |
f = pMem->flags;
|
sl@0
|
125 |
if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){
|
sl@0
|
126 |
if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
|
sl@0
|
127 |
return SQLITE_NOMEM;
|
sl@0
|
128 |
}
|
sl@0
|
129 |
pMem->z[pMem->n] = 0;
|
sl@0
|
130 |
pMem->z[pMem->n+1] = 0;
|
sl@0
|
131 |
pMem->flags |= MEM_Term;
|
sl@0
|
132 |
}
|
sl@0
|
133 |
|
sl@0
|
134 |
return SQLITE_OK;
|
sl@0
|
135 |
}
|
sl@0
|
136 |
|
sl@0
|
137 |
/*
|
sl@0
|
138 |
** If the given Mem* has a zero-filled tail, turn it into an ordinary
|
sl@0
|
139 |
** blob stored in dynamically allocated space.
|
sl@0
|
140 |
*/
|
sl@0
|
141 |
#ifndef SQLITE_OMIT_INCRBLOB
|
sl@0
|
142 |
int sqlite3VdbeMemExpandBlob(Mem *pMem){
|
sl@0
|
143 |
if( pMem->flags & MEM_Zero ){
|
sl@0
|
144 |
int nByte;
|
sl@0
|
145 |
assert( pMem->flags&MEM_Blob );
|
sl@0
|
146 |
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
sl@0
|
147 |
|
sl@0
|
148 |
/* Set nByte to the number of bytes required to store the expanded blob. */
|
sl@0
|
149 |
nByte = pMem->n + pMem->u.i;
|
sl@0
|
150 |
if( nByte<=0 ){
|
sl@0
|
151 |
nByte = 1;
|
sl@0
|
152 |
}
|
sl@0
|
153 |
if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
|
sl@0
|
154 |
return SQLITE_NOMEM;
|
sl@0
|
155 |
}
|
sl@0
|
156 |
|
sl@0
|
157 |
memset(&pMem->z[pMem->n], 0, pMem->u.i);
|
sl@0
|
158 |
pMem->n += pMem->u.i;
|
sl@0
|
159 |
pMem->flags &= ~(MEM_Zero|MEM_Term);
|
sl@0
|
160 |
}
|
sl@0
|
161 |
return SQLITE_OK;
|
sl@0
|
162 |
}
|
sl@0
|
163 |
#endif
|
sl@0
|
164 |
|
sl@0
|
165 |
|
sl@0
|
166 |
/*
|
sl@0
|
167 |
** Make sure the given Mem is \u0000 terminated.
|
sl@0
|
168 |
*/
|
sl@0
|
169 |
int sqlite3VdbeMemNulTerminate(Mem *pMem){
|
sl@0
|
170 |
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
sl@0
|
171 |
if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
|
sl@0
|
172 |
return SQLITE_OK; /* Nothing to do */
|
sl@0
|
173 |
}
|
sl@0
|
174 |
if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
|
sl@0
|
175 |
return SQLITE_NOMEM;
|
sl@0
|
176 |
}
|
sl@0
|
177 |
pMem->z[pMem->n] = 0;
|
sl@0
|
178 |
pMem->z[pMem->n+1] = 0;
|
sl@0
|
179 |
pMem->flags |= MEM_Term;
|
sl@0
|
180 |
return SQLITE_OK;
|
sl@0
|
181 |
}
|
sl@0
|
182 |
|
sl@0
|
183 |
/*
|
sl@0
|
184 |
** Add MEM_Str to the set of representations for the given Mem. Numbers
|
sl@0
|
185 |
** are converted using sqlite3_snprintf(). Converting a BLOB to a string
|
sl@0
|
186 |
** is a no-op.
|
sl@0
|
187 |
**
|
sl@0
|
188 |
** Existing representations MEM_Int and MEM_Real are *not* invalidated.
|
sl@0
|
189 |
**
|
sl@0
|
190 |
** A MEM_Null value will never be passed to this function. This function is
|
sl@0
|
191 |
** used for converting values to text for returning to the user (i.e. via
|
sl@0
|
192 |
** sqlite3_value_text()), or for ensuring that values to be used as btree
|
sl@0
|
193 |
** keys are strings. In the former case a NULL pointer is returned the
|
sl@0
|
194 |
** user and the later is an internal programming error.
|
sl@0
|
195 |
*/
|
sl@0
|
196 |
int sqlite3VdbeMemStringify(Mem *pMem, int enc){
|
sl@0
|
197 |
int rc = SQLITE_OK;
|
sl@0
|
198 |
int fg = pMem->flags;
|
sl@0
|
199 |
const int nByte = 32;
|
sl@0
|
200 |
|
sl@0
|
201 |
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
sl@0
|
202 |
assert( !(fg&MEM_Zero) );
|
sl@0
|
203 |
assert( !(fg&(MEM_Str|MEM_Blob)) );
|
sl@0
|
204 |
assert( fg&(MEM_Int|MEM_Real) );
|
sl@0
|
205 |
|
sl@0
|
206 |
if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
|
sl@0
|
207 |
return SQLITE_NOMEM;
|
sl@0
|
208 |
}
|
sl@0
|
209 |
|
sl@0
|
210 |
/* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8
|
sl@0
|
211 |
** string representation of the value. Then, if the required encoding
|
sl@0
|
212 |
** is UTF-16le or UTF-16be do a translation.
|
sl@0
|
213 |
**
|
sl@0
|
214 |
** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
|
sl@0
|
215 |
*/
|
sl@0
|
216 |
if( fg & MEM_Int ){
|
sl@0
|
217 |
sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
|
sl@0
|
218 |
}else{
|
sl@0
|
219 |
assert( fg & MEM_Real );
|
sl@0
|
220 |
sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r);
|
sl@0
|
221 |
}
|
sl@0
|
222 |
pMem->n = strlen(pMem->z);
|
sl@0
|
223 |
pMem->enc = SQLITE_UTF8;
|
sl@0
|
224 |
pMem->flags |= MEM_Str|MEM_Term;
|
sl@0
|
225 |
sqlite3VdbeChangeEncoding(pMem, enc);
|
sl@0
|
226 |
return rc;
|
sl@0
|
227 |
}
|
sl@0
|
228 |
|
sl@0
|
229 |
/*
|
sl@0
|
230 |
** Memory cell pMem contains the context of an aggregate function.
|
sl@0
|
231 |
** This routine calls the finalize method for that function. The
|
sl@0
|
232 |
** result of the aggregate is stored back into pMem.
|
sl@0
|
233 |
**
|
sl@0
|
234 |
** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
|
sl@0
|
235 |
** otherwise.
|
sl@0
|
236 |
*/
|
sl@0
|
237 |
int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
|
sl@0
|
238 |
int rc = SQLITE_OK;
|
sl@0
|
239 |
if( pFunc && pFunc->xFinalize ){
|
sl@0
|
240 |
sqlite3_context ctx;
|
sl@0
|
241 |
assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
|
sl@0
|
242 |
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
sl@0
|
243 |
memset(&ctx, 0, sizeof(ctx));
|
sl@0
|
244 |
ctx.s.flags = MEM_Null;
|
sl@0
|
245 |
ctx.s.db = pMem->db;
|
sl@0
|
246 |
ctx.pMem = pMem;
|
sl@0
|
247 |
ctx.pFunc = pFunc;
|
sl@0
|
248 |
pFunc->xFinalize(&ctx);
|
sl@0
|
249 |
assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel );
|
sl@0
|
250 |
sqlite3DbFree(pMem->db, pMem->zMalloc);
|
sl@0
|
251 |
*pMem = ctx.s;
|
sl@0
|
252 |
rc = (ctx.isError?SQLITE_ERROR:SQLITE_OK);
|
sl@0
|
253 |
}
|
sl@0
|
254 |
return rc;
|
sl@0
|
255 |
}
|
sl@0
|
256 |
|
sl@0
|
257 |
/*
|
sl@0
|
258 |
** If the memory cell contains a string value that must be freed by
|
sl@0
|
259 |
** invoking an external callback, free it now. Calling this function
|
sl@0
|
260 |
** does not free any Mem.zMalloc buffer.
|
sl@0
|
261 |
*/
|
sl@0
|
262 |
void sqlite3VdbeMemReleaseExternal(Mem *p){
|
sl@0
|
263 |
assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
|
sl@0
|
264 |
if( p->flags&MEM_Agg ){
|
sl@0
|
265 |
sqlite3VdbeMemFinalize(p, p->u.pDef);
|
sl@0
|
266 |
assert( (p->flags & MEM_Agg)==0 );
|
sl@0
|
267 |
sqlite3VdbeMemRelease(p);
|
sl@0
|
268 |
}else if( p->flags&MEM_Dyn && p->xDel ){
|
sl@0
|
269 |
p->xDel((void *)p->z);
|
sl@0
|
270 |
p->xDel = 0;
|
sl@0
|
271 |
}
|
sl@0
|
272 |
}
|
sl@0
|
273 |
|
sl@0
|
274 |
/*
|
sl@0
|
275 |
** Release any memory held by the Mem. This may leave the Mem in an
|
sl@0
|
276 |
** inconsistent state, for example with (Mem.z==0) and
|
sl@0
|
277 |
** (Mem.type==SQLITE_TEXT).
|
sl@0
|
278 |
*/
|
sl@0
|
279 |
void sqlite3VdbeMemRelease(Mem *p){
|
sl@0
|
280 |
sqlite3VdbeMemReleaseExternal(p);
|
sl@0
|
281 |
sqlite3DbFree(p->db, p->zMalloc);
|
sl@0
|
282 |
p->z = 0;
|
sl@0
|
283 |
p->zMalloc = 0;
|
sl@0
|
284 |
p->xDel = 0;
|
sl@0
|
285 |
}
|
sl@0
|
286 |
|
sl@0
|
287 |
/*
|
sl@0
|
288 |
** Convert a 64-bit IEEE double into a 64-bit signed integer.
|
sl@0
|
289 |
** If the double is too large, return 0x8000000000000000.
|
sl@0
|
290 |
**
|
sl@0
|
291 |
** Most systems appear to do this simply by assigning
|
sl@0
|
292 |
** variables and without the extra range tests. But
|
sl@0
|
293 |
** there are reports that windows throws an expection
|
sl@0
|
294 |
** if the floating point value is out of range. (See ticket #2880.)
|
sl@0
|
295 |
** Because we do not completely understand the problem, we will
|
sl@0
|
296 |
** take the conservative approach and always do range tests
|
sl@0
|
297 |
** before attempting the conversion.
|
sl@0
|
298 |
*/
|
sl@0
|
299 |
static i64 doubleToInt64(double r){
|
sl@0
|
300 |
/*
|
sl@0
|
301 |
** Many compilers we encounter do not define constants for the
|
sl@0
|
302 |
** minimum and maximum 64-bit integers, or they define them
|
sl@0
|
303 |
** inconsistently. And many do not understand the "LL" notation.
|
sl@0
|
304 |
** So we define our own static constants here using nothing
|
sl@0
|
305 |
** larger than a 32-bit integer constant.
|
sl@0
|
306 |
*/
|
sl@0
|
307 |
static const i64 maxInt = LARGEST_INT64;
|
sl@0
|
308 |
static const i64 minInt = SMALLEST_INT64;
|
sl@0
|
309 |
|
sl@0
|
310 |
if( r<(double)minInt ){
|
sl@0
|
311 |
return minInt;
|
sl@0
|
312 |
}else if( r>(double)maxInt ){
|
sl@0
|
313 |
return minInt;
|
sl@0
|
314 |
}else{
|
sl@0
|
315 |
return (i64)r;
|
sl@0
|
316 |
}
|
sl@0
|
317 |
}
|
sl@0
|
318 |
|
sl@0
|
319 |
/*
|
sl@0
|
320 |
** Return some kind of integer value which is the best we can do
|
sl@0
|
321 |
** at representing the value that *pMem describes as an integer.
|
sl@0
|
322 |
** If pMem is an integer, then the value is exact. If pMem is
|
sl@0
|
323 |
** a floating-point then the value returned is the integer part.
|
sl@0
|
324 |
** If pMem is a string or blob, then we make an attempt to convert
|
sl@0
|
325 |
** it into a integer and return that. If pMem is NULL, return 0.
|
sl@0
|
326 |
**
|
sl@0
|
327 |
** If pMem is a string, its encoding might be changed.
|
sl@0
|
328 |
*/
|
sl@0
|
329 |
i64 sqlite3VdbeIntValue(Mem *pMem){
|
sl@0
|
330 |
int flags;
|
sl@0
|
331 |
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
sl@0
|
332 |
flags = pMem->flags;
|
sl@0
|
333 |
if( flags & MEM_Int ){
|
sl@0
|
334 |
return pMem->u.i;
|
sl@0
|
335 |
}else if( flags & MEM_Real ){
|
sl@0
|
336 |
return doubleToInt64(pMem->r);
|
sl@0
|
337 |
}else if( flags & (MEM_Str|MEM_Blob) ){
|
sl@0
|
338 |
i64 value;
|
sl@0
|
339 |
pMem->flags |= MEM_Str;
|
sl@0
|
340 |
if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
|
sl@0
|
341 |
|| sqlite3VdbeMemNulTerminate(pMem) ){
|
sl@0
|
342 |
return 0;
|
sl@0
|
343 |
}
|
sl@0
|
344 |
assert( pMem->z );
|
sl@0
|
345 |
sqlite3Atoi64(pMem->z, &value);
|
sl@0
|
346 |
return value;
|
sl@0
|
347 |
}else{
|
sl@0
|
348 |
return 0;
|
sl@0
|
349 |
}
|
sl@0
|
350 |
}
|
sl@0
|
351 |
|
sl@0
|
352 |
/*
|
sl@0
|
353 |
** Return the best representation of pMem that we can get into a
|
sl@0
|
354 |
** double. If pMem is already a double or an integer, return its
|
sl@0
|
355 |
** value. If it is a string or blob, try to convert it to a double.
|
sl@0
|
356 |
** If it is a NULL, return 0.0.
|
sl@0
|
357 |
*/
|
sl@0
|
358 |
double sqlite3VdbeRealValue(Mem *pMem){
|
sl@0
|
359 |
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
sl@0
|
360 |
if( pMem->flags & MEM_Real ){
|
sl@0
|
361 |
return pMem->r;
|
sl@0
|
362 |
}else if( pMem->flags & MEM_Int ){
|
sl@0
|
363 |
return (double)pMem->u.i;
|
sl@0
|
364 |
}else if( pMem->flags & (MEM_Str|MEM_Blob) ){
|
sl@0
|
365 |
double val = 0.0;
|
sl@0
|
366 |
pMem->flags |= MEM_Str;
|
sl@0
|
367 |
if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
|
sl@0
|
368 |
|| sqlite3VdbeMemNulTerminate(pMem) ){
|
sl@0
|
369 |
return 0.0;
|
sl@0
|
370 |
}
|
sl@0
|
371 |
assert( pMem->z );
|
sl@0
|
372 |
sqlite3AtoF(pMem->z, &val);
|
sl@0
|
373 |
return val;
|
sl@0
|
374 |
}else{
|
sl@0
|
375 |
return 0.0;
|
sl@0
|
376 |
}
|
sl@0
|
377 |
}
|
sl@0
|
378 |
|
sl@0
|
379 |
/*
|
sl@0
|
380 |
** The MEM structure is already a MEM_Real. Try to also make it a
|
sl@0
|
381 |
** MEM_Int if we can.
|
sl@0
|
382 |
*/
|
sl@0
|
383 |
void sqlite3VdbeIntegerAffinity(Mem *pMem){
|
sl@0
|
384 |
assert( pMem->flags & MEM_Real );
|
sl@0
|
385 |
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
sl@0
|
386 |
|
sl@0
|
387 |
pMem->u.i = doubleToInt64(pMem->r);
|
sl@0
|
388 |
if( pMem->r==(double)pMem->u.i ){
|
sl@0
|
389 |
pMem->flags |= MEM_Int;
|
sl@0
|
390 |
}
|
sl@0
|
391 |
}
|
sl@0
|
392 |
|
sl@0
|
393 |
static void setTypeFlag(Mem *pMem, int f){
|
sl@0
|
394 |
MemSetTypeFlag(pMem, f);
|
sl@0
|
395 |
}
|
sl@0
|
396 |
|
sl@0
|
397 |
/*
|
sl@0
|
398 |
** Convert pMem to type integer. Invalidate any prior representations.
|
sl@0
|
399 |
*/
|
sl@0
|
400 |
int sqlite3VdbeMemIntegerify(Mem *pMem){
|
sl@0
|
401 |
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
sl@0
|
402 |
pMem->u.i = sqlite3VdbeIntValue(pMem);
|
sl@0
|
403 |
setTypeFlag(pMem, MEM_Int);
|
sl@0
|
404 |
return SQLITE_OK;
|
sl@0
|
405 |
}
|
sl@0
|
406 |
|
sl@0
|
407 |
/*
|
sl@0
|
408 |
** Convert pMem so that it is of type MEM_Real.
|
sl@0
|
409 |
** Invalidate any prior representations.
|
sl@0
|
410 |
*/
|
sl@0
|
411 |
int sqlite3VdbeMemRealify(Mem *pMem){
|
sl@0
|
412 |
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
sl@0
|
413 |
pMem->r = sqlite3VdbeRealValue(pMem);
|
sl@0
|
414 |
setTypeFlag(pMem, MEM_Real);
|
sl@0
|
415 |
return SQLITE_OK;
|
sl@0
|
416 |
}
|
sl@0
|
417 |
|
sl@0
|
418 |
/*
|
sl@0
|
419 |
** Convert pMem so that it has types MEM_Real or MEM_Int or both.
|
sl@0
|
420 |
** Invalidate any prior representations.
|
sl@0
|
421 |
*/
|
sl@0
|
422 |
int sqlite3VdbeMemNumerify(Mem *pMem){
|
sl@0
|
423 |
double r1, r2;
|
sl@0
|
424 |
i64 i;
|
sl@0
|
425 |
assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 );
|
sl@0
|
426 |
assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
|
sl@0
|
427 |
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
sl@0
|
428 |
r1 = sqlite3VdbeRealValue(pMem);
|
sl@0
|
429 |
i = doubleToInt64(r1);
|
sl@0
|
430 |
r2 = (double)i;
|
sl@0
|
431 |
if( r1==r2 ){
|
sl@0
|
432 |
sqlite3VdbeMemIntegerify(pMem);
|
sl@0
|
433 |
}else{
|
sl@0
|
434 |
pMem->r = r1;
|
sl@0
|
435 |
setTypeFlag(pMem, MEM_Real);
|
sl@0
|
436 |
}
|
sl@0
|
437 |
return SQLITE_OK;
|
sl@0
|
438 |
}
|
sl@0
|
439 |
|
sl@0
|
440 |
/*
|
sl@0
|
441 |
** Delete any previous value and set the value stored in *pMem to NULL.
|
sl@0
|
442 |
*/
|
sl@0
|
443 |
void sqlite3VdbeMemSetNull(Mem *pMem){
|
sl@0
|
444 |
setTypeFlag(pMem, MEM_Null);
|
sl@0
|
445 |
pMem->type = SQLITE_NULL;
|
sl@0
|
446 |
}
|
sl@0
|
447 |
|
sl@0
|
448 |
/*
|
sl@0
|
449 |
** Delete any previous value and set the value to be a BLOB of length
|
sl@0
|
450 |
** n containing all zeros.
|
sl@0
|
451 |
*/
|
sl@0
|
452 |
void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
|
sl@0
|
453 |
sqlite3VdbeMemRelease(pMem);
|
sl@0
|
454 |
setTypeFlag(pMem, MEM_Blob);
|
sl@0
|
455 |
pMem->flags = MEM_Blob|MEM_Zero;
|
sl@0
|
456 |
pMem->type = SQLITE_BLOB;
|
sl@0
|
457 |
pMem->n = 0;
|
sl@0
|
458 |
if( n<0 ) n = 0;
|
sl@0
|
459 |
pMem->u.i = n;
|
sl@0
|
460 |
pMem->enc = SQLITE_UTF8;
|
sl@0
|
461 |
}
|
sl@0
|
462 |
|
sl@0
|
463 |
/*
|
sl@0
|
464 |
** Delete any previous value and set the value stored in *pMem to val,
|
sl@0
|
465 |
** manifest type INTEGER.
|
sl@0
|
466 |
*/
|
sl@0
|
467 |
void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
|
sl@0
|
468 |
sqlite3VdbeMemRelease(pMem);
|
sl@0
|
469 |
pMem->u.i = val;
|
sl@0
|
470 |
pMem->flags = MEM_Int;
|
sl@0
|
471 |
pMem->type = SQLITE_INTEGER;
|
sl@0
|
472 |
}
|
sl@0
|
473 |
|
sl@0
|
474 |
/*
|
sl@0
|
475 |
** Delete any previous value and set the value stored in *pMem to val,
|
sl@0
|
476 |
** manifest type REAL.
|
sl@0
|
477 |
*/
|
sl@0
|
478 |
void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
|
sl@0
|
479 |
if( sqlite3IsNaN(val) ){
|
sl@0
|
480 |
sqlite3VdbeMemSetNull(pMem);
|
sl@0
|
481 |
}else{
|
sl@0
|
482 |
sqlite3VdbeMemRelease(pMem);
|
sl@0
|
483 |
pMem->r = val;
|
sl@0
|
484 |
pMem->flags = MEM_Real;
|
sl@0
|
485 |
pMem->type = SQLITE_FLOAT;
|
sl@0
|
486 |
}
|
sl@0
|
487 |
}
|
sl@0
|
488 |
|
sl@0
|
489 |
/*
|
sl@0
|
490 |
** Return true if the Mem object contains a TEXT or BLOB that is
|
sl@0
|
491 |
** too large - whose size exceeds SQLITE_MAX_LENGTH.
|
sl@0
|
492 |
*/
|
sl@0
|
493 |
int sqlite3VdbeMemTooBig(Mem *p){
|
sl@0
|
494 |
assert( p->db!=0 );
|
sl@0
|
495 |
if( p->flags & (MEM_Str|MEM_Blob) ){
|
sl@0
|
496 |
int n = p->n;
|
sl@0
|
497 |
if( p->flags & MEM_Zero ){
|
sl@0
|
498 |
n += p->u.i;
|
sl@0
|
499 |
}
|
sl@0
|
500 |
return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
|
sl@0
|
501 |
}
|
sl@0
|
502 |
return 0;
|
sl@0
|
503 |
}
|
sl@0
|
504 |
|
sl@0
|
505 |
/*
|
sl@0
|
506 |
** Size of struct Mem not including the Mem.zMalloc member.
|
sl@0
|
507 |
*/
|
sl@0
|
508 |
#define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc))
|
sl@0
|
509 |
|
sl@0
|
510 |
/*
|
sl@0
|
511 |
** Make an shallow copy of pFrom into pTo. Prior contents of
|
sl@0
|
512 |
** pTo are freed. The pFrom->z field is not duplicated. If
|
sl@0
|
513 |
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
|
sl@0
|
514 |
** and flags gets srcType (either MEM_Ephem or MEM_Static).
|
sl@0
|
515 |
*/
|
sl@0
|
516 |
void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
|
sl@0
|
517 |
sqlite3VdbeMemReleaseExternal(pTo);
|
sl@0
|
518 |
memcpy(pTo, pFrom, MEMCELLSIZE);
|
sl@0
|
519 |
pTo->xDel = 0;
|
sl@0
|
520 |
if( (pFrom->flags&MEM_Dyn)!=0 || pFrom->z==pFrom->zMalloc ){
|
sl@0
|
521 |
pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
|
sl@0
|
522 |
assert( srcType==MEM_Ephem || srcType==MEM_Static );
|
sl@0
|
523 |
pTo->flags |= srcType;
|
sl@0
|
524 |
}
|
sl@0
|
525 |
}
|
sl@0
|
526 |
|
sl@0
|
527 |
/*
|
sl@0
|
528 |
** Make a full copy of pFrom into pTo. Prior contents of pTo are
|
sl@0
|
529 |
** freed before the copy is made.
|
sl@0
|
530 |
*/
|
sl@0
|
531 |
int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
|
sl@0
|
532 |
int rc = SQLITE_OK;
|
sl@0
|
533 |
|
sl@0
|
534 |
sqlite3VdbeMemReleaseExternal(pTo);
|
sl@0
|
535 |
memcpy(pTo, pFrom, MEMCELLSIZE);
|
sl@0
|
536 |
pTo->flags &= ~MEM_Dyn;
|
sl@0
|
537 |
|
sl@0
|
538 |
if( pTo->flags&(MEM_Str|MEM_Blob) ){
|
sl@0
|
539 |
if( 0==(pFrom->flags&MEM_Static) ){
|
sl@0
|
540 |
pTo->flags |= MEM_Ephem;
|
sl@0
|
541 |
rc = sqlite3VdbeMemMakeWriteable(pTo);
|
sl@0
|
542 |
}
|
sl@0
|
543 |
}
|
sl@0
|
544 |
|
sl@0
|
545 |
return rc;
|
sl@0
|
546 |
}
|
sl@0
|
547 |
|
sl@0
|
548 |
/*
|
sl@0
|
549 |
** Transfer the contents of pFrom to pTo. Any existing value in pTo is
|
sl@0
|
550 |
** freed. If pFrom contains ephemeral data, a copy is made.
|
sl@0
|
551 |
**
|
sl@0
|
552 |
** pFrom contains an SQL NULL when this routine returns.
|
sl@0
|
553 |
*/
|
sl@0
|
554 |
void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
|
sl@0
|
555 |
assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
|
sl@0
|
556 |
assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
|
sl@0
|
557 |
assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
|
sl@0
|
558 |
|
sl@0
|
559 |
sqlite3VdbeMemRelease(pTo);
|
sl@0
|
560 |
memcpy(pTo, pFrom, sizeof(Mem));
|
sl@0
|
561 |
pFrom->flags = MEM_Null;
|
sl@0
|
562 |
pFrom->xDel = 0;
|
sl@0
|
563 |
pFrom->zMalloc = 0;
|
sl@0
|
564 |
}
|
sl@0
|
565 |
|
sl@0
|
566 |
/*
|
sl@0
|
567 |
** Change the value of a Mem to be a string or a BLOB.
|
sl@0
|
568 |
**
|
sl@0
|
569 |
** The memory management strategy depends on the value of the xDel
|
sl@0
|
570 |
** parameter. If the value passed is SQLITE_TRANSIENT, then the
|
sl@0
|
571 |
** string is copied into a (possibly existing) buffer managed by the
|
sl@0
|
572 |
** Mem structure. Otherwise, any existing buffer is freed and the
|
sl@0
|
573 |
** pointer copied.
|
sl@0
|
574 |
*/
|
sl@0
|
575 |
int sqlite3VdbeMemSetStr(
|
sl@0
|
576 |
Mem *pMem, /* Memory cell to set to string value */
|
sl@0
|
577 |
const char *z, /* String pointer */
|
sl@0
|
578 |
int n, /* Bytes in string, or negative */
|
sl@0
|
579 |
u8 enc, /* Encoding of z. 0 for BLOBs */
|
sl@0
|
580 |
void (*xDel)(void*) /* Destructor function */
|
sl@0
|
581 |
){
|
sl@0
|
582 |
int nByte = n; /* New value for pMem->n */
|
sl@0
|
583 |
int iLimit; /* Maximum allowed string or blob size */
|
sl@0
|
584 |
int flags = 0; /* New value for pMem->flags */
|
sl@0
|
585 |
|
sl@0
|
586 |
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
sl@0
|
587 |
|
sl@0
|
588 |
/* If z is a NULL pointer, set pMem to contain an SQL NULL. */
|
sl@0
|
589 |
if( !z ){
|
sl@0
|
590 |
sqlite3VdbeMemSetNull(pMem);
|
sl@0
|
591 |
return SQLITE_OK;
|
sl@0
|
592 |
}
|
sl@0
|
593 |
|
sl@0
|
594 |
if( pMem->db ){
|
sl@0
|
595 |
iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
|
sl@0
|
596 |
}else{
|
sl@0
|
597 |
iLimit = SQLITE_MAX_LENGTH;
|
sl@0
|
598 |
}
|
sl@0
|
599 |
flags = (enc==0?MEM_Blob:MEM_Str);
|
sl@0
|
600 |
if( nByte<0 ){
|
sl@0
|
601 |
assert( enc!=0 );
|
sl@0
|
602 |
if( enc==SQLITE_UTF8 ){
|
sl@0
|
603 |
for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){}
|
sl@0
|
604 |
}else{
|
sl@0
|
605 |
for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
|
sl@0
|
606 |
}
|
sl@0
|
607 |
flags |= MEM_Term;
|
sl@0
|
608 |
}
|
sl@0
|
609 |
if( nByte>iLimit ){
|
sl@0
|
610 |
return SQLITE_TOOBIG;
|
sl@0
|
611 |
}
|
sl@0
|
612 |
|
sl@0
|
613 |
/* The following block sets the new values of Mem.z and Mem.xDel. It
|
sl@0
|
614 |
** also sets a flag in local variable "flags" to indicate the memory
|
sl@0
|
615 |
** management (one of MEM_Dyn or MEM_Static).
|
sl@0
|
616 |
*/
|
sl@0
|
617 |
if( xDel==SQLITE_TRANSIENT ){
|
sl@0
|
618 |
int nAlloc = nByte;
|
sl@0
|
619 |
if( flags&MEM_Term ){
|
sl@0
|
620 |
nAlloc += (enc==SQLITE_UTF8?1:2);
|
sl@0
|
621 |
}
|
sl@0
|
622 |
if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
|
sl@0
|
623 |
return SQLITE_NOMEM;
|
sl@0
|
624 |
}
|
sl@0
|
625 |
memcpy(pMem->z, z, nAlloc);
|
sl@0
|
626 |
}else if( xDel==SQLITE_DYNAMIC ){
|
sl@0
|
627 |
sqlite3VdbeMemRelease(pMem);
|
sl@0
|
628 |
pMem->zMalloc = pMem->z = (char *)z;
|
sl@0
|
629 |
pMem->xDel = 0;
|
sl@0
|
630 |
}else{
|
sl@0
|
631 |
sqlite3VdbeMemRelease(pMem);
|
sl@0
|
632 |
pMem->z = (char *)z;
|
sl@0
|
633 |
pMem->xDel = xDel;
|
sl@0
|
634 |
flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
|
sl@0
|
635 |
}
|
sl@0
|
636 |
|
sl@0
|
637 |
pMem->n = nByte;
|
sl@0
|
638 |
pMem->flags = flags;
|
sl@0
|
639 |
pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
|
sl@0
|
640 |
pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT);
|
sl@0
|
641 |
|
sl@0
|
642 |
#ifndef SQLITE_OMIT_UTF16
|
sl@0
|
643 |
if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
|
sl@0
|
644 |
return SQLITE_NOMEM;
|
sl@0
|
645 |
}
|
sl@0
|
646 |
#endif
|
sl@0
|
647 |
|
sl@0
|
648 |
return SQLITE_OK;
|
sl@0
|
649 |
}
|
sl@0
|
650 |
|
sl@0
|
651 |
/*
|
sl@0
|
652 |
** Compare the values contained by the two memory cells, returning
|
sl@0
|
653 |
** negative, zero or positive if pMem1 is less than, equal to, or greater
|
sl@0
|
654 |
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
|
sl@0
|
655 |
** and reals) sorted numerically, followed by text ordered by the collating
|
sl@0
|
656 |
** sequence pColl and finally blob's ordered by memcmp().
|
sl@0
|
657 |
**
|
sl@0
|
658 |
** Two NULL values are considered equal by this function.
|
sl@0
|
659 |
*/
|
sl@0
|
660 |
int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
|
sl@0
|
661 |
int rc;
|
sl@0
|
662 |
int f1, f2;
|
sl@0
|
663 |
int combined_flags;
|
sl@0
|
664 |
|
sl@0
|
665 |
/* Interchange pMem1 and pMem2 if the collating sequence specifies
|
sl@0
|
666 |
** DESC order.
|
sl@0
|
667 |
*/
|
sl@0
|
668 |
f1 = pMem1->flags;
|
sl@0
|
669 |
f2 = pMem2->flags;
|
sl@0
|
670 |
combined_flags = f1|f2;
|
sl@0
|
671 |
|
sl@0
|
672 |
/* If one value is NULL, it is less than the other. If both values
|
sl@0
|
673 |
** are NULL, return 0.
|
sl@0
|
674 |
*/
|
sl@0
|
675 |
if( combined_flags&MEM_Null ){
|
sl@0
|
676 |
return (f2&MEM_Null) - (f1&MEM_Null);
|
sl@0
|
677 |
}
|
sl@0
|
678 |
|
sl@0
|
679 |
/* If one value is a number and the other is not, the number is less.
|
sl@0
|
680 |
** If both are numbers, compare as reals if one is a real, or as integers
|
sl@0
|
681 |
** if both values are integers.
|
sl@0
|
682 |
*/
|
sl@0
|
683 |
if( combined_flags&(MEM_Int|MEM_Real) ){
|
sl@0
|
684 |
if( !(f1&(MEM_Int|MEM_Real)) ){
|
sl@0
|
685 |
return 1;
|
sl@0
|
686 |
}
|
sl@0
|
687 |
if( !(f2&(MEM_Int|MEM_Real)) ){
|
sl@0
|
688 |
return -1;
|
sl@0
|
689 |
}
|
sl@0
|
690 |
if( (f1 & f2 & MEM_Int)==0 ){
|
sl@0
|
691 |
double r1, r2;
|
sl@0
|
692 |
if( (f1&MEM_Real)==0 ){
|
sl@0
|
693 |
r1 = pMem1->u.i;
|
sl@0
|
694 |
}else{
|
sl@0
|
695 |
r1 = pMem1->r;
|
sl@0
|
696 |
}
|
sl@0
|
697 |
if( (f2&MEM_Real)==0 ){
|
sl@0
|
698 |
r2 = pMem2->u.i;
|
sl@0
|
699 |
}else{
|
sl@0
|
700 |
r2 = pMem2->r;
|
sl@0
|
701 |
}
|
sl@0
|
702 |
if( r1<r2 ) return -1;
|
sl@0
|
703 |
if( r1>r2 ) return 1;
|
sl@0
|
704 |
return 0;
|
sl@0
|
705 |
}else{
|
sl@0
|
706 |
assert( f1&MEM_Int );
|
sl@0
|
707 |
assert( f2&MEM_Int );
|
sl@0
|
708 |
if( pMem1->u.i < pMem2->u.i ) return -1;
|
sl@0
|
709 |
if( pMem1->u.i > pMem2->u.i ) return 1;
|
sl@0
|
710 |
return 0;
|
sl@0
|
711 |
}
|
sl@0
|
712 |
}
|
sl@0
|
713 |
|
sl@0
|
714 |
/* If one value is a string and the other is a blob, the string is less.
|
sl@0
|
715 |
** If both are strings, compare using the collating functions.
|
sl@0
|
716 |
*/
|
sl@0
|
717 |
if( combined_flags&MEM_Str ){
|
sl@0
|
718 |
if( (f1 & MEM_Str)==0 ){
|
sl@0
|
719 |
return 1;
|
sl@0
|
720 |
}
|
sl@0
|
721 |
if( (f2 & MEM_Str)==0 ){
|
sl@0
|
722 |
return -1;
|
sl@0
|
723 |
}
|
sl@0
|
724 |
|
sl@0
|
725 |
assert( pMem1->enc==pMem2->enc );
|
sl@0
|
726 |
assert( pMem1->enc==SQLITE_UTF8 ||
|
sl@0
|
727 |
pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
|
sl@0
|
728 |
|
sl@0
|
729 |
/* The collation sequence must be defined at this point, even if
|
sl@0
|
730 |
** the user deletes the collation sequence after the vdbe program is
|
sl@0
|
731 |
** compiled (this was not always the case).
|
sl@0
|
732 |
*/
|
sl@0
|
733 |
assert( !pColl || pColl->xCmp );
|
sl@0
|
734 |
|
sl@0
|
735 |
if( pColl ){
|
sl@0
|
736 |
if( pMem1->enc==pColl->enc ){
|
sl@0
|
737 |
/* The strings are already in the correct encoding. Call the
|
sl@0
|
738 |
** comparison function directly */
|
sl@0
|
739 |
return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
|
sl@0
|
740 |
}else{
|
sl@0
|
741 |
const void *v1, *v2;
|
sl@0
|
742 |
int n1, n2;
|
sl@0
|
743 |
Mem c1;
|
sl@0
|
744 |
Mem c2;
|
sl@0
|
745 |
memset(&c1, 0, sizeof(c1));
|
sl@0
|
746 |
memset(&c2, 0, sizeof(c2));
|
sl@0
|
747 |
sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
|
sl@0
|
748 |
sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
|
sl@0
|
749 |
v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
|
sl@0
|
750 |
n1 = v1==0 ? 0 : c1.n;
|
sl@0
|
751 |
v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
|
sl@0
|
752 |
n2 = v2==0 ? 0 : c2.n;
|
sl@0
|
753 |
rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
|
sl@0
|
754 |
sqlite3VdbeMemRelease(&c1);
|
sl@0
|
755 |
sqlite3VdbeMemRelease(&c2);
|
sl@0
|
756 |
return rc;
|
sl@0
|
757 |
}
|
sl@0
|
758 |
}
|
sl@0
|
759 |
/* If a NULL pointer was passed as the collate function, fall through
|
sl@0
|
760 |
** to the blob case and use memcmp(). */
|
sl@0
|
761 |
}
|
sl@0
|
762 |
|
sl@0
|
763 |
/* Both values must be blobs. Compare using memcmp(). */
|
sl@0
|
764 |
rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
|
sl@0
|
765 |
if( rc==0 ){
|
sl@0
|
766 |
rc = pMem1->n - pMem2->n;
|
sl@0
|
767 |
}
|
sl@0
|
768 |
return rc;
|
sl@0
|
769 |
}
|
sl@0
|
770 |
|
sl@0
|
771 |
/*
|
sl@0
|
772 |
** Move data out of a btree key or data field and into a Mem structure.
|
sl@0
|
773 |
** The data or key is taken from the entry that pCur is currently pointing
|
sl@0
|
774 |
** to. offset and amt determine what portion of the data or key to retrieve.
|
sl@0
|
775 |
** key is true to get the key or false to get data. The result is written
|
sl@0
|
776 |
** into the pMem element.
|
sl@0
|
777 |
**
|
sl@0
|
778 |
** The pMem structure is assumed to be uninitialized. Any prior content
|
sl@0
|
779 |
** is overwritten without being freed.
|
sl@0
|
780 |
**
|
sl@0
|
781 |
** If this routine fails for any reason (malloc returns NULL or unable
|
sl@0
|
782 |
** to read from the disk) then the pMem is left in an inconsistent state.
|
sl@0
|
783 |
*/
|
sl@0
|
784 |
int sqlite3VdbeMemFromBtree(
|
sl@0
|
785 |
BtCursor *pCur, /* Cursor pointing at record to retrieve. */
|
sl@0
|
786 |
int offset, /* Offset from the start of data to return bytes from. */
|
sl@0
|
787 |
int amt, /* Number of bytes to return. */
|
sl@0
|
788 |
int key, /* If true, retrieve from the btree key, not data. */
|
sl@0
|
789 |
Mem *pMem /* OUT: Return data in this Mem structure. */
|
sl@0
|
790 |
){
|
sl@0
|
791 |
char *zData; /* Data from the btree layer */
|
sl@0
|
792 |
int available = 0; /* Number of bytes available on the local btree page */
|
sl@0
|
793 |
sqlite3 *db; /* Database connection */
|
sl@0
|
794 |
int rc = SQLITE_OK;
|
sl@0
|
795 |
|
sl@0
|
796 |
db = sqlite3BtreeCursorDb(pCur);
|
sl@0
|
797 |
assert( sqlite3_mutex_held(db->mutex) );
|
sl@0
|
798 |
if( key ){
|
sl@0
|
799 |
zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
|
sl@0
|
800 |
}else{
|
sl@0
|
801 |
zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
|
sl@0
|
802 |
}
|
sl@0
|
803 |
assert( zData!=0 );
|
sl@0
|
804 |
|
sl@0
|
805 |
if( offset+amt<=available && ((pMem->flags&MEM_Dyn)==0 || pMem->xDel) ){
|
sl@0
|
806 |
sqlite3VdbeMemRelease(pMem);
|
sl@0
|
807 |
pMem->z = &zData[offset];
|
sl@0
|
808 |
pMem->flags = MEM_Blob|MEM_Ephem;
|
sl@0
|
809 |
}else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
|
sl@0
|
810 |
pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
|
sl@0
|
811 |
pMem->enc = 0;
|
sl@0
|
812 |
pMem->type = SQLITE_BLOB;
|
sl@0
|
813 |
if( key ){
|
sl@0
|
814 |
rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
|
sl@0
|
815 |
}else{
|
sl@0
|
816 |
rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
|
sl@0
|
817 |
}
|
sl@0
|
818 |
pMem->z[amt] = 0;
|
sl@0
|
819 |
pMem->z[amt+1] = 0;
|
sl@0
|
820 |
if( rc!=SQLITE_OK ){
|
sl@0
|
821 |
sqlite3VdbeMemRelease(pMem);
|
sl@0
|
822 |
}
|
sl@0
|
823 |
}
|
sl@0
|
824 |
pMem->n = amt;
|
sl@0
|
825 |
|
sl@0
|
826 |
return rc;
|
sl@0
|
827 |
}
|
sl@0
|
828 |
|
sl@0
|
829 |
#if 0
|
sl@0
|
830 |
/*
|
sl@0
|
831 |
** Perform various checks on the memory cell pMem. An assert() will
|
sl@0
|
832 |
** fail if pMem is internally inconsistent.
|
sl@0
|
833 |
*/
|
sl@0
|
834 |
void sqlite3VdbeMemSanity(Mem *pMem){
|
sl@0
|
835 |
int flags = pMem->flags;
|
sl@0
|
836 |
assert( flags!=0 ); /* Must define some type */
|
sl@0
|
837 |
if( flags & (MEM_Str|MEM_Blob) ){
|
sl@0
|
838 |
int x = flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
|
sl@0
|
839 |
assert( x!=0 ); /* Strings must define a string subtype */
|
sl@0
|
840 |
assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */
|
sl@0
|
841 |
assert( pMem->z!=0 ); /* Strings must have a value */
|
sl@0
|
842 |
/* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
|
sl@0
|
843 |
assert( (x & MEM_Short)==0 || pMem->z==pMem->zShort );
|
sl@0
|
844 |
assert( (x & MEM_Short)!=0 || pMem->z!=pMem->zShort );
|
sl@0
|
845 |
/* No destructor unless there is MEM_Dyn */
|
sl@0
|
846 |
assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 );
|
sl@0
|
847 |
|
sl@0
|
848 |
if( (flags & MEM_Str) ){
|
sl@0
|
849 |
assert( pMem->enc==SQLITE_UTF8 ||
|
sl@0
|
850 |
pMem->enc==SQLITE_UTF16BE ||
|
sl@0
|
851 |
pMem->enc==SQLITE_UTF16LE
|
sl@0
|
852 |
);
|
sl@0
|
853 |
/* If the string is UTF-8 encoded and nul terminated, then pMem->n
|
sl@0
|
854 |
** must be the length of the string. (Later:) If the database file
|
sl@0
|
855 |
** has been corrupted, '\000' characters might have been inserted
|
sl@0
|
856 |
** into the middle of the string. In that case, the strlen() might
|
sl@0
|
857 |
** be less.
|
sl@0
|
858 |
*/
|
sl@0
|
859 |
if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){
|
sl@0
|
860 |
assert( strlen(pMem->z)<=pMem->n );
|
sl@0
|
861 |
assert( pMem->z[pMem->n]==0 );
|
sl@0
|
862 |
}
|
sl@0
|
863 |
}
|
sl@0
|
864 |
}else{
|
sl@0
|
865 |
/* Cannot define a string subtype for non-string objects */
|
sl@0
|
866 |
assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
|
sl@0
|
867 |
assert( pMem->xDel==0 );
|
sl@0
|
868 |
}
|
sl@0
|
869 |
/* MEM_Null excludes all other types */
|
sl@0
|
870 |
assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0
|
sl@0
|
871 |
|| (pMem->flags&MEM_Null)==0 );
|
sl@0
|
872 |
/* If the MEM is both real and integer, the values are equal */
|
sl@0
|
873 |
assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real)
|
sl@0
|
874 |
|| pMem->r==pMem->u.i );
|
sl@0
|
875 |
}
|
sl@0
|
876 |
#endif
|
sl@0
|
877 |
|
sl@0
|
878 |
/* This function is only available internally, it is not part of the
|
sl@0
|
879 |
** external API. It works in a similar way to sqlite3_value_text(),
|
sl@0
|
880 |
** except the data returned is in the encoding specified by the second
|
sl@0
|
881 |
** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
|
sl@0
|
882 |
** SQLITE_UTF8.
|
sl@0
|
883 |
**
|
sl@0
|
884 |
** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
|
sl@0
|
885 |
** If that is the case, then the result must be aligned on an even byte
|
sl@0
|
886 |
** boundary.
|
sl@0
|
887 |
*/
|
sl@0
|
888 |
const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
|
sl@0
|
889 |
if( !pVal ) return 0;
|
sl@0
|
890 |
|
sl@0
|
891 |
assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
|
sl@0
|
892 |
assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
|
sl@0
|
893 |
|
sl@0
|
894 |
if( pVal->flags&MEM_Null ){
|
sl@0
|
895 |
return 0;
|
sl@0
|
896 |
}
|
sl@0
|
897 |
assert( (MEM_Blob>>3) == MEM_Str );
|
sl@0
|
898 |
pVal->flags |= (pVal->flags & MEM_Blob)>>3;
|
sl@0
|
899 |
expandBlob(pVal);
|
sl@0
|
900 |
if( pVal->flags&MEM_Str ){
|
sl@0
|
901 |
sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
|
sl@0
|
902 |
if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
|
sl@0
|
903 |
assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
|
sl@0
|
904 |
if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
|
sl@0
|
905 |
return 0;
|
sl@0
|
906 |
}
|
sl@0
|
907 |
}
|
sl@0
|
908 |
sqlite3VdbeMemNulTerminate(pVal);
|
sl@0
|
909 |
}else{
|
sl@0
|
910 |
assert( (pVal->flags&MEM_Blob)==0 );
|
sl@0
|
911 |
sqlite3VdbeMemStringify(pVal, enc);
|
sl@0
|
912 |
assert( 0==(1&(int)pVal->z) );
|
sl@0
|
913 |
}
|
sl@0
|
914 |
assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
|
sl@0
|
915 |
|| pVal->db->mallocFailed );
|
sl@0
|
916 |
if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
|
sl@0
|
917 |
return pVal->z;
|
sl@0
|
918 |
}else{
|
sl@0
|
919 |
return 0;
|
sl@0
|
920 |
}
|
sl@0
|
921 |
}
|
sl@0
|
922 |
|
sl@0
|
923 |
/*
|
sl@0
|
924 |
** Create a new sqlite3_value object.
|
sl@0
|
925 |
*/
|
sl@0
|
926 |
sqlite3_value *sqlite3ValueNew(sqlite3 *db){
|
sl@0
|
927 |
Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
|
sl@0
|
928 |
if( p ){
|
sl@0
|
929 |
p->flags = MEM_Null;
|
sl@0
|
930 |
p->type = SQLITE_NULL;
|
sl@0
|
931 |
p->db = db;
|
sl@0
|
932 |
}
|
sl@0
|
933 |
return p;
|
sl@0
|
934 |
}
|
sl@0
|
935 |
|
sl@0
|
936 |
/*
|
sl@0
|
937 |
** Create a new sqlite3_value object, containing the value of pExpr.
|
sl@0
|
938 |
**
|
sl@0
|
939 |
** This only works for very simple expressions that consist of one constant
|
sl@0
|
940 |
** token (i.e. "5", "5.1", "'a string'"). If the expression can
|
sl@0
|
941 |
** be converted directly into a value, then the value is allocated and
|
sl@0
|
942 |
** a pointer written to *ppVal. The caller is responsible for deallocating
|
sl@0
|
943 |
** the value by passing it to sqlite3ValueFree() later on. If the expression
|
sl@0
|
944 |
** cannot be converted to a value, then *ppVal is set to NULL.
|
sl@0
|
945 |
*/
|
sl@0
|
946 |
int sqlite3ValueFromExpr(
|
sl@0
|
947 |
sqlite3 *db, /* The database connection */
|
sl@0
|
948 |
Expr *pExpr, /* The expression to evaluate */
|
sl@0
|
949 |
u8 enc, /* Encoding to use */
|
sl@0
|
950 |
u8 affinity, /* Affinity to use */
|
sl@0
|
951 |
sqlite3_value **ppVal /* Write the new value here */
|
sl@0
|
952 |
){
|
sl@0
|
953 |
int op;
|
sl@0
|
954 |
char *zVal = 0;
|
sl@0
|
955 |
sqlite3_value *pVal = 0;
|
sl@0
|
956 |
|
sl@0
|
957 |
if( !pExpr ){
|
sl@0
|
958 |
*ppVal = 0;
|
sl@0
|
959 |
return SQLITE_OK;
|
sl@0
|
960 |
}
|
sl@0
|
961 |
op = pExpr->op;
|
sl@0
|
962 |
|
sl@0
|
963 |
if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
|
sl@0
|
964 |
zVal = sqlite3DbStrNDup(db, (char*)pExpr->token.z, pExpr->token.n);
|
sl@0
|
965 |
pVal = sqlite3ValueNew(db);
|
sl@0
|
966 |
if( !zVal || !pVal ) goto no_mem;
|
sl@0
|
967 |
sqlite3Dequote(zVal);
|
sl@0
|
968 |
sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
|
sl@0
|
969 |
if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
|
sl@0
|
970 |
sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);
|
sl@0
|
971 |
}else{
|
sl@0
|
972 |
sqlite3ValueApplyAffinity(pVal, affinity, enc);
|
sl@0
|
973 |
}
|
sl@0
|
974 |
}else if( op==TK_UMINUS ) {
|
sl@0
|
975 |
if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
|
sl@0
|
976 |
pVal->u.i = -1 * pVal->u.i;
|
sl@0
|
977 |
pVal->r = -1.0 * pVal->r;
|
sl@0
|
978 |
}
|
sl@0
|
979 |
}
|
sl@0
|
980 |
#ifndef SQLITE_OMIT_BLOB_LITERAL
|
sl@0
|
981 |
else if( op==TK_BLOB ){
|
sl@0
|
982 |
int nVal;
|
sl@0
|
983 |
assert( pExpr->token.n>=3 );
|
sl@0
|
984 |
assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
|
sl@0
|
985 |
assert( pExpr->token.z[1]=='\'' );
|
sl@0
|
986 |
assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
|
sl@0
|
987 |
pVal = sqlite3ValueNew(db);
|
sl@0
|
988 |
nVal = pExpr->token.n - 3;
|
sl@0
|
989 |
zVal = (char*)pExpr->token.z + 2;
|
sl@0
|
990 |
sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
|
sl@0
|
991 |
0, SQLITE_DYNAMIC);
|
sl@0
|
992 |
}
|
sl@0
|
993 |
#endif
|
sl@0
|
994 |
|
sl@0
|
995 |
*ppVal = pVal;
|
sl@0
|
996 |
return SQLITE_OK;
|
sl@0
|
997 |
|
sl@0
|
998 |
no_mem:
|
sl@0
|
999 |
db->mallocFailed = 1;
|
sl@0
|
1000 |
sqlite3DbFree(db, zVal);
|
sl@0
|
1001 |
sqlite3ValueFree(pVal);
|
sl@0
|
1002 |
*ppVal = 0;
|
sl@0
|
1003 |
return SQLITE_NOMEM;
|
sl@0
|
1004 |
}
|
sl@0
|
1005 |
|
sl@0
|
1006 |
/*
|
sl@0
|
1007 |
** Change the string value of an sqlite3_value object
|
sl@0
|
1008 |
*/
|
sl@0
|
1009 |
void sqlite3ValueSetStr(
|
sl@0
|
1010 |
sqlite3_value *v, /* Value to be set */
|
sl@0
|
1011 |
int n, /* Length of string z */
|
sl@0
|
1012 |
const void *z, /* Text of the new string */
|
sl@0
|
1013 |
u8 enc, /* Encoding to use */
|
sl@0
|
1014 |
void (*xDel)(void*) /* Destructor for the string */
|
sl@0
|
1015 |
){
|
sl@0
|
1016 |
if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
|
sl@0
|
1017 |
}
|
sl@0
|
1018 |
|
sl@0
|
1019 |
/*
|
sl@0
|
1020 |
** Free an sqlite3_value object
|
sl@0
|
1021 |
*/
|
sl@0
|
1022 |
void sqlite3ValueFree(sqlite3_value *v){
|
sl@0
|
1023 |
if( !v ) return;
|
sl@0
|
1024 |
sqlite3VdbeMemRelease((Mem *)v);
|
sl@0
|
1025 |
sqlite3DbFree(((Mem*)v)->db, v);
|
sl@0
|
1026 |
}
|
sl@0
|
1027 |
|
sl@0
|
1028 |
/*
|
sl@0
|
1029 |
** Return the number of bytes in the sqlite3_value object assuming
|
sl@0
|
1030 |
** that it uses the encoding "enc"
|
sl@0
|
1031 |
*/
|
sl@0
|
1032 |
int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
|
sl@0
|
1033 |
Mem *p = (Mem*)pVal;
|
sl@0
|
1034 |
if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
|
sl@0
|
1035 |
if( p->flags & MEM_Zero ){
|
sl@0
|
1036 |
return p->n+p->u.i;
|
sl@0
|
1037 |
}else{
|
sl@0
|
1038 |
return p->n;
|
sl@0
|
1039 |
}
|
sl@0
|
1040 |
}
|
sl@0
|
1041 |
return 0;
|
sl@0
|
1042 |
}
|