os/kernelhwsrv/kerneltest/e32test/math/t_vfp.cpp
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 // Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
     2 // All rights reserved.
     3 // This component and the accompanying materials are made available
     4 // under the terms of the License "Eclipse Public License v1.0"
     5 // which accompanies this distribution, and is available
     6 // at the URL "http://www.eclipse.org/legal/epl-v10.html".
     7 //
     8 // Initial Contributors:
     9 // Nokia Corporation - initial contribution.
    10 //
    11 // Contributors:
    12 //
    13 // Description:
    14 // e32test\math\t_vfp.cpp
    15 // Overview:
    16 // Test the ARM Vector Floating Point operations.
    17 // API Information:
    18 // VFP
    19 // Details:
    20 // - Check that the HAL agrees with the hardware about whether
    21 // VFP is supported.
    22 // - Test setting VFP to IEEE with no exceptions mode, if IEEE mode is
    23 // supported, otherwise leave the mode alone.
    24 // - Test single and double precision vector floating point operations:
    25 // ABS, NEG, ADD, SUB, MUL, DIV, NMUL, SQRT, MAC, MSC, NMAC and NMSC.
    26 // Verify results are as expected - if IEEE mode was set, verify
    27 // bit-for-bit, in accordance with the IEEE specification, otherwise
    28 // use normal floating point equality.
    29 // - Test VFP context save.
    30 // - Test various VFP operations that cause bounces to support code if
    31 // IEEE mode is supported.
    32 // - Test setting VFP to RunFast mode if RunFast mode is supported.
    33 // - Test setting VFP rounding mode.
    34 // - Test inheriting VFP mode to created threads.
    35 // Platforms/Drives/Compatibility:
    36 // All 
    37 // Assumptions/Requirement/Pre-requisites:
    38 // Failures and causes:
    39 // Base Port information:
    40 // 
    41 //
    42 
    43 //! @file
    44 //! @SYMTestCaseID KBASE-0017-T_VFP
    45 //! @SYMTestCaseDesc VFPv2 general functionality and bounce handling
    46 //! @SYMREQ 5159
    47 //! @SYMTestPriority Critical
    48 //! @SYMTestActions Check VFP functions correctly in all modes and that mode switching works correctly.
    49 //! @SYMTestExpectedResults Test runs until this message is emitted: RTEST: SUCCESS : T_VFP test completed O.K.
    50 //! @SYMTestType UT
    51 
    52 #include "t_vfp.h"
    53 #define __E32TEST_EXTENSION__
    54 #include <e32test.h>
    55 #include <e32math.h>
    56 #include <hal.h>
    57 #include <e32svr.h>
    58 #include <u32hal.h>
    59 
    60 RTest test(_L("T_VFP"));
    61 TUint32 FPSID;
    62 TUint32 ArchVersion; 
    63 TBool Double;
    64 TBool IEEEMode;
    65 TInt CPUs;
    66 TInt CurrentCpu1;
    67 TInt CurrentCpu2;
    68 
    69 typedef void TSglTest(const TReal32* aArgs, TReal32* aResults);
    70 typedef void TDblTest(const TReal64* aArgs, TReal64* aResults);
    71 
    72 TBool DetectVFP()
    73 	{
    74 	TInt r = UserSvr::HalFunction(EHalGroupKernel, EKernelHalFloatingPointSystemId, &FPSID, NULL);
    75 	return (r==KErrNone);
    76 	}
    77 
    78 TInt TestVFPInitThreadFn(TAny* aPtr)
    79 	{
    80 	UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, (TAny*)CurrentCpu1, 0);
    81 	TReal32* p = (TReal32*)aPtr;
    82 	TInt i;
    83 	for (i=0; i<32; ++i)
    84 		*p++ = Vfp::SReg(i);
    85 	return 0;
    86 	}
    87 
    88 void TestVFPInitialState()
    89 	{
    90 	for (CurrentCpu1 = 0; CurrentCpu1 < CPUs; CurrentCpu1++)
    91 		{
    92 		TReal32 f[32];
    93 		RThread t;
    94 		TInt r = t.Create(KNullDesC, &TestVFPInitThreadFn, 0x1000, NULL, f);
    95 		test(r==KErrNone);
    96 		TRequestStatus s;
    97 		t.Logon(s);
    98 		t.Resume();
    99 		User::WaitForRequest(s);
   100 		TInt xt = t.ExitType();
   101 		TInt xr = t.ExitReason();
   102 		test(xt == EExitKill && xr == KErrNone);
   103 		CLOSE_AND_WAIT(t);
   104 		UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, (TAny*)CurrentCpu1, 0);
   105 		test.Printf(_L("FPSCR = %08x for core %d\n"), Vfp::Fpscr(), CurrentCpu1);
   106 		const TUint32* p = (const TUint32*)f;
   107 		for (TInt i=0; i<32; ++i)
   108 			{
   109 			if (f[i] != 0.0f)
   110 				{
   111 				test.Printf(_L("S%d = 0x%08x\n"), i, p[i]);
   112 				test(f[i] == 0.0f);
   113 				}
   114 			}
   115 		}
   116 	}
   117 
   118 void TestVFPSglRegs(TInt aIter=2)
   119 	{
   120 	TInt i;
   121 	TInt j;
   122 	TInt nSglRegs=0; 
   123 
   124 	switch(ArchVersion)	
   125 		{ 
   126 		case ARCH_VERSION_VFPV2:
   127 		case ARCH_VERSION_VFPV3_SUBARCH_V2:
   128 		case ARCH_VERSION_VFPV3_SUBARCH_NULL:
   129 		case ARCH_VERSION_VFPV3_SUBARCH_V3:
   130 			nSglRegs = 32;
   131 			break; 		
   132 		case 0:
   133 		default:
   134 			__ASSERT_ALWAYS(0, User::Panic(_L("Bad VFP version"),__LINE__)); 
   135 			/* NOTREACHED */
   136 		} 
   137 
   138 	for (i=0; i<aIter; ++i)
   139 		{
   140 		for (j=0; j<nSglRegs; ++j)
   141 			{
   142 			TInt32 f = i + j;
   143 			Vfp::SetSReg(f, j);
   144 			}
   145 		for (j=0; j<nSglRegs; ++j)
   146 			{
   147 			TInt32 f = i + j;
   148 			TInt32 g = Vfp::SRegInt(j);
   149 			test(f == g);
   150 			}
   151 		}
   152 	}
   153 
   154 TInt TestVFPSglRegsThread(TAny*)
   155 	{
   156 	UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, (TAny*)CurrentCpu1, 0);
   157 	TestVFPSglRegs(KMaxTInt);
   158 	return 0;
   159 	}
   160 
   161 void TestVFPDblRegs(TInt aIter=2)
   162 	{
   163 	TInt i;
   164 	TInt j;
   165 	TInt nDblRegs=0; 
   166 
   167 	switch(ArchVersion)
   168 		{ 
   169 		case ARCH_VERSION_VFPV2:
   170 			{
   171 			nDblRegs = 16;
   172 			break;
   173 			}
   174 		case ARCH_VERSION_VFPV3_SUBARCH_V2:
   175 		case ARCH_VERSION_VFPV3_SUBARCH_NULL:
   176 		case ARCH_VERSION_VFPV3_SUBARCH_V3:
   177 			{
   178 			TInt vfpType;
   179 			TInt ret = HAL::Get(HALData::EHardwareFloatingPoint, vfpType);
   180 			if (ret == KErrNone && vfpType == EFpTypeVFPv3)
   181 				nDblRegs = 32;
   182 			else
   183 				nDblRegs = 16;
   184 			break;
   185 				}
   186 		case 0:
   187 		default:
   188 			__ASSERT_ALWAYS(0, User::Panic(_L("Bad VFP version"),__LINE__)); 
   189 		} 
   190 
   191 
   192 	for (i=0; i<aIter; ++i)
   193 		{
   194 		for (j=0; j<nDblRegs; ++j)
   195 			{
   196 			TInt64 f = i + j + KMaxTUint;
   197 			Vfp::SetDReg(f, j);
   198 			}
   199 		for (j=0; j<nDblRegs; ++j)
   200 			{
   201 			TInt64 f = i + j + KMaxTUint;
   202 			TInt64 g = Vfp::DRegInt(j);
   203 			test(f == g);
   204 			}
   205 		}
   206 	}
   207 
   208 TInt TestVFPDblRegsThread(TAny*)
   209 	{
   210 	UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, (TAny*)CurrentCpu2, 0);
   211 	TestVFPDblRegs(KMaxTInt);
   212 	return 0;
   213 	}
   214 
   215 void TestVFPContextSave()
   216 	{
   217 	for (CurrentCpu2 = 0; CurrentCpu2 < CPUs; CurrentCpu2++)
   218 		{
   219 		for (CurrentCpu1 = 0; CurrentCpu1 < CPUs; CurrentCpu1++)
   220 			{
   221 			TThreadFunction tf1 = &TestVFPSglRegsThread;
   222 			TThreadFunction tf2 = Double ? &TestVFPDblRegsThread : &TestVFPSglRegsThread;
   223 			RThread t1, t2;
   224 			TInt r;
   225 			r = t1.Create(KNullDesC, tf1, 0x1000, 0x1000, 0x1000, NULL);
   226 			test(r==KErrNone);
   227 			t1.SetPriority(EPriorityLess);
   228 			r = t2.Create(KNullDesC, tf2, 0x1000, 0x1000, 0x1000, NULL);
   229 			test(r==KErrNone);
   230 			t2.SetPriority(EPriorityLess);
   231 			TRequestStatus s1, s2;
   232 			t1.Logon(s1);
   233 			t2.Logon(s2);
   234 			t1.Resume();
   235 			t2.Resume();
   236 			test.Printf(_L("Let threads run concurrently (cores %d and %d)\n"), CurrentCpu1, CurrentCpu2);
   237 			User::After(20*1000*1000/CPUs);
   238 
   239 			test.Printf(_L("Kill threads\n"));
   240 			t1.Kill(0);
   241 			t2.Kill(0);
   242 			User::WaitForRequest(s1);
   243 			User::WaitForRequest(s2);
   244 			test(t1.ExitType()==EExitKill && t1.ExitReason()==KErrNone);
   245 			test(t2.ExitType()==EExitKill && t2.ExitReason()==KErrNone);
   246 			CLOSE_AND_WAIT(t1);
   247 			CLOSE_AND_WAIT(t2);
   248 			}
   249 		}
   250 	}
   251 
   252 TInt TestBounceCtxThread1(TAny*)
   253 	{
   254 	UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, (TAny*)Max(CPUs-1, 0), 0);
   255 	for(TInt iter=0; iter<KMaxTInt; ++iter)
   256 		{
   257 		Vfp::SReg(0);
   258 		}
   259 	return KErrNone;
   260 	}
   261 
   262 TInt TestBounceCtxThread2(TAny*)
   263 	{
   264 	UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, (TAny*)Max(CPUs-1, 0), 0);
   265 	TInt start_rep = 0x00800000; // smallest single precision normal number, 1*2^-126
   266 	TReal32 start = *(TReal32*)&start_rep;
   267 	for(TInt iter=0; iter<KMaxTInt; ++iter)
   268 		{
   269 		Vfp::SetSReg(start, 1);
   270 		Vfp::SetSReg(2.0f, 2);
   271 		Vfp::DivS();
   272 		Vfp::CpyS0(1);
   273 		Vfp::MulS();
   274 		Vfp::CpyS0(1);
   275 		TReal32 end = Vfp::SReg(0);
   276 		TInt end_rep = *(TInt*)&end;
   277 		if (start_rep != end_rep)
   278 			{
   279 			RDebug::Printf("mismatch in iter %d, start %08x end %08x\n", iter, start_rep, end_rep);
   280 			test(0);
   281 			}
   282 		}
   283 	return KErrNone;
   284 	}
   285 
   286 void DoBounceContextSwitchTests()
   287 	{
   288 	UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, 0, 0);
   289 	RThread t1, t2;
   290 	TInt r;
   291 	r = t1.Create(KNullDesC, &TestBounceCtxThread1, 0x1000, 0x1000, 0x1000, NULL);
   292 	test(r==KErrNone);
   293 	t1.SetPriority(EPriorityLess);
   294 	r = t2.Create(KNullDesC, &TestBounceCtxThread2, 0x1000, 0x1000, 0x1000, NULL);
   295 	test(r==KErrNone);
   296 	t2.SetPriority(EPriorityLess);
   297 	TRequestStatus s1, s2;
   298 	t1.Logon(s1);
   299 	t2.Logon(s2);
   300 	t1.Resume();
   301 	t2.Resume();
   302 	test.Printf(_L("Let threads run concurrently ...\n"));
   303 	User::After(20*1000*1000);
   304 
   305 	test.Printf(_L("Kill threads\n"));
   306 	t1.Kill(0);
   307 	t2.Kill(0);
   308 	User::WaitForRequest(s1);
   309 	User::WaitForRequest(s2);
   310 	test(t1.ExitType()==EExitKill && t1.ExitReason()==KErrNone);
   311 	test(t2.ExitType()==EExitKill && t2.ExitReason()==KErrNone);
   312 	CLOSE_AND_WAIT(t1);
   313 	CLOSE_AND_WAIT(t2);
   314 	}
   315 
   316 void TestAbsS(const TReal32* a, TReal32* r)
   317 	{
   318 	Vfp::SetSReg(a[0], 1);
   319 	Vfp::AbsS();
   320 	r[0] = Vfp::SReg(0);
   321 	r[1] = Abs(a[0]);
   322 	}
   323 
   324 void TestAddS(const TReal32* a, TReal32* r)
   325 	{
   326 	Vfp::SetSReg(a[0], 1);
   327 	Vfp::SetSReg(a[1], 2);
   328 	Vfp::AddS();
   329 	r[0] = Vfp::SReg(0);
   330 	r[1] = a[0] + a[1];
   331 	}
   332 
   333 void TestDivS(const TReal32* a, TReal32* r)
   334 	{
   335 	Vfp::SetSReg(a[0], 1);
   336 	Vfp::SetSReg(a[1], 2);
   337 	Vfp::DivS();
   338 	r[0] = Vfp::SReg(0);
   339 	TRealX x(a[0]);
   340 	TRealX y(a[1]);
   341 	x.DivEq(y);
   342 	r[1] = (TReal32)x;
   343 	}
   344 
   345 void TestMacS(const TReal32* a, TReal32* r)
   346 	{
   347 	Vfp::SetSReg(a[0], 0);
   348 	Vfp::SetSReg(a[1], 1);
   349 	Vfp::SetSReg(a[2], 2);
   350 	Vfp::MacS();
   351 	r[0] = Vfp::SReg(0);
   352 	r[1] = a[0] + a[1] * a[2];
   353 	}
   354 
   355 void TestMscS(const TReal32* a, TReal32* r)
   356 	{
   357 	Vfp::SetSReg(a[0], 0);
   358 	Vfp::SetSReg(a[1], 1);
   359 	Vfp::SetSReg(a[2], 2);
   360 	Vfp::MscS();
   361 	r[0] = Vfp::SReg(0);
   362 	r[1] = a[1] * a[2] - a[0];
   363 	}
   364 
   365 void TestMulS(const TReal32* a, TReal32* r)
   366 	{
   367 	Vfp::SetSReg(a[0], 1);
   368 	Vfp::SetSReg(a[1], 2);
   369 	Vfp::MulS();
   370 	r[0] = Vfp::SReg(0);
   371 	TRealX x(a[0]);
   372 	TRealX y(a[1]);
   373 	x.MultEq(y);
   374 	r[1] = (TReal32)x;
   375 	}
   376 
   377 void TestNegS(const TReal32* a, TReal32* r)
   378 	{
   379 	Vfp::SetSReg(a[0], 1);
   380 	Vfp::NegS();
   381 	r[0] = Vfp::SReg(0);
   382 	r[1] = -a[0];
   383 	}
   384 
   385 void TestNMacS(const TReal32* a, TReal32* r)
   386 	{
   387 	Vfp::SetSReg(a[0], 0);
   388 	Vfp::SetSReg(a[1], 1);
   389 	Vfp::SetSReg(a[2], 2);
   390 	Vfp::NMacS();
   391 	r[0] = Vfp::SReg(0);
   392 	r[1] = a[0] - a[1] * a[2];
   393 	}
   394 
   395 void TestNMscS(const TReal32* a, TReal32* r)
   396 	{
   397 	Vfp::SetSReg(a[0], 0);
   398 	Vfp::SetSReg(a[1], 1);
   399 	Vfp::SetSReg(a[2], 2);
   400 	Vfp::NMscS();
   401 	r[0] = Vfp::SReg(0);
   402 	r[1] = -a[1] * a[2] - a[0];
   403 	}
   404 
   405 void TestNMulS(const TReal32* a, TReal32* r)
   406 	{
   407 	Vfp::SetSReg(a[0], 1);
   408 	Vfp::SetSReg(a[1], 2);
   409 	Vfp::NMulS();
   410 	r[0] = Vfp::SReg(0);
   411 	TRealX x(a[0]);
   412 	TRealX y(a[1]);
   413 	x.MultEq(y);
   414 	r[1] = -(TReal32)x;
   415 	}
   416 
   417 void TestSqrtS(const TReal32* a, TReal32* r)
   418 	{
   419 	Vfp::SetSReg(a[0], 1);
   420 	Vfp::SqrtS();
   421 	r[0] = Vfp::SReg(0);
   422 	TReal x = a[0];
   423 	TReal y;
   424 	Math::Sqrt(y, x);
   425 	r[1] = (TReal32)y;
   426 	}
   427 
   428 void TestSubS(const TReal32* a, TReal32* r)
   429 	{
   430 	Vfp::SetSReg(a[0], 1);
   431 	Vfp::SetSReg(a[1], 2);
   432 	Vfp::SubS();
   433 	r[0] = Vfp::SReg(0);
   434 	r[1] = a[0] - a[1];
   435 	}
   436 
   437 
   438 
   439 void TestAbsD(const TReal64* a, TReal64* r)
   440 	{
   441 	Vfp::SetDReg(a[0], 1);
   442 	Vfp::AbsD();
   443 	r[0] = Vfp::DReg(0);
   444 	r[1] = Abs(a[0]);
   445 	}
   446 
   447 void TestAddD(const TReal64* a, TReal64* r)
   448 	{
   449 	Vfp::SetDReg(a[0], 1);
   450 	Vfp::SetDReg(a[1], 2);
   451 	Vfp::AddD();
   452 	r[0] = Vfp::DReg(0);
   453 	r[1] = a[0] + a[1];
   454 	}
   455 
   456 void TestDivD(const TReal64* a, TReal64* r)
   457 	{
   458 	Vfp::SetDReg(a[0], 1);
   459 	Vfp::SetDReg(a[1], 2);
   460 	Vfp::DivD();
   461 	r[0] = Vfp::DReg(0);
   462 	TRealX x(a[0]);
   463 	TRealX y(a[1]);
   464 	x.DivEq(y);
   465 	r[1] = (TReal64)x;
   466 	}
   467 
   468 void TestMacD(const TReal64* a, TReal64* r)
   469 	{
   470 	Vfp::SetDReg(a[0], 0);
   471 	Vfp::SetDReg(a[1], 1);
   472 	Vfp::SetDReg(a[2], 2);
   473 	Vfp::MacD();
   474 	r[0] = Vfp::DReg(0);
   475 	r[1] = a[0] + a[1] * a[2];
   476 	}
   477 
   478 void TestMscD(const TReal64* a, TReal64* r)
   479 	{
   480 	Vfp::SetDReg(a[0], 0);
   481 	Vfp::SetDReg(a[1], 1);
   482 	Vfp::SetDReg(a[2], 2);
   483 	Vfp::MscD();
   484 	r[0] = Vfp::DReg(0);
   485 	r[1] = a[1] * a[2] - a[0];
   486 	}
   487 
   488 void TestMulD(const TReal64* a, TReal64* r)
   489 	{
   490 	Vfp::SetDReg(a[0], 1);
   491 	Vfp::SetDReg(a[1], 2);
   492 	Vfp::MulD();
   493 	r[0] = Vfp::DReg(0);
   494 	TRealX x(a[0]);
   495 	TRealX y(a[1]);
   496 	x.MultEq(y);
   497 	r[1] = (TReal64)x;
   498 	}
   499 
   500 void TestNegD(const TReal64* a, TReal64* r)
   501 	{
   502 	Vfp::SetDReg(a[0], 1);
   503 	Vfp::NegD();
   504 	r[0] = Vfp::DReg(0);
   505 	r[1] = -a[0];
   506 	}
   507 
   508 void TestNMacD(const TReal64* a, TReal64* r)
   509 	{
   510 	Vfp::SetDReg(a[0], 0);
   511 	Vfp::SetDReg(a[1], 1);
   512 	Vfp::SetDReg(a[2], 2);
   513 	Vfp::NMacD();
   514 	r[0] = Vfp::DReg(0);
   515 	r[1] = a[0] - a[1] * a[2];
   516 	}
   517 
   518 void TestNMscD(const TReal64* a, TReal64* r)
   519 	{
   520 	Vfp::SetDReg(a[0], 0);
   521 	Vfp::SetDReg(a[1], 1);
   522 	Vfp::SetDReg(a[2], 2);
   523 	Vfp::NMscD();
   524 	r[0] = Vfp::DReg(0);
   525 	r[1] = -a[1] * a[2] - a[0];
   526 	}
   527 
   528 void TestNMulD(const TReal64* a, TReal64* r)
   529 	{
   530 	Vfp::SetDReg(a[0], 1);
   531 	Vfp::SetDReg(a[1], 2);
   532 	Vfp::NMulD();
   533 	r[0] = Vfp::DReg(0);
   534 	TRealX x(a[0]);
   535 	TRealX y(a[1]);
   536 	x.MultEq(y);
   537 	r[1] = -(TReal64)x;
   538 	}
   539 
   540 void TestSqrtD(const TReal64* a, TReal64* r)
   541 	{
   542 	Vfp::SetDReg(a[0], 1);
   543 	Vfp::SqrtD();
   544 	r[0] = Vfp::DReg(0);
   545 	TReal x = a[0];
   546 	TReal y;
   547 	Math::Sqrt(y, x);
   548 	r[1] = (TReal64)y;
   549 	}
   550 
   551 void TestSubD(const TReal64* a, TReal64* r)
   552 	{
   553 	Vfp::SetDReg(a[0], 1);
   554 	Vfp::SetDReg(a[1], 2);
   555 	Vfp::SubD();
   556 	r[0] = Vfp::DReg(0);
   557 	r[1] = a[0] - a[1];
   558 	}
   559 
   560 #define DO_SGL_TEST1(name, func, a1)			DoSglTest(name, __LINE__, func, a1)
   561 #define DO_SGL_TEST2(name, func, a1, a2)		DoSglTest(name, __LINE__, func, a1, a2)
   562 #define DO_SGL_TEST3(name, func, a1, a2, a3)	DoSglTest(name, __LINE__, func, a1, a2, a3)
   563 void DoSglTest(const char* aName, TInt aLine, TSglTest aFunc, TReal32 a1, TReal32 a2=0.0f, TReal32 a3=0.0f)
   564 	{
   565 	TPtrC8 name8((const TText8*)aName);
   566 	TBuf<128> name16;
   567 	name16.Copy(name8);
   568 	test.Printf(_L("%S(%g,%g,%g)\n"), &name16, a1, a2, a3);
   569 	TReal32 args[3] = {a1, a2, a3};
   570 	TReal32 results[2];
   571 	(*aFunc)(args, results);
   572 	if (IEEEMode)
   573 		{
   574 		if (*((TUint32*)&(results[0])) == *((TUint32*)&(results[1])))
   575 			return;
   576 		}
   577 	else
   578 		{
   579 		if (results[0] == results[1])
   580 			return;
   581 		}
   582 	const TUint32* pa = (const TUint32*)args;
   583 	const TUint32* pr = (const TUint32*)results;
   584 	test.Printf(_L("a1=%08x a2=%08x a3=%08x\n"), pa[0], pa[1], pa[2]);
   585 	test.Printf(_L("actual result = %08x (%g)\nexpected result = %08x (%g)\n"), pr[0], results[0], pr[1], results[1]);
   586 	test.Printf(_L("Test at line %d failed\n"), aLine);
   587 	test(0);
   588 	}
   589 
   590 void DoSglTests()
   591 	{
   592 	// ABS
   593 	DO_SGL_TEST1("ABS", &TestAbsS, 1.0f);
   594 	DO_SGL_TEST1("ABS", &TestAbsS, -1.0f);
   595 	DO_SGL_TEST1("ABS", &TestAbsS, 0.0f);
   596 	DO_SGL_TEST1("ABS", &TestAbsS, -3.1415926536f);
   597 
   598 	// NEG
   599 	DO_SGL_TEST1("NEG", &TestNegS, 1.0f);
   600 	DO_SGL_TEST1("NEG", &TestNegS, -1.0f);
   601 	DO_SGL_TEST1("NEG", &TestNegS, 0.0f);
   602 	DO_SGL_TEST1("NEG", &TestNegS, -3.1415926536f);
   603 
   604 	// ADD
   605 	DO_SGL_TEST2("ADD", &TestAddS, 0.0f, 0.0f);
   606 	DO_SGL_TEST2("ADD", &TestAddS, 0.0f, 1.0f);
   607 	DO_SGL_TEST2("ADD", &TestAddS, -1.0f, 1.0f);
   608 	DO_SGL_TEST2("ADD", &TestAddS, 1.0f, 2.5f);
   609 	DO_SGL_TEST2("ADD", &TestAddS, 1.0f, 6.022045e23f);
   610 	DO_SGL_TEST2("ADD", &TestAddS, -7.3890561f, 1.414213562f);
   611 	DO_SGL_TEST2("ADD", &TestAddS, -7.3890561f, -1.414213562f);
   612 
   613 	// SUB
   614 	DO_SGL_TEST2("SUB", &TestSubS, 0.0f, 0.0f);
   615 	DO_SGL_TEST2("SUB", &TestSubS, 0.0f, 1.0f);
   616 	DO_SGL_TEST2("SUB", &TestSubS, 1.0f, 1.0f);
   617 	DO_SGL_TEST2("SUB", &TestSubS, 1.0f, 2.5f);
   618 	DO_SGL_TEST2("SUB", &TestSubS, 91.0f, 2.5f);
   619 	DO_SGL_TEST2("SUB", &TestSubS, 1.0f, 6.022045e23f);
   620 	DO_SGL_TEST2("SUB", &TestSubS, -7.3890561f, 1.414213562f);
   621 	DO_SGL_TEST2("SUB", &TestSubS, -7.3890561f, -1.414213562f);
   622 
   623 	// MUL
   624 	DO_SGL_TEST2("MUL", &TestMulS, 0.0f, 0.0f);
   625 	DO_SGL_TEST2("MUL", &TestMulS, 1.0f, 0.0f);
   626 	DO_SGL_TEST2("MUL", &TestMulS, 0.0f, 1.0f);
   627 	DO_SGL_TEST2("MUL", &TestMulS, 2.5f, 6.5f);
   628 	DO_SGL_TEST2("MUL", &TestMulS, -39.6f, 19.72f);
   629 	DO_SGL_TEST2("MUL", &TestMulS, -10.1f, -20.1f);
   630 	DO_SGL_TEST2("MUL", &TestMulS, 1e20f, 1e20f);
   631 	DO_SGL_TEST2("MUL", &TestMulS, 1e-30f, 1e-30f);
   632 
   633 	// DIV
   634 	DO_SGL_TEST2("DIV", &TestDivS, 0.0f, 1.0f);
   635 	DO_SGL_TEST2("DIV", &TestDivS, 1.0f, 5.0f);
   636 	DO_SGL_TEST2("DIV", &TestDivS, 1.0f, -5.0f);
   637 	DO_SGL_TEST2("DIV", &TestDivS, -1.0f, 5.0f);
   638 	DO_SGL_TEST2("DIV", &TestDivS, -1.0f, -5.0f);
   639 	DO_SGL_TEST2("DIV", &TestDivS, 7.3890561f, 2.7182818f);
   640 	DO_SGL_TEST2("DIV", &TestDivS, 1e20f, 1e-20f);
   641 	DO_SGL_TEST2("DIV", &TestDivS, 1e-30f, 1e30f);
   642 
   643 	// NMUL
   644 	DO_SGL_TEST2("NMUL", &TestNMulS, 0.0f, 0.0f);
   645 	DO_SGL_TEST2("NMUL", &TestNMulS, 1.0f, 0.0f);
   646 	DO_SGL_TEST2("NMUL", &TestNMulS, 0.0f, 1.0f);
   647 	DO_SGL_TEST2("NMUL", &TestNMulS, 2.5f, 6.5f);
   648 	DO_SGL_TEST2("NMUL", &TestNMulS, -39.6f, 19.72f);
   649 	DO_SGL_TEST2("NMUL", &TestNMulS, -10.1f, -20.1f);
   650 	DO_SGL_TEST2("NMUL", &TestNMulS, 1e20f, 1e20f);
   651 	DO_SGL_TEST2("NMUL", &TestNMulS, 1e-30f, 1e-30f);
   652 
   653 	// SQRT
   654 	DO_SGL_TEST1("SQRT", &TestSqrtS, 0.0f);
   655 	DO_SGL_TEST1("SQRT", &TestSqrtS, 1.0f);
   656 	DO_SGL_TEST1("SQRT", &TestSqrtS, 2.0f);
   657 	DO_SGL_TEST1("SQRT", &TestSqrtS, 3.0f);
   658 	DO_SGL_TEST1("SQRT", &TestSqrtS, 9096256.0f);
   659 	DO_SGL_TEST1("SQRT", &TestSqrtS, 1e36f);
   660 	DO_SGL_TEST1("SQRT", &TestSqrtS, 1e-36f);
   661 
   662 	// MAC
   663 	DO_SGL_TEST3("MAC", &TestMacS, 0.0f, 0.0f, 0.0f);
   664 	DO_SGL_TEST3("MAC", &TestMacS, 0.0f, 1.0f, 0.0f);
   665 	DO_SGL_TEST3("MAC", &TestMacS, 0.0f, 1.0f, 1.0f);
   666 	DO_SGL_TEST3("MAC", &TestMacS, -1.0f, 1.0f, 1.0f);
   667 	DO_SGL_TEST3("MAC", &TestMacS, 0.8f, 0.1f, 8.0f);
   668 	DO_SGL_TEST3("MAC", &TestMacS, 0.8f, -0.1f, 8.0f);
   669 	DO_SGL_TEST3("MAC", &TestMacS, -0.8f, -0.1f, -8.0f);
   670 	DO_SGL_TEST3("MAC", &TestMacS, 0.8f, 0.3333333333f, 3.1415926536f);
   671 
   672 	// MSC
   673 	DO_SGL_TEST3("MSC", &TestMscS, 0.0f, 0.0f, 0.0f);
   674 	DO_SGL_TEST3("MSC", &TestMscS, 0.0f, 1.0f, 0.0f);
   675 	DO_SGL_TEST3("MSC", &TestMscS, 0.0f, 1.0f, 1.0f);
   676 	DO_SGL_TEST3("MSC", &TestMscS, -1.0f, 1.0f, 1.0f);
   677 	DO_SGL_TEST3("MSC", &TestMscS, 0.8f, 0.1f, 8.0f);
   678 	DO_SGL_TEST3("MSC", &TestMscS, 0.8f, -0.1f, 8.0f);
   679 	DO_SGL_TEST3("MSC", &TestMscS, -0.8f, -0.1f, -8.0f);
   680 	DO_SGL_TEST3("MSC", &TestMscS, 0.8f, 0.3333333333f, 3.1415926536f);
   681 
   682 	// NMAC
   683 	DO_SGL_TEST3("NMAC", &TestNMacS, 0.0f, 0.0f, 0.0f);
   684 	DO_SGL_TEST3("NMAC", &TestNMacS, 0.0f, 1.0f, 0.0f);
   685 	DO_SGL_TEST3("NMAC", &TestNMacS, 0.0f, 1.0f, 1.0f);
   686 	DO_SGL_TEST3("NMAC", &TestNMacS, -1.0f, 1.0f, 1.0f);
   687 	DO_SGL_TEST3("NMAC", &TestNMacS, 0.8f, 0.1f, 8.0f);
   688 	DO_SGL_TEST3("NMAC", &TestNMacS, 0.8f, -0.1f, 8.0f);
   689 	DO_SGL_TEST3("NMAC", &TestNMacS, -0.8f, -0.1f, -8.0f);
   690 	DO_SGL_TEST3("NMAC", &TestNMacS, 0.8f, 0.3333333333f, 3.1415926536f);
   691 
   692 	// NMSC
   693 	DO_SGL_TEST3("NMSC", &TestNMscS, 0.0f, 0.0f, 0.0f);
   694 	DO_SGL_TEST3("NMSC", &TestNMscS, 0.0f, 1.0f, 0.0f);
   695 	DO_SGL_TEST3("NMSC", &TestNMscS, 0.0f, 1.0f, 1.0f);
   696 	DO_SGL_TEST3("NMSC", &TestNMscS, -1.0f, 1.0f, 1.0f);
   697 	DO_SGL_TEST3("NMSC", &TestNMscS, 0.8f, 0.1f, 8.0f);
   698 	DO_SGL_TEST3("NMSC", &TestNMscS, 0.8f, -0.1f, 8.0f);
   699 	DO_SGL_TEST3("NMSC", &TestNMscS, -0.8f, -0.1f, -8.0f);
   700 	DO_SGL_TEST3("NMSC", &TestNMscS, 0.8f, 0.3333333333f, 3.1415926536f);
   701 	}
   702 
   703 #define DO_DBL_TEST1(name, func, a1)			DoDblTest(name, __LINE__, func, a1)
   704 #define DO_DBL_TEST2(name, func, a1, a2)		DoDblTest(name, __LINE__, func, a1, a2)
   705 #define DO_DBL_TEST3(name, func, a1, a2, a3)	DoDblTest(name, __LINE__, func, a1, a2, a3)
   706 void DoDblTest(const char* aName, TInt aLine, TDblTest aFunc, TReal64 a1, TReal64 a2=0.0, TReal64 a3=0.0)
   707 	{
   708 	TPtrC8 name8((const TText8*)aName);
   709 	TBuf<128> name16;
   710 	name16.Copy(name8);
   711 	test.Printf(_L("%S(%g,%g,%g)\n"), &name16, a1, a2, a3);
   712 	TReal64 args[3] = {a1, a2, a3};
   713 	TReal64 results[2];
   714 	SDouble sargs[3];
   715 	sargs[0] = a1;
   716 	sargs[1] = a2;
   717 	sargs[2] = a3;
   718 	(*aFunc)(args, results);
   719 	if (IEEEMode)
   720 		{
   721 		if (*((TUint64*)&(results[0])) == *((TUint64*)&(results[1])))
   722 			return;
   723 		}
   724 	else
   725 		{
   726 		if (results[0] == results[1])
   727 			return;
   728 		}
   729 	SDouble sres[3];
   730 	sres[0] = results[0];
   731 	sres[1] = results[1];
   732 	test.Printf(_L("a1=%08x %08x\na2=%08x %08x\na3=%08x %08x\n"), sargs[0].iData[1], sargs[0].iData[0],
   733 								sargs[1].iData[1], sargs[1].iData[0], sargs[2].iData[1], sargs[2].iData[0]);
   734 	test.Printf(_L("actual result = %08x %08x (%g)\nexpected result = %08x %08x (%g)\n"),
   735 			sres[0].iData[1], sres[0].iData[0], results[0], sres[1].iData[1], sres[1].iData[0], results[1]);
   736 	test.Printf(_L("Test at line %d failed\n"), aLine);
   737 	test(0);
   738 	}
   739 
   740 void DoDblTests()
   741 	{
   742 	// ABS
   743 	DO_DBL_TEST1("ABS", &TestAbsD, 1.0);
   744 	DO_DBL_TEST1("ABS", &TestAbsD, -1.0);
   745 	DO_DBL_TEST1("ABS", &TestAbsD, 0.0);
   746 	DO_DBL_TEST1("ABS", &TestAbsD, -3.1415926536);
   747 
   748 	// NEG
   749 	DO_DBL_TEST1("NEG", &TestNegD, 1.0);
   750 	DO_DBL_TEST1("NEG", &TestNegD, -1.0);
   751 	DO_DBL_TEST1("NEG", &TestNegD, 0.0);
   752 	DO_DBL_TEST1("NEG", &TestNegD, -3.1415926536);
   753 
   754 	// ADD
   755 	DO_DBL_TEST2("ADD", &TestAddD, 0.0, 0.0);
   756 	DO_DBL_TEST2("ADD", &TestAddD, 0.0, 1.0);
   757 	DO_DBL_TEST2("ADD", &TestAddD, -1.0, 1.0);
   758 	DO_DBL_TEST2("ADD", &TestAddD, 1.0, 2.5);
   759 	DO_DBL_TEST2("ADD", &TestAddD, 1.0, 6.022045e23);
   760 	DO_DBL_TEST2("ADD", &TestAddD, -7.3890561, 1.414213562);
   761 	DO_DBL_TEST2("ADD", &TestAddD, -7.3890561, -1.414213562);
   762 
   763 	// SUB
   764 	DO_DBL_TEST2("SUB", &TestSubD, 0.0, 0.0);
   765 	DO_DBL_TEST2("SUB", &TestSubD, 0.0, 1.0);
   766 	DO_DBL_TEST2("SUB", &TestSubD, 1.0, 1.0);
   767 	DO_DBL_TEST2("SUB", &TestSubD, 1.0, 2.5);
   768 	DO_DBL_TEST2("SUB", &TestSubD, 91.0, 2.5);
   769 	DO_DBL_TEST2("SUB", &TestSubD, 1.0, 6.022045e23);
   770 	DO_DBL_TEST2("SUB", &TestSubD, -7.3890561, 1.414213562);
   771 	DO_DBL_TEST2("SUB", &TestSubD, -7.3890561, -1.414213562);
   772 
   773 	// MUL
   774 	DO_DBL_TEST2("MUL", &TestMulD, 0.0, 0.0);
   775 	DO_DBL_TEST2("MUL", &TestMulD, 1.0, 0.0);
   776 	DO_DBL_TEST2("MUL", &TestMulD, 0.0, 1.0);
   777 	DO_DBL_TEST2("MUL", &TestMulD, 2.5, 6.5);
   778 	DO_DBL_TEST2("MUL", &TestMulD, -39.6, 19.72);
   779 	DO_DBL_TEST2("MUL", &TestMulD, -10.1, -20.1);
   780 	DO_DBL_TEST2("MUL", &TestMulD, 1e20, 1e20);
   781 	DO_DBL_TEST2("MUL", &TestMulD, 1e100, 1e300);
   782 	DO_DBL_TEST2("MUL", &TestMulD, 1e-20, 1e-20);
   783 	DO_DBL_TEST2("MUL", &TestMulD, 1e-200, 1e-300);
   784 
   785 	// DIV
   786 	DO_DBL_TEST2("DIV", &TestDivD, 0.0, 1.0);
   787 	DO_DBL_TEST2("DIV", &TestDivD, 1.0, 5.0);
   788 	DO_DBL_TEST2("DIV", &TestDivD, 1.0, -5.0);
   789 	DO_DBL_TEST2("DIV", &TestDivD, -1.0, 5.0);
   790 	DO_DBL_TEST2("DIV", &TestDivD, -1.0, -5.0);
   791 	DO_DBL_TEST2("DIV", &TestDivD, 7.3890561, 2.7182818);
   792 	DO_DBL_TEST2("DIV", &TestDivD, 1e20, 1e-20);
   793 	DO_DBL_TEST2("DIV", &TestDivD, 1e-20, 1e20);
   794 	DO_DBL_TEST2("DIV", &TestDivD, 1e-50, 1e300);
   795 
   796 	// NMUL
   797 	DO_DBL_TEST2("NMUL", &TestNMulD, 0.0, 0.0);
   798 	DO_DBL_TEST2("NMUL", &TestNMulD, 1.0, 0.0);
   799 	DO_DBL_TEST2("NMUL", &TestNMulD, 0.0, 1.0);
   800 	DO_DBL_TEST2("NMUL", &TestNMulD, 2.5, 6.5);
   801 	DO_DBL_TEST2("NMUL", &TestNMulD, -39.6, 19.72);
   802 	DO_DBL_TEST2("NMUL", &TestNMulD, -10.1, -20.1);
   803 	DO_DBL_TEST2("NMUL", &TestNMulD, 1e20, 1e20);
   804 	DO_DBL_TEST2("NMUL", &TestNMulD, 1e100, 1e300);
   805 	DO_DBL_TEST2("NMUL", &TestNMulD, 1e-20, 1e-20);
   806 	DO_DBL_TEST2("NMUL", &TestNMulD, 1e-200, 1e-300);
   807 
   808 	// SQRT
   809 	DO_DBL_TEST1("SQRT", &TestSqrtD, 0.0);
   810 	DO_DBL_TEST1("SQRT", &TestSqrtD, 1.0);
   811 	DO_DBL_TEST1("SQRT", &TestSqrtD, 2.0);
   812 	DO_DBL_TEST1("SQRT", &TestSqrtD, 3.0);
   813 	DO_DBL_TEST1("SQRT", &TestSqrtD, 9096256.0);
   814 	DO_DBL_TEST1("SQRT", &TestSqrtD, 1e36);
   815 	DO_DBL_TEST1("SQRT", &TestSqrtD, 1e-36);
   816 
   817 	// MAC
   818 	DO_DBL_TEST3("MAC", &TestMacD, 0.0, 0.0, 0.0);
   819 	DO_DBL_TEST3("MAC", &TestMacD, 0.0, 1.0, 0.0);
   820 	DO_DBL_TEST3("MAC", &TestMacD, 0.0, 1.0, 1.0);
   821 	DO_DBL_TEST3("MAC", &TestMacD, -1.0, 1.0, 1.0);
   822 	DO_DBL_TEST3("MAC", &TestMacD, 0.8, 0.1, 8.0);
   823 	DO_DBL_TEST3("MAC", &TestMacD, 0.8, -0.1, 8.0);
   824 	DO_DBL_TEST3("MAC", &TestMacD, -0.8, -0.1, -8.0);
   825 	DO_DBL_TEST3("MAC", &TestMacD, 0.8, 0.3333333333, 3.1415926536);
   826 
   827 	// MSC
   828 	DO_DBL_TEST3("MSC", &TestMscD, 0.0, 0.0, 0.0);
   829 	DO_DBL_TEST3("MSC", &TestMscD, 0.0, 1.0, 0.0);
   830 	DO_DBL_TEST3("MSC", &TestMscD, 0.0, 1.0, 1.0);
   831 	DO_DBL_TEST3("MSC", &TestMscD, -1.0, 1.0, 1.0);
   832 	DO_DBL_TEST3("MSC", &TestMscD, 0.8, 0.1, 8.0);
   833 	DO_DBL_TEST3("MSC", &TestMscD, 0.8, -0.1, 8.0);
   834 	DO_DBL_TEST3("MSC", &TestMscD, -0.8, -0.1, -8.0);
   835 	DO_DBL_TEST3("MSC", &TestMscD, 0.8, 0.3333333333, 3.1415926536);
   836 
   837 	// NMAC
   838 	DO_DBL_TEST3("NMAC", &TestNMacD, 0.0, 0.0, 0.0);
   839 	DO_DBL_TEST3("NMAC", &TestNMacD, 0.0, 1.0, 0.0);
   840 	DO_DBL_TEST3("NMAC", &TestNMacD, 0.0, 1.0, 1.0);
   841 	DO_DBL_TEST3("NMAC", &TestNMacD, -1.0, 1.0, 1.0);
   842 	DO_DBL_TEST3("NMAC", &TestNMacD, 0.8, 0.1, 8.0);
   843 	DO_DBL_TEST3("NMAC", &TestNMacD, 0.8, -0.1, 8.0);
   844 	DO_DBL_TEST3("NMAC", &TestNMacD, -0.8, -0.1, -8.0);
   845 	DO_DBL_TEST3("NMAC", &TestNMacD, 0.8, 0.3333333333, 3.1415926536);
   846 
   847 	// NMSC
   848 	DO_DBL_TEST3("NMSC", &TestNMscD, 0.0, 0.0, 0.0);
   849 	DO_DBL_TEST3("NMSC", &TestNMscD, 0.0, 1.0, 0.0);
   850 	DO_DBL_TEST3("NMSC", &TestNMscD, 0.0, 1.0, 1.0);
   851 	DO_DBL_TEST3("NMSC", &TestNMscD, -1.0, 1.0, 1.0);
   852 	DO_DBL_TEST3("NMSC", &TestNMscD, 0.8, 0.1, 8.0);
   853 	DO_DBL_TEST3("NMSC", &TestNMscD, 0.8, -0.1, 8.0);
   854 	DO_DBL_TEST3("NMSC", &TestNMscD, -0.8, -0.1, -8.0);
   855 	DO_DBL_TEST3("NMSC", &TestNMscD, 0.8, 0.3333333333, 3.1415926536);
   856 	}
   857 
   858 void DoBounceTests()
   859 	{
   860 	test.Next(_L("Test denormal handling - single"));
   861 	DO_SGL_TEST2("ADD", &TestAddS, 1e-39f, 1e-39f);
   862 	test.Next(_L("Test potential underflow - single"));
   863 	DO_SGL_TEST2("MUL", &TestMulS, 3.162e-20f, 3.162e-20f);
   864 // fails on VFPv2 hardware. ARM's library should be fixed
   865 //	test.Next(_L("Test NaN input - single"));
   866 //	TReal32 aSingleNaN;
   867 //	*((TUint32*)&aSingleNaN) = 0x7F9ABCDE;
   868 //	Vfp::SetSReg(aSingleNaN, 1);
   869 //	Vfp::SetSReg(aSingleNaN, 2);
   870 //	Vfp::AddS();
   871 //	TReal32 aSingleResult = Vfp::SReg(0);
   872 //	test(*((TUint32*)&aSingleResult) == 0x7FDABCDE);
   873 
   874 	if (Double)
   875 		{
   876 		test.Next(_L("Test denormal handling - double"));
   877 		DO_DBL_TEST2("ADD", &TestAddD, 3.1234e-322, 3.1234e-322);
   878 		test.Next(_L("Test potential underflow - double"));
   879 		DO_DBL_TEST2("MUL", &TestMulD, 1.767e-161, 1.767e-161);
   880 // fails on VFPv2 hardware. ARM's library should be fixed
   881 //		test.Next(_L("Test NaN input - double"));
   882 //		TReal64 aDoubleNaN;
   883 //		*((TUint64*)&aDoubleNaN) = 0x7FF0123456789ABCll;
   884 //		Vfp::SetDReg(aDoubleNaN, 1);
   885 //		Vfp::SetDReg(aDoubleNaN, 2);
   886 //		Vfp::AddD();
   887 //		TReal64 aDoubleResult = Vfp::DReg(0);
   888 //		test(*((TUint64*)&aDoubleResult) == 0x7FF8123456789ABC);
   889 		}
   890 	}
   891 
   892 void DoRunFastTests()
   893 	{
   894 	test.Next(_L("Test flushing denormals to zero - single"));
   895 	Vfp::SetSReg(1e-39f, 1);
   896 	Vfp::SetSReg(1e-39f, 2);
   897 	Vfp::AddS();
   898 	test(Vfp::SReg(0)==0);
   899 
   900 	test.Next(_L("Test flushing underflow to zero - single"));
   901 	Vfp::SetSReg(3.162e-20f, 1);
   902 	Vfp::SetSReg(3.162e-20f, 2);
   903 	Vfp::MulS();
   904 	test(Vfp::SReg(0)==0);
   905 
   906 	test.Next(_L("Test default NaNs - single"));
   907 	TReal32 aSingleNaN;
   908 	*((TUint32*)&aSingleNaN) = 0x7F9ABCDE;
   909 	Vfp::SetSReg(aSingleNaN, 1);
   910 	Vfp::SetSReg(aSingleNaN, 2);
   911 	Vfp::AddS();
   912 	TReal32 aSingleResult = Vfp::SReg(0);
   913 	test(*((TUint32*)&aSingleResult) == 0x7FC00000);
   914 
   915 	if (Double)
   916 		{
   917 		test.Next(_L("Test flushing denormals to zero - double"));
   918 		Vfp::SetDReg(3.1234e-322, 1);
   919 		Vfp::SetDReg(3.1234e-322, 2);
   920 		Vfp::AddD();
   921 		test(Vfp::DReg(0)==0);
   922 	
   923 		test.Next(_L("Test flushing underflow to zero - double"));
   924 		Vfp::SetDReg(1.767e-161, 1);
   925 		Vfp::SetDReg(1.767e-161, 2);
   926 		Vfp::MulD();
   927 		test(Vfp::DReg(0)==0);
   928 
   929 		test.Next(_L("Test default NaNs - double"));
   930 		TReal64 aDoubleNaN;
   931 		*((TUint64*)&aDoubleNaN) = 0x7FF0123456789ABCll;
   932 		Vfp::SetDReg(aDoubleNaN, 1);
   933 		Vfp::SetDReg(aDoubleNaN, 2);
   934 		Vfp::AddD();
   935 		TReal64 aDoubleResult = Vfp::DReg(0);
   936 		test(*((TUint64*)&aDoubleResult) == 0x7FF8000000000000ll);
   937 		}
   938 	}
   939 
   940 void TestAddSResult(const TReal32 a, const TReal32 b, const TReal32 r)
   941 	{
   942 	Vfp::SetSReg(a, 1);
   943 	Vfp::SetSReg(b, 2);
   944 	Vfp::AddS();
   945 	test(Vfp::SReg(0) == r);
   946 	}
   947 
   948 void DoRoundingTests()
   949 	{
   950 	TFloatingPointMode fpmode = IEEEMode ? EFpModeIEEENoExceptions : EFpModeRunFast;
   951 	test.Next(_L("Check default rounding to nearest"));
   952 	test(User::SetFloatingPointMode(fpmode) == KErrNone);
   953 	test.Next(_L("Check nearest-downward"));
   954 	TestAddSResult(16777215, 0.49f, 16777215);
   955 	test.Next(_L("Check nearest-upward"));
   956 	TestAddSResult(16777215, 0.51f, 16777216);
   957 	test.Next(_L("Set rounding mode to toward-plus-infinity"));
   958 	test(User::SetFloatingPointMode(fpmode, EFpRoundToPlusInfinity) == KErrNone);
   959 	test.Next(_L("Check positive rounding goes upward"));
   960 	TestAddSResult(16777215, 0.49f, 16777216);
   961 	test.Next(_L("Check negative rounding goes upward"));
   962 	TestAddSResult(-16777215, -0.51f, -16777215);
   963 	test.Next(_L("Set rounding mode to toward-minus-infinity"));
   964 	test(User::SetFloatingPointMode(fpmode, EFpRoundToMinusInfinity) == KErrNone);
   965 	test.Next(_L("Check positive rounding goes downward"));
   966 	TestAddSResult(16777215, 0.51f, 16777215);
   967 	test.Next(_L("Check negative rounding goes downward"));
   968 	TestAddSResult(-16777215, -0.49f, -16777216);
   969 	test.Next(_L("Set rounding mode to toward-zero"));
   970 	test(User::SetFloatingPointMode(fpmode, EFpRoundToZero) == KErrNone);
   971 	test.Next(_L("Check positive rounding goes downward"));
   972 	TestAddSResult(16777215, 0.51f, 16777215);
   973 	test.Next(_L("Check negative rounding goes upward"));
   974 	TestAddSResult(-16777215, -0.51f, -16777215);
   975 	}
   976 
   977 TInt RunFastThread(TAny* /*unused*/)
   978 	{
   979 	Vfp::SetSReg(1e-39f, 1);
   980 	Vfp::SetSReg(1e-39f, 2);
   981 	Vfp::AddS();
   982 	return (Vfp::SReg(0)==0) ? KErrNone : KErrGeneral;
   983 	}
   984 
   985 TInt IEEECompliantThread(TAny* /*unused*/)
   986 	{
   987 	Vfp::SetSReg(1e-39f, 1);
   988 	Vfp::SetSReg(1e-39f, 2);
   989 	Vfp::AddS();
   990 	return (Vfp::SReg(0)==2e-39f) ? KErrNone : KErrGeneral;
   991 	}
   992 
   993 void TestVFPModeInheritance()
   994 	{
   995 	test.Printf(_L("Set floating point mode to RunFast\n"));
   996 	test(User::SetFloatingPointMode(EFpModeRunFast)==KErrNone);
   997 	RThread t;
   998 	TInt r = t.Create(KNullDesC, &RunFastThread, 0x1000, NULL, NULL);
   999 	test(r==KErrNone);
  1000 	TRequestStatus s;
  1001 	t.Logon(s);
  1002 	test.Printf(_L("Run RunFast test in another thread...\n"));
  1003 	t.Resume();
  1004 	test.Printf(_L("Wait for other thread to terminate\n"));
  1005 	User::WaitForRequest(s);
  1006 	test(t.ExitType() == EExitKill);
  1007 	test(s == KErrNone);
  1008 	CLOSE_AND_WAIT(t);
  1009 	test.Printf(_L("Set floating point mode to IEEE\n"));
  1010 	test(User::SetFloatingPointMode(EFpModeIEEENoExceptions)==KErrNone);
  1011 	r = t.Create(KNullDesC, &IEEECompliantThread, 0x1000, NULL, NULL);
  1012 	test(r==KErrNone);
  1013 	t.Logon(s);
  1014 	test.Printf(_L("Run IEEE test in another thread...\n"));
  1015 	t.Resume();
  1016 	test.Printf(_L("Wait for other thread to terminate\n"));
  1017 	User::WaitForRequest(s);
  1018 	test(t.ExitType() == EExitKill);
  1019 	test(s == KErrNone);
  1020 	CLOSE_AND_WAIT(t);
  1021 	}
  1022 
  1023 
  1024 void TestVFPv3()
  1025 	{
  1026 	test.Next(_L("Transferring to and from fixed point"));
  1027 	
  1028 	Vfp::SetSReg(2.5f, 0);
  1029 	test(Vfp::SReg(0)==2.5f);
  1030 	Vfp::ToFixedS(3);				// Convert to fixed (3) precision
  1031 	test(Vfp::SRegInt(0)==0x14);	// 10.100 in binary fixed(3) format
  1032 	Vfp::FromFixedS(3);				//Convert from fixed (3) precision
  1033 	test(Vfp::SReg(0)==2.5f);
  1034 
  1035 	
  1036 	test.Next(_L("Setting immediate value to floating point registers"));
  1037 	
  1038 	Vfp::SetSReg(5.0f, 0);
  1039 	test(Vfp::SReg(0) == 5.0f);
  1040 	Vfp::TconstS2();
  1041 	test(Vfp::SReg(0) == 2.0f);
  1042 	Vfp::SetSReg(5.0f, 0);
  1043 	Vfp::TconstS2_8();
  1044 	test(Vfp::SReg(0) == 2.875f);
  1045 	
  1046 	Vfp::SetDReg(5.0f, 0);
  1047 	test(Vfp::DReg(0) == 5.0f);
  1048 	Vfp::TconstD2();
  1049 	test(Vfp::DReg(0) == 2.0f);
  1050 	Vfp::TconstD2_8();
  1051 	test(Vfp::DReg(0) == 2.875f);
  1052 	}
  1053 
  1054 void TestNEON()
  1055 	{
  1056 	RThread t;
  1057 	TRequestStatus s;
  1058 	test.Next(_L("Test creating a thread to execute an F2-prefix instruction"));
  1059 	test_KErrNone(t.Create(KNullDesC, &NeonWithF2, 0x1000, NULL, NULL));
  1060 	t.Logon(s);
  1061 	t.Resume();
  1062 	User::WaitForRequest(s);
  1063 	test(t.ExitType() == EExitKill);
  1064 	test(s == KErrNone);
  1065 	t.Close();
  1066 	test.Next(_L("Test creating a thread to execute an F3-prefix instruction"));
  1067 	test_KErrNone(t.Create(KNullDesC, &NeonWithF3, 0x1000, NULL, NULL));
  1068 	t.Logon(s);
  1069 	t.Resume();
  1070 	User::WaitForRequest(s);
  1071 	test(t.ExitType() == EExitKill);
  1072 	test(s == KErrNone);
  1073 	t.Close();
  1074 	test.Next(_L("Test creating a thread to execute an F4x-prefix instruction"));
  1075 	test_KErrNone(t.Create(KNullDesC, &NeonWithF4x, 0x1000, NULL, NULL));
  1076 	t.Logon(s);
  1077 	t.Resume();
  1078 	User::WaitForRequest(s);
  1079 	test(t.ExitType() == EExitKill);
  1080 	test(s == KErrNone);
  1081 	t.Close();
  1082 	}
  1083 
  1084 void TestThumb()
  1085 	{
  1086 	RThread t;
  1087 	TRequestStatus s;
  1088 	TInt testStep = 0;
  1089 	do {
  1090 		test_KErrNone(t.Create(KNullDesC, &ThumbMode, 0x1000, NULL, (TAny*)testStep++));
  1091 		t.Logon(s);
  1092 		t.Resume();
  1093 		User::WaitForRequest(s);
  1094 		test(s == KErrNone || s == 1);
  1095 		test(t.ExitType() == EExitKill);
  1096 		t.Close();
  1097 		}
  1098 	while (s == KErrNone);
  1099 
  1100 	test(s == 1);
  1101 	test(testStep == 7);
  1102 	}
  1103 
  1104 TInt TestThreadMigration(TAny* aPtr)
  1105 	{
  1106 	const TInt inc = (TInt)aPtr;
  1107 	for (TInt32 switches = 0; switches < KMaxTInt; switches += inc)
  1108 		{
  1109 		Vfp::SetSReg(switches, switches % 16);
  1110 		UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, (TAny*)(switches % CPUs), 0);
  1111 		test(Vfp::SRegInt(switches % 16) == switches);
  1112 		}
  1113 	return KErrNone;
  1114 	}
  1115 
  1116 TInt E32Main()
  1117 	{
  1118 	test.Title();
  1119 
  1120 	test.Start(_L("Ask HAL if we have hardware floating point"));
  1121 
  1122 	CPUs = UserSvr::HalFunction(EHalGroupKernel, EKernelHalNumLogicalCpus, 0, 0);
  1123 	TInt supportedTypes;
  1124 	TInt HalVfp = HAL::Get(HALData::EHardwareFloatingPoint, supportedTypes);
  1125 	if (HalVfp == KErrNone) 
  1126 		{ 
  1127 		if (supportedTypes == EFpTypeVFPv2) 
  1128 			{ 
  1129 			test.Printf(_L("HAL reports VFPv2\n"));
  1130 			} 
  1131 		else if (supportedTypes == EFpTypeVFPv3)
  1132 			{ 
  1133 			test.Printf(_L("HAL reports VFPv3\n"));
  1134 			} 
  1135 		else if (supportedTypes == EFpTypeVFPv3D16)
  1136 			{ 
  1137 			test.Printf(_L("HAL reports VFPv3-D16\n"));
  1138 			} 
  1139 		else
  1140 			{
  1141 			test.Printf(_L("HAL reports an unknown floating point type\n"));
  1142 			test(0);
  1143 			}
  1144 		} 
  1145 	else
  1146 		{ 
  1147 		test.Printf(_L("HAL reports no VFP support\n"));
  1148 		} 
  1149 		
  1150 	test.Next(_L("Check VFP present"));
  1151 	TBool present = DetectVFP();
  1152 	if (!present)
  1153 		{
  1154 		test.Printf(_L("No VFP detected\n"));
  1155 		test(HalVfp == KErrNotSupported || 
  1156 						((supportedTypes != EFpTypeVFPv2) && 
  1157 						(supportedTypes != EFpTypeVFPv3) && 
  1158 						(supportedTypes != EFpTypeVFPv3D16))
  1159 						);
  1160 		test.End();
  1161 		return 0;
  1162 		}
  1163 	
  1164 	test.Printf(_L("VFP detected. FPSID = %08x\n"), FPSID);
  1165 	test(HalVfp == KErrNone);
  1166 
  1167 	// Verify that the HAL architecture ID matches the FPSID values
  1168 	// ARMv7 redefines some of these bits so the masks are different :(
  1169 	if (supportedTypes == EFpTypeVFPv2)
  1170 		{
  1171 		// assume armv5/6's bit definitions, where 19:16 are the arch version
  1172 		// and 20 is the single-precision-only bit
  1173 		ArchVersion = (FPSID >> 16) & 0xf;
  1174 		test(ArchVersion == ARCH_VERSION_VFPV2);
  1175 		Double = !(FPSID & VFP_FPSID_SNG);
  1176 		}
  1177 	else if (supportedTypes == EFpTypeVFPv3 || supportedTypes == EFpTypeVFPv3D16)
  1178 		{
  1179 		// assume armv7's bit definitions, where 22:16 are the arch version
  1180 		ArchVersion = (FPSID >> 16) & 0x7f;
  1181 		test(ArchVersion == ARCH_VERSION_VFPV3_SUBARCH_V2
  1182 		  || ArchVersion == ARCH_VERSION_VFPV3_SUBARCH_NULL
  1183 		  || ArchVersion == ARCH_VERSION_VFPV3_SUBARCH_V3); 
  1184 		// there are bits for this in MVFR0 but ARM implementations should always have it?
  1185 		Double = ETrue;
  1186 		}
  1187 
  1188 	if (Double)
  1189 		test.Printf(_L("Both single and double precision supported\n"), FPSID);
  1190 	else
  1191 		test.Printf(_L("Only single precision supported\n"), FPSID);
  1192 
  1193 	test.Next(_L("Test VFP Initial State"));
  1194 	TestVFPInitialState();
  1195 
  1196 	test.Next(_L("Test setting VFP to IEEE no exceptions mode"));
  1197 	IEEEMode = User::SetFloatingPointMode(EFpModeIEEENoExceptions) == KErrNone;
  1198 	if (!IEEEMode)
  1199 		test.Printf(_L("IEEE no exceptions mode not supported, continuing in RunFast\n"));
  1200 
  1201 	test.Next(_L("Test VFP calculations - single"));
  1202 	DoSglTests();
  1203 	if (Double)
  1204 		{
  1205 		test.Next(_L("Test VFP calculations - double"));
  1206 		DoDblTests();
  1207 		}
  1208 
  1209 	test.Next(_L("Test VFP Context Save"));
  1210 	TestVFPContextSave();
  1211 
  1212 	if (IEEEMode)
  1213 		{
  1214 		test.Next(_L("Test bounce handling"));
  1215 		DoBounceTests();
  1216 		test.Next(_L("Test bouncing while context switching"));
  1217 		DoBounceContextSwitchTests();
  1218 		test.Next(_L("Test setting VFP to RunFast mode"));
  1219 		test(User::SetFloatingPointMode(EFpModeRunFast) == KErrNone);
  1220 		DoRunFastTests();
  1221 		}
  1222 
  1223 	test.Next(_L("Test VFP rounding modes"));
  1224 	DoRoundingTests();
  1225 
  1226 	if (IEEEMode)
  1227 		{
  1228 		test.Next(_L("Test VFP mode inheritance between threads"));
  1229 		TestVFPModeInheritance();
  1230 		}
  1231 
  1232 	if (supportedTypes == EFpTypeVFPv3 || supportedTypes == EFpTypeVFPv3D16)
  1233 		{
  1234 		test.Next(_L("Test VFPv3"));
  1235 		TestVFPv3();
  1236 
  1237 		if (supportedTypes == EFpTypeVFPv3)
  1238 			{
  1239 			test.Next(_L("Test NEON"));
  1240 			TestNEON();
  1241 
  1242 #if defined(__SUPPORT_THUMB_INTERWORKING)
  1243 			test.Next(_L("Test Thumb Decode"));
  1244 			TestThumb();
  1245 #endif
  1246 			}
  1247 		}
  1248 
  1249 	if (CPUs > 1)
  1250 		{
  1251 		test.Next(_L("Test SMP Thread Migration"));
  1252 		TInt inc = 1;
  1253 		RThread t[8];
  1254 		TRequestStatus s[8];
  1255 		TInt count;
  1256 		for (count = 0; count < CPUs + 1; count++)
  1257 			{
  1258 			TInt r = t[count].Create(KNullDesC, &TestThreadMigration, 0x1000, NULL, (TAny*)(inc++));
  1259 			test(r==KErrNone);
  1260 			t[count].Logon(s[count]);
  1261 			}
  1262 		for (count = 0; count < CPUs + 1; count++)
  1263 			{
  1264 			t[count].Resume();
  1265 			}
  1266 		User::After(10*1000*1000);
  1267 		for (count = 0; count < CPUs + 1; count++)
  1268 			{
  1269 			t[count].Kill(0);
  1270 			}
  1271 		for (count = 0; count < CPUs + 1; count++)
  1272 			{
  1273 			User::WaitForAnyRequest();
  1274 			}
  1275 		for (count = 0; count < CPUs + 1; count++)
  1276 			{
  1277 			TInt xt = t[count].ExitType();
  1278 			TInt xr = t[count].ExitReason();
  1279 			test(xt == EExitKill && xr == KErrNone);
  1280 			}
  1281 		for (count = 0; count < CPUs + 1; count++)
  1282 			{
  1283 			CLOSE_AND_WAIT(t[count]);
  1284 			}
  1285 		}
  1286 
  1287 	test.End();
  1288 	return 0;
  1289 	}