sl@0
|
1 |
/*
|
sl@0
|
2 |
** 2004 May 26
|
sl@0
|
3 |
**
|
sl@0
|
4 |
** The author disclaims copyright to this source code. In place of
|
sl@0
|
5 |
** a legal notice, here is a blessing:
|
sl@0
|
6 |
**
|
sl@0
|
7 |
** May you do good and not evil.
|
sl@0
|
8 |
** May you find forgiveness for yourself and forgive others.
|
sl@0
|
9 |
** May you share freely, never taking more than you give.
|
sl@0
|
10 |
**
|
sl@0
|
11 |
*************************************************************************
|
sl@0
|
12 |
**
|
sl@0
|
13 |
** This file contains code use to implement APIs that are part of the
|
sl@0
|
14 |
** VDBE.
|
sl@0
|
15 |
**
|
sl@0
|
16 |
** $Id: vdbeapi.c,v 1.147 2008/10/13 10:37:50 danielk1977 Exp $
|
sl@0
|
17 |
*/
|
sl@0
|
18 |
#include "sqliteInt.h"
|
sl@0
|
19 |
#include "vdbeInt.h"
|
sl@0
|
20 |
|
sl@0
|
21 |
#if 0 && defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
|
sl@0
|
22 |
/*
|
sl@0
|
23 |
** The following structure contains pointers to the end points of a
|
sl@0
|
24 |
** doubly-linked list of all compiled SQL statements that may be holding
|
sl@0
|
25 |
** buffers eligible for release when the sqlite3_release_memory() interface is
|
sl@0
|
26 |
** invoked. Access to this list is protected by the SQLITE_MUTEX_STATIC_LRU2
|
sl@0
|
27 |
** mutex.
|
sl@0
|
28 |
**
|
sl@0
|
29 |
** Statements are added to the end of this list when sqlite3_reset() is
|
sl@0
|
30 |
** called. They are removed either when sqlite3_step() or sqlite3_finalize()
|
sl@0
|
31 |
** is called. When statements are added to this list, the associated
|
sl@0
|
32 |
** register array (p->aMem[1..p->nMem]) may contain dynamic buffers that
|
sl@0
|
33 |
** can be freed using sqlite3VdbeReleaseMemory().
|
sl@0
|
34 |
**
|
sl@0
|
35 |
** When statements are added or removed from this list, the mutex
|
sl@0
|
36 |
** associated with the Vdbe being added or removed (Vdbe.db->mutex) is
|
sl@0
|
37 |
** already held. The LRU2 mutex is then obtained, blocking if necessary,
|
sl@0
|
38 |
** the linked-list pointers manipulated and the LRU2 mutex relinquished.
|
sl@0
|
39 |
*/
|
sl@0
|
40 |
struct StatementLruList {
|
sl@0
|
41 |
Vdbe *pFirst;
|
sl@0
|
42 |
Vdbe *pLast;
|
sl@0
|
43 |
};
|
sl@0
|
44 |
static struct StatementLruList sqlite3LruStatements;
|
sl@0
|
45 |
|
sl@0
|
46 |
/*
|
sl@0
|
47 |
** Check that the list looks to be internally consistent. This is used
|
sl@0
|
48 |
** as part of an assert() statement as follows:
|
sl@0
|
49 |
**
|
sl@0
|
50 |
** assert( stmtLruCheck() );
|
sl@0
|
51 |
*/
|
sl@0
|
52 |
#ifndef NDEBUG
|
sl@0
|
53 |
static int stmtLruCheck(){
|
sl@0
|
54 |
Vdbe *p;
|
sl@0
|
55 |
for(p=sqlite3LruStatements.pFirst; p; p=p->pLruNext){
|
sl@0
|
56 |
assert(p->pLruNext || p==sqlite3LruStatements.pLast);
|
sl@0
|
57 |
assert(!p->pLruNext || p->pLruNext->pLruPrev==p);
|
sl@0
|
58 |
assert(p->pLruPrev || p==sqlite3LruStatements.pFirst);
|
sl@0
|
59 |
assert(!p->pLruPrev || p->pLruPrev->pLruNext==p);
|
sl@0
|
60 |
}
|
sl@0
|
61 |
return 1;
|
sl@0
|
62 |
}
|
sl@0
|
63 |
#endif
|
sl@0
|
64 |
|
sl@0
|
65 |
/*
|
sl@0
|
66 |
** Add vdbe p to the end of the statement lru list. It is assumed that
|
sl@0
|
67 |
** p is not already part of the list when this is called. The lru list
|
sl@0
|
68 |
** is protected by the SQLITE_MUTEX_STATIC_LRU mutex.
|
sl@0
|
69 |
*/
|
sl@0
|
70 |
static void stmtLruAdd(Vdbe *p){
|
sl@0
|
71 |
sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
|
sl@0
|
72 |
|
sl@0
|
73 |
if( p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst==p ){
|
sl@0
|
74 |
sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
|
sl@0
|
75 |
return;
|
sl@0
|
76 |
}
|
sl@0
|
77 |
|
sl@0
|
78 |
assert( stmtLruCheck() );
|
sl@0
|
79 |
|
sl@0
|
80 |
if( !sqlite3LruStatements.pFirst ){
|
sl@0
|
81 |
assert( !sqlite3LruStatements.pLast );
|
sl@0
|
82 |
sqlite3LruStatements.pFirst = p;
|
sl@0
|
83 |
sqlite3LruStatements.pLast = p;
|
sl@0
|
84 |
}else{
|
sl@0
|
85 |
assert( !sqlite3LruStatements.pLast->pLruNext );
|
sl@0
|
86 |
p->pLruPrev = sqlite3LruStatements.pLast;
|
sl@0
|
87 |
sqlite3LruStatements.pLast->pLruNext = p;
|
sl@0
|
88 |
sqlite3LruStatements.pLast = p;
|
sl@0
|
89 |
}
|
sl@0
|
90 |
|
sl@0
|
91 |
assert( stmtLruCheck() );
|
sl@0
|
92 |
|
sl@0
|
93 |
sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
|
sl@0
|
94 |
}
|
sl@0
|
95 |
|
sl@0
|
96 |
/*
|
sl@0
|
97 |
** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is already held, remove
|
sl@0
|
98 |
** statement p from the least-recently-used statement list. If the
|
sl@0
|
99 |
** statement is not currently part of the list, this call is a no-op.
|
sl@0
|
100 |
*/
|
sl@0
|
101 |
static void stmtLruRemoveNomutex(Vdbe *p){
|
sl@0
|
102 |
if( p->pLruPrev || p->pLruNext || p==sqlite3LruStatements.pFirst ){
|
sl@0
|
103 |
assert( stmtLruCheck() );
|
sl@0
|
104 |
if( p->pLruNext ){
|
sl@0
|
105 |
p->pLruNext->pLruPrev = p->pLruPrev;
|
sl@0
|
106 |
}else{
|
sl@0
|
107 |
sqlite3LruStatements.pLast = p->pLruPrev;
|
sl@0
|
108 |
}
|
sl@0
|
109 |
if( p->pLruPrev ){
|
sl@0
|
110 |
p->pLruPrev->pLruNext = p->pLruNext;
|
sl@0
|
111 |
}else{
|
sl@0
|
112 |
sqlite3LruStatements.pFirst = p->pLruNext;
|
sl@0
|
113 |
}
|
sl@0
|
114 |
p->pLruNext = 0;
|
sl@0
|
115 |
p->pLruPrev = 0;
|
sl@0
|
116 |
assert( stmtLruCheck() );
|
sl@0
|
117 |
}
|
sl@0
|
118 |
}
|
sl@0
|
119 |
|
sl@0
|
120 |
/*
|
sl@0
|
121 |
** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is not held, remove
|
sl@0
|
122 |
** statement p from the least-recently-used statement list. If the
|
sl@0
|
123 |
** statement is not currently part of the list, this call is a no-op.
|
sl@0
|
124 |
*/
|
sl@0
|
125 |
static void stmtLruRemove(Vdbe *p){
|
sl@0
|
126 |
sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
|
sl@0
|
127 |
stmtLruRemoveNomutex(p);
|
sl@0
|
128 |
sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
|
sl@0
|
129 |
}
|
sl@0
|
130 |
|
sl@0
|
131 |
/*
|
sl@0
|
132 |
** Try to release n bytes of memory by freeing buffers associated
|
sl@0
|
133 |
** with the memory registers of currently unused vdbes.
|
sl@0
|
134 |
*/
|
sl@0
|
135 |
int sqlite3VdbeReleaseMemory(int n){
|
sl@0
|
136 |
Vdbe *p;
|
sl@0
|
137 |
Vdbe *pNext;
|
sl@0
|
138 |
int nFree = 0;
|
sl@0
|
139 |
|
sl@0
|
140 |
sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
|
sl@0
|
141 |
for(p=sqlite3LruStatements.pFirst; p && nFree<n; p=pNext){
|
sl@0
|
142 |
pNext = p->pLruNext;
|
sl@0
|
143 |
|
sl@0
|
144 |
/* For each statement handle in the lru list, attempt to obtain the
|
sl@0
|
145 |
** associated database mutex. If it cannot be obtained, continue
|
sl@0
|
146 |
** to the next statement handle. It is not possible to block on
|
sl@0
|
147 |
** the database mutex - that could cause deadlock.
|
sl@0
|
148 |
*/
|
sl@0
|
149 |
if( SQLITE_OK==sqlite3_mutex_try(p->db->mutex) ){
|
sl@0
|
150 |
nFree += sqlite3VdbeReleaseBuffers(p);
|
sl@0
|
151 |
stmtLruRemoveNomutex(p);
|
sl@0
|
152 |
sqlite3_mutex_leave(p->db->mutex);
|
sl@0
|
153 |
}
|
sl@0
|
154 |
}
|
sl@0
|
155 |
sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
|
sl@0
|
156 |
|
sl@0
|
157 |
return nFree;
|
sl@0
|
158 |
}
|
sl@0
|
159 |
|
sl@0
|
160 |
/*
|
sl@0
|
161 |
** Call sqlite3Reprepare() on the statement. Remove it from the
|
sl@0
|
162 |
** lru list before doing so, as Reprepare() will free all the
|
sl@0
|
163 |
** memory register buffers anyway.
|
sl@0
|
164 |
*/
|
sl@0
|
165 |
int vdbeReprepare(Vdbe *p){
|
sl@0
|
166 |
stmtLruRemove(p);
|
sl@0
|
167 |
return sqlite3Reprepare(p);
|
sl@0
|
168 |
}
|
sl@0
|
169 |
|
sl@0
|
170 |
#else /* !SQLITE_ENABLE_MEMORY_MANAGEMENT */
|
sl@0
|
171 |
#define stmtLruRemove(x)
|
sl@0
|
172 |
#define stmtLruAdd(x)
|
sl@0
|
173 |
#define vdbeReprepare(x) sqlite3Reprepare(x)
|
sl@0
|
174 |
#endif
|
sl@0
|
175 |
|
sl@0
|
176 |
|
sl@0
|
177 |
#ifndef SQLITE_OMIT_DEPRECATED
|
sl@0
|
178 |
/*
|
sl@0
|
179 |
** Return TRUE (non-zero) of the statement supplied as an argument needs
|
sl@0
|
180 |
** to be recompiled. A statement needs to be recompiled whenever the
|
sl@0
|
181 |
** execution environment changes in a way that would alter the program
|
sl@0
|
182 |
** that sqlite3_prepare() generates. For example, if new functions or
|
sl@0
|
183 |
** collating sequences are registered or if an authorizer function is
|
sl@0
|
184 |
** added or changed.
|
sl@0
|
185 |
*/
|
sl@0
|
186 |
int sqlite3_expired(sqlite3_stmt *pStmt){
|
sl@0
|
187 |
Vdbe *p = (Vdbe*)pStmt;
|
sl@0
|
188 |
return p==0 || p->expired;
|
sl@0
|
189 |
}
|
sl@0
|
190 |
#endif
|
sl@0
|
191 |
|
sl@0
|
192 |
/*
|
sl@0
|
193 |
** The following routine destroys a virtual machine that is created by
|
sl@0
|
194 |
** the sqlite3_compile() routine. The integer returned is an SQLITE_
|
sl@0
|
195 |
** success/failure code that describes the result of executing the virtual
|
sl@0
|
196 |
** machine.
|
sl@0
|
197 |
**
|
sl@0
|
198 |
** This routine sets the error code and string returned by
|
sl@0
|
199 |
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
|
sl@0
|
200 |
*/
|
sl@0
|
201 |
int sqlite3_finalize(sqlite3_stmt *pStmt){
|
sl@0
|
202 |
int rc;
|
sl@0
|
203 |
if( pStmt==0 ){
|
sl@0
|
204 |
rc = SQLITE_OK;
|
sl@0
|
205 |
}else{
|
sl@0
|
206 |
Vdbe *v = (Vdbe*)pStmt;
|
sl@0
|
207 |
#if SQLITE_THREADSAFE
|
sl@0
|
208 |
sqlite3_mutex *mutex = v->db->mutex;
|
sl@0
|
209 |
#endif
|
sl@0
|
210 |
sqlite3_mutex_enter(mutex);
|
sl@0
|
211 |
stmtLruRemove(v);
|
sl@0
|
212 |
rc = sqlite3VdbeFinalize(v);
|
sl@0
|
213 |
sqlite3_mutex_leave(mutex);
|
sl@0
|
214 |
}
|
sl@0
|
215 |
return rc;
|
sl@0
|
216 |
}
|
sl@0
|
217 |
|
sl@0
|
218 |
/*
|
sl@0
|
219 |
** Terminate the current execution of an SQL statement and reset it
|
sl@0
|
220 |
** back to its starting state so that it can be reused. A success code from
|
sl@0
|
221 |
** the prior execution is returned.
|
sl@0
|
222 |
**
|
sl@0
|
223 |
** This routine sets the error code and string returned by
|
sl@0
|
224 |
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
|
sl@0
|
225 |
*/
|
sl@0
|
226 |
int sqlite3_reset(sqlite3_stmt *pStmt){
|
sl@0
|
227 |
int rc;
|
sl@0
|
228 |
if( pStmt==0 ){
|
sl@0
|
229 |
rc = SQLITE_OK;
|
sl@0
|
230 |
}else{
|
sl@0
|
231 |
Vdbe *v = (Vdbe*)pStmt;
|
sl@0
|
232 |
sqlite3_mutex_enter(v->db->mutex);
|
sl@0
|
233 |
rc = sqlite3VdbeReset(v);
|
sl@0
|
234 |
stmtLruAdd(v);
|
sl@0
|
235 |
sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
|
sl@0
|
236 |
assert( (rc & (v->db->errMask))==rc );
|
sl@0
|
237 |
sqlite3_mutex_leave(v->db->mutex);
|
sl@0
|
238 |
}
|
sl@0
|
239 |
return rc;
|
sl@0
|
240 |
}
|
sl@0
|
241 |
|
sl@0
|
242 |
/*
|
sl@0
|
243 |
** Set all the parameters in the compiled SQL statement to NULL.
|
sl@0
|
244 |
*/
|
sl@0
|
245 |
int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
|
sl@0
|
246 |
int i;
|
sl@0
|
247 |
int rc = SQLITE_OK;
|
sl@0
|
248 |
Vdbe *p = (Vdbe*)pStmt;
|
sl@0
|
249 |
#if SQLITE_THREADSAFE
|
sl@0
|
250 |
sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
|
sl@0
|
251 |
#endif
|
sl@0
|
252 |
sqlite3_mutex_enter(mutex);
|
sl@0
|
253 |
for(i=0; i<p->nVar; i++){
|
sl@0
|
254 |
sqlite3VdbeMemRelease(&p->aVar[i]);
|
sl@0
|
255 |
p->aVar[i].flags = MEM_Null;
|
sl@0
|
256 |
}
|
sl@0
|
257 |
sqlite3_mutex_leave(mutex);
|
sl@0
|
258 |
return rc;
|
sl@0
|
259 |
}
|
sl@0
|
260 |
|
sl@0
|
261 |
|
sl@0
|
262 |
/**************************** sqlite3_value_ *******************************
|
sl@0
|
263 |
** The following routines extract information from a Mem or sqlite3_value
|
sl@0
|
264 |
** structure.
|
sl@0
|
265 |
*/
|
sl@0
|
266 |
const void *sqlite3_value_blob(sqlite3_value *pVal){
|
sl@0
|
267 |
Mem *p = (Mem*)pVal;
|
sl@0
|
268 |
if( p->flags & (MEM_Blob|MEM_Str) ){
|
sl@0
|
269 |
sqlite3VdbeMemExpandBlob(p);
|
sl@0
|
270 |
p->flags &= ~MEM_Str;
|
sl@0
|
271 |
p->flags |= MEM_Blob;
|
sl@0
|
272 |
return p->z;
|
sl@0
|
273 |
}else{
|
sl@0
|
274 |
return sqlite3_value_text(pVal);
|
sl@0
|
275 |
}
|
sl@0
|
276 |
}
|
sl@0
|
277 |
int sqlite3_value_bytes(sqlite3_value *pVal){
|
sl@0
|
278 |
return sqlite3ValueBytes(pVal, SQLITE_UTF8);
|
sl@0
|
279 |
}
|
sl@0
|
280 |
int sqlite3_value_bytes16(sqlite3_value *pVal){
|
sl@0
|
281 |
return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
|
sl@0
|
282 |
}
|
sl@0
|
283 |
double sqlite3_value_double(sqlite3_value *pVal){
|
sl@0
|
284 |
return sqlite3VdbeRealValue((Mem*)pVal);
|
sl@0
|
285 |
}
|
sl@0
|
286 |
int sqlite3_value_int(sqlite3_value *pVal){
|
sl@0
|
287 |
return sqlite3VdbeIntValue((Mem*)pVal);
|
sl@0
|
288 |
}
|
sl@0
|
289 |
sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
|
sl@0
|
290 |
return sqlite3VdbeIntValue((Mem*)pVal);
|
sl@0
|
291 |
}
|
sl@0
|
292 |
const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
|
sl@0
|
293 |
return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
|
sl@0
|
294 |
}
|
sl@0
|
295 |
#ifndef SQLITE_OMIT_UTF16
|
sl@0
|
296 |
const void *sqlite3_value_text16(sqlite3_value* pVal){
|
sl@0
|
297 |
return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
|
sl@0
|
298 |
}
|
sl@0
|
299 |
const void *sqlite3_value_text16be(sqlite3_value *pVal){
|
sl@0
|
300 |
return sqlite3ValueText(pVal, SQLITE_UTF16BE);
|
sl@0
|
301 |
}
|
sl@0
|
302 |
const void *sqlite3_value_text16le(sqlite3_value *pVal){
|
sl@0
|
303 |
return sqlite3ValueText(pVal, SQLITE_UTF16LE);
|
sl@0
|
304 |
}
|
sl@0
|
305 |
#endif /* SQLITE_OMIT_UTF16 */
|
sl@0
|
306 |
int sqlite3_value_type(sqlite3_value* pVal){
|
sl@0
|
307 |
return pVal->type;
|
sl@0
|
308 |
}
|
sl@0
|
309 |
|
sl@0
|
310 |
/**************************** sqlite3_result_ *******************************
|
sl@0
|
311 |
** The following routines are used by user-defined functions to specify
|
sl@0
|
312 |
** the function result.
|
sl@0
|
313 |
*/
|
sl@0
|
314 |
void sqlite3_result_blob(
|
sl@0
|
315 |
sqlite3_context *pCtx,
|
sl@0
|
316 |
const void *z,
|
sl@0
|
317 |
int n,
|
sl@0
|
318 |
void (*xDel)(void *)
|
sl@0
|
319 |
){
|
sl@0
|
320 |
assert( n>=0 );
|
sl@0
|
321 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
sl@0
|
322 |
sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
|
sl@0
|
323 |
}
|
sl@0
|
324 |
void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
|
sl@0
|
325 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
sl@0
|
326 |
sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
|
sl@0
|
327 |
}
|
sl@0
|
328 |
void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
|
sl@0
|
329 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
sl@0
|
330 |
pCtx->isError = SQLITE_ERROR;
|
sl@0
|
331 |
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
|
sl@0
|
332 |
}
|
sl@0
|
333 |
#ifndef SQLITE_OMIT_UTF16
|
sl@0
|
334 |
void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
|
sl@0
|
335 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
sl@0
|
336 |
pCtx->isError = SQLITE_ERROR;
|
sl@0
|
337 |
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
|
sl@0
|
338 |
}
|
sl@0
|
339 |
#endif
|
sl@0
|
340 |
void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
|
sl@0
|
341 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
sl@0
|
342 |
sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
|
sl@0
|
343 |
}
|
sl@0
|
344 |
void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
|
sl@0
|
345 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
sl@0
|
346 |
sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
|
sl@0
|
347 |
}
|
sl@0
|
348 |
void sqlite3_result_null(sqlite3_context *pCtx){
|
sl@0
|
349 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
sl@0
|
350 |
sqlite3VdbeMemSetNull(&pCtx->s);
|
sl@0
|
351 |
}
|
sl@0
|
352 |
void sqlite3_result_text(
|
sl@0
|
353 |
sqlite3_context *pCtx,
|
sl@0
|
354 |
const char *z,
|
sl@0
|
355 |
int n,
|
sl@0
|
356 |
void (*xDel)(void *)
|
sl@0
|
357 |
){
|
sl@0
|
358 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
sl@0
|
359 |
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
|
sl@0
|
360 |
}
|
sl@0
|
361 |
#ifndef SQLITE_OMIT_UTF16
|
sl@0
|
362 |
void sqlite3_result_text16(
|
sl@0
|
363 |
sqlite3_context *pCtx,
|
sl@0
|
364 |
const void *z,
|
sl@0
|
365 |
int n,
|
sl@0
|
366 |
void (*xDel)(void *)
|
sl@0
|
367 |
){
|
sl@0
|
368 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
sl@0
|
369 |
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
|
sl@0
|
370 |
}
|
sl@0
|
371 |
void sqlite3_result_text16be(
|
sl@0
|
372 |
sqlite3_context *pCtx,
|
sl@0
|
373 |
const void *z,
|
sl@0
|
374 |
int n,
|
sl@0
|
375 |
void (*xDel)(void *)
|
sl@0
|
376 |
){
|
sl@0
|
377 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
sl@0
|
378 |
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
|
sl@0
|
379 |
}
|
sl@0
|
380 |
void sqlite3_result_text16le(
|
sl@0
|
381 |
sqlite3_context *pCtx,
|
sl@0
|
382 |
const void *z,
|
sl@0
|
383 |
int n,
|
sl@0
|
384 |
void (*xDel)(void *)
|
sl@0
|
385 |
){
|
sl@0
|
386 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
sl@0
|
387 |
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
|
sl@0
|
388 |
}
|
sl@0
|
389 |
#endif /* SQLITE_OMIT_UTF16 */
|
sl@0
|
390 |
void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
|
sl@0
|
391 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
sl@0
|
392 |
sqlite3VdbeMemCopy(&pCtx->s, pValue);
|
sl@0
|
393 |
}
|
sl@0
|
394 |
void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
|
sl@0
|
395 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
sl@0
|
396 |
sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
|
sl@0
|
397 |
}
|
sl@0
|
398 |
void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
|
sl@0
|
399 |
pCtx->isError = errCode;
|
sl@0
|
400 |
}
|
sl@0
|
401 |
|
sl@0
|
402 |
/* Force an SQLITE_TOOBIG error. */
|
sl@0
|
403 |
void sqlite3_result_error_toobig(sqlite3_context *pCtx){
|
sl@0
|
404 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
sl@0
|
405 |
pCtx->isError = SQLITE_TOOBIG;
|
sl@0
|
406 |
sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1,
|
sl@0
|
407 |
SQLITE_UTF8, SQLITE_STATIC);
|
sl@0
|
408 |
}
|
sl@0
|
409 |
|
sl@0
|
410 |
/* An SQLITE_NOMEM error. */
|
sl@0
|
411 |
void sqlite3_result_error_nomem(sqlite3_context *pCtx){
|
sl@0
|
412 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
sl@0
|
413 |
sqlite3VdbeMemSetNull(&pCtx->s);
|
sl@0
|
414 |
pCtx->isError = SQLITE_NOMEM;
|
sl@0
|
415 |
pCtx->s.db->mallocFailed = 1;
|
sl@0
|
416 |
}
|
sl@0
|
417 |
|
sl@0
|
418 |
/*
|
sl@0
|
419 |
** Execute the statement pStmt, either until a row of data is ready, the
|
sl@0
|
420 |
** statement is completely executed or an error occurs.
|
sl@0
|
421 |
**
|
sl@0
|
422 |
** This routine implements the bulk of the logic behind the sqlite_step()
|
sl@0
|
423 |
** API. The only thing omitted is the automatic recompile if a
|
sl@0
|
424 |
** schema change has occurred. That detail is handled by the
|
sl@0
|
425 |
** outer sqlite3_step() wrapper procedure.
|
sl@0
|
426 |
*/
|
sl@0
|
427 |
static int sqlite3Step(Vdbe *p){
|
sl@0
|
428 |
sqlite3 *db;
|
sl@0
|
429 |
int rc;
|
sl@0
|
430 |
|
sl@0
|
431 |
assert(p);
|
sl@0
|
432 |
if( p->magic!=VDBE_MAGIC_RUN ){
|
sl@0
|
433 |
return SQLITE_MISUSE;
|
sl@0
|
434 |
}
|
sl@0
|
435 |
|
sl@0
|
436 |
/* Assert that malloc() has not failed */
|
sl@0
|
437 |
db = p->db;
|
sl@0
|
438 |
if( db->mallocFailed ){
|
sl@0
|
439 |
return SQLITE_NOMEM;
|
sl@0
|
440 |
}
|
sl@0
|
441 |
|
sl@0
|
442 |
if( p->pc<=0 && p->expired ){
|
sl@0
|
443 |
if( p->rc==SQLITE_OK ){
|
sl@0
|
444 |
p->rc = SQLITE_SCHEMA;
|
sl@0
|
445 |
}
|
sl@0
|
446 |
rc = SQLITE_ERROR;
|
sl@0
|
447 |
goto end_of_step;
|
sl@0
|
448 |
}
|
sl@0
|
449 |
if( sqlite3SafetyOn(db) ){
|
sl@0
|
450 |
p->rc = SQLITE_MISUSE;
|
sl@0
|
451 |
return SQLITE_MISUSE;
|
sl@0
|
452 |
}
|
sl@0
|
453 |
if( p->pc<0 ){
|
sl@0
|
454 |
/* If there are no other statements currently running, then
|
sl@0
|
455 |
** reset the interrupt flag. This prevents a call to sqlite3_interrupt
|
sl@0
|
456 |
** from interrupting a statement that has not yet started.
|
sl@0
|
457 |
*/
|
sl@0
|
458 |
if( db->activeVdbeCnt==0 ){
|
sl@0
|
459 |
db->u1.isInterrupted = 0;
|
sl@0
|
460 |
}
|
sl@0
|
461 |
|
sl@0
|
462 |
#ifndef SQLITE_OMIT_TRACE
|
sl@0
|
463 |
if( db->xProfile && !db->init.busy ){
|
sl@0
|
464 |
double rNow;
|
sl@0
|
465 |
sqlite3OsCurrentTime(db->pVfs, &rNow);
|
sl@0
|
466 |
p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
|
sl@0
|
467 |
}
|
sl@0
|
468 |
#endif
|
sl@0
|
469 |
|
sl@0
|
470 |
db->activeVdbeCnt++;
|
sl@0
|
471 |
p->pc = 0;
|
sl@0
|
472 |
stmtLruRemove(p);
|
sl@0
|
473 |
}
|
sl@0
|
474 |
#ifndef SQLITE_OMIT_EXPLAIN
|
sl@0
|
475 |
if( p->explain ){
|
sl@0
|
476 |
rc = sqlite3VdbeList(p);
|
sl@0
|
477 |
}else
|
sl@0
|
478 |
#endif /* SQLITE_OMIT_EXPLAIN */
|
sl@0
|
479 |
{
|
sl@0
|
480 |
rc = sqlite3VdbeExec(p);
|
sl@0
|
481 |
}
|
sl@0
|
482 |
|
sl@0
|
483 |
if( sqlite3SafetyOff(db) ){
|
sl@0
|
484 |
rc = SQLITE_MISUSE;
|
sl@0
|
485 |
}
|
sl@0
|
486 |
|
sl@0
|
487 |
#ifndef SQLITE_OMIT_TRACE
|
sl@0
|
488 |
/* Invoke the profile callback if there is one
|
sl@0
|
489 |
*/
|
sl@0
|
490 |
if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp>0
|
sl@0
|
491 |
&& p->aOp[0].opcode==OP_Trace && p->aOp[0].p4.z!=0 ){
|
sl@0
|
492 |
double rNow;
|
sl@0
|
493 |
u64 elapseTime;
|
sl@0
|
494 |
|
sl@0
|
495 |
sqlite3OsCurrentTime(db->pVfs, &rNow);
|
sl@0
|
496 |
elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
|
sl@0
|
497 |
db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime);
|
sl@0
|
498 |
}
|
sl@0
|
499 |
#endif
|
sl@0
|
500 |
|
sl@0
|
501 |
db->errCode = rc;
|
sl@0
|
502 |
/*sqlite3Error(p->db, rc, 0);*/
|
sl@0
|
503 |
p->rc = sqlite3ApiExit(p->db, p->rc);
|
sl@0
|
504 |
end_of_step:
|
sl@0
|
505 |
assert( (rc&0xff)==rc );
|
sl@0
|
506 |
if( p->zSql && (rc&0xff)<SQLITE_ROW ){
|
sl@0
|
507 |
/* This behavior occurs if sqlite3_prepare_v2() was used to build
|
sl@0
|
508 |
** the prepared statement. Return error codes directly */
|
sl@0
|
509 |
p->db->errCode = p->rc;
|
sl@0
|
510 |
/* sqlite3Error(p->db, p->rc, 0); */
|
sl@0
|
511 |
return p->rc;
|
sl@0
|
512 |
}else{
|
sl@0
|
513 |
/* This is for legacy sqlite3_prepare() builds and when the code
|
sl@0
|
514 |
** is SQLITE_ROW or SQLITE_DONE */
|
sl@0
|
515 |
return rc;
|
sl@0
|
516 |
}
|
sl@0
|
517 |
}
|
sl@0
|
518 |
|
sl@0
|
519 |
/*
|
sl@0
|
520 |
** This is the top-level implementation of sqlite3_step(). Call
|
sl@0
|
521 |
** sqlite3Step() to do most of the work. If a schema error occurs,
|
sl@0
|
522 |
** call sqlite3Reprepare() and try again.
|
sl@0
|
523 |
*/
|
sl@0
|
524 |
#ifdef SQLITE_OMIT_PARSER
|
sl@0
|
525 |
int sqlite3_step(sqlite3_stmt *pStmt){
|
sl@0
|
526 |
int rc = SQLITE_MISUSE;
|
sl@0
|
527 |
if( pStmt ){
|
sl@0
|
528 |
Vdbe *v;
|
sl@0
|
529 |
v = (Vdbe*)pStmt;
|
sl@0
|
530 |
sqlite3_mutex_enter(v->db->mutex);
|
sl@0
|
531 |
rc = sqlite3Step(v);
|
sl@0
|
532 |
sqlite3_mutex_leave(v->db->mutex);
|
sl@0
|
533 |
}
|
sl@0
|
534 |
return rc;
|
sl@0
|
535 |
}
|
sl@0
|
536 |
#else
|
sl@0
|
537 |
int sqlite3_step(sqlite3_stmt *pStmt){
|
sl@0
|
538 |
int rc = SQLITE_MISUSE;
|
sl@0
|
539 |
if( pStmt ){
|
sl@0
|
540 |
int cnt = 0;
|
sl@0
|
541 |
Vdbe *v = (Vdbe*)pStmt;
|
sl@0
|
542 |
sqlite3 *db = v->db;
|
sl@0
|
543 |
sqlite3_mutex_enter(db->mutex);
|
sl@0
|
544 |
while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
|
sl@0
|
545 |
&& cnt++ < 5
|
sl@0
|
546 |
&& vdbeReprepare(v) ){
|
sl@0
|
547 |
sqlite3_reset(pStmt);
|
sl@0
|
548 |
v->expired = 0;
|
sl@0
|
549 |
}
|
sl@0
|
550 |
if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){
|
sl@0
|
551 |
/* This case occurs after failing to recompile an sql statement.
|
sl@0
|
552 |
** The error message from the SQL compiler has already been loaded
|
sl@0
|
553 |
** into the database handle. This block copies the error message
|
sl@0
|
554 |
** from the database handle into the statement and sets the statement
|
sl@0
|
555 |
** program counter to 0 to ensure that when the statement is
|
sl@0
|
556 |
** finalized or reset the parser error message is available via
|
sl@0
|
557 |
** sqlite3_errmsg() and sqlite3_errcode().
|
sl@0
|
558 |
*/
|
sl@0
|
559 |
const char *zErr = (const char *)sqlite3_value_text(db->pErr);
|
sl@0
|
560 |
sqlite3DbFree(db, v->zErrMsg);
|
sl@0
|
561 |
if( !db->mallocFailed ){
|
sl@0
|
562 |
v->zErrMsg = sqlite3DbStrDup(db, zErr);
|
sl@0
|
563 |
} else {
|
sl@0
|
564 |
v->zErrMsg = 0;
|
sl@0
|
565 |
v->rc = SQLITE_NOMEM;
|
sl@0
|
566 |
}
|
sl@0
|
567 |
}
|
sl@0
|
568 |
rc = sqlite3ApiExit(db, rc);
|
sl@0
|
569 |
sqlite3_mutex_leave(db->mutex);
|
sl@0
|
570 |
}
|
sl@0
|
571 |
return rc;
|
sl@0
|
572 |
}
|
sl@0
|
573 |
#endif
|
sl@0
|
574 |
|
sl@0
|
575 |
/*
|
sl@0
|
576 |
** Extract the user data from a sqlite3_context structure and return a
|
sl@0
|
577 |
** pointer to it.
|
sl@0
|
578 |
*/
|
sl@0
|
579 |
void *sqlite3_user_data(sqlite3_context *p){
|
sl@0
|
580 |
assert( p && p->pFunc );
|
sl@0
|
581 |
return p->pFunc->pUserData;
|
sl@0
|
582 |
}
|
sl@0
|
583 |
|
sl@0
|
584 |
/*
|
sl@0
|
585 |
** Extract the user data from a sqlite3_context structure and return a
|
sl@0
|
586 |
** pointer to it.
|
sl@0
|
587 |
*/
|
sl@0
|
588 |
sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
|
sl@0
|
589 |
assert( p && p->pFunc );
|
sl@0
|
590 |
return p->s.db;
|
sl@0
|
591 |
}
|
sl@0
|
592 |
|
sl@0
|
593 |
/*
|
sl@0
|
594 |
** The following is the implementation of an SQL function that always
|
sl@0
|
595 |
** fails with an error message stating that the function is used in the
|
sl@0
|
596 |
** wrong context. The sqlite3_overload_function() API might construct
|
sl@0
|
597 |
** SQL function that use this routine so that the functions will exist
|
sl@0
|
598 |
** for name resolution but are actually overloaded by the xFindFunction
|
sl@0
|
599 |
** method of virtual tables.
|
sl@0
|
600 |
*/
|
sl@0
|
601 |
void sqlite3InvalidFunction(
|
sl@0
|
602 |
sqlite3_context *context, /* The function calling context */
|
sl@0
|
603 |
int argc, /* Number of arguments to the function */
|
sl@0
|
604 |
sqlite3_value **argv /* Value of each argument */
|
sl@0
|
605 |
){
|
sl@0
|
606 |
const char *zName = context->pFunc->zName;
|
sl@0
|
607 |
char *zErr;
|
sl@0
|
608 |
zErr = sqlite3MPrintf(0,
|
sl@0
|
609 |
"unable to use function %s in the requested context", zName);
|
sl@0
|
610 |
sqlite3_result_error(context, zErr, -1);
|
sl@0
|
611 |
sqlite3_free(zErr);
|
sl@0
|
612 |
}
|
sl@0
|
613 |
|
sl@0
|
614 |
/*
|
sl@0
|
615 |
** Allocate or return the aggregate context for a user function. A new
|
sl@0
|
616 |
** context is allocated on the first call. Subsequent calls return the
|
sl@0
|
617 |
** same context that was returned on prior calls.
|
sl@0
|
618 |
*/
|
sl@0
|
619 |
void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
|
sl@0
|
620 |
Mem *pMem;
|
sl@0
|
621 |
assert( p && p->pFunc && p->pFunc->xStep );
|
sl@0
|
622 |
assert( sqlite3_mutex_held(p->s.db->mutex) );
|
sl@0
|
623 |
pMem = p->pMem;
|
sl@0
|
624 |
if( (pMem->flags & MEM_Agg)==0 ){
|
sl@0
|
625 |
if( nByte==0 ){
|
sl@0
|
626 |
sqlite3VdbeMemReleaseExternal(pMem);
|
sl@0
|
627 |
pMem->flags = MEM_Null;
|
sl@0
|
628 |
pMem->z = 0;
|
sl@0
|
629 |
}else{
|
sl@0
|
630 |
sqlite3VdbeMemGrow(pMem, nByte, 0);
|
sl@0
|
631 |
pMem->flags = MEM_Agg;
|
sl@0
|
632 |
pMem->u.pDef = p->pFunc;
|
sl@0
|
633 |
if( pMem->z ){
|
sl@0
|
634 |
memset(pMem->z, 0, nByte);
|
sl@0
|
635 |
}
|
sl@0
|
636 |
}
|
sl@0
|
637 |
}
|
sl@0
|
638 |
return (void*)pMem->z;
|
sl@0
|
639 |
}
|
sl@0
|
640 |
|
sl@0
|
641 |
/*
|
sl@0
|
642 |
** Return the auxilary data pointer, if any, for the iArg'th argument to
|
sl@0
|
643 |
** the user-function defined by pCtx.
|
sl@0
|
644 |
*/
|
sl@0
|
645 |
void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
|
sl@0
|
646 |
VdbeFunc *pVdbeFunc;
|
sl@0
|
647 |
|
sl@0
|
648 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
sl@0
|
649 |
pVdbeFunc = pCtx->pVdbeFunc;
|
sl@0
|
650 |
if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
|
sl@0
|
651 |
return 0;
|
sl@0
|
652 |
}
|
sl@0
|
653 |
return pVdbeFunc->apAux[iArg].pAux;
|
sl@0
|
654 |
}
|
sl@0
|
655 |
|
sl@0
|
656 |
/*
|
sl@0
|
657 |
** Set the auxilary data pointer and delete function, for the iArg'th
|
sl@0
|
658 |
** argument to the user-function defined by pCtx. Any previous value is
|
sl@0
|
659 |
** deleted by calling the delete function specified when it was set.
|
sl@0
|
660 |
*/
|
sl@0
|
661 |
void sqlite3_set_auxdata(
|
sl@0
|
662 |
sqlite3_context *pCtx,
|
sl@0
|
663 |
int iArg,
|
sl@0
|
664 |
void *pAux,
|
sl@0
|
665 |
void (*xDelete)(void*)
|
sl@0
|
666 |
){
|
sl@0
|
667 |
struct AuxData *pAuxData;
|
sl@0
|
668 |
VdbeFunc *pVdbeFunc;
|
sl@0
|
669 |
if( iArg<0 ) goto failed;
|
sl@0
|
670 |
|
sl@0
|
671 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
sl@0
|
672 |
pVdbeFunc = pCtx->pVdbeFunc;
|
sl@0
|
673 |
if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
|
sl@0
|
674 |
int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
|
sl@0
|
675 |
int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
|
sl@0
|
676 |
pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
|
sl@0
|
677 |
if( !pVdbeFunc ){
|
sl@0
|
678 |
goto failed;
|
sl@0
|
679 |
}
|
sl@0
|
680 |
pCtx->pVdbeFunc = pVdbeFunc;
|
sl@0
|
681 |
memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
|
sl@0
|
682 |
pVdbeFunc->nAux = iArg+1;
|
sl@0
|
683 |
pVdbeFunc->pFunc = pCtx->pFunc;
|
sl@0
|
684 |
}
|
sl@0
|
685 |
|
sl@0
|
686 |
pAuxData = &pVdbeFunc->apAux[iArg];
|
sl@0
|
687 |
if( pAuxData->pAux && pAuxData->xDelete ){
|
sl@0
|
688 |
pAuxData->xDelete(pAuxData->pAux);
|
sl@0
|
689 |
}
|
sl@0
|
690 |
pAuxData->pAux = pAux;
|
sl@0
|
691 |
pAuxData->xDelete = xDelete;
|
sl@0
|
692 |
return;
|
sl@0
|
693 |
|
sl@0
|
694 |
failed:
|
sl@0
|
695 |
if( xDelete ){
|
sl@0
|
696 |
xDelete(pAux);
|
sl@0
|
697 |
}
|
sl@0
|
698 |
}
|
sl@0
|
699 |
|
sl@0
|
700 |
#ifndef SQLITE_OMIT_DEPRECATED
|
sl@0
|
701 |
/*
|
sl@0
|
702 |
** Return the number of times the Step function of a aggregate has been
|
sl@0
|
703 |
** called.
|
sl@0
|
704 |
**
|
sl@0
|
705 |
** This function is deprecated. Do not use it for new code. It is
|
sl@0
|
706 |
** provide only to avoid breaking legacy code. New aggregate function
|
sl@0
|
707 |
** implementations should keep their own counts within their aggregate
|
sl@0
|
708 |
** context.
|
sl@0
|
709 |
*/
|
sl@0
|
710 |
int sqlite3_aggregate_count(sqlite3_context *p){
|
sl@0
|
711 |
assert( p && p->pFunc && p->pFunc->xStep );
|
sl@0
|
712 |
return p->pMem->n;
|
sl@0
|
713 |
}
|
sl@0
|
714 |
#endif
|
sl@0
|
715 |
|
sl@0
|
716 |
/*
|
sl@0
|
717 |
** Return the number of columns in the result set for the statement pStmt.
|
sl@0
|
718 |
*/
|
sl@0
|
719 |
int sqlite3_column_count(sqlite3_stmt *pStmt){
|
sl@0
|
720 |
Vdbe *pVm = (Vdbe *)pStmt;
|
sl@0
|
721 |
return pVm ? pVm->nResColumn : 0;
|
sl@0
|
722 |
}
|
sl@0
|
723 |
|
sl@0
|
724 |
/*
|
sl@0
|
725 |
** Return the number of values available from the current row of the
|
sl@0
|
726 |
** currently executing statement pStmt.
|
sl@0
|
727 |
*/
|
sl@0
|
728 |
int sqlite3_data_count(sqlite3_stmt *pStmt){
|
sl@0
|
729 |
Vdbe *pVm = (Vdbe *)pStmt;
|
sl@0
|
730 |
if( pVm==0 || pVm->pResultSet==0 ) return 0;
|
sl@0
|
731 |
return pVm->nResColumn;
|
sl@0
|
732 |
}
|
sl@0
|
733 |
|
sl@0
|
734 |
|
sl@0
|
735 |
/*
|
sl@0
|
736 |
** Check to see if column iCol of the given statement is valid. If
|
sl@0
|
737 |
** it is, return a pointer to the Mem for the value of that column.
|
sl@0
|
738 |
** If iCol is not valid, return a pointer to a Mem which has a value
|
sl@0
|
739 |
** of NULL.
|
sl@0
|
740 |
*/
|
sl@0
|
741 |
static Mem *columnMem(sqlite3_stmt *pStmt, int i){
|
sl@0
|
742 |
Vdbe *pVm;
|
sl@0
|
743 |
int vals;
|
sl@0
|
744 |
Mem *pOut;
|
sl@0
|
745 |
|
sl@0
|
746 |
pVm = (Vdbe *)pStmt;
|
sl@0
|
747 |
if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
|
sl@0
|
748 |
sqlite3_mutex_enter(pVm->db->mutex);
|
sl@0
|
749 |
vals = sqlite3_data_count(pStmt);
|
sl@0
|
750 |
pOut = &pVm->pResultSet[i];
|
sl@0
|
751 |
}else{
|
sl@0
|
752 |
static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 };
|
sl@0
|
753 |
if( pVm->db ){
|
sl@0
|
754 |
sqlite3_mutex_enter(pVm->db->mutex);
|
sl@0
|
755 |
sqlite3Error(pVm->db, SQLITE_RANGE, 0);
|
sl@0
|
756 |
}
|
sl@0
|
757 |
pOut = (Mem*)&nullMem;
|
sl@0
|
758 |
}
|
sl@0
|
759 |
return pOut;
|
sl@0
|
760 |
}
|
sl@0
|
761 |
|
sl@0
|
762 |
/*
|
sl@0
|
763 |
** This function is called after invoking an sqlite3_value_XXX function on a
|
sl@0
|
764 |
** column value (i.e. a value returned by evaluating an SQL expression in the
|
sl@0
|
765 |
** select list of a SELECT statement) that may cause a malloc() failure. If
|
sl@0
|
766 |
** malloc() has failed, the threads mallocFailed flag is cleared and the result
|
sl@0
|
767 |
** code of statement pStmt set to SQLITE_NOMEM.
|
sl@0
|
768 |
**
|
sl@0
|
769 |
** Specifically, this is called from within:
|
sl@0
|
770 |
**
|
sl@0
|
771 |
** sqlite3_column_int()
|
sl@0
|
772 |
** sqlite3_column_int64()
|
sl@0
|
773 |
** sqlite3_column_text()
|
sl@0
|
774 |
** sqlite3_column_text16()
|
sl@0
|
775 |
** sqlite3_column_real()
|
sl@0
|
776 |
** sqlite3_column_bytes()
|
sl@0
|
777 |
** sqlite3_column_bytes16()
|
sl@0
|
778 |
**
|
sl@0
|
779 |
** But not for sqlite3_column_blob(), which never calls malloc().
|
sl@0
|
780 |
*/
|
sl@0
|
781 |
static void columnMallocFailure(sqlite3_stmt *pStmt)
|
sl@0
|
782 |
{
|
sl@0
|
783 |
/* If malloc() failed during an encoding conversion within an
|
sl@0
|
784 |
** sqlite3_column_XXX API, then set the return code of the statement to
|
sl@0
|
785 |
** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
|
sl@0
|
786 |
** and _finalize() will return NOMEM.
|
sl@0
|
787 |
*/
|
sl@0
|
788 |
Vdbe *p = (Vdbe *)pStmt;
|
sl@0
|
789 |
if( p ){
|
sl@0
|
790 |
p->rc = sqlite3ApiExit(p->db, p->rc);
|
sl@0
|
791 |
sqlite3_mutex_leave(p->db->mutex);
|
sl@0
|
792 |
}
|
sl@0
|
793 |
}
|
sl@0
|
794 |
|
sl@0
|
795 |
/**************************** sqlite3_column_ *******************************
|
sl@0
|
796 |
** The following routines are used to access elements of the current row
|
sl@0
|
797 |
** in the result set.
|
sl@0
|
798 |
*/
|
sl@0
|
799 |
const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
|
sl@0
|
800 |
const void *val;
|
sl@0
|
801 |
val = sqlite3_value_blob( columnMem(pStmt,i) );
|
sl@0
|
802 |
/* Even though there is no encoding conversion, value_blob() might
|
sl@0
|
803 |
** need to call malloc() to expand the result of a zeroblob()
|
sl@0
|
804 |
** expression.
|
sl@0
|
805 |
*/
|
sl@0
|
806 |
columnMallocFailure(pStmt);
|
sl@0
|
807 |
return val;
|
sl@0
|
808 |
}
|
sl@0
|
809 |
int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
|
sl@0
|
810 |
int val = sqlite3_value_bytes( columnMem(pStmt,i) );
|
sl@0
|
811 |
columnMallocFailure(pStmt);
|
sl@0
|
812 |
return val;
|
sl@0
|
813 |
}
|
sl@0
|
814 |
int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
|
sl@0
|
815 |
int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
|
sl@0
|
816 |
columnMallocFailure(pStmt);
|
sl@0
|
817 |
return val;
|
sl@0
|
818 |
}
|
sl@0
|
819 |
double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
|
sl@0
|
820 |
double val = sqlite3_value_double( columnMem(pStmt,i) );
|
sl@0
|
821 |
columnMallocFailure(pStmt);
|
sl@0
|
822 |
return val;
|
sl@0
|
823 |
}
|
sl@0
|
824 |
int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
|
sl@0
|
825 |
int val = sqlite3_value_int( columnMem(pStmt,i) );
|
sl@0
|
826 |
columnMallocFailure(pStmt);
|
sl@0
|
827 |
return val;
|
sl@0
|
828 |
}
|
sl@0
|
829 |
sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
|
sl@0
|
830 |
sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
|
sl@0
|
831 |
columnMallocFailure(pStmt);
|
sl@0
|
832 |
return val;
|
sl@0
|
833 |
}
|
sl@0
|
834 |
const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
|
sl@0
|
835 |
const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
|
sl@0
|
836 |
columnMallocFailure(pStmt);
|
sl@0
|
837 |
return val;
|
sl@0
|
838 |
}
|
sl@0
|
839 |
sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
|
sl@0
|
840 |
Mem *pOut = columnMem(pStmt, i);
|
sl@0
|
841 |
if( pOut->flags&MEM_Static ){
|
sl@0
|
842 |
pOut->flags &= ~MEM_Static;
|
sl@0
|
843 |
pOut->flags |= MEM_Ephem;
|
sl@0
|
844 |
}
|
sl@0
|
845 |
columnMallocFailure(pStmt);
|
sl@0
|
846 |
return (sqlite3_value *)pOut;
|
sl@0
|
847 |
}
|
sl@0
|
848 |
#ifndef SQLITE_OMIT_UTF16
|
sl@0
|
849 |
const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
|
sl@0
|
850 |
const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
|
sl@0
|
851 |
columnMallocFailure(pStmt);
|
sl@0
|
852 |
return val;
|
sl@0
|
853 |
}
|
sl@0
|
854 |
#endif /* SQLITE_OMIT_UTF16 */
|
sl@0
|
855 |
int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
|
sl@0
|
856 |
int iType = sqlite3_value_type( columnMem(pStmt,i) );
|
sl@0
|
857 |
columnMallocFailure(pStmt);
|
sl@0
|
858 |
return iType;
|
sl@0
|
859 |
}
|
sl@0
|
860 |
|
sl@0
|
861 |
/* The following function is experimental and subject to change or
|
sl@0
|
862 |
** removal */
|
sl@0
|
863 |
/*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
|
sl@0
|
864 |
** return sqlite3_value_numeric_type( columnMem(pStmt,i) );
|
sl@0
|
865 |
**}
|
sl@0
|
866 |
*/
|
sl@0
|
867 |
|
sl@0
|
868 |
/*
|
sl@0
|
869 |
** Convert the N-th element of pStmt->pColName[] into a string using
|
sl@0
|
870 |
** xFunc() then return that string. If N is out of range, return 0.
|
sl@0
|
871 |
**
|
sl@0
|
872 |
** There are up to 5 names for each column. useType determines which
|
sl@0
|
873 |
** name is returned. Here are the names:
|
sl@0
|
874 |
**
|
sl@0
|
875 |
** 0 The column name as it should be displayed for output
|
sl@0
|
876 |
** 1 The datatype name for the column
|
sl@0
|
877 |
** 2 The name of the database that the column derives from
|
sl@0
|
878 |
** 3 The name of the table that the column derives from
|
sl@0
|
879 |
** 4 The name of the table column that the result column derives from
|
sl@0
|
880 |
**
|
sl@0
|
881 |
** If the result is not a simple column reference (if it is an expression
|
sl@0
|
882 |
** or a constant) then useTypes 2, 3, and 4 return NULL.
|
sl@0
|
883 |
*/
|
sl@0
|
884 |
static const void *columnName(
|
sl@0
|
885 |
sqlite3_stmt *pStmt,
|
sl@0
|
886 |
int N,
|
sl@0
|
887 |
const void *(*xFunc)(Mem*),
|
sl@0
|
888 |
int useType
|
sl@0
|
889 |
){
|
sl@0
|
890 |
const void *ret = 0;
|
sl@0
|
891 |
Vdbe *p = (Vdbe *)pStmt;
|
sl@0
|
892 |
int n;
|
sl@0
|
893 |
|
sl@0
|
894 |
|
sl@0
|
895 |
if( p!=0 ){
|
sl@0
|
896 |
n = sqlite3_column_count(pStmt);
|
sl@0
|
897 |
if( N<n && N>=0 ){
|
sl@0
|
898 |
N += useType*n;
|
sl@0
|
899 |
sqlite3_mutex_enter(p->db->mutex);
|
sl@0
|
900 |
ret = xFunc(&p->aColName[N]);
|
sl@0
|
901 |
|
sl@0
|
902 |
/* A malloc may have failed inside of the xFunc() call. If this
|
sl@0
|
903 |
** is the case, clear the mallocFailed flag and return NULL.
|
sl@0
|
904 |
*/
|
sl@0
|
905 |
if( p->db && p->db->mallocFailed ){
|
sl@0
|
906 |
p->db->mallocFailed = 0;
|
sl@0
|
907 |
ret = 0;
|
sl@0
|
908 |
}
|
sl@0
|
909 |
sqlite3_mutex_leave(p->db->mutex);
|
sl@0
|
910 |
}
|
sl@0
|
911 |
}
|
sl@0
|
912 |
return ret;
|
sl@0
|
913 |
}
|
sl@0
|
914 |
|
sl@0
|
915 |
/*
|
sl@0
|
916 |
** Return the name of the Nth column of the result set returned by SQL
|
sl@0
|
917 |
** statement pStmt.
|
sl@0
|
918 |
*/
|
sl@0
|
919 |
const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
|
sl@0
|
920 |
return columnName(
|
sl@0
|
921 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
|
sl@0
|
922 |
}
|
sl@0
|
923 |
#ifndef SQLITE_OMIT_UTF16
|
sl@0
|
924 |
const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
|
sl@0
|
925 |
return columnName(
|
sl@0
|
926 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
|
sl@0
|
927 |
}
|
sl@0
|
928 |
#endif
|
sl@0
|
929 |
|
sl@0
|
930 |
/*
|
sl@0
|
931 |
** Constraint: If you have ENABLE_COLUMN_METADATA then you must
|
sl@0
|
932 |
** not define OMIT_DECLTYPE.
|
sl@0
|
933 |
*/
|
sl@0
|
934 |
#if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
|
sl@0
|
935 |
# error "Must not define both SQLITE_OMIT_DECLTYPE \
|
sl@0
|
936 |
and SQLITE_ENABLE_COLUMN_METADATA"
|
sl@0
|
937 |
#endif
|
sl@0
|
938 |
|
sl@0
|
939 |
#ifndef SQLITE_OMIT_DECLTYPE
|
sl@0
|
940 |
/*
|
sl@0
|
941 |
** Return the column declaration type (if applicable) of the 'i'th column
|
sl@0
|
942 |
** of the result set of SQL statement pStmt.
|
sl@0
|
943 |
*/
|
sl@0
|
944 |
const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
|
sl@0
|
945 |
return columnName(
|
sl@0
|
946 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
|
sl@0
|
947 |
}
|
sl@0
|
948 |
#ifndef SQLITE_OMIT_UTF16
|
sl@0
|
949 |
const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
|
sl@0
|
950 |
return columnName(
|
sl@0
|
951 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
|
sl@0
|
952 |
}
|
sl@0
|
953 |
#endif /* SQLITE_OMIT_UTF16 */
|
sl@0
|
954 |
#endif /* SQLITE_OMIT_DECLTYPE */
|
sl@0
|
955 |
|
sl@0
|
956 |
#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
sl@0
|
957 |
/*
|
sl@0
|
958 |
** Return the name of the database from which a result column derives.
|
sl@0
|
959 |
** NULL is returned if the result column is an expression or constant or
|
sl@0
|
960 |
** anything else which is not an unabiguous reference to a database column.
|
sl@0
|
961 |
*/
|
sl@0
|
962 |
const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
|
sl@0
|
963 |
return columnName(
|
sl@0
|
964 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
|
sl@0
|
965 |
}
|
sl@0
|
966 |
#ifndef SQLITE_OMIT_UTF16
|
sl@0
|
967 |
const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
|
sl@0
|
968 |
return columnName(
|
sl@0
|
969 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
|
sl@0
|
970 |
}
|
sl@0
|
971 |
#endif /* SQLITE_OMIT_UTF16 */
|
sl@0
|
972 |
|
sl@0
|
973 |
/*
|
sl@0
|
974 |
** Return the name of the table from which a result column derives.
|
sl@0
|
975 |
** NULL is returned if the result column is an expression or constant or
|
sl@0
|
976 |
** anything else which is not an unabiguous reference to a database column.
|
sl@0
|
977 |
*/
|
sl@0
|
978 |
const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
|
sl@0
|
979 |
return columnName(
|
sl@0
|
980 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
|
sl@0
|
981 |
}
|
sl@0
|
982 |
#ifndef SQLITE_OMIT_UTF16
|
sl@0
|
983 |
const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
|
sl@0
|
984 |
return columnName(
|
sl@0
|
985 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
|
sl@0
|
986 |
}
|
sl@0
|
987 |
#endif /* SQLITE_OMIT_UTF16 */
|
sl@0
|
988 |
|
sl@0
|
989 |
/*
|
sl@0
|
990 |
** Return the name of the table column from which a result column derives.
|
sl@0
|
991 |
** NULL is returned if the result column is an expression or constant or
|
sl@0
|
992 |
** anything else which is not an unabiguous reference to a database column.
|
sl@0
|
993 |
*/
|
sl@0
|
994 |
const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
|
sl@0
|
995 |
return columnName(
|
sl@0
|
996 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
|
sl@0
|
997 |
}
|
sl@0
|
998 |
#ifndef SQLITE_OMIT_UTF16
|
sl@0
|
999 |
const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
|
sl@0
|
1000 |
return columnName(
|
sl@0
|
1001 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
|
sl@0
|
1002 |
}
|
sl@0
|
1003 |
#endif /* SQLITE_OMIT_UTF16 */
|
sl@0
|
1004 |
#endif /* SQLITE_ENABLE_COLUMN_METADATA */
|
sl@0
|
1005 |
|
sl@0
|
1006 |
|
sl@0
|
1007 |
/******************************* sqlite3_bind_ ***************************
|
sl@0
|
1008 |
**
|
sl@0
|
1009 |
** Routines used to attach values to wildcards in a compiled SQL statement.
|
sl@0
|
1010 |
*/
|
sl@0
|
1011 |
/*
|
sl@0
|
1012 |
** Unbind the value bound to variable i in virtual machine p. This is the
|
sl@0
|
1013 |
** the same as binding a NULL value to the column. If the "i" parameter is
|
sl@0
|
1014 |
** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
|
sl@0
|
1015 |
**
|
sl@0
|
1016 |
** A successful evaluation of this routine acquires the mutex on p.
|
sl@0
|
1017 |
** the mutex is released if any kind of error occurs.
|
sl@0
|
1018 |
**
|
sl@0
|
1019 |
** The error code stored in database p->db is overwritten with the return
|
sl@0
|
1020 |
** value in any case.
|
sl@0
|
1021 |
*/
|
sl@0
|
1022 |
static int vdbeUnbind(Vdbe *p, int i){
|
sl@0
|
1023 |
Mem *pVar;
|
sl@0
|
1024 |
if( p==0 ) return SQLITE_MISUSE;
|
sl@0
|
1025 |
sqlite3_mutex_enter(p->db->mutex);
|
sl@0
|
1026 |
if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
|
sl@0
|
1027 |
sqlite3Error(p->db, SQLITE_MISUSE, 0);
|
sl@0
|
1028 |
sqlite3_mutex_leave(p->db->mutex);
|
sl@0
|
1029 |
return SQLITE_MISUSE;
|
sl@0
|
1030 |
}
|
sl@0
|
1031 |
if( i<1 || i>p->nVar ){
|
sl@0
|
1032 |
sqlite3Error(p->db, SQLITE_RANGE, 0);
|
sl@0
|
1033 |
sqlite3_mutex_leave(p->db->mutex);
|
sl@0
|
1034 |
return SQLITE_RANGE;
|
sl@0
|
1035 |
}
|
sl@0
|
1036 |
i--;
|
sl@0
|
1037 |
pVar = &p->aVar[i];
|
sl@0
|
1038 |
sqlite3VdbeMemRelease(pVar);
|
sl@0
|
1039 |
pVar->flags = MEM_Null;
|
sl@0
|
1040 |
sqlite3Error(p->db, SQLITE_OK, 0);
|
sl@0
|
1041 |
return SQLITE_OK;
|
sl@0
|
1042 |
}
|
sl@0
|
1043 |
|
sl@0
|
1044 |
/*
|
sl@0
|
1045 |
** Bind a text or BLOB value.
|
sl@0
|
1046 |
*/
|
sl@0
|
1047 |
static int bindText(
|
sl@0
|
1048 |
sqlite3_stmt *pStmt, /* The statement to bind against */
|
sl@0
|
1049 |
int i, /* Index of the parameter to bind */
|
sl@0
|
1050 |
const void *zData, /* Pointer to the data to be bound */
|
sl@0
|
1051 |
int nData, /* Number of bytes of data to be bound */
|
sl@0
|
1052 |
void (*xDel)(void*), /* Destructor for the data */
|
sl@0
|
1053 |
int encoding /* Encoding for the data */
|
sl@0
|
1054 |
){
|
sl@0
|
1055 |
Vdbe *p = (Vdbe *)pStmt;
|
sl@0
|
1056 |
Mem *pVar;
|
sl@0
|
1057 |
int rc;
|
sl@0
|
1058 |
|
sl@0
|
1059 |
rc = vdbeUnbind(p, i);
|
sl@0
|
1060 |
if( rc==SQLITE_OK ){
|
sl@0
|
1061 |
if( zData!=0 ){
|
sl@0
|
1062 |
pVar = &p->aVar[i-1];
|
sl@0
|
1063 |
rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
|
sl@0
|
1064 |
if( rc==SQLITE_OK && encoding!=0 ){
|
sl@0
|
1065 |
rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
|
sl@0
|
1066 |
}
|
sl@0
|
1067 |
sqlite3Error(p->db, rc, 0);
|
sl@0
|
1068 |
rc = sqlite3ApiExit(p->db, rc);
|
sl@0
|
1069 |
}
|
sl@0
|
1070 |
sqlite3_mutex_leave(p->db->mutex);
|
sl@0
|
1071 |
}
|
sl@0
|
1072 |
return rc;
|
sl@0
|
1073 |
}
|
sl@0
|
1074 |
|
sl@0
|
1075 |
|
sl@0
|
1076 |
/*
|
sl@0
|
1077 |
** Bind a blob value to an SQL statement variable.
|
sl@0
|
1078 |
*/
|
sl@0
|
1079 |
int sqlite3_bind_blob(
|
sl@0
|
1080 |
sqlite3_stmt *pStmt,
|
sl@0
|
1081 |
int i,
|
sl@0
|
1082 |
const void *zData,
|
sl@0
|
1083 |
int nData,
|
sl@0
|
1084 |
void (*xDel)(void*)
|
sl@0
|
1085 |
){
|
sl@0
|
1086 |
return bindText(pStmt, i, zData, nData, xDel, 0);
|
sl@0
|
1087 |
}
|
sl@0
|
1088 |
int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
|
sl@0
|
1089 |
int rc;
|
sl@0
|
1090 |
Vdbe *p = (Vdbe *)pStmt;
|
sl@0
|
1091 |
rc = vdbeUnbind(p, i);
|
sl@0
|
1092 |
if( rc==SQLITE_OK ){
|
sl@0
|
1093 |
sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
|
sl@0
|
1094 |
sqlite3_mutex_leave(p->db->mutex);
|
sl@0
|
1095 |
}
|
sl@0
|
1096 |
return rc;
|
sl@0
|
1097 |
}
|
sl@0
|
1098 |
int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
|
sl@0
|
1099 |
return sqlite3_bind_int64(p, i, (i64)iValue);
|
sl@0
|
1100 |
}
|
sl@0
|
1101 |
int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
|
sl@0
|
1102 |
int rc;
|
sl@0
|
1103 |
Vdbe *p = (Vdbe *)pStmt;
|
sl@0
|
1104 |
rc = vdbeUnbind(p, i);
|
sl@0
|
1105 |
if( rc==SQLITE_OK ){
|
sl@0
|
1106 |
sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
|
sl@0
|
1107 |
sqlite3_mutex_leave(p->db->mutex);
|
sl@0
|
1108 |
}
|
sl@0
|
1109 |
return rc;
|
sl@0
|
1110 |
}
|
sl@0
|
1111 |
int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
|
sl@0
|
1112 |
int rc;
|
sl@0
|
1113 |
Vdbe *p = (Vdbe*)pStmt;
|
sl@0
|
1114 |
rc = vdbeUnbind(p, i);
|
sl@0
|
1115 |
if( rc==SQLITE_OK ){
|
sl@0
|
1116 |
sqlite3_mutex_leave(p->db->mutex);
|
sl@0
|
1117 |
}
|
sl@0
|
1118 |
return rc;
|
sl@0
|
1119 |
}
|
sl@0
|
1120 |
int sqlite3_bind_text(
|
sl@0
|
1121 |
sqlite3_stmt *pStmt,
|
sl@0
|
1122 |
int i,
|
sl@0
|
1123 |
const char *zData,
|
sl@0
|
1124 |
int nData,
|
sl@0
|
1125 |
void (*xDel)(void*)
|
sl@0
|
1126 |
){
|
sl@0
|
1127 |
return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
|
sl@0
|
1128 |
}
|
sl@0
|
1129 |
#ifndef SQLITE_OMIT_UTF16
|
sl@0
|
1130 |
int sqlite3_bind_text16(
|
sl@0
|
1131 |
sqlite3_stmt *pStmt,
|
sl@0
|
1132 |
int i,
|
sl@0
|
1133 |
const void *zData,
|
sl@0
|
1134 |
int nData,
|
sl@0
|
1135 |
void (*xDel)(void*)
|
sl@0
|
1136 |
){
|
sl@0
|
1137 |
return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
|
sl@0
|
1138 |
}
|
sl@0
|
1139 |
#endif /* SQLITE_OMIT_UTF16 */
|
sl@0
|
1140 |
int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
|
sl@0
|
1141 |
int rc;
|
sl@0
|
1142 |
Vdbe *p = (Vdbe *)pStmt;
|
sl@0
|
1143 |
rc = vdbeUnbind(p, i);
|
sl@0
|
1144 |
if( rc==SQLITE_OK ){
|
sl@0
|
1145 |
rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
|
sl@0
|
1146 |
if( rc==SQLITE_OK ){
|
sl@0
|
1147 |
rc = sqlite3VdbeChangeEncoding(&p->aVar[i-1], ENC(p->db));
|
sl@0
|
1148 |
}
|
sl@0
|
1149 |
sqlite3_mutex_leave(p->db->mutex);
|
sl@0
|
1150 |
}
|
sl@0
|
1151 |
rc = sqlite3ApiExit(p->db, rc);
|
sl@0
|
1152 |
return rc;
|
sl@0
|
1153 |
}
|
sl@0
|
1154 |
int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
|
sl@0
|
1155 |
int rc;
|
sl@0
|
1156 |
Vdbe *p = (Vdbe *)pStmt;
|
sl@0
|
1157 |
rc = vdbeUnbind(p, i);
|
sl@0
|
1158 |
if( rc==SQLITE_OK ){
|
sl@0
|
1159 |
sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
|
sl@0
|
1160 |
sqlite3_mutex_leave(p->db->mutex);
|
sl@0
|
1161 |
}
|
sl@0
|
1162 |
return rc;
|
sl@0
|
1163 |
}
|
sl@0
|
1164 |
|
sl@0
|
1165 |
/*
|
sl@0
|
1166 |
** Return the number of wildcards that can be potentially bound to.
|
sl@0
|
1167 |
** This routine is added to support DBD::SQLite.
|
sl@0
|
1168 |
*/
|
sl@0
|
1169 |
int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
|
sl@0
|
1170 |
Vdbe *p = (Vdbe*)pStmt;
|
sl@0
|
1171 |
return p ? p->nVar : 0;
|
sl@0
|
1172 |
}
|
sl@0
|
1173 |
|
sl@0
|
1174 |
/*
|
sl@0
|
1175 |
** Create a mapping from variable numbers to variable names
|
sl@0
|
1176 |
** in the Vdbe.azVar[] array, if such a mapping does not already
|
sl@0
|
1177 |
** exist.
|
sl@0
|
1178 |
*/
|
sl@0
|
1179 |
static void createVarMap(Vdbe *p){
|
sl@0
|
1180 |
if( !p->okVar ){
|
sl@0
|
1181 |
sqlite3_mutex_enter(p->db->mutex);
|
sl@0
|
1182 |
if( !p->okVar ){
|
sl@0
|
1183 |
int j;
|
sl@0
|
1184 |
Op *pOp;
|
sl@0
|
1185 |
for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
|
sl@0
|
1186 |
if( pOp->opcode==OP_Variable ){
|
sl@0
|
1187 |
assert( pOp->p1>0 && pOp->p1<=p->nVar );
|
sl@0
|
1188 |
p->azVar[pOp->p1-1] = pOp->p4.z;
|
sl@0
|
1189 |
}
|
sl@0
|
1190 |
}
|
sl@0
|
1191 |
p->okVar = 1;
|
sl@0
|
1192 |
}
|
sl@0
|
1193 |
sqlite3_mutex_leave(p->db->mutex);
|
sl@0
|
1194 |
}
|
sl@0
|
1195 |
}
|
sl@0
|
1196 |
|
sl@0
|
1197 |
/*
|
sl@0
|
1198 |
** Return the name of a wildcard parameter. Return NULL if the index
|
sl@0
|
1199 |
** is out of range or if the wildcard is unnamed.
|
sl@0
|
1200 |
**
|
sl@0
|
1201 |
** The result is always UTF-8.
|
sl@0
|
1202 |
*/
|
sl@0
|
1203 |
const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
|
sl@0
|
1204 |
Vdbe *p = (Vdbe*)pStmt;
|
sl@0
|
1205 |
if( p==0 || i<1 || i>p->nVar ){
|
sl@0
|
1206 |
return 0;
|
sl@0
|
1207 |
}
|
sl@0
|
1208 |
createVarMap(p);
|
sl@0
|
1209 |
return p->azVar[i-1];
|
sl@0
|
1210 |
}
|
sl@0
|
1211 |
|
sl@0
|
1212 |
/*
|
sl@0
|
1213 |
** Given a wildcard parameter name, return the index of the variable
|
sl@0
|
1214 |
** with that name. If there is no variable with the given name,
|
sl@0
|
1215 |
** return 0.
|
sl@0
|
1216 |
*/
|
sl@0
|
1217 |
int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
|
sl@0
|
1218 |
Vdbe *p = (Vdbe*)pStmt;
|
sl@0
|
1219 |
int i;
|
sl@0
|
1220 |
if( p==0 ){
|
sl@0
|
1221 |
return 0;
|
sl@0
|
1222 |
}
|
sl@0
|
1223 |
createVarMap(p);
|
sl@0
|
1224 |
if( zName ){
|
sl@0
|
1225 |
for(i=0; i<p->nVar; i++){
|
sl@0
|
1226 |
const char *z = p->azVar[i];
|
sl@0
|
1227 |
if( z && strcmp(z,zName)==0 ){
|
sl@0
|
1228 |
return i+1;
|
sl@0
|
1229 |
}
|
sl@0
|
1230 |
}
|
sl@0
|
1231 |
}
|
sl@0
|
1232 |
return 0;
|
sl@0
|
1233 |
}
|
sl@0
|
1234 |
|
sl@0
|
1235 |
/*
|
sl@0
|
1236 |
** Transfer all bindings from the first statement over to the second.
|
sl@0
|
1237 |
** If the two statements contain a different number of bindings, then
|
sl@0
|
1238 |
** an SQLITE_ERROR is returned.
|
sl@0
|
1239 |
*/
|
sl@0
|
1240 |
int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
|
sl@0
|
1241 |
Vdbe *pFrom = (Vdbe*)pFromStmt;
|
sl@0
|
1242 |
Vdbe *pTo = (Vdbe*)pToStmt;
|
sl@0
|
1243 |
int i, rc = SQLITE_OK;
|
sl@0
|
1244 |
if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
|
sl@0
|
1245 |
|| (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT)
|
sl@0
|
1246 |
|| pTo->db!=pFrom->db ){
|
sl@0
|
1247 |
return SQLITE_MISUSE;
|
sl@0
|
1248 |
}
|
sl@0
|
1249 |
if( pFrom->nVar!=pTo->nVar ){
|
sl@0
|
1250 |
return SQLITE_ERROR;
|
sl@0
|
1251 |
}
|
sl@0
|
1252 |
sqlite3_mutex_enter(pTo->db->mutex);
|
sl@0
|
1253 |
for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
|
sl@0
|
1254 |
sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
|
sl@0
|
1255 |
}
|
sl@0
|
1256 |
sqlite3_mutex_leave(pTo->db->mutex);
|
sl@0
|
1257 |
assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
|
sl@0
|
1258 |
return rc;
|
sl@0
|
1259 |
}
|
sl@0
|
1260 |
|
sl@0
|
1261 |
#ifndef SQLITE_OMIT_DEPRECATED
|
sl@0
|
1262 |
/*
|
sl@0
|
1263 |
** Deprecated external interface. Internal/core SQLite code
|
sl@0
|
1264 |
** should call sqlite3TransferBindings.
|
sl@0
|
1265 |
*/
|
sl@0
|
1266 |
int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
|
sl@0
|
1267 |
return sqlite3TransferBindings(pFromStmt, pToStmt);
|
sl@0
|
1268 |
}
|
sl@0
|
1269 |
#endif
|
sl@0
|
1270 |
|
sl@0
|
1271 |
/*
|
sl@0
|
1272 |
** Return the sqlite3* database handle to which the prepared statement given
|
sl@0
|
1273 |
** in the argument belongs. This is the same database handle that was
|
sl@0
|
1274 |
** the first argument to the sqlite3_prepare() that was used to create
|
sl@0
|
1275 |
** the statement in the first place.
|
sl@0
|
1276 |
*/
|
sl@0
|
1277 |
sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
|
sl@0
|
1278 |
return pStmt ? ((Vdbe*)pStmt)->db : 0;
|
sl@0
|
1279 |
}
|
sl@0
|
1280 |
|
sl@0
|
1281 |
/*
|
sl@0
|
1282 |
** Return a pointer to the next prepared statement after pStmt associated
|
sl@0
|
1283 |
** with database connection pDb. If pStmt is NULL, return the first
|
sl@0
|
1284 |
** prepared statement for the database connection. Return NULL if there
|
sl@0
|
1285 |
** are no more.
|
sl@0
|
1286 |
*/
|
sl@0
|
1287 |
sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
|
sl@0
|
1288 |
sqlite3_stmt *pNext;
|
sl@0
|
1289 |
sqlite3_mutex_enter(pDb->mutex);
|
sl@0
|
1290 |
if( pStmt==0 ){
|
sl@0
|
1291 |
pNext = (sqlite3_stmt*)pDb->pVdbe;
|
sl@0
|
1292 |
}else{
|
sl@0
|
1293 |
pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
|
sl@0
|
1294 |
}
|
sl@0
|
1295 |
sqlite3_mutex_leave(pDb->mutex);
|
sl@0
|
1296 |
return pNext;
|
sl@0
|
1297 |
}
|
sl@0
|
1298 |
|
sl@0
|
1299 |
/*
|
sl@0
|
1300 |
** Return the value of a status counter for a prepared statement
|
sl@0
|
1301 |
*/
|
sl@0
|
1302 |
int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
|
sl@0
|
1303 |
Vdbe *pVdbe = (Vdbe*)pStmt;
|
sl@0
|
1304 |
int v = pVdbe->aCounter[op-1];
|
sl@0
|
1305 |
if( resetFlag ) pVdbe->aCounter[op-1] = 0;
|
sl@0
|
1306 |
return v;
|
sl@0
|
1307 |
}
|