Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to implement APIs that are part of the
16 ** $Id: vdbeapi.c,v 1.147 2008/10/13 10:37:50 danielk1977 Exp $
18 #include "sqliteInt.h"
21 #if 0 && defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
23 ** The following structure contains pointers to the end points of a
24 ** doubly-linked list of all compiled SQL statements that may be holding
25 ** buffers eligible for release when the sqlite3_release_memory() interface is
26 ** invoked. Access to this list is protected by the SQLITE_MUTEX_STATIC_LRU2
29 ** Statements are added to the end of this list when sqlite3_reset() is
30 ** called. They are removed either when sqlite3_step() or sqlite3_finalize()
31 ** is called. When statements are added to this list, the associated
32 ** register array (p->aMem[1..p->nMem]) may contain dynamic buffers that
33 ** can be freed using sqlite3VdbeReleaseMemory().
35 ** When statements are added or removed from this list, the mutex
36 ** associated with the Vdbe being added or removed (Vdbe.db->mutex) is
37 ** already held. The LRU2 mutex is then obtained, blocking if necessary,
38 ** the linked-list pointers manipulated and the LRU2 mutex relinquished.
40 struct StatementLruList {
44 static struct StatementLruList sqlite3LruStatements;
47 ** Check that the list looks to be internally consistent. This is used
48 ** as part of an assert() statement as follows:
50 ** assert( stmtLruCheck() );
53 static int stmtLruCheck(){
55 for(p=sqlite3LruStatements.pFirst; p; p=p->pLruNext){
56 assert(p->pLruNext || p==sqlite3LruStatements.pLast);
57 assert(!p->pLruNext || p->pLruNext->pLruPrev==p);
58 assert(p->pLruPrev || p==sqlite3LruStatements.pFirst);
59 assert(!p->pLruPrev || p->pLruPrev->pLruNext==p);
66 ** Add vdbe p to the end of the statement lru list. It is assumed that
67 ** p is not already part of the list when this is called. The lru list
68 ** is protected by the SQLITE_MUTEX_STATIC_LRU mutex.
70 static void stmtLruAdd(Vdbe *p){
71 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
73 if( p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst==p ){
74 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
78 assert( stmtLruCheck() );
80 if( !sqlite3LruStatements.pFirst ){
81 assert( !sqlite3LruStatements.pLast );
82 sqlite3LruStatements.pFirst = p;
83 sqlite3LruStatements.pLast = p;
85 assert( !sqlite3LruStatements.pLast->pLruNext );
86 p->pLruPrev = sqlite3LruStatements.pLast;
87 sqlite3LruStatements.pLast->pLruNext = p;
88 sqlite3LruStatements.pLast = p;
91 assert( stmtLruCheck() );
93 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
97 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is already held, remove
98 ** statement p from the least-recently-used statement list. If the
99 ** statement is not currently part of the list, this call is a no-op.
101 static void stmtLruRemoveNomutex(Vdbe *p){
102 if( p->pLruPrev || p->pLruNext || p==sqlite3LruStatements.pFirst ){
103 assert( stmtLruCheck() );
105 p->pLruNext->pLruPrev = p->pLruPrev;
107 sqlite3LruStatements.pLast = p->pLruPrev;
110 p->pLruPrev->pLruNext = p->pLruNext;
112 sqlite3LruStatements.pFirst = p->pLruNext;
116 assert( stmtLruCheck() );
121 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is not held, remove
122 ** statement p from the least-recently-used statement list. If the
123 ** statement is not currently part of the list, this call is a no-op.
125 static void stmtLruRemove(Vdbe *p){
126 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
127 stmtLruRemoveNomutex(p);
128 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
132 ** Try to release n bytes of memory by freeing buffers associated
133 ** with the memory registers of currently unused vdbes.
135 int sqlite3VdbeReleaseMemory(int n){
140 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
141 for(p=sqlite3LruStatements.pFirst; p && nFree<n; p=pNext){
144 /* For each statement handle in the lru list, attempt to obtain the
145 ** associated database mutex. If it cannot be obtained, continue
146 ** to the next statement handle. It is not possible to block on
147 ** the database mutex - that could cause deadlock.
149 if( SQLITE_OK==sqlite3_mutex_try(p->db->mutex) ){
150 nFree += sqlite3VdbeReleaseBuffers(p);
151 stmtLruRemoveNomutex(p);
152 sqlite3_mutex_leave(p->db->mutex);
155 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
161 ** Call sqlite3Reprepare() on the statement. Remove it from the
162 ** lru list before doing so, as Reprepare() will free all the
163 ** memory register buffers anyway.
165 int vdbeReprepare(Vdbe *p){
167 return sqlite3Reprepare(p);
170 #else /* !SQLITE_ENABLE_MEMORY_MANAGEMENT */
171 #define stmtLruRemove(x)
172 #define stmtLruAdd(x)
173 #define vdbeReprepare(x) sqlite3Reprepare(x)
177 #ifndef SQLITE_OMIT_DEPRECATED
179 ** Return TRUE (non-zero) of the statement supplied as an argument needs
180 ** to be recompiled. A statement needs to be recompiled whenever the
181 ** execution environment changes in a way that would alter the program
182 ** that sqlite3_prepare() generates. For example, if new functions or
183 ** collating sequences are registered or if an authorizer function is
186 int sqlite3_expired(sqlite3_stmt *pStmt){
187 Vdbe *p = (Vdbe*)pStmt;
188 return p==0 || p->expired;
193 ** The following routine destroys a virtual machine that is created by
194 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
195 ** success/failure code that describes the result of executing the virtual
198 ** This routine sets the error code and string returned by
199 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
201 int sqlite3_finalize(sqlite3_stmt *pStmt){
206 Vdbe *v = (Vdbe*)pStmt;
207 #if SQLITE_THREADSAFE
208 sqlite3_mutex *mutex = v->db->mutex;
210 sqlite3_mutex_enter(mutex);
212 rc = sqlite3VdbeFinalize(v);
213 sqlite3_mutex_leave(mutex);
219 ** Terminate the current execution of an SQL statement and reset it
220 ** back to its starting state so that it can be reused. A success code from
221 ** the prior execution is returned.
223 ** This routine sets the error code and string returned by
224 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
226 int sqlite3_reset(sqlite3_stmt *pStmt){
231 Vdbe *v = (Vdbe*)pStmt;
232 sqlite3_mutex_enter(v->db->mutex);
233 rc = sqlite3VdbeReset(v);
235 sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
236 assert( (rc & (v->db->errMask))==rc );
237 sqlite3_mutex_leave(v->db->mutex);
243 ** Set all the parameters in the compiled SQL statement to NULL.
245 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
248 Vdbe *p = (Vdbe*)pStmt;
249 #if SQLITE_THREADSAFE
250 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
252 sqlite3_mutex_enter(mutex);
253 for(i=0; i<p->nVar; i++){
254 sqlite3VdbeMemRelease(&p->aVar[i]);
255 p->aVar[i].flags = MEM_Null;
257 sqlite3_mutex_leave(mutex);
262 /**************************** sqlite3_value_ *******************************
263 ** The following routines extract information from a Mem or sqlite3_value
266 const void *sqlite3_value_blob(sqlite3_value *pVal){
268 if( p->flags & (MEM_Blob|MEM_Str) ){
269 sqlite3VdbeMemExpandBlob(p);
270 p->flags &= ~MEM_Str;
271 p->flags |= MEM_Blob;
274 return sqlite3_value_text(pVal);
277 int sqlite3_value_bytes(sqlite3_value *pVal){
278 return sqlite3ValueBytes(pVal, SQLITE_UTF8);
280 int sqlite3_value_bytes16(sqlite3_value *pVal){
281 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
283 double sqlite3_value_double(sqlite3_value *pVal){
284 return sqlite3VdbeRealValue((Mem*)pVal);
286 int sqlite3_value_int(sqlite3_value *pVal){
287 return sqlite3VdbeIntValue((Mem*)pVal);
289 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
290 return sqlite3VdbeIntValue((Mem*)pVal);
292 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
293 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
295 #ifndef SQLITE_OMIT_UTF16
296 const void *sqlite3_value_text16(sqlite3_value* pVal){
297 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
299 const void *sqlite3_value_text16be(sqlite3_value *pVal){
300 return sqlite3ValueText(pVal, SQLITE_UTF16BE);
302 const void *sqlite3_value_text16le(sqlite3_value *pVal){
303 return sqlite3ValueText(pVal, SQLITE_UTF16LE);
305 #endif /* SQLITE_OMIT_UTF16 */
306 int sqlite3_value_type(sqlite3_value* pVal){
310 /**************************** sqlite3_result_ *******************************
311 ** The following routines are used by user-defined functions to specify
312 ** the function result.
314 void sqlite3_result_blob(
315 sqlite3_context *pCtx,
321 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
322 sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
324 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
325 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
326 sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
328 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
329 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
330 pCtx->isError = SQLITE_ERROR;
331 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
333 #ifndef SQLITE_OMIT_UTF16
334 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
335 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
336 pCtx->isError = SQLITE_ERROR;
337 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
340 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
341 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
342 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
344 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
345 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
346 sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
348 void sqlite3_result_null(sqlite3_context *pCtx){
349 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
350 sqlite3VdbeMemSetNull(&pCtx->s);
352 void sqlite3_result_text(
353 sqlite3_context *pCtx,
358 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
359 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
361 #ifndef SQLITE_OMIT_UTF16
362 void sqlite3_result_text16(
363 sqlite3_context *pCtx,
368 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
369 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
371 void sqlite3_result_text16be(
372 sqlite3_context *pCtx,
377 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
378 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
380 void sqlite3_result_text16le(
381 sqlite3_context *pCtx,
386 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
387 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
389 #endif /* SQLITE_OMIT_UTF16 */
390 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
391 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
392 sqlite3VdbeMemCopy(&pCtx->s, pValue);
394 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
395 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
396 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
398 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
399 pCtx->isError = errCode;
402 /* Force an SQLITE_TOOBIG error. */
403 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
404 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
405 pCtx->isError = SQLITE_TOOBIG;
406 sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1,
407 SQLITE_UTF8, SQLITE_STATIC);
410 /* An SQLITE_NOMEM error. */
411 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
412 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
413 sqlite3VdbeMemSetNull(&pCtx->s);
414 pCtx->isError = SQLITE_NOMEM;
415 pCtx->s.db->mallocFailed = 1;
419 ** Execute the statement pStmt, either until a row of data is ready, the
420 ** statement is completely executed or an error occurs.
422 ** This routine implements the bulk of the logic behind the sqlite_step()
423 ** API. The only thing omitted is the automatic recompile if a
424 ** schema change has occurred. That detail is handled by the
425 ** outer sqlite3_step() wrapper procedure.
427 static int sqlite3Step(Vdbe *p){
432 if( p->magic!=VDBE_MAGIC_RUN ){
433 return SQLITE_MISUSE;
436 /* Assert that malloc() has not failed */
438 if( db->mallocFailed ){
442 if( p->pc<=0 && p->expired ){
443 if( p->rc==SQLITE_OK ){
444 p->rc = SQLITE_SCHEMA;
449 if( sqlite3SafetyOn(db) ){
450 p->rc = SQLITE_MISUSE;
451 return SQLITE_MISUSE;
454 /* If there are no other statements currently running, then
455 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
456 ** from interrupting a statement that has not yet started.
458 if( db->activeVdbeCnt==0 ){
459 db->u1.isInterrupted = 0;
462 #ifndef SQLITE_OMIT_TRACE
463 if( db->xProfile && !db->init.busy ){
465 sqlite3OsCurrentTime(db->pVfs, &rNow);
466 p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
474 #ifndef SQLITE_OMIT_EXPLAIN
476 rc = sqlite3VdbeList(p);
478 #endif /* SQLITE_OMIT_EXPLAIN */
480 rc = sqlite3VdbeExec(p);
483 if( sqlite3SafetyOff(db) ){
487 #ifndef SQLITE_OMIT_TRACE
488 /* Invoke the profile callback if there is one
490 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp>0
491 && p->aOp[0].opcode==OP_Trace && p->aOp[0].p4.z!=0 ){
495 sqlite3OsCurrentTime(db->pVfs, &rNow);
496 elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
497 db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime);
502 /*sqlite3Error(p->db, rc, 0);*/
503 p->rc = sqlite3ApiExit(p->db, p->rc);
505 assert( (rc&0xff)==rc );
506 if( p->zSql && (rc&0xff)<SQLITE_ROW ){
507 /* This behavior occurs if sqlite3_prepare_v2() was used to build
508 ** the prepared statement. Return error codes directly */
509 p->db->errCode = p->rc;
510 /* sqlite3Error(p->db, p->rc, 0); */
513 /* This is for legacy sqlite3_prepare() builds and when the code
514 ** is SQLITE_ROW or SQLITE_DONE */
520 ** This is the top-level implementation of sqlite3_step(). Call
521 ** sqlite3Step() to do most of the work. If a schema error occurs,
522 ** call sqlite3Reprepare() and try again.
524 #ifdef SQLITE_OMIT_PARSER
525 int sqlite3_step(sqlite3_stmt *pStmt){
526 int rc = SQLITE_MISUSE;
530 sqlite3_mutex_enter(v->db->mutex);
532 sqlite3_mutex_leave(v->db->mutex);
537 int sqlite3_step(sqlite3_stmt *pStmt){
538 int rc = SQLITE_MISUSE;
541 Vdbe *v = (Vdbe*)pStmt;
543 sqlite3_mutex_enter(db->mutex);
544 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
546 && vdbeReprepare(v) ){
547 sqlite3_reset(pStmt);
550 if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){
551 /* This case occurs after failing to recompile an sql statement.
552 ** The error message from the SQL compiler has already been loaded
553 ** into the database handle. This block copies the error message
554 ** from the database handle into the statement and sets the statement
555 ** program counter to 0 to ensure that when the statement is
556 ** finalized or reset the parser error message is available via
557 ** sqlite3_errmsg() and sqlite3_errcode().
559 const char *zErr = (const char *)sqlite3_value_text(db->pErr);
560 sqlite3DbFree(db, v->zErrMsg);
561 if( !db->mallocFailed ){
562 v->zErrMsg = sqlite3DbStrDup(db, zErr);
565 v->rc = SQLITE_NOMEM;
568 rc = sqlite3ApiExit(db, rc);
569 sqlite3_mutex_leave(db->mutex);
576 ** Extract the user data from a sqlite3_context structure and return a
579 void *sqlite3_user_data(sqlite3_context *p){
580 assert( p && p->pFunc );
581 return p->pFunc->pUserData;
585 ** Extract the user data from a sqlite3_context structure and return a
588 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
589 assert( p && p->pFunc );
594 ** The following is the implementation of an SQL function that always
595 ** fails with an error message stating that the function is used in the
596 ** wrong context. The sqlite3_overload_function() API might construct
597 ** SQL function that use this routine so that the functions will exist
598 ** for name resolution but are actually overloaded by the xFindFunction
599 ** method of virtual tables.
601 void sqlite3InvalidFunction(
602 sqlite3_context *context, /* The function calling context */
603 int argc, /* Number of arguments to the function */
604 sqlite3_value **argv /* Value of each argument */
606 const char *zName = context->pFunc->zName;
608 zErr = sqlite3MPrintf(0,
609 "unable to use function %s in the requested context", zName);
610 sqlite3_result_error(context, zErr, -1);
615 ** Allocate or return the aggregate context for a user function. A new
616 ** context is allocated on the first call. Subsequent calls return the
617 ** same context that was returned on prior calls.
619 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
621 assert( p && p->pFunc && p->pFunc->xStep );
622 assert( sqlite3_mutex_held(p->s.db->mutex) );
624 if( (pMem->flags & MEM_Agg)==0 ){
626 sqlite3VdbeMemReleaseExternal(pMem);
627 pMem->flags = MEM_Null;
630 sqlite3VdbeMemGrow(pMem, nByte, 0);
631 pMem->flags = MEM_Agg;
632 pMem->u.pDef = p->pFunc;
634 memset(pMem->z, 0, nByte);
638 return (void*)pMem->z;
642 ** Return the auxilary data pointer, if any, for the iArg'th argument to
643 ** the user-function defined by pCtx.
645 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
648 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
649 pVdbeFunc = pCtx->pVdbeFunc;
650 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
653 return pVdbeFunc->apAux[iArg].pAux;
657 ** Set the auxilary data pointer and delete function, for the iArg'th
658 ** argument to the user-function defined by pCtx. Any previous value is
659 ** deleted by calling the delete function specified when it was set.
661 void sqlite3_set_auxdata(
662 sqlite3_context *pCtx,
665 void (*xDelete)(void*)
667 struct AuxData *pAuxData;
669 if( iArg<0 ) goto failed;
671 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
672 pVdbeFunc = pCtx->pVdbeFunc;
673 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
674 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
675 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
676 pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
680 pCtx->pVdbeFunc = pVdbeFunc;
681 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
682 pVdbeFunc->nAux = iArg+1;
683 pVdbeFunc->pFunc = pCtx->pFunc;
686 pAuxData = &pVdbeFunc->apAux[iArg];
687 if( pAuxData->pAux && pAuxData->xDelete ){
688 pAuxData->xDelete(pAuxData->pAux);
690 pAuxData->pAux = pAux;
691 pAuxData->xDelete = xDelete;
700 #ifndef SQLITE_OMIT_DEPRECATED
702 ** Return the number of times the Step function of a aggregate has been
705 ** This function is deprecated. Do not use it for new code. It is
706 ** provide only to avoid breaking legacy code. New aggregate function
707 ** implementations should keep their own counts within their aggregate
710 int sqlite3_aggregate_count(sqlite3_context *p){
711 assert( p && p->pFunc && p->pFunc->xStep );
717 ** Return the number of columns in the result set for the statement pStmt.
719 int sqlite3_column_count(sqlite3_stmt *pStmt){
720 Vdbe *pVm = (Vdbe *)pStmt;
721 return pVm ? pVm->nResColumn : 0;
725 ** Return the number of values available from the current row of the
726 ** currently executing statement pStmt.
728 int sqlite3_data_count(sqlite3_stmt *pStmt){
729 Vdbe *pVm = (Vdbe *)pStmt;
730 if( pVm==0 || pVm->pResultSet==0 ) return 0;
731 return pVm->nResColumn;
736 ** Check to see if column iCol of the given statement is valid. If
737 ** it is, return a pointer to the Mem for the value of that column.
738 ** If iCol is not valid, return a pointer to a Mem which has a value
741 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
747 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
748 sqlite3_mutex_enter(pVm->db->mutex);
749 vals = sqlite3_data_count(pStmt);
750 pOut = &pVm->pResultSet[i];
752 static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 };
754 sqlite3_mutex_enter(pVm->db->mutex);
755 sqlite3Error(pVm->db, SQLITE_RANGE, 0);
757 pOut = (Mem*)&nullMem;
763 ** This function is called after invoking an sqlite3_value_XXX function on a
764 ** column value (i.e. a value returned by evaluating an SQL expression in the
765 ** select list of a SELECT statement) that may cause a malloc() failure. If
766 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
767 ** code of statement pStmt set to SQLITE_NOMEM.
769 ** Specifically, this is called from within:
771 ** sqlite3_column_int()
772 ** sqlite3_column_int64()
773 ** sqlite3_column_text()
774 ** sqlite3_column_text16()
775 ** sqlite3_column_real()
776 ** sqlite3_column_bytes()
777 ** sqlite3_column_bytes16()
779 ** But not for sqlite3_column_blob(), which never calls malloc().
781 static void columnMallocFailure(sqlite3_stmt *pStmt)
783 /* If malloc() failed during an encoding conversion within an
784 ** sqlite3_column_XXX API, then set the return code of the statement to
785 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
786 ** and _finalize() will return NOMEM.
788 Vdbe *p = (Vdbe *)pStmt;
790 p->rc = sqlite3ApiExit(p->db, p->rc);
791 sqlite3_mutex_leave(p->db->mutex);
795 /**************************** sqlite3_column_ *******************************
796 ** The following routines are used to access elements of the current row
797 ** in the result set.
799 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
801 val = sqlite3_value_blob( columnMem(pStmt,i) );
802 /* Even though there is no encoding conversion, value_blob() might
803 ** need to call malloc() to expand the result of a zeroblob()
806 columnMallocFailure(pStmt);
809 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
810 int val = sqlite3_value_bytes( columnMem(pStmt,i) );
811 columnMallocFailure(pStmt);
814 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
815 int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
816 columnMallocFailure(pStmt);
819 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
820 double val = sqlite3_value_double( columnMem(pStmt,i) );
821 columnMallocFailure(pStmt);
824 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
825 int val = sqlite3_value_int( columnMem(pStmt,i) );
826 columnMallocFailure(pStmt);
829 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
830 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
831 columnMallocFailure(pStmt);
834 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
835 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
836 columnMallocFailure(pStmt);
839 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
840 Mem *pOut = columnMem(pStmt, i);
841 if( pOut->flags&MEM_Static ){
842 pOut->flags &= ~MEM_Static;
843 pOut->flags |= MEM_Ephem;
845 columnMallocFailure(pStmt);
846 return (sqlite3_value *)pOut;
848 #ifndef SQLITE_OMIT_UTF16
849 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
850 const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
851 columnMallocFailure(pStmt);
854 #endif /* SQLITE_OMIT_UTF16 */
855 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
856 int iType = sqlite3_value_type( columnMem(pStmt,i) );
857 columnMallocFailure(pStmt);
861 /* The following function is experimental and subject to change or
863 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
864 ** return sqlite3_value_numeric_type( columnMem(pStmt,i) );
869 ** Convert the N-th element of pStmt->pColName[] into a string using
870 ** xFunc() then return that string. If N is out of range, return 0.
872 ** There are up to 5 names for each column. useType determines which
873 ** name is returned. Here are the names:
875 ** 0 The column name as it should be displayed for output
876 ** 1 The datatype name for the column
877 ** 2 The name of the database that the column derives from
878 ** 3 The name of the table that the column derives from
879 ** 4 The name of the table column that the result column derives from
881 ** If the result is not a simple column reference (if it is an expression
882 ** or a constant) then useTypes 2, 3, and 4 return NULL.
884 static const void *columnName(
887 const void *(*xFunc)(Mem*),
891 Vdbe *p = (Vdbe *)pStmt;
896 n = sqlite3_column_count(pStmt);
899 sqlite3_mutex_enter(p->db->mutex);
900 ret = xFunc(&p->aColName[N]);
902 /* A malloc may have failed inside of the xFunc() call. If this
903 ** is the case, clear the mallocFailed flag and return NULL.
905 if( p->db && p->db->mallocFailed ){
906 p->db->mallocFailed = 0;
909 sqlite3_mutex_leave(p->db->mutex);
916 ** Return the name of the Nth column of the result set returned by SQL
919 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
921 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
923 #ifndef SQLITE_OMIT_UTF16
924 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
926 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
931 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must
932 ** not define OMIT_DECLTYPE.
934 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
935 # error "Must not define both SQLITE_OMIT_DECLTYPE \
936 and SQLITE_ENABLE_COLUMN_METADATA"
939 #ifndef SQLITE_OMIT_DECLTYPE
941 ** Return the column declaration type (if applicable) of the 'i'th column
942 ** of the result set of SQL statement pStmt.
944 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
946 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
948 #ifndef SQLITE_OMIT_UTF16
949 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
951 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
953 #endif /* SQLITE_OMIT_UTF16 */
954 #endif /* SQLITE_OMIT_DECLTYPE */
956 #ifdef SQLITE_ENABLE_COLUMN_METADATA
958 ** Return the name of the database from which a result column derives.
959 ** NULL is returned if the result column is an expression or constant or
960 ** anything else which is not an unabiguous reference to a database column.
962 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
964 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
966 #ifndef SQLITE_OMIT_UTF16
967 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
969 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
971 #endif /* SQLITE_OMIT_UTF16 */
974 ** Return the name of the table from which a result column derives.
975 ** NULL is returned if the result column is an expression or constant or
976 ** anything else which is not an unabiguous reference to a database column.
978 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
980 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
982 #ifndef SQLITE_OMIT_UTF16
983 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
985 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
987 #endif /* SQLITE_OMIT_UTF16 */
990 ** Return the name of the table column from which a result column derives.
991 ** NULL is returned if the result column is an expression or constant or
992 ** anything else which is not an unabiguous reference to a database column.
994 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
996 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
998 #ifndef SQLITE_OMIT_UTF16
999 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1001 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
1003 #endif /* SQLITE_OMIT_UTF16 */
1004 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1007 /******************************* sqlite3_bind_ ***************************
1009 ** Routines used to attach values to wildcards in a compiled SQL statement.
1012 ** Unbind the value bound to variable i in virtual machine p. This is the
1013 ** the same as binding a NULL value to the column. If the "i" parameter is
1014 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1016 ** A successful evaluation of this routine acquires the mutex on p.
1017 ** the mutex is released if any kind of error occurs.
1019 ** The error code stored in database p->db is overwritten with the return
1020 ** value in any case.
1022 static int vdbeUnbind(Vdbe *p, int i){
1024 if( p==0 ) return SQLITE_MISUSE;
1025 sqlite3_mutex_enter(p->db->mutex);
1026 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1027 sqlite3Error(p->db, SQLITE_MISUSE, 0);
1028 sqlite3_mutex_leave(p->db->mutex);
1029 return SQLITE_MISUSE;
1031 if( i<1 || i>p->nVar ){
1032 sqlite3Error(p->db, SQLITE_RANGE, 0);
1033 sqlite3_mutex_leave(p->db->mutex);
1034 return SQLITE_RANGE;
1038 sqlite3VdbeMemRelease(pVar);
1039 pVar->flags = MEM_Null;
1040 sqlite3Error(p->db, SQLITE_OK, 0);
1045 ** Bind a text or BLOB value.
1047 static int bindText(
1048 sqlite3_stmt *pStmt, /* The statement to bind against */
1049 int i, /* Index of the parameter to bind */
1050 const void *zData, /* Pointer to the data to be bound */
1051 int nData, /* Number of bytes of data to be bound */
1052 void (*xDel)(void*), /* Destructor for the data */
1053 int encoding /* Encoding for the data */
1055 Vdbe *p = (Vdbe *)pStmt;
1059 rc = vdbeUnbind(p, i);
1060 if( rc==SQLITE_OK ){
1062 pVar = &p->aVar[i-1];
1063 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1064 if( rc==SQLITE_OK && encoding!=0 ){
1065 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1067 sqlite3Error(p->db, rc, 0);
1068 rc = sqlite3ApiExit(p->db, rc);
1070 sqlite3_mutex_leave(p->db->mutex);
1077 ** Bind a blob value to an SQL statement variable.
1079 int sqlite3_bind_blob(
1080 sqlite3_stmt *pStmt,
1086 return bindText(pStmt, i, zData, nData, xDel, 0);
1088 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1090 Vdbe *p = (Vdbe *)pStmt;
1091 rc = vdbeUnbind(p, i);
1092 if( rc==SQLITE_OK ){
1093 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1094 sqlite3_mutex_leave(p->db->mutex);
1098 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1099 return sqlite3_bind_int64(p, i, (i64)iValue);
1101 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1103 Vdbe *p = (Vdbe *)pStmt;
1104 rc = vdbeUnbind(p, i);
1105 if( rc==SQLITE_OK ){
1106 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1107 sqlite3_mutex_leave(p->db->mutex);
1111 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1113 Vdbe *p = (Vdbe*)pStmt;
1114 rc = vdbeUnbind(p, i);
1115 if( rc==SQLITE_OK ){
1116 sqlite3_mutex_leave(p->db->mutex);
1120 int sqlite3_bind_text(
1121 sqlite3_stmt *pStmt,
1127 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1129 #ifndef SQLITE_OMIT_UTF16
1130 int sqlite3_bind_text16(
1131 sqlite3_stmt *pStmt,
1137 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1139 #endif /* SQLITE_OMIT_UTF16 */
1140 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1142 Vdbe *p = (Vdbe *)pStmt;
1143 rc = vdbeUnbind(p, i);
1144 if( rc==SQLITE_OK ){
1145 rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
1146 if( rc==SQLITE_OK ){
1147 rc = sqlite3VdbeChangeEncoding(&p->aVar[i-1], ENC(p->db));
1149 sqlite3_mutex_leave(p->db->mutex);
1151 rc = sqlite3ApiExit(p->db, rc);
1154 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1156 Vdbe *p = (Vdbe *)pStmt;
1157 rc = vdbeUnbind(p, i);
1158 if( rc==SQLITE_OK ){
1159 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1160 sqlite3_mutex_leave(p->db->mutex);
1166 ** Return the number of wildcards that can be potentially bound to.
1167 ** This routine is added to support DBD::SQLite.
1169 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1170 Vdbe *p = (Vdbe*)pStmt;
1171 return p ? p->nVar : 0;
1175 ** Create a mapping from variable numbers to variable names
1176 ** in the Vdbe.azVar[] array, if such a mapping does not already
1179 static void createVarMap(Vdbe *p){
1181 sqlite3_mutex_enter(p->db->mutex);
1185 for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
1186 if( pOp->opcode==OP_Variable ){
1187 assert( pOp->p1>0 && pOp->p1<=p->nVar );
1188 p->azVar[pOp->p1-1] = pOp->p4.z;
1193 sqlite3_mutex_leave(p->db->mutex);
1198 ** Return the name of a wildcard parameter. Return NULL if the index
1199 ** is out of range or if the wildcard is unnamed.
1201 ** The result is always UTF-8.
1203 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1204 Vdbe *p = (Vdbe*)pStmt;
1205 if( p==0 || i<1 || i>p->nVar ){
1209 return p->azVar[i-1];
1213 ** Given a wildcard parameter name, return the index of the variable
1214 ** with that name. If there is no variable with the given name,
1217 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1218 Vdbe *p = (Vdbe*)pStmt;
1225 for(i=0; i<p->nVar; i++){
1226 const char *z = p->azVar[i];
1227 if( z && strcmp(z,zName)==0 ){
1236 ** Transfer all bindings from the first statement over to the second.
1237 ** If the two statements contain a different number of bindings, then
1238 ** an SQLITE_ERROR is returned.
1240 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1241 Vdbe *pFrom = (Vdbe*)pFromStmt;
1242 Vdbe *pTo = (Vdbe*)pToStmt;
1243 int i, rc = SQLITE_OK;
1244 if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
1245 || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT)
1246 || pTo->db!=pFrom->db ){
1247 return SQLITE_MISUSE;
1249 if( pFrom->nVar!=pTo->nVar ){
1250 return SQLITE_ERROR;
1252 sqlite3_mutex_enter(pTo->db->mutex);
1253 for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
1254 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1256 sqlite3_mutex_leave(pTo->db->mutex);
1257 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
1261 #ifndef SQLITE_OMIT_DEPRECATED
1263 ** Deprecated external interface. Internal/core SQLite code
1264 ** should call sqlite3TransferBindings.
1266 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1267 return sqlite3TransferBindings(pFromStmt, pToStmt);
1272 ** Return the sqlite3* database handle to which the prepared statement given
1273 ** in the argument belongs. This is the same database handle that was
1274 ** the first argument to the sqlite3_prepare() that was used to create
1275 ** the statement in the first place.
1277 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1278 return pStmt ? ((Vdbe*)pStmt)->db : 0;
1282 ** Return a pointer to the next prepared statement after pStmt associated
1283 ** with database connection pDb. If pStmt is NULL, return the first
1284 ** prepared statement for the database connection. Return NULL if there
1287 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1288 sqlite3_stmt *pNext;
1289 sqlite3_mutex_enter(pDb->mutex);
1291 pNext = (sqlite3_stmt*)pDb->pVdbe;
1293 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1295 sqlite3_mutex_leave(pDb->mutex);
1300 ** Return the value of a status counter for a prepared statement
1302 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1303 Vdbe *pVdbe = (Vdbe*)pStmt;
1304 int v = pVdbe->aCounter[op-1];
1305 if( resetFlag ) pVdbe->aCounter[op-1] = 0;