os/kernelhwsrv/kerneltest/e32test/math/t_vfp.cpp
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
// Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
sl@0
     2
// All rights reserved.
sl@0
     3
// This component and the accompanying materials are made available
sl@0
     4
// under the terms of the License "Eclipse Public License v1.0"
sl@0
     5
// which accompanies this distribution, and is available
sl@0
     6
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
sl@0
     7
//
sl@0
     8
// Initial Contributors:
sl@0
     9
// Nokia Corporation - initial contribution.
sl@0
    10
//
sl@0
    11
// Contributors:
sl@0
    12
//
sl@0
    13
// Description:
sl@0
    14
// e32test\math\t_vfp.cpp
sl@0
    15
// Overview:
sl@0
    16
// Test the ARM Vector Floating Point operations.
sl@0
    17
// API Information:
sl@0
    18
// VFP
sl@0
    19
// Details:
sl@0
    20
// - Check that the HAL agrees with the hardware about whether
sl@0
    21
// VFP is supported.
sl@0
    22
// - Test setting VFP to IEEE with no exceptions mode, if IEEE mode is
sl@0
    23
// supported, otherwise leave the mode alone.
sl@0
    24
// - Test single and double precision vector floating point operations:
sl@0
    25
// ABS, NEG, ADD, SUB, MUL, DIV, NMUL, SQRT, MAC, MSC, NMAC and NMSC.
sl@0
    26
// Verify results are as expected - if IEEE mode was set, verify
sl@0
    27
// bit-for-bit, in accordance with the IEEE specification, otherwise
sl@0
    28
// use normal floating point equality.
sl@0
    29
// - Test VFP context save.
sl@0
    30
// - Test various VFP operations that cause bounces to support code if
sl@0
    31
// IEEE mode is supported.
sl@0
    32
// - Test setting VFP to RunFast mode if RunFast mode is supported.
sl@0
    33
// - Test setting VFP rounding mode.
sl@0
    34
// - Test inheriting VFP mode to created threads.
sl@0
    35
// Platforms/Drives/Compatibility:
sl@0
    36
// All 
sl@0
    37
// Assumptions/Requirement/Pre-requisites:
sl@0
    38
// Failures and causes:
sl@0
    39
// Base Port information:
sl@0
    40
// 
sl@0
    41
//
sl@0
    42
sl@0
    43
//! @file
sl@0
    44
//! @SYMTestCaseID KBASE-0017-T_VFP
sl@0
    45
//! @SYMTestCaseDesc VFPv2 general functionality and bounce handling
sl@0
    46
//! @SYMREQ 5159
sl@0
    47
//! @SYMTestPriority Critical
sl@0
    48
//! @SYMTestActions Check VFP functions correctly in all modes and that mode switching works correctly.
sl@0
    49
//! @SYMTestExpectedResults Test runs until this message is emitted: RTEST: SUCCESS : T_VFP test completed O.K.
sl@0
    50
//! @SYMTestType UT
sl@0
    51
sl@0
    52
#include "t_vfp.h"
sl@0
    53
#define __E32TEST_EXTENSION__
sl@0
    54
#include <e32test.h>
sl@0
    55
#include <e32math.h>
sl@0
    56
#include <hal.h>
sl@0
    57
#include <e32svr.h>
sl@0
    58
#include <u32hal.h>
sl@0
    59
sl@0
    60
RTest test(_L("T_VFP"));
sl@0
    61
TUint32 FPSID;
sl@0
    62
TUint32 ArchVersion; 
sl@0
    63
TBool Double;
sl@0
    64
TBool IEEEMode;
sl@0
    65
TInt CPUs;
sl@0
    66
TInt CurrentCpu1;
sl@0
    67
TInt CurrentCpu2;
sl@0
    68
sl@0
    69
typedef void TSglTest(const TReal32* aArgs, TReal32* aResults);
sl@0
    70
typedef void TDblTest(const TReal64* aArgs, TReal64* aResults);
sl@0
    71
sl@0
    72
TBool DetectVFP()
sl@0
    73
	{
sl@0
    74
	TInt r = UserSvr::HalFunction(EHalGroupKernel, EKernelHalFloatingPointSystemId, &FPSID, NULL);
sl@0
    75
	return (r==KErrNone);
sl@0
    76
	}
sl@0
    77
sl@0
    78
TInt TestVFPInitThreadFn(TAny* aPtr)
sl@0
    79
	{
sl@0
    80
	UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, (TAny*)CurrentCpu1, 0);
sl@0
    81
	TReal32* p = (TReal32*)aPtr;
sl@0
    82
	TInt i;
sl@0
    83
	for (i=0; i<32; ++i)
sl@0
    84
		*p++ = Vfp::SReg(i);
sl@0
    85
	return 0;
sl@0
    86
	}
sl@0
    87
sl@0
    88
void TestVFPInitialState()
sl@0
    89
	{
sl@0
    90
	for (CurrentCpu1 = 0; CurrentCpu1 < CPUs; CurrentCpu1++)
sl@0
    91
		{
sl@0
    92
		TReal32 f[32];
sl@0
    93
		RThread t;
sl@0
    94
		TInt r = t.Create(KNullDesC, &TestVFPInitThreadFn, 0x1000, NULL, f);
sl@0
    95
		test(r==KErrNone);
sl@0
    96
		TRequestStatus s;
sl@0
    97
		t.Logon(s);
sl@0
    98
		t.Resume();
sl@0
    99
		User::WaitForRequest(s);
sl@0
   100
		TInt xt = t.ExitType();
sl@0
   101
		TInt xr = t.ExitReason();
sl@0
   102
		test(xt == EExitKill && xr == KErrNone);
sl@0
   103
		CLOSE_AND_WAIT(t);
sl@0
   104
		UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, (TAny*)CurrentCpu1, 0);
sl@0
   105
		test.Printf(_L("FPSCR = %08x for core %d\n"), Vfp::Fpscr(), CurrentCpu1);
sl@0
   106
		const TUint32* p = (const TUint32*)f;
sl@0
   107
		for (TInt i=0; i<32; ++i)
sl@0
   108
			{
sl@0
   109
			if (f[i] != 0.0f)
sl@0
   110
				{
sl@0
   111
				test.Printf(_L("S%d = 0x%08x\n"), i, p[i]);
sl@0
   112
				test(f[i] == 0.0f);
sl@0
   113
				}
sl@0
   114
			}
sl@0
   115
		}
sl@0
   116
	}
sl@0
   117
sl@0
   118
void TestVFPSglRegs(TInt aIter=2)
sl@0
   119
	{
sl@0
   120
	TInt i;
sl@0
   121
	TInt j;
sl@0
   122
	TInt nSglRegs=0; 
sl@0
   123
sl@0
   124
	switch(ArchVersion)	
sl@0
   125
		{ 
sl@0
   126
		case ARCH_VERSION_VFPV2:
sl@0
   127
		case ARCH_VERSION_VFPV3_SUBARCH_V2:
sl@0
   128
		case ARCH_VERSION_VFPV3_SUBARCH_NULL:
sl@0
   129
		case ARCH_VERSION_VFPV3_SUBARCH_V3:
sl@0
   130
			nSglRegs = 32;
sl@0
   131
			break; 		
sl@0
   132
		case 0:
sl@0
   133
		default:
sl@0
   134
			__ASSERT_ALWAYS(0, User::Panic(_L("Bad VFP version"),__LINE__)); 
sl@0
   135
			/* NOTREACHED */
sl@0
   136
		} 
sl@0
   137
sl@0
   138
	for (i=0; i<aIter; ++i)
sl@0
   139
		{
sl@0
   140
		for (j=0; j<nSglRegs; ++j)
sl@0
   141
			{
sl@0
   142
			TInt32 f = i + j;
sl@0
   143
			Vfp::SetSReg(f, j);
sl@0
   144
			}
sl@0
   145
		for (j=0; j<nSglRegs; ++j)
sl@0
   146
			{
sl@0
   147
			TInt32 f = i + j;
sl@0
   148
			TInt32 g = Vfp::SRegInt(j);
sl@0
   149
			test(f == g);
sl@0
   150
			}
sl@0
   151
		}
sl@0
   152
	}
sl@0
   153
sl@0
   154
TInt TestVFPSglRegsThread(TAny*)
sl@0
   155
	{
sl@0
   156
	UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, (TAny*)CurrentCpu1, 0);
sl@0
   157
	TestVFPSglRegs(KMaxTInt);
sl@0
   158
	return 0;
sl@0
   159
	}
sl@0
   160
sl@0
   161
void TestVFPDblRegs(TInt aIter=2)
sl@0
   162
	{
sl@0
   163
	TInt i;
sl@0
   164
	TInt j;
sl@0
   165
	TInt nDblRegs=0; 
sl@0
   166
sl@0
   167
	switch(ArchVersion)
sl@0
   168
		{ 
sl@0
   169
		case ARCH_VERSION_VFPV2:
sl@0
   170
			{
sl@0
   171
			nDblRegs = 16;
sl@0
   172
			break;
sl@0
   173
			}
sl@0
   174
		case ARCH_VERSION_VFPV3_SUBARCH_V2:
sl@0
   175
		case ARCH_VERSION_VFPV3_SUBARCH_NULL:
sl@0
   176
		case ARCH_VERSION_VFPV3_SUBARCH_V3:
sl@0
   177
			{
sl@0
   178
			TInt vfpType;
sl@0
   179
			TInt ret = HAL::Get(HALData::EHardwareFloatingPoint, vfpType);
sl@0
   180
			if (ret == KErrNone && vfpType == EFpTypeVFPv3)
sl@0
   181
				nDblRegs = 32;
sl@0
   182
			else
sl@0
   183
				nDblRegs = 16;
sl@0
   184
			break;
sl@0
   185
				}
sl@0
   186
		case 0:
sl@0
   187
		default:
sl@0
   188
			__ASSERT_ALWAYS(0, User::Panic(_L("Bad VFP version"),__LINE__)); 
sl@0
   189
		} 
sl@0
   190
sl@0
   191
sl@0
   192
	for (i=0; i<aIter; ++i)
sl@0
   193
		{
sl@0
   194
		for (j=0; j<nDblRegs; ++j)
sl@0
   195
			{
sl@0
   196
			TInt64 f = i + j + KMaxTUint;
sl@0
   197
			Vfp::SetDReg(f, j);
sl@0
   198
			}
sl@0
   199
		for (j=0; j<nDblRegs; ++j)
sl@0
   200
			{
sl@0
   201
			TInt64 f = i + j + KMaxTUint;
sl@0
   202
			TInt64 g = Vfp::DRegInt(j);
sl@0
   203
			test(f == g);
sl@0
   204
			}
sl@0
   205
		}
sl@0
   206
	}
sl@0
   207
sl@0
   208
TInt TestVFPDblRegsThread(TAny*)
sl@0
   209
	{
sl@0
   210
	UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, (TAny*)CurrentCpu2, 0);
sl@0
   211
	TestVFPDblRegs(KMaxTInt);
sl@0
   212
	return 0;
sl@0
   213
	}
sl@0
   214
sl@0
   215
void TestVFPContextSave()
sl@0
   216
	{
sl@0
   217
	for (CurrentCpu2 = 0; CurrentCpu2 < CPUs; CurrentCpu2++)
sl@0
   218
		{
sl@0
   219
		for (CurrentCpu1 = 0; CurrentCpu1 < CPUs; CurrentCpu1++)
sl@0
   220
			{
sl@0
   221
			TThreadFunction tf1 = &TestVFPSglRegsThread;
sl@0
   222
			TThreadFunction tf2 = Double ? &TestVFPDblRegsThread : &TestVFPSglRegsThread;
sl@0
   223
			RThread t1, t2;
sl@0
   224
			TInt r;
sl@0
   225
			r = t1.Create(KNullDesC, tf1, 0x1000, 0x1000, 0x1000, NULL);
sl@0
   226
			test(r==KErrNone);
sl@0
   227
			t1.SetPriority(EPriorityLess);
sl@0
   228
			r = t2.Create(KNullDesC, tf2, 0x1000, 0x1000, 0x1000, NULL);
sl@0
   229
			test(r==KErrNone);
sl@0
   230
			t2.SetPriority(EPriorityLess);
sl@0
   231
			TRequestStatus s1, s2;
sl@0
   232
			t1.Logon(s1);
sl@0
   233
			t2.Logon(s2);
sl@0
   234
			t1.Resume();
sl@0
   235
			t2.Resume();
sl@0
   236
			test.Printf(_L("Let threads run concurrently (cores %d and %d)\n"), CurrentCpu1, CurrentCpu2);
sl@0
   237
			User::After(20*1000*1000/CPUs);
sl@0
   238
sl@0
   239
			test.Printf(_L("Kill threads\n"));
sl@0
   240
			t1.Kill(0);
sl@0
   241
			t2.Kill(0);
sl@0
   242
			User::WaitForRequest(s1);
sl@0
   243
			User::WaitForRequest(s2);
sl@0
   244
			test(t1.ExitType()==EExitKill && t1.ExitReason()==KErrNone);
sl@0
   245
			test(t2.ExitType()==EExitKill && t2.ExitReason()==KErrNone);
sl@0
   246
			CLOSE_AND_WAIT(t1);
sl@0
   247
			CLOSE_AND_WAIT(t2);
sl@0
   248
			}
sl@0
   249
		}
sl@0
   250
	}
sl@0
   251
sl@0
   252
TInt TestBounceCtxThread1(TAny*)
sl@0
   253
	{
sl@0
   254
	UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, (TAny*)Max(CPUs-1, 0), 0);
sl@0
   255
	for(TInt iter=0; iter<KMaxTInt; ++iter)
sl@0
   256
		{
sl@0
   257
		Vfp::SReg(0);
sl@0
   258
		}
sl@0
   259
	return KErrNone;
sl@0
   260
	}
sl@0
   261
sl@0
   262
TInt TestBounceCtxThread2(TAny*)
sl@0
   263
	{
sl@0
   264
	UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, (TAny*)Max(CPUs-1, 0), 0);
sl@0
   265
	TInt start_rep = 0x00800000; // smallest single precision normal number, 1*2^-126
sl@0
   266
	TReal32 start = *(TReal32*)&start_rep;
sl@0
   267
	for(TInt iter=0; iter<KMaxTInt; ++iter)
sl@0
   268
		{
sl@0
   269
		Vfp::SetSReg(start, 1);
sl@0
   270
		Vfp::SetSReg(2.0f, 2);
sl@0
   271
		Vfp::DivS();
sl@0
   272
		Vfp::CpyS0(1);
sl@0
   273
		Vfp::MulS();
sl@0
   274
		Vfp::CpyS0(1);
sl@0
   275
		TReal32 end = Vfp::SReg(0);
sl@0
   276
		TInt end_rep = *(TInt*)&end;
sl@0
   277
		if (start_rep != end_rep)
sl@0
   278
			{
sl@0
   279
			RDebug::Printf("mismatch in iter %d, start %08x end %08x\n", iter, start_rep, end_rep);
sl@0
   280
			test(0);
sl@0
   281
			}
sl@0
   282
		}
sl@0
   283
	return KErrNone;
sl@0
   284
	}
sl@0
   285
sl@0
   286
void DoBounceContextSwitchTests()
sl@0
   287
	{
sl@0
   288
	UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, 0, 0);
sl@0
   289
	RThread t1, t2;
sl@0
   290
	TInt r;
sl@0
   291
	r = t1.Create(KNullDesC, &TestBounceCtxThread1, 0x1000, 0x1000, 0x1000, NULL);
sl@0
   292
	test(r==KErrNone);
sl@0
   293
	t1.SetPriority(EPriorityLess);
sl@0
   294
	r = t2.Create(KNullDesC, &TestBounceCtxThread2, 0x1000, 0x1000, 0x1000, NULL);
sl@0
   295
	test(r==KErrNone);
sl@0
   296
	t2.SetPriority(EPriorityLess);
sl@0
   297
	TRequestStatus s1, s2;
sl@0
   298
	t1.Logon(s1);
sl@0
   299
	t2.Logon(s2);
sl@0
   300
	t1.Resume();
sl@0
   301
	t2.Resume();
sl@0
   302
	test.Printf(_L("Let threads run concurrently ...\n"));
sl@0
   303
	User::After(20*1000*1000);
sl@0
   304
sl@0
   305
	test.Printf(_L("Kill threads\n"));
sl@0
   306
	t1.Kill(0);
sl@0
   307
	t2.Kill(0);
sl@0
   308
	User::WaitForRequest(s1);
sl@0
   309
	User::WaitForRequest(s2);
sl@0
   310
	test(t1.ExitType()==EExitKill && t1.ExitReason()==KErrNone);
sl@0
   311
	test(t2.ExitType()==EExitKill && t2.ExitReason()==KErrNone);
sl@0
   312
	CLOSE_AND_WAIT(t1);
sl@0
   313
	CLOSE_AND_WAIT(t2);
sl@0
   314
	}
sl@0
   315
sl@0
   316
void TestAbsS(const TReal32* a, TReal32* r)
sl@0
   317
	{
sl@0
   318
	Vfp::SetSReg(a[0], 1);
sl@0
   319
	Vfp::AbsS();
sl@0
   320
	r[0] = Vfp::SReg(0);
sl@0
   321
	r[1] = Abs(a[0]);
sl@0
   322
	}
sl@0
   323
sl@0
   324
void TestAddS(const TReal32* a, TReal32* r)
sl@0
   325
	{
sl@0
   326
	Vfp::SetSReg(a[0], 1);
sl@0
   327
	Vfp::SetSReg(a[1], 2);
sl@0
   328
	Vfp::AddS();
sl@0
   329
	r[0] = Vfp::SReg(0);
sl@0
   330
	r[1] = a[0] + a[1];
sl@0
   331
	}
sl@0
   332
sl@0
   333
void TestDivS(const TReal32* a, TReal32* r)
sl@0
   334
	{
sl@0
   335
	Vfp::SetSReg(a[0], 1);
sl@0
   336
	Vfp::SetSReg(a[1], 2);
sl@0
   337
	Vfp::DivS();
sl@0
   338
	r[0] = Vfp::SReg(0);
sl@0
   339
	TRealX x(a[0]);
sl@0
   340
	TRealX y(a[1]);
sl@0
   341
	x.DivEq(y);
sl@0
   342
	r[1] = (TReal32)x;
sl@0
   343
	}
sl@0
   344
sl@0
   345
void TestMacS(const TReal32* a, TReal32* r)
sl@0
   346
	{
sl@0
   347
	Vfp::SetSReg(a[0], 0);
sl@0
   348
	Vfp::SetSReg(a[1], 1);
sl@0
   349
	Vfp::SetSReg(a[2], 2);
sl@0
   350
	Vfp::MacS();
sl@0
   351
	r[0] = Vfp::SReg(0);
sl@0
   352
	r[1] = a[0] + a[1] * a[2];
sl@0
   353
	}
sl@0
   354
sl@0
   355
void TestMscS(const TReal32* a, TReal32* r)
sl@0
   356
	{
sl@0
   357
	Vfp::SetSReg(a[0], 0);
sl@0
   358
	Vfp::SetSReg(a[1], 1);
sl@0
   359
	Vfp::SetSReg(a[2], 2);
sl@0
   360
	Vfp::MscS();
sl@0
   361
	r[0] = Vfp::SReg(0);
sl@0
   362
	r[1] = a[1] * a[2] - a[0];
sl@0
   363
	}
sl@0
   364
sl@0
   365
void TestMulS(const TReal32* a, TReal32* r)
sl@0
   366
	{
sl@0
   367
	Vfp::SetSReg(a[0], 1);
sl@0
   368
	Vfp::SetSReg(a[1], 2);
sl@0
   369
	Vfp::MulS();
sl@0
   370
	r[0] = Vfp::SReg(0);
sl@0
   371
	TRealX x(a[0]);
sl@0
   372
	TRealX y(a[1]);
sl@0
   373
	x.MultEq(y);
sl@0
   374
	r[1] = (TReal32)x;
sl@0
   375
	}
sl@0
   376
sl@0
   377
void TestNegS(const TReal32* a, TReal32* r)
sl@0
   378
	{
sl@0
   379
	Vfp::SetSReg(a[0], 1);
sl@0
   380
	Vfp::NegS();
sl@0
   381
	r[0] = Vfp::SReg(0);
sl@0
   382
	r[1] = -a[0];
sl@0
   383
	}
sl@0
   384
sl@0
   385
void TestNMacS(const TReal32* a, TReal32* r)
sl@0
   386
	{
sl@0
   387
	Vfp::SetSReg(a[0], 0);
sl@0
   388
	Vfp::SetSReg(a[1], 1);
sl@0
   389
	Vfp::SetSReg(a[2], 2);
sl@0
   390
	Vfp::NMacS();
sl@0
   391
	r[0] = Vfp::SReg(0);
sl@0
   392
	r[1] = a[0] - a[1] * a[2];
sl@0
   393
	}
sl@0
   394
sl@0
   395
void TestNMscS(const TReal32* a, TReal32* r)
sl@0
   396
	{
sl@0
   397
	Vfp::SetSReg(a[0], 0);
sl@0
   398
	Vfp::SetSReg(a[1], 1);
sl@0
   399
	Vfp::SetSReg(a[2], 2);
sl@0
   400
	Vfp::NMscS();
sl@0
   401
	r[0] = Vfp::SReg(0);
sl@0
   402
	r[1] = -a[1] * a[2] - a[0];
sl@0
   403
	}
sl@0
   404
sl@0
   405
void TestNMulS(const TReal32* a, TReal32* r)
sl@0
   406
	{
sl@0
   407
	Vfp::SetSReg(a[0], 1);
sl@0
   408
	Vfp::SetSReg(a[1], 2);
sl@0
   409
	Vfp::NMulS();
sl@0
   410
	r[0] = Vfp::SReg(0);
sl@0
   411
	TRealX x(a[0]);
sl@0
   412
	TRealX y(a[1]);
sl@0
   413
	x.MultEq(y);
sl@0
   414
	r[1] = -(TReal32)x;
sl@0
   415
	}
sl@0
   416
sl@0
   417
void TestSqrtS(const TReal32* a, TReal32* r)
sl@0
   418
	{
sl@0
   419
	Vfp::SetSReg(a[0], 1);
sl@0
   420
	Vfp::SqrtS();
sl@0
   421
	r[0] = Vfp::SReg(0);
sl@0
   422
	TReal x = a[0];
sl@0
   423
	TReal y;
sl@0
   424
	Math::Sqrt(y, x);
sl@0
   425
	r[1] = (TReal32)y;
sl@0
   426
	}
sl@0
   427
sl@0
   428
void TestSubS(const TReal32* a, TReal32* r)
sl@0
   429
	{
sl@0
   430
	Vfp::SetSReg(a[0], 1);
sl@0
   431
	Vfp::SetSReg(a[1], 2);
sl@0
   432
	Vfp::SubS();
sl@0
   433
	r[0] = Vfp::SReg(0);
sl@0
   434
	r[1] = a[0] - a[1];
sl@0
   435
	}
sl@0
   436
sl@0
   437
sl@0
   438
sl@0
   439
void TestAbsD(const TReal64* a, TReal64* r)
sl@0
   440
	{
sl@0
   441
	Vfp::SetDReg(a[0], 1);
sl@0
   442
	Vfp::AbsD();
sl@0
   443
	r[0] = Vfp::DReg(0);
sl@0
   444
	r[1] = Abs(a[0]);
sl@0
   445
	}
sl@0
   446
sl@0
   447
void TestAddD(const TReal64* a, TReal64* r)
sl@0
   448
	{
sl@0
   449
	Vfp::SetDReg(a[0], 1);
sl@0
   450
	Vfp::SetDReg(a[1], 2);
sl@0
   451
	Vfp::AddD();
sl@0
   452
	r[0] = Vfp::DReg(0);
sl@0
   453
	r[1] = a[0] + a[1];
sl@0
   454
	}
sl@0
   455
sl@0
   456
void TestDivD(const TReal64* a, TReal64* r)
sl@0
   457
	{
sl@0
   458
	Vfp::SetDReg(a[0], 1);
sl@0
   459
	Vfp::SetDReg(a[1], 2);
sl@0
   460
	Vfp::DivD();
sl@0
   461
	r[0] = Vfp::DReg(0);
sl@0
   462
	TRealX x(a[0]);
sl@0
   463
	TRealX y(a[1]);
sl@0
   464
	x.DivEq(y);
sl@0
   465
	r[1] = (TReal64)x;
sl@0
   466
	}
sl@0
   467
sl@0
   468
void TestMacD(const TReal64* a, TReal64* r)
sl@0
   469
	{
sl@0
   470
	Vfp::SetDReg(a[0], 0);
sl@0
   471
	Vfp::SetDReg(a[1], 1);
sl@0
   472
	Vfp::SetDReg(a[2], 2);
sl@0
   473
	Vfp::MacD();
sl@0
   474
	r[0] = Vfp::DReg(0);
sl@0
   475
	r[1] = a[0] + a[1] * a[2];
sl@0
   476
	}
sl@0
   477
sl@0
   478
void TestMscD(const TReal64* a, TReal64* r)
sl@0
   479
	{
sl@0
   480
	Vfp::SetDReg(a[0], 0);
sl@0
   481
	Vfp::SetDReg(a[1], 1);
sl@0
   482
	Vfp::SetDReg(a[2], 2);
sl@0
   483
	Vfp::MscD();
sl@0
   484
	r[0] = Vfp::DReg(0);
sl@0
   485
	r[1] = a[1] * a[2] - a[0];
sl@0
   486
	}
sl@0
   487
sl@0
   488
void TestMulD(const TReal64* a, TReal64* r)
sl@0
   489
	{
sl@0
   490
	Vfp::SetDReg(a[0], 1);
sl@0
   491
	Vfp::SetDReg(a[1], 2);
sl@0
   492
	Vfp::MulD();
sl@0
   493
	r[0] = Vfp::DReg(0);
sl@0
   494
	TRealX x(a[0]);
sl@0
   495
	TRealX y(a[1]);
sl@0
   496
	x.MultEq(y);
sl@0
   497
	r[1] = (TReal64)x;
sl@0
   498
	}
sl@0
   499
sl@0
   500
void TestNegD(const TReal64* a, TReal64* r)
sl@0
   501
	{
sl@0
   502
	Vfp::SetDReg(a[0], 1);
sl@0
   503
	Vfp::NegD();
sl@0
   504
	r[0] = Vfp::DReg(0);
sl@0
   505
	r[1] = -a[0];
sl@0
   506
	}
sl@0
   507
sl@0
   508
void TestNMacD(const TReal64* a, TReal64* r)
sl@0
   509
	{
sl@0
   510
	Vfp::SetDReg(a[0], 0);
sl@0
   511
	Vfp::SetDReg(a[1], 1);
sl@0
   512
	Vfp::SetDReg(a[2], 2);
sl@0
   513
	Vfp::NMacD();
sl@0
   514
	r[0] = Vfp::DReg(0);
sl@0
   515
	r[1] = a[0] - a[1] * a[2];
sl@0
   516
	}
sl@0
   517
sl@0
   518
void TestNMscD(const TReal64* a, TReal64* r)
sl@0
   519
	{
sl@0
   520
	Vfp::SetDReg(a[0], 0);
sl@0
   521
	Vfp::SetDReg(a[1], 1);
sl@0
   522
	Vfp::SetDReg(a[2], 2);
sl@0
   523
	Vfp::NMscD();
sl@0
   524
	r[0] = Vfp::DReg(0);
sl@0
   525
	r[1] = -a[1] * a[2] - a[0];
sl@0
   526
	}
sl@0
   527
sl@0
   528
void TestNMulD(const TReal64* a, TReal64* r)
sl@0
   529
	{
sl@0
   530
	Vfp::SetDReg(a[0], 1);
sl@0
   531
	Vfp::SetDReg(a[1], 2);
sl@0
   532
	Vfp::NMulD();
sl@0
   533
	r[0] = Vfp::DReg(0);
sl@0
   534
	TRealX x(a[0]);
sl@0
   535
	TRealX y(a[1]);
sl@0
   536
	x.MultEq(y);
sl@0
   537
	r[1] = -(TReal64)x;
sl@0
   538
	}
sl@0
   539
sl@0
   540
void TestSqrtD(const TReal64* a, TReal64* r)
sl@0
   541
	{
sl@0
   542
	Vfp::SetDReg(a[0], 1);
sl@0
   543
	Vfp::SqrtD();
sl@0
   544
	r[0] = Vfp::DReg(0);
sl@0
   545
	TReal x = a[0];
sl@0
   546
	TReal y;
sl@0
   547
	Math::Sqrt(y, x);
sl@0
   548
	r[1] = (TReal64)y;
sl@0
   549
	}
sl@0
   550
sl@0
   551
void TestSubD(const TReal64* a, TReal64* r)
sl@0
   552
	{
sl@0
   553
	Vfp::SetDReg(a[0], 1);
sl@0
   554
	Vfp::SetDReg(a[1], 2);
sl@0
   555
	Vfp::SubD();
sl@0
   556
	r[0] = Vfp::DReg(0);
sl@0
   557
	r[1] = a[0] - a[1];
sl@0
   558
	}
sl@0
   559
sl@0
   560
#define DO_SGL_TEST1(name, func, a1)			DoSglTest(name, __LINE__, func, a1)
sl@0
   561
#define DO_SGL_TEST2(name, func, a1, a2)		DoSglTest(name, __LINE__, func, a1, a2)
sl@0
   562
#define DO_SGL_TEST3(name, func, a1, a2, a3)	DoSglTest(name, __LINE__, func, a1, a2, a3)
sl@0
   563
void DoSglTest(const char* aName, TInt aLine, TSglTest aFunc, TReal32 a1, TReal32 a2=0.0f, TReal32 a3=0.0f)
sl@0
   564
	{
sl@0
   565
	TPtrC8 name8((const TText8*)aName);
sl@0
   566
	TBuf<128> name16;
sl@0
   567
	name16.Copy(name8);
sl@0
   568
	test.Printf(_L("%S(%g,%g,%g)\n"), &name16, a1, a2, a3);
sl@0
   569
	TReal32 args[3] = {a1, a2, a3};
sl@0
   570
	TReal32 results[2];
sl@0
   571
	(*aFunc)(args, results);
sl@0
   572
	if (IEEEMode)
sl@0
   573
		{
sl@0
   574
		if (*((TUint32*)&(results[0])) == *((TUint32*)&(results[1])))
sl@0
   575
			return;
sl@0
   576
		}
sl@0
   577
	else
sl@0
   578
		{
sl@0
   579
		if (results[0] == results[1])
sl@0
   580
			return;
sl@0
   581
		}
sl@0
   582
	const TUint32* pa = (const TUint32*)args;
sl@0
   583
	const TUint32* pr = (const TUint32*)results;
sl@0
   584
	test.Printf(_L("a1=%08x a2=%08x a3=%08x\n"), pa[0], pa[1], pa[2]);
sl@0
   585
	test.Printf(_L("actual result = %08x (%g)\nexpected result = %08x (%g)\n"), pr[0], results[0], pr[1], results[1]);
sl@0
   586
	test.Printf(_L("Test at line %d failed\n"), aLine);
sl@0
   587
	test(0);
sl@0
   588
	}
sl@0
   589
sl@0
   590
void DoSglTests()
sl@0
   591
	{
sl@0
   592
	// ABS
sl@0
   593
	DO_SGL_TEST1("ABS", &TestAbsS, 1.0f);
sl@0
   594
	DO_SGL_TEST1("ABS", &TestAbsS, -1.0f);
sl@0
   595
	DO_SGL_TEST1("ABS", &TestAbsS, 0.0f);
sl@0
   596
	DO_SGL_TEST1("ABS", &TestAbsS, -3.1415926536f);
sl@0
   597
sl@0
   598
	// NEG
sl@0
   599
	DO_SGL_TEST1("NEG", &TestNegS, 1.0f);
sl@0
   600
	DO_SGL_TEST1("NEG", &TestNegS, -1.0f);
sl@0
   601
	DO_SGL_TEST1("NEG", &TestNegS, 0.0f);
sl@0
   602
	DO_SGL_TEST1("NEG", &TestNegS, -3.1415926536f);
sl@0
   603
sl@0
   604
	// ADD
sl@0
   605
	DO_SGL_TEST2("ADD", &TestAddS, 0.0f, 0.0f);
sl@0
   606
	DO_SGL_TEST2("ADD", &TestAddS, 0.0f, 1.0f);
sl@0
   607
	DO_SGL_TEST2("ADD", &TestAddS, -1.0f, 1.0f);
sl@0
   608
	DO_SGL_TEST2("ADD", &TestAddS, 1.0f, 2.5f);
sl@0
   609
	DO_SGL_TEST2("ADD", &TestAddS, 1.0f, 6.022045e23f);
sl@0
   610
	DO_SGL_TEST2("ADD", &TestAddS, -7.3890561f, 1.414213562f);
sl@0
   611
	DO_SGL_TEST2("ADD", &TestAddS, -7.3890561f, -1.414213562f);
sl@0
   612
sl@0
   613
	// SUB
sl@0
   614
	DO_SGL_TEST2("SUB", &TestSubS, 0.0f, 0.0f);
sl@0
   615
	DO_SGL_TEST2("SUB", &TestSubS, 0.0f, 1.0f);
sl@0
   616
	DO_SGL_TEST2("SUB", &TestSubS, 1.0f, 1.0f);
sl@0
   617
	DO_SGL_TEST2("SUB", &TestSubS, 1.0f, 2.5f);
sl@0
   618
	DO_SGL_TEST2("SUB", &TestSubS, 91.0f, 2.5f);
sl@0
   619
	DO_SGL_TEST2("SUB", &TestSubS, 1.0f, 6.022045e23f);
sl@0
   620
	DO_SGL_TEST2("SUB", &TestSubS, -7.3890561f, 1.414213562f);
sl@0
   621
	DO_SGL_TEST2("SUB", &TestSubS, -7.3890561f, -1.414213562f);
sl@0
   622
sl@0
   623
	// MUL
sl@0
   624
	DO_SGL_TEST2("MUL", &TestMulS, 0.0f, 0.0f);
sl@0
   625
	DO_SGL_TEST2("MUL", &TestMulS, 1.0f, 0.0f);
sl@0
   626
	DO_SGL_TEST2("MUL", &TestMulS, 0.0f, 1.0f);
sl@0
   627
	DO_SGL_TEST2("MUL", &TestMulS, 2.5f, 6.5f);
sl@0
   628
	DO_SGL_TEST2("MUL", &TestMulS, -39.6f, 19.72f);
sl@0
   629
	DO_SGL_TEST2("MUL", &TestMulS, -10.1f, -20.1f);
sl@0
   630
	DO_SGL_TEST2("MUL", &TestMulS, 1e20f, 1e20f);
sl@0
   631
	DO_SGL_TEST2("MUL", &TestMulS, 1e-30f, 1e-30f);
sl@0
   632
sl@0
   633
	// DIV
sl@0
   634
	DO_SGL_TEST2("DIV", &TestDivS, 0.0f, 1.0f);
sl@0
   635
	DO_SGL_TEST2("DIV", &TestDivS, 1.0f, 5.0f);
sl@0
   636
	DO_SGL_TEST2("DIV", &TestDivS, 1.0f, -5.0f);
sl@0
   637
	DO_SGL_TEST2("DIV", &TestDivS, -1.0f, 5.0f);
sl@0
   638
	DO_SGL_TEST2("DIV", &TestDivS, -1.0f, -5.0f);
sl@0
   639
	DO_SGL_TEST2("DIV", &TestDivS, 7.3890561f, 2.7182818f);
sl@0
   640
	DO_SGL_TEST2("DIV", &TestDivS, 1e20f, 1e-20f);
sl@0
   641
	DO_SGL_TEST2("DIV", &TestDivS, 1e-30f, 1e30f);
sl@0
   642
sl@0
   643
	// NMUL
sl@0
   644
	DO_SGL_TEST2("NMUL", &TestNMulS, 0.0f, 0.0f);
sl@0
   645
	DO_SGL_TEST2("NMUL", &TestNMulS, 1.0f, 0.0f);
sl@0
   646
	DO_SGL_TEST2("NMUL", &TestNMulS, 0.0f, 1.0f);
sl@0
   647
	DO_SGL_TEST2("NMUL", &TestNMulS, 2.5f, 6.5f);
sl@0
   648
	DO_SGL_TEST2("NMUL", &TestNMulS, -39.6f, 19.72f);
sl@0
   649
	DO_SGL_TEST2("NMUL", &TestNMulS, -10.1f, -20.1f);
sl@0
   650
	DO_SGL_TEST2("NMUL", &TestNMulS, 1e20f, 1e20f);
sl@0
   651
	DO_SGL_TEST2("NMUL", &TestNMulS, 1e-30f, 1e-30f);
sl@0
   652
sl@0
   653
	// SQRT
sl@0
   654
	DO_SGL_TEST1("SQRT", &TestSqrtS, 0.0f);
sl@0
   655
	DO_SGL_TEST1("SQRT", &TestSqrtS, 1.0f);
sl@0
   656
	DO_SGL_TEST1("SQRT", &TestSqrtS, 2.0f);
sl@0
   657
	DO_SGL_TEST1("SQRT", &TestSqrtS, 3.0f);
sl@0
   658
	DO_SGL_TEST1("SQRT", &TestSqrtS, 9096256.0f);
sl@0
   659
	DO_SGL_TEST1("SQRT", &TestSqrtS, 1e36f);
sl@0
   660
	DO_SGL_TEST1("SQRT", &TestSqrtS, 1e-36f);
sl@0
   661
sl@0
   662
	// MAC
sl@0
   663
	DO_SGL_TEST3("MAC", &TestMacS, 0.0f, 0.0f, 0.0f);
sl@0
   664
	DO_SGL_TEST3("MAC", &TestMacS, 0.0f, 1.0f, 0.0f);
sl@0
   665
	DO_SGL_TEST3("MAC", &TestMacS, 0.0f, 1.0f, 1.0f);
sl@0
   666
	DO_SGL_TEST3("MAC", &TestMacS, -1.0f, 1.0f, 1.0f);
sl@0
   667
	DO_SGL_TEST3("MAC", &TestMacS, 0.8f, 0.1f, 8.0f);
sl@0
   668
	DO_SGL_TEST3("MAC", &TestMacS, 0.8f, -0.1f, 8.0f);
sl@0
   669
	DO_SGL_TEST3("MAC", &TestMacS, -0.8f, -0.1f, -8.0f);
sl@0
   670
	DO_SGL_TEST3("MAC", &TestMacS, 0.8f, 0.3333333333f, 3.1415926536f);
sl@0
   671
sl@0
   672
	// MSC
sl@0
   673
	DO_SGL_TEST3("MSC", &TestMscS, 0.0f, 0.0f, 0.0f);
sl@0
   674
	DO_SGL_TEST3("MSC", &TestMscS, 0.0f, 1.0f, 0.0f);
sl@0
   675
	DO_SGL_TEST3("MSC", &TestMscS, 0.0f, 1.0f, 1.0f);
sl@0
   676
	DO_SGL_TEST3("MSC", &TestMscS, -1.0f, 1.0f, 1.0f);
sl@0
   677
	DO_SGL_TEST3("MSC", &TestMscS, 0.8f, 0.1f, 8.0f);
sl@0
   678
	DO_SGL_TEST3("MSC", &TestMscS, 0.8f, -0.1f, 8.0f);
sl@0
   679
	DO_SGL_TEST3("MSC", &TestMscS, -0.8f, -0.1f, -8.0f);
sl@0
   680
	DO_SGL_TEST3("MSC", &TestMscS, 0.8f, 0.3333333333f, 3.1415926536f);
sl@0
   681
sl@0
   682
	// NMAC
sl@0
   683
	DO_SGL_TEST3("NMAC", &TestNMacS, 0.0f, 0.0f, 0.0f);
sl@0
   684
	DO_SGL_TEST3("NMAC", &TestNMacS, 0.0f, 1.0f, 0.0f);
sl@0
   685
	DO_SGL_TEST3("NMAC", &TestNMacS, 0.0f, 1.0f, 1.0f);
sl@0
   686
	DO_SGL_TEST3("NMAC", &TestNMacS, -1.0f, 1.0f, 1.0f);
sl@0
   687
	DO_SGL_TEST3("NMAC", &TestNMacS, 0.8f, 0.1f, 8.0f);
sl@0
   688
	DO_SGL_TEST3("NMAC", &TestNMacS, 0.8f, -0.1f, 8.0f);
sl@0
   689
	DO_SGL_TEST3("NMAC", &TestNMacS, -0.8f, -0.1f, -8.0f);
sl@0
   690
	DO_SGL_TEST3("NMAC", &TestNMacS, 0.8f, 0.3333333333f, 3.1415926536f);
sl@0
   691
sl@0
   692
	// NMSC
sl@0
   693
	DO_SGL_TEST3("NMSC", &TestNMscS, 0.0f, 0.0f, 0.0f);
sl@0
   694
	DO_SGL_TEST3("NMSC", &TestNMscS, 0.0f, 1.0f, 0.0f);
sl@0
   695
	DO_SGL_TEST3("NMSC", &TestNMscS, 0.0f, 1.0f, 1.0f);
sl@0
   696
	DO_SGL_TEST3("NMSC", &TestNMscS, -1.0f, 1.0f, 1.0f);
sl@0
   697
	DO_SGL_TEST3("NMSC", &TestNMscS, 0.8f, 0.1f, 8.0f);
sl@0
   698
	DO_SGL_TEST3("NMSC", &TestNMscS, 0.8f, -0.1f, 8.0f);
sl@0
   699
	DO_SGL_TEST3("NMSC", &TestNMscS, -0.8f, -0.1f, -8.0f);
sl@0
   700
	DO_SGL_TEST3("NMSC", &TestNMscS, 0.8f, 0.3333333333f, 3.1415926536f);
sl@0
   701
	}
sl@0
   702
sl@0
   703
#define DO_DBL_TEST1(name, func, a1)			DoDblTest(name, __LINE__, func, a1)
sl@0
   704
#define DO_DBL_TEST2(name, func, a1, a2)		DoDblTest(name, __LINE__, func, a1, a2)
sl@0
   705
#define DO_DBL_TEST3(name, func, a1, a2, a3)	DoDblTest(name, __LINE__, func, a1, a2, a3)
sl@0
   706
void DoDblTest(const char* aName, TInt aLine, TDblTest aFunc, TReal64 a1, TReal64 a2=0.0, TReal64 a3=0.0)
sl@0
   707
	{
sl@0
   708
	TPtrC8 name8((const TText8*)aName);
sl@0
   709
	TBuf<128> name16;
sl@0
   710
	name16.Copy(name8);
sl@0
   711
	test.Printf(_L("%S(%g,%g,%g)\n"), &name16, a1, a2, a3);
sl@0
   712
	TReal64 args[3] = {a1, a2, a3};
sl@0
   713
	TReal64 results[2];
sl@0
   714
	SDouble sargs[3];
sl@0
   715
	sargs[0] = a1;
sl@0
   716
	sargs[1] = a2;
sl@0
   717
	sargs[2] = a3;
sl@0
   718
	(*aFunc)(args, results);
sl@0
   719
	if (IEEEMode)
sl@0
   720
		{
sl@0
   721
		if (*((TUint64*)&(results[0])) == *((TUint64*)&(results[1])))
sl@0
   722
			return;
sl@0
   723
		}
sl@0
   724
	else
sl@0
   725
		{
sl@0
   726
		if (results[0] == results[1])
sl@0
   727
			return;
sl@0
   728
		}
sl@0
   729
	SDouble sres[3];
sl@0
   730
	sres[0] = results[0];
sl@0
   731
	sres[1] = results[1];
sl@0
   732
	test.Printf(_L("a1=%08x %08x\na2=%08x %08x\na3=%08x %08x\n"), sargs[0].iData[1], sargs[0].iData[0],
sl@0
   733
								sargs[1].iData[1], sargs[1].iData[0], sargs[2].iData[1], sargs[2].iData[0]);
sl@0
   734
	test.Printf(_L("actual result = %08x %08x (%g)\nexpected result = %08x %08x (%g)\n"),
sl@0
   735
			sres[0].iData[1], sres[0].iData[0], results[0], sres[1].iData[1], sres[1].iData[0], results[1]);
sl@0
   736
	test.Printf(_L("Test at line %d failed\n"), aLine);
sl@0
   737
	test(0);
sl@0
   738
	}
sl@0
   739
sl@0
   740
void DoDblTests()
sl@0
   741
	{
sl@0
   742
	// ABS
sl@0
   743
	DO_DBL_TEST1("ABS", &TestAbsD, 1.0);
sl@0
   744
	DO_DBL_TEST1("ABS", &TestAbsD, -1.0);
sl@0
   745
	DO_DBL_TEST1("ABS", &TestAbsD, 0.0);
sl@0
   746
	DO_DBL_TEST1("ABS", &TestAbsD, -3.1415926536);
sl@0
   747
sl@0
   748
	// NEG
sl@0
   749
	DO_DBL_TEST1("NEG", &TestNegD, 1.0);
sl@0
   750
	DO_DBL_TEST1("NEG", &TestNegD, -1.0);
sl@0
   751
	DO_DBL_TEST1("NEG", &TestNegD, 0.0);
sl@0
   752
	DO_DBL_TEST1("NEG", &TestNegD, -3.1415926536);
sl@0
   753
sl@0
   754
	// ADD
sl@0
   755
	DO_DBL_TEST2("ADD", &TestAddD, 0.0, 0.0);
sl@0
   756
	DO_DBL_TEST2("ADD", &TestAddD, 0.0, 1.0);
sl@0
   757
	DO_DBL_TEST2("ADD", &TestAddD, -1.0, 1.0);
sl@0
   758
	DO_DBL_TEST2("ADD", &TestAddD, 1.0, 2.5);
sl@0
   759
	DO_DBL_TEST2("ADD", &TestAddD, 1.0, 6.022045e23);
sl@0
   760
	DO_DBL_TEST2("ADD", &TestAddD, -7.3890561, 1.414213562);
sl@0
   761
	DO_DBL_TEST2("ADD", &TestAddD, -7.3890561, -1.414213562);
sl@0
   762
sl@0
   763
	// SUB
sl@0
   764
	DO_DBL_TEST2("SUB", &TestSubD, 0.0, 0.0);
sl@0
   765
	DO_DBL_TEST2("SUB", &TestSubD, 0.0, 1.0);
sl@0
   766
	DO_DBL_TEST2("SUB", &TestSubD, 1.0, 1.0);
sl@0
   767
	DO_DBL_TEST2("SUB", &TestSubD, 1.0, 2.5);
sl@0
   768
	DO_DBL_TEST2("SUB", &TestSubD, 91.0, 2.5);
sl@0
   769
	DO_DBL_TEST2("SUB", &TestSubD, 1.0, 6.022045e23);
sl@0
   770
	DO_DBL_TEST2("SUB", &TestSubD, -7.3890561, 1.414213562);
sl@0
   771
	DO_DBL_TEST2("SUB", &TestSubD, -7.3890561, -1.414213562);
sl@0
   772
sl@0
   773
	// MUL
sl@0
   774
	DO_DBL_TEST2("MUL", &TestMulD, 0.0, 0.0);
sl@0
   775
	DO_DBL_TEST2("MUL", &TestMulD, 1.0, 0.0);
sl@0
   776
	DO_DBL_TEST2("MUL", &TestMulD, 0.0, 1.0);
sl@0
   777
	DO_DBL_TEST2("MUL", &TestMulD, 2.5, 6.5);
sl@0
   778
	DO_DBL_TEST2("MUL", &TestMulD, -39.6, 19.72);
sl@0
   779
	DO_DBL_TEST2("MUL", &TestMulD, -10.1, -20.1);
sl@0
   780
	DO_DBL_TEST2("MUL", &TestMulD, 1e20, 1e20);
sl@0
   781
	DO_DBL_TEST2("MUL", &TestMulD, 1e100, 1e300);
sl@0
   782
	DO_DBL_TEST2("MUL", &TestMulD, 1e-20, 1e-20);
sl@0
   783
	DO_DBL_TEST2("MUL", &TestMulD, 1e-200, 1e-300);
sl@0
   784
sl@0
   785
	// DIV
sl@0
   786
	DO_DBL_TEST2("DIV", &TestDivD, 0.0, 1.0);
sl@0
   787
	DO_DBL_TEST2("DIV", &TestDivD, 1.0, 5.0);
sl@0
   788
	DO_DBL_TEST2("DIV", &TestDivD, 1.0, -5.0);
sl@0
   789
	DO_DBL_TEST2("DIV", &TestDivD, -1.0, 5.0);
sl@0
   790
	DO_DBL_TEST2("DIV", &TestDivD, -1.0, -5.0);
sl@0
   791
	DO_DBL_TEST2("DIV", &TestDivD, 7.3890561, 2.7182818);
sl@0
   792
	DO_DBL_TEST2("DIV", &TestDivD, 1e20, 1e-20);
sl@0
   793
	DO_DBL_TEST2("DIV", &TestDivD, 1e-20, 1e20);
sl@0
   794
	DO_DBL_TEST2("DIV", &TestDivD, 1e-50, 1e300);
sl@0
   795
sl@0
   796
	// NMUL
sl@0
   797
	DO_DBL_TEST2("NMUL", &TestNMulD, 0.0, 0.0);
sl@0
   798
	DO_DBL_TEST2("NMUL", &TestNMulD, 1.0, 0.0);
sl@0
   799
	DO_DBL_TEST2("NMUL", &TestNMulD, 0.0, 1.0);
sl@0
   800
	DO_DBL_TEST2("NMUL", &TestNMulD, 2.5, 6.5);
sl@0
   801
	DO_DBL_TEST2("NMUL", &TestNMulD, -39.6, 19.72);
sl@0
   802
	DO_DBL_TEST2("NMUL", &TestNMulD, -10.1, -20.1);
sl@0
   803
	DO_DBL_TEST2("NMUL", &TestNMulD, 1e20, 1e20);
sl@0
   804
	DO_DBL_TEST2("NMUL", &TestNMulD, 1e100, 1e300);
sl@0
   805
	DO_DBL_TEST2("NMUL", &TestNMulD, 1e-20, 1e-20);
sl@0
   806
	DO_DBL_TEST2("NMUL", &TestNMulD, 1e-200, 1e-300);
sl@0
   807
sl@0
   808
	// SQRT
sl@0
   809
	DO_DBL_TEST1("SQRT", &TestSqrtD, 0.0);
sl@0
   810
	DO_DBL_TEST1("SQRT", &TestSqrtD, 1.0);
sl@0
   811
	DO_DBL_TEST1("SQRT", &TestSqrtD, 2.0);
sl@0
   812
	DO_DBL_TEST1("SQRT", &TestSqrtD, 3.0);
sl@0
   813
	DO_DBL_TEST1("SQRT", &TestSqrtD, 9096256.0);
sl@0
   814
	DO_DBL_TEST1("SQRT", &TestSqrtD, 1e36);
sl@0
   815
	DO_DBL_TEST1("SQRT", &TestSqrtD, 1e-36);
sl@0
   816
sl@0
   817
	// MAC
sl@0
   818
	DO_DBL_TEST3("MAC", &TestMacD, 0.0, 0.0, 0.0);
sl@0
   819
	DO_DBL_TEST3("MAC", &TestMacD, 0.0, 1.0, 0.0);
sl@0
   820
	DO_DBL_TEST3("MAC", &TestMacD, 0.0, 1.0, 1.0);
sl@0
   821
	DO_DBL_TEST3("MAC", &TestMacD, -1.0, 1.0, 1.0);
sl@0
   822
	DO_DBL_TEST3("MAC", &TestMacD, 0.8, 0.1, 8.0);
sl@0
   823
	DO_DBL_TEST3("MAC", &TestMacD, 0.8, -0.1, 8.0);
sl@0
   824
	DO_DBL_TEST3("MAC", &TestMacD, -0.8, -0.1, -8.0);
sl@0
   825
	DO_DBL_TEST3("MAC", &TestMacD, 0.8, 0.3333333333, 3.1415926536);
sl@0
   826
sl@0
   827
	// MSC
sl@0
   828
	DO_DBL_TEST3("MSC", &TestMscD, 0.0, 0.0, 0.0);
sl@0
   829
	DO_DBL_TEST3("MSC", &TestMscD, 0.0, 1.0, 0.0);
sl@0
   830
	DO_DBL_TEST3("MSC", &TestMscD, 0.0, 1.0, 1.0);
sl@0
   831
	DO_DBL_TEST3("MSC", &TestMscD, -1.0, 1.0, 1.0);
sl@0
   832
	DO_DBL_TEST3("MSC", &TestMscD, 0.8, 0.1, 8.0);
sl@0
   833
	DO_DBL_TEST3("MSC", &TestMscD, 0.8, -0.1, 8.0);
sl@0
   834
	DO_DBL_TEST3("MSC", &TestMscD, -0.8, -0.1, -8.0);
sl@0
   835
	DO_DBL_TEST3("MSC", &TestMscD, 0.8, 0.3333333333, 3.1415926536);
sl@0
   836
sl@0
   837
	// NMAC
sl@0
   838
	DO_DBL_TEST3("NMAC", &TestNMacD, 0.0, 0.0, 0.0);
sl@0
   839
	DO_DBL_TEST3("NMAC", &TestNMacD, 0.0, 1.0, 0.0);
sl@0
   840
	DO_DBL_TEST3("NMAC", &TestNMacD, 0.0, 1.0, 1.0);
sl@0
   841
	DO_DBL_TEST3("NMAC", &TestNMacD, -1.0, 1.0, 1.0);
sl@0
   842
	DO_DBL_TEST3("NMAC", &TestNMacD, 0.8, 0.1, 8.0);
sl@0
   843
	DO_DBL_TEST3("NMAC", &TestNMacD, 0.8, -0.1, 8.0);
sl@0
   844
	DO_DBL_TEST3("NMAC", &TestNMacD, -0.8, -0.1, -8.0);
sl@0
   845
	DO_DBL_TEST3("NMAC", &TestNMacD, 0.8, 0.3333333333, 3.1415926536);
sl@0
   846
sl@0
   847
	// NMSC
sl@0
   848
	DO_DBL_TEST3("NMSC", &TestNMscD, 0.0, 0.0, 0.0);
sl@0
   849
	DO_DBL_TEST3("NMSC", &TestNMscD, 0.0, 1.0, 0.0);
sl@0
   850
	DO_DBL_TEST3("NMSC", &TestNMscD, 0.0, 1.0, 1.0);
sl@0
   851
	DO_DBL_TEST3("NMSC", &TestNMscD, -1.0, 1.0, 1.0);
sl@0
   852
	DO_DBL_TEST3("NMSC", &TestNMscD, 0.8, 0.1, 8.0);
sl@0
   853
	DO_DBL_TEST3("NMSC", &TestNMscD, 0.8, -0.1, 8.0);
sl@0
   854
	DO_DBL_TEST3("NMSC", &TestNMscD, -0.8, -0.1, -8.0);
sl@0
   855
	DO_DBL_TEST3("NMSC", &TestNMscD, 0.8, 0.3333333333, 3.1415926536);
sl@0
   856
	}
sl@0
   857
sl@0
   858
void DoBounceTests()
sl@0
   859
	{
sl@0
   860
	test.Next(_L("Test denormal handling - single"));
sl@0
   861
	DO_SGL_TEST2("ADD", &TestAddS, 1e-39f, 1e-39f);
sl@0
   862
	test.Next(_L("Test potential underflow - single"));
sl@0
   863
	DO_SGL_TEST2("MUL", &TestMulS, 3.162e-20f, 3.162e-20f);
sl@0
   864
// fails on VFPv2 hardware. ARM's library should be fixed
sl@0
   865
//	test.Next(_L("Test NaN input - single"));
sl@0
   866
//	TReal32 aSingleNaN;
sl@0
   867
//	*((TUint32*)&aSingleNaN) = 0x7F9ABCDE;
sl@0
   868
//	Vfp::SetSReg(aSingleNaN, 1);
sl@0
   869
//	Vfp::SetSReg(aSingleNaN, 2);
sl@0
   870
//	Vfp::AddS();
sl@0
   871
//	TReal32 aSingleResult = Vfp::SReg(0);
sl@0
   872
//	test(*((TUint32*)&aSingleResult) == 0x7FDABCDE);
sl@0
   873
sl@0
   874
	if (Double)
sl@0
   875
		{
sl@0
   876
		test.Next(_L("Test denormal handling - double"));
sl@0
   877
		DO_DBL_TEST2("ADD", &TestAddD, 3.1234e-322, 3.1234e-322);
sl@0
   878
		test.Next(_L("Test potential underflow - double"));
sl@0
   879
		DO_DBL_TEST2("MUL", &TestMulD, 1.767e-161, 1.767e-161);
sl@0
   880
// fails on VFPv2 hardware. ARM's library should be fixed
sl@0
   881
//		test.Next(_L("Test NaN input - double"));
sl@0
   882
//		TReal64 aDoubleNaN;
sl@0
   883
//		*((TUint64*)&aDoubleNaN) = 0x7FF0123456789ABCll;
sl@0
   884
//		Vfp::SetDReg(aDoubleNaN, 1);
sl@0
   885
//		Vfp::SetDReg(aDoubleNaN, 2);
sl@0
   886
//		Vfp::AddD();
sl@0
   887
//		TReal64 aDoubleResult = Vfp::DReg(0);
sl@0
   888
//		test(*((TUint64*)&aDoubleResult) == 0x7FF8123456789ABC);
sl@0
   889
		}
sl@0
   890
	}
sl@0
   891
sl@0
   892
void DoRunFastTests()
sl@0
   893
	{
sl@0
   894
	test.Next(_L("Test flushing denormals to zero - single"));
sl@0
   895
	Vfp::SetSReg(1e-39f, 1);
sl@0
   896
	Vfp::SetSReg(1e-39f, 2);
sl@0
   897
	Vfp::AddS();
sl@0
   898
	test(Vfp::SReg(0)==0);
sl@0
   899
sl@0
   900
	test.Next(_L("Test flushing underflow to zero - single"));
sl@0
   901
	Vfp::SetSReg(3.162e-20f, 1);
sl@0
   902
	Vfp::SetSReg(3.162e-20f, 2);
sl@0
   903
	Vfp::MulS();
sl@0
   904
	test(Vfp::SReg(0)==0);
sl@0
   905
sl@0
   906
	test.Next(_L("Test default NaNs - single"));
sl@0
   907
	TReal32 aSingleNaN;
sl@0
   908
	*((TUint32*)&aSingleNaN) = 0x7F9ABCDE;
sl@0
   909
	Vfp::SetSReg(aSingleNaN, 1);
sl@0
   910
	Vfp::SetSReg(aSingleNaN, 2);
sl@0
   911
	Vfp::AddS();
sl@0
   912
	TReal32 aSingleResult = Vfp::SReg(0);
sl@0
   913
	test(*((TUint32*)&aSingleResult) == 0x7FC00000);
sl@0
   914
sl@0
   915
	if (Double)
sl@0
   916
		{
sl@0
   917
		test.Next(_L("Test flushing denormals to zero - double"));
sl@0
   918
		Vfp::SetDReg(3.1234e-322, 1);
sl@0
   919
		Vfp::SetDReg(3.1234e-322, 2);
sl@0
   920
		Vfp::AddD();
sl@0
   921
		test(Vfp::DReg(0)==0);
sl@0
   922
	
sl@0
   923
		test.Next(_L("Test flushing underflow to zero - double"));
sl@0
   924
		Vfp::SetDReg(1.767e-161, 1);
sl@0
   925
		Vfp::SetDReg(1.767e-161, 2);
sl@0
   926
		Vfp::MulD();
sl@0
   927
		test(Vfp::DReg(0)==0);
sl@0
   928
sl@0
   929
		test.Next(_L("Test default NaNs - double"));
sl@0
   930
		TReal64 aDoubleNaN;
sl@0
   931
		*((TUint64*)&aDoubleNaN) = 0x7FF0123456789ABCll;
sl@0
   932
		Vfp::SetDReg(aDoubleNaN, 1);
sl@0
   933
		Vfp::SetDReg(aDoubleNaN, 2);
sl@0
   934
		Vfp::AddD();
sl@0
   935
		TReal64 aDoubleResult = Vfp::DReg(0);
sl@0
   936
		test(*((TUint64*)&aDoubleResult) == 0x7FF8000000000000ll);
sl@0
   937
		}
sl@0
   938
	}
sl@0
   939
sl@0
   940
void TestAddSResult(const TReal32 a, const TReal32 b, const TReal32 r)
sl@0
   941
	{
sl@0
   942
	Vfp::SetSReg(a, 1);
sl@0
   943
	Vfp::SetSReg(b, 2);
sl@0
   944
	Vfp::AddS();
sl@0
   945
	test(Vfp::SReg(0) == r);
sl@0
   946
	}
sl@0
   947
sl@0
   948
void DoRoundingTests()
sl@0
   949
	{
sl@0
   950
	TFloatingPointMode fpmode = IEEEMode ? EFpModeIEEENoExceptions : EFpModeRunFast;
sl@0
   951
	test.Next(_L("Check default rounding to nearest"));
sl@0
   952
	test(User::SetFloatingPointMode(fpmode) == KErrNone);
sl@0
   953
	test.Next(_L("Check nearest-downward"));
sl@0
   954
	TestAddSResult(16777215, 0.49f, 16777215);
sl@0
   955
	test.Next(_L("Check nearest-upward"));
sl@0
   956
	TestAddSResult(16777215, 0.51f, 16777216);
sl@0
   957
	test.Next(_L("Set rounding mode to toward-plus-infinity"));
sl@0
   958
	test(User::SetFloatingPointMode(fpmode, EFpRoundToPlusInfinity) == KErrNone);
sl@0
   959
	test.Next(_L("Check positive rounding goes upward"));
sl@0
   960
	TestAddSResult(16777215, 0.49f, 16777216);
sl@0
   961
	test.Next(_L("Check negative rounding goes upward"));
sl@0
   962
	TestAddSResult(-16777215, -0.51f, -16777215);
sl@0
   963
	test.Next(_L("Set rounding mode to toward-minus-infinity"));
sl@0
   964
	test(User::SetFloatingPointMode(fpmode, EFpRoundToMinusInfinity) == KErrNone);
sl@0
   965
	test.Next(_L("Check positive rounding goes downward"));
sl@0
   966
	TestAddSResult(16777215, 0.51f, 16777215);
sl@0
   967
	test.Next(_L("Check negative rounding goes downward"));
sl@0
   968
	TestAddSResult(-16777215, -0.49f, -16777216);
sl@0
   969
	test.Next(_L("Set rounding mode to toward-zero"));
sl@0
   970
	test(User::SetFloatingPointMode(fpmode, EFpRoundToZero) == KErrNone);
sl@0
   971
	test.Next(_L("Check positive rounding goes downward"));
sl@0
   972
	TestAddSResult(16777215, 0.51f, 16777215);
sl@0
   973
	test.Next(_L("Check negative rounding goes upward"));
sl@0
   974
	TestAddSResult(-16777215, -0.51f, -16777215);
sl@0
   975
	}
sl@0
   976
sl@0
   977
TInt RunFastThread(TAny* /*unused*/)
sl@0
   978
	{
sl@0
   979
	Vfp::SetSReg(1e-39f, 1);
sl@0
   980
	Vfp::SetSReg(1e-39f, 2);
sl@0
   981
	Vfp::AddS();
sl@0
   982
	return (Vfp::SReg(0)==0) ? KErrNone : KErrGeneral;
sl@0
   983
	}
sl@0
   984
sl@0
   985
TInt IEEECompliantThread(TAny* /*unused*/)
sl@0
   986
	{
sl@0
   987
	Vfp::SetSReg(1e-39f, 1);
sl@0
   988
	Vfp::SetSReg(1e-39f, 2);
sl@0
   989
	Vfp::AddS();
sl@0
   990
	return (Vfp::SReg(0)==2e-39f) ? KErrNone : KErrGeneral;
sl@0
   991
	}
sl@0
   992
sl@0
   993
void TestVFPModeInheritance()
sl@0
   994
	{
sl@0
   995
	test.Printf(_L("Set floating point mode to RunFast\n"));
sl@0
   996
	test(User::SetFloatingPointMode(EFpModeRunFast)==KErrNone);
sl@0
   997
	RThread t;
sl@0
   998
	TInt r = t.Create(KNullDesC, &RunFastThread, 0x1000, NULL, NULL);
sl@0
   999
	test(r==KErrNone);
sl@0
  1000
	TRequestStatus s;
sl@0
  1001
	t.Logon(s);
sl@0
  1002
	test.Printf(_L("Run RunFast test in another thread...\n"));
sl@0
  1003
	t.Resume();
sl@0
  1004
	test.Printf(_L("Wait for other thread to terminate\n"));
sl@0
  1005
	User::WaitForRequest(s);
sl@0
  1006
	test(t.ExitType() == EExitKill);
sl@0
  1007
	test(s == KErrNone);
sl@0
  1008
	CLOSE_AND_WAIT(t);
sl@0
  1009
	test.Printf(_L("Set floating point mode to IEEE\n"));
sl@0
  1010
	test(User::SetFloatingPointMode(EFpModeIEEENoExceptions)==KErrNone);
sl@0
  1011
	r = t.Create(KNullDesC, &IEEECompliantThread, 0x1000, NULL, NULL);
sl@0
  1012
	test(r==KErrNone);
sl@0
  1013
	t.Logon(s);
sl@0
  1014
	test.Printf(_L("Run IEEE test in another thread...\n"));
sl@0
  1015
	t.Resume();
sl@0
  1016
	test.Printf(_L("Wait for other thread to terminate\n"));
sl@0
  1017
	User::WaitForRequest(s);
sl@0
  1018
	test(t.ExitType() == EExitKill);
sl@0
  1019
	test(s == KErrNone);
sl@0
  1020
	CLOSE_AND_WAIT(t);
sl@0
  1021
	}
sl@0
  1022
sl@0
  1023
sl@0
  1024
void TestVFPv3()
sl@0
  1025
	{
sl@0
  1026
	test.Next(_L("Transferring to and from fixed point"));
sl@0
  1027
	
sl@0
  1028
	Vfp::SetSReg(2.5f, 0);
sl@0
  1029
	test(Vfp::SReg(0)==2.5f);
sl@0
  1030
	Vfp::ToFixedS(3);				// Convert to fixed (3) precision
sl@0
  1031
	test(Vfp::SRegInt(0)==0x14);	// 10.100 in binary fixed(3) format
sl@0
  1032
	Vfp::FromFixedS(3);				//Convert from fixed (3) precision
sl@0
  1033
	test(Vfp::SReg(0)==2.5f);
sl@0
  1034
sl@0
  1035
	
sl@0
  1036
	test.Next(_L("Setting immediate value to floating point registers"));
sl@0
  1037
	
sl@0
  1038
	Vfp::SetSReg(5.0f, 0);
sl@0
  1039
	test(Vfp::SReg(0) == 5.0f);
sl@0
  1040
	Vfp::TconstS2();
sl@0
  1041
	test(Vfp::SReg(0) == 2.0f);
sl@0
  1042
	Vfp::SetSReg(5.0f, 0);
sl@0
  1043
	Vfp::TconstS2_8();
sl@0
  1044
	test(Vfp::SReg(0) == 2.875f);
sl@0
  1045
	
sl@0
  1046
	Vfp::SetDReg(5.0f, 0);
sl@0
  1047
	test(Vfp::DReg(0) == 5.0f);
sl@0
  1048
	Vfp::TconstD2();
sl@0
  1049
	test(Vfp::DReg(0) == 2.0f);
sl@0
  1050
	Vfp::TconstD2_8();
sl@0
  1051
	test(Vfp::DReg(0) == 2.875f);
sl@0
  1052
	}
sl@0
  1053
sl@0
  1054
void TestNEON()
sl@0
  1055
	{
sl@0
  1056
	RThread t;
sl@0
  1057
	TRequestStatus s;
sl@0
  1058
	test.Next(_L("Test creating a thread to execute an F2-prefix instruction"));
sl@0
  1059
	test_KErrNone(t.Create(KNullDesC, &NeonWithF2, 0x1000, NULL, NULL));
sl@0
  1060
	t.Logon(s);
sl@0
  1061
	t.Resume();
sl@0
  1062
	User::WaitForRequest(s);
sl@0
  1063
	test(t.ExitType() == EExitKill);
sl@0
  1064
	test(s == KErrNone);
sl@0
  1065
	t.Close();
sl@0
  1066
	test.Next(_L("Test creating a thread to execute an F3-prefix instruction"));
sl@0
  1067
	test_KErrNone(t.Create(KNullDesC, &NeonWithF3, 0x1000, NULL, NULL));
sl@0
  1068
	t.Logon(s);
sl@0
  1069
	t.Resume();
sl@0
  1070
	User::WaitForRequest(s);
sl@0
  1071
	test(t.ExitType() == EExitKill);
sl@0
  1072
	test(s == KErrNone);
sl@0
  1073
	t.Close();
sl@0
  1074
	test.Next(_L("Test creating a thread to execute an F4x-prefix instruction"));
sl@0
  1075
	test_KErrNone(t.Create(KNullDesC, &NeonWithF4x, 0x1000, NULL, NULL));
sl@0
  1076
	t.Logon(s);
sl@0
  1077
	t.Resume();
sl@0
  1078
	User::WaitForRequest(s);
sl@0
  1079
	test(t.ExitType() == EExitKill);
sl@0
  1080
	test(s == KErrNone);
sl@0
  1081
	t.Close();
sl@0
  1082
	}
sl@0
  1083
sl@0
  1084
void TestThumb()
sl@0
  1085
	{
sl@0
  1086
	RThread t;
sl@0
  1087
	TRequestStatus s;
sl@0
  1088
	TInt testStep = 0;
sl@0
  1089
	do {
sl@0
  1090
		test_KErrNone(t.Create(KNullDesC, &ThumbMode, 0x1000, NULL, (TAny*)testStep++));
sl@0
  1091
		t.Logon(s);
sl@0
  1092
		t.Resume();
sl@0
  1093
		User::WaitForRequest(s);
sl@0
  1094
		test(s == KErrNone || s == 1);
sl@0
  1095
		test(t.ExitType() == EExitKill);
sl@0
  1096
		t.Close();
sl@0
  1097
		}
sl@0
  1098
	while (s == KErrNone);
sl@0
  1099
sl@0
  1100
	test(s == 1);
sl@0
  1101
	test(testStep == 7);
sl@0
  1102
	}
sl@0
  1103
sl@0
  1104
TInt TestThreadMigration(TAny* aPtr)
sl@0
  1105
	{
sl@0
  1106
	const TInt inc = (TInt)aPtr;
sl@0
  1107
	for (TInt32 switches = 0; switches < KMaxTInt; switches += inc)
sl@0
  1108
		{
sl@0
  1109
		Vfp::SetSReg(switches, switches % 16);
sl@0
  1110
		UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, (TAny*)(switches % CPUs), 0);
sl@0
  1111
		test(Vfp::SRegInt(switches % 16) == switches);
sl@0
  1112
		}
sl@0
  1113
	return KErrNone;
sl@0
  1114
	}
sl@0
  1115
sl@0
  1116
TInt E32Main()
sl@0
  1117
	{
sl@0
  1118
	test.Title();
sl@0
  1119
sl@0
  1120
	test.Start(_L("Ask HAL if we have hardware floating point"));
sl@0
  1121
sl@0
  1122
	CPUs = UserSvr::HalFunction(EHalGroupKernel, EKernelHalNumLogicalCpus, 0, 0);
sl@0
  1123
	TInt supportedTypes;
sl@0
  1124
	TInt HalVfp = HAL::Get(HALData::EHardwareFloatingPoint, supportedTypes);
sl@0
  1125
	if (HalVfp == KErrNone) 
sl@0
  1126
		{ 
sl@0
  1127
		if (supportedTypes == EFpTypeVFPv2) 
sl@0
  1128
			{ 
sl@0
  1129
			test.Printf(_L("HAL reports VFPv2\n"));
sl@0
  1130
			} 
sl@0
  1131
		else if (supportedTypes == EFpTypeVFPv3)
sl@0
  1132
			{ 
sl@0
  1133
			test.Printf(_L("HAL reports VFPv3\n"));
sl@0
  1134
			} 
sl@0
  1135
		else if (supportedTypes == EFpTypeVFPv3D16)
sl@0
  1136
			{ 
sl@0
  1137
			test.Printf(_L("HAL reports VFPv3-D16\n"));
sl@0
  1138
			} 
sl@0
  1139
		else
sl@0
  1140
			{
sl@0
  1141
			test.Printf(_L("HAL reports an unknown floating point type\n"));
sl@0
  1142
			test(0);
sl@0
  1143
			}
sl@0
  1144
		} 
sl@0
  1145
	else
sl@0
  1146
		{ 
sl@0
  1147
		test.Printf(_L("HAL reports no VFP support\n"));
sl@0
  1148
		} 
sl@0
  1149
		
sl@0
  1150
	test.Next(_L("Check VFP present"));
sl@0
  1151
	TBool present = DetectVFP();
sl@0
  1152
	if (!present)
sl@0
  1153
		{
sl@0
  1154
		test.Printf(_L("No VFP detected\n"));
sl@0
  1155
		test(HalVfp == KErrNotSupported || 
sl@0
  1156
						((supportedTypes != EFpTypeVFPv2) && 
sl@0
  1157
						(supportedTypes != EFpTypeVFPv3) && 
sl@0
  1158
						(supportedTypes != EFpTypeVFPv3D16))
sl@0
  1159
						);
sl@0
  1160
		test.End();
sl@0
  1161
		return 0;
sl@0
  1162
		}
sl@0
  1163
	
sl@0
  1164
	test.Printf(_L("VFP detected. FPSID = %08x\n"), FPSID);
sl@0
  1165
	test(HalVfp == KErrNone);
sl@0
  1166
sl@0
  1167
	// Verify that the HAL architecture ID matches the FPSID values
sl@0
  1168
	// ARMv7 redefines some of these bits so the masks are different :(
sl@0
  1169
	if (supportedTypes == EFpTypeVFPv2)
sl@0
  1170
		{
sl@0
  1171
		// assume armv5/6's bit definitions, where 19:16 are the arch version
sl@0
  1172
		// and 20 is the single-precision-only bit
sl@0
  1173
		ArchVersion = (FPSID >> 16) & 0xf;
sl@0
  1174
		test(ArchVersion == ARCH_VERSION_VFPV2);
sl@0
  1175
		Double = !(FPSID & VFP_FPSID_SNG);
sl@0
  1176
		}
sl@0
  1177
	else if (supportedTypes == EFpTypeVFPv3 || supportedTypes == EFpTypeVFPv3D16)
sl@0
  1178
		{
sl@0
  1179
		// assume armv7's bit definitions, where 22:16 are the arch version
sl@0
  1180
		ArchVersion = (FPSID >> 16) & 0x7f;
sl@0
  1181
		test(ArchVersion == ARCH_VERSION_VFPV3_SUBARCH_V2
sl@0
  1182
		  || ArchVersion == ARCH_VERSION_VFPV3_SUBARCH_NULL
sl@0
  1183
		  || ArchVersion == ARCH_VERSION_VFPV3_SUBARCH_V3); 
sl@0
  1184
		// there are bits for this in MVFR0 but ARM implementations should always have it?
sl@0
  1185
		Double = ETrue;
sl@0
  1186
		}
sl@0
  1187
sl@0
  1188
	if (Double)
sl@0
  1189
		test.Printf(_L("Both single and double precision supported\n"), FPSID);
sl@0
  1190
	else
sl@0
  1191
		test.Printf(_L("Only single precision supported\n"), FPSID);
sl@0
  1192
sl@0
  1193
	test.Next(_L("Test VFP Initial State"));
sl@0
  1194
	TestVFPInitialState();
sl@0
  1195
sl@0
  1196
	test.Next(_L("Test setting VFP to IEEE no exceptions mode"));
sl@0
  1197
	IEEEMode = User::SetFloatingPointMode(EFpModeIEEENoExceptions) == KErrNone;
sl@0
  1198
	if (!IEEEMode)
sl@0
  1199
		test.Printf(_L("IEEE no exceptions mode not supported, continuing in RunFast\n"));
sl@0
  1200
sl@0
  1201
	test.Next(_L("Test VFP calculations - single"));
sl@0
  1202
	DoSglTests();
sl@0
  1203
	if (Double)
sl@0
  1204
		{
sl@0
  1205
		test.Next(_L("Test VFP calculations - double"));
sl@0
  1206
		DoDblTests();
sl@0
  1207
		}
sl@0
  1208
sl@0
  1209
	test.Next(_L("Test VFP Context Save"));
sl@0
  1210
	TestVFPContextSave();
sl@0
  1211
sl@0
  1212
	if (IEEEMode)
sl@0
  1213
		{
sl@0
  1214
		test.Next(_L("Test bounce handling"));
sl@0
  1215
		DoBounceTests();
sl@0
  1216
		test.Next(_L("Test bouncing while context switching"));
sl@0
  1217
		DoBounceContextSwitchTests();
sl@0
  1218
		test.Next(_L("Test setting VFP to RunFast mode"));
sl@0
  1219
		test(User::SetFloatingPointMode(EFpModeRunFast) == KErrNone);
sl@0
  1220
		DoRunFastTests();
sl@0
  1221
		}
sl@0
  1222
sl@0
  1223
	test.Next(_L("Test VFP rounding modes"));
sl@0
  1224
	DoRoundingTests();
sl@0
  1225
sl@0
  1226
	if (IEEEMode)
sl@0
  1227
		{
sl@0
  1228
		test.Next(_L("Test VFP mode inheritance between threads"));
sl@0
  1229
		TestVFPModeInheritance();
sl@0
  1230
		}
sl@0
  1231
sl@0
  1232
	if (supportedTypes == EFpTypeVFPv3 || supportedTypes == EFpTypeVFPv3D16)
sl@0
  1233
		{
sl@0
  1234
		test.Next(_L("Test VFPv3"));
sl@0
  1235
		TestVFPv3();
sl@0
  1236
sl@0
  1237
		if (supportedTypes == EFpTypeVFPv3)
sl@0
  1238
			{
sl@0
  1239
			test.Next(_L("Test NEON"));
sl@0
  1240
			TestNEON();
sl@0
  1241
sl@0
  1242
#if defined(__SUPPORT_THUMB_INTERWORKING)
sl@0
  1243
			test.Next(_L("Test Thumb Decode"));
sl@0
  1244
			TestThumb();
sl@0
  1245
#endif
sl@0
  1246
			}
sl@0
  1247
		}
sl@0
  1248
sl@0
  1249
	if (CPUs > 1)
sl@0
  1250
		{
sl@0
  1251
		test.Next(_L("Test SMP Thread Migration"));
sl@0
  1252
		TInt inc = 1;
sl@0
  1253
		RThread t[8];
sl@0
  1254
		TRequestStatus s[8];
sl@0
  1255
		TInt count;
sl@0
  1256
		for (count = 0; count < CPUs + 1; count++)
sl@0
  1257
			{
sl@0
  1258
			TInt r = t[count].Create(KNullDesC, &TestThreadMigration, 0x1000, NULL, (TAny*)(inc++));
sl@0
  1259
			test(r==KErrNone);
sl@0
  1260
			t[count].Logon(s[count]);
sl@0
  1261
			}
sl@0
  1262
		for (count = 0; count < CPUs + 1; count++)
sl@0
  1263
			{
sl@0
  1264
			t[count].Resume();
sl@0
  1265
			}
sl@0
  1266
		User::After(10*1000*1000);
sl@0
  1267
		for (count = 0; count < CPUs + 1; count++)
sl@0
  1268
			{
sl@0
  1269
			t[count].Kill(0);
sl@0
  1270
			}
sl@0
  1271
		for (count = 0; count < CPUs + 1; count++)
sl@0
  1272
			{
sl@0
  1273
			User::WaitForAnyRequest();
sl@0
  1274
			}
sl@0
  1275
		for (count = 0; count < CPUs + 1; count++)
sl@0
  1276
			{
sl@0
  1277
			TInt xt = t[count].ExitType();
sl@0
  1278
			TInt xr = t[count].ExitReason();
sl@0
  1279
			test(xt == EExitKill && xr == KErrNone);
sl@0
  1280
			}
sl@0
  1281
		for (count = 0; count < CPUs + 1; count++)
sl@0
  1282
			{
sl@0
  1283
			CLOSE_AND_WAIT(t[count]);
sl@0
  1284
			}
sl@0
  1285
		}
sl@0
  1286
sl@0
  1287
	test.End();
sl@0
  1288
	return 0;
sl@0
  1289
	}