os/persistentdata/persistentstorage/sql/SQLite364/vdbeapi.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2004 May 26
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 **
    13 ** This file contains code use to implement APIs that are part of the
    14 ** VDBE.
    15 **
    16 ** $Id: vdbeapi.c,v 1.147 2008/10/13 10:37:50 danielk1977 Exp $
    17 */
    18 #include "sqliteInt.h"
    19 #include "vdbeInt.h"
    20 
    21 #if 0 && defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
    22 /*
    23 ** The following structure contains pointers to the end points of a
    24 ** doubly-linked list of all compiled SQL statements that may be holding
    25 ** buffers eligible for release when the sqlite3_release_memory() interface is
    26 ** invoked. Access to this list is protected by the SQLITE_MUTEX_STATIC_LRU2
    27 ** mutex.
    28 **
    29 ** Statements are added to the end of this list when sqlite3_reset() is
    30 ** called. They are removed either when sqlite3_step() or sqlite3_finalize()
    31 ** is called. When statements are added to this list, the associated 
    32 ** register array (p->aMem[1..p->nMem]) may contain dynamic buffers that
    33 ** can be freed using sqlite3VdbeReleaseMemory().
    34 **
    35 ** When statements are added or removed from this list, the mutex
    36 ** associated with the Vdbe being added or removed (Vdbe.db->mutex) is
    37 ** already held. The LRU2 mutex is then obtained, blocking if necessary,
    38 ** the linked-list pointers manipulated and the LRU2 mutex relinquished.
    39 */
    40 struct StatementLruList {
    41   Vdbe *pFirst;
    42   Vdbe *pLast;
    43 };
    44 static struct StatementLruList sqlite3LruStatements;
    45 
    46 /*
    47 ** Check that the list looks to be internally consistent. This is used
    48 ** as part of an assert() statement as follows:
    49 **
    50 **   assert( stmtLruCheck() );
    51 */
    52 #ifndef NDEBUG
    53 static int stmtLruCheck(){
    54   Vdbe *p;
    55   for(p=sqlite3LruStatements.pFirst; p; p=p->pLruNext){
    56     assert(p->pLruNext || p==sqlite3LruStatements.pLast);
    57     assert(!p->pLruNext || p->pLruNext->pLruPrev==p);
    58     assert(p->pLruPrev || p==sqlite3LruStatements.pFirst);
    59     assert(!p->pLruPrev || p->pLruPrev->pLruNext==p);
    60   }
    61   return 1;
    62 }
    63 #endif
    64 
    65 /*
    66 ** Add vdbe p to the end of the statement lru list. It is assumed that
    67 ** p is not already part of the list when this is called. The lru list
    68 ** is protected by the SQLITE_MUTEX_STATIC_LRU mutex.
    69 */
    70 static void stmtLruAdd(Vdbe *p){
    71   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
    72 
    73   if( p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst==p ){
    74     sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
    75     return;
    76   }
    77 
    78   assert( stmtLruCheck() );
    79 
    80   if( !sqlite3LruStatements.pFirst ){
    81     assert( !sqlite3LruStatements.pLast );
    82     sqlite3LruStatements.pFirst = p;
    83     sqlite3LruStatements.pLast = p;
    84   }else{
    85     assert( !sqlite3LruStatements.pLast->pLruNext );
    86     p->pLruPrev = sqlite3LruStatements.pLast;
    87     sqlite3LruStatements.pLast->pLruNext = p;
    88     sqlite3LruStatements.pLast = p;
    89   }
    90 
    91   assert( stmtLruCheck() );
    92 
    93   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
    94 }
    95 
    96 /*
    97 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is already held, remove
    98 ** statement p from the least-recently-used statement list. If the 
    99 ** statement is not currently part of the list, this call is a no-op.
   100 */
   101 static void stmtLruRemoveNomutex(Vdbe *p){
   102   if( p->pLruPrev || p->pLruNext || p==sqlite3LruStatements.pFirst ){
   103     assert( stmtLruCheck() );
   104     if( p->pLruNext ){
   105       p->pLruNext->pLruPrev = p->pLruPrev;
   106     }else{
   107       sqlite3LruStatements.pLast = p->pLruPrev;
   108     }
   109     if( p->pLruPrev ){
   110       p->pLruPrev->pLruNext = p->pLruNext;
   111     }else{
   112       sqlite3LruStatements.pFirst = p->pLruNext;
   113     }
   114     p->pLruNext = 0;
   115     p->pLruPrev = 0;
   116     assert( stmtLruCheck() );
   117   }
   118 }
   119 
   120 /*
   121 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is not held, remove
   122 ** statement p from the least-recently-used statement list. If the 
   123 ** statement is not currently part of the list, this call is a no-op.
   124 */
   125 static void stmtLruRemove(Vdbe *p){
   126   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
   127   stmtLruRemoveNomutex(p);
   128   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
   129 }
   130 
   131 /*
   132 ** Try to release n bytes of memory by freeing buffers associated 
   133 ** with the memory registers of currently unused vdbes.
   134 */
   135 int sqlite3VdbeReleaseMemory(int n){
   136   Vdbe *p;
   137   Vdbe *pNext;
   138   int nFree = 0;
   139 
   140   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
   141   for(p=sqlite3LruStatements.pFirst; p && nFree<n; p=pNext){
   142     pNext = p->pLruNext;
   143 
   144     /* For each statement handle in the lru list, attempt to obtain the
   145     ** associated database mutex. If it cannot be obtained, continue
   146     ** to the next statement handle. It is not possible to block on
   147     ** the database mutex - that could cause deadlock.
   148     */
   149     if( SQLITE_OK==sqlite3_mutex_try(p->db->mutex) ){
   150       nFree += sqlite3VdbeReleaseBuffers(p);
   151       stmtLruRemoveNomutex(p);
   152       sqlite3_mutex_leave(p->db->mutex);
   153     }
   154   }
   155   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
   156 
   157   return nFree;
   158 }
   159 
   160 /*
   161 ** Call sqlite3Reprepare() on the statement. Remove it from the
   162 ** lru list before doing so, as Reprepare() will free all the
   163 ** memory register buffers anyway.
   164 */
   165 int vdbeReprepare(Vdbe *p){
   166   stmtLruRemove(p);
   167   return sqlite3Reprepare(p);
   168 }
   169 
   170 #else       /* !SQLITE_ENABLE_MEMORY_MANAGEMENT */
   171   #define stmtLruRemove(x)
   172   #define stmtLruAdd(x)
   173   #define vdbeReprepare(x) sqlite3Reprepare(x)
   174 #endif
   175 
   176 
   177 #ifndef SQLITE_OMIT_DEPRECATED
   178 /*
   179 ** Return TRUE (non-zero) of the statement supplied as an argument needs
   180 ** to be recompiled.  A statement needs to be recompiled whenever the
   181 ** execution environment changes in a way that would alter the program
   182 ** that sqlite3_prepare() generates.  For example, if new functions or
   183 ** collating sequences are registered or if an authorizer function is
   184 ** added or changed.
   185 */
   186 int sqlite3_expired(sqlite3_stmt *pStmt){
   187   Vdbe *p = (Vdbe*)pStmt;
   188   return p==0 || p->expired;
   189 }
   190 #endif
   191 
   192 /*
   193 ** The following routine destroys a virtual machine that is created by
   194 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
   195 ** success/failure code that describes the result of executing the virtual
   196 ** machine.
   197 **
   198 ** This routine sets the error code and string returned by
   199 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
   200 */
   201 int sqlite3_finalize(sqlite3_stmt *pStmt){
   202   int rc;
   203   if( pStmt==0 ){
   204     rc = SQLITE_OK;
   205   }else{
   206     Vdbe *v = (Vdbe*)pStmt;
   207 #if SQLITE_THREADSAFE
   208     sqlite3_mutex *mutex = v->db->mutex;
   209 #endif
   210     sqlite3_mutex_enter(mutex);
   211     stmtLruRemove(v);
   212     rc = sqlite3VdbeFinalize(v);
   213     sqlite3_mutex_leave(mutex);
   214   }
   215   return rc;
   216 }
   217 
   218 /*
   219 ** Terminate the current execution of an SQL statement and reset it
   220 ** back to its starting state so that it can be reused. A success code from
   221 ** the prior execution is returned.
   222 **
   223 ** This routine sets the error code and string returned by
   224 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
   225 */
   226 int sqlite3_reset(sqlite3_stmt *pStmt){
   227   int rc;
   228   if( pStmt==0 ){
   229     rc = SQLITE_OK;
   230   }else{
   231     Vdbe *v = (Vdbe*)pStmt;
   232     sqlite3_mutex_enter(v->db->mutex);
   233     rc = sqlite3VdbeReset(v);
   234     stmtLruAdd(v);
   235     sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
   236     assert( (rc & (v->db->errMask))==rc );
   237     sqlite3_mutex_leave(v->db->mutex);
   238   }
   239   return rc;
   240 }
   241 
   242 /*
   243 ** Set all the parameters in the compiled SQL statement to NULL.
   244 */
   245 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
   246   int i;
   247   int rc = SQLITE_OK;
   248   Vdbe *p = (Vdbe*)pStmt;
   249 #if SQLITE_THREADSAFE
   250   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
   251 #endif
   252   sqlite3_mutex_enter(mutex);
   253   for(i=0; i<p->nVar; i++){
   254     sqlite3VdbeMemRelease(&p->aVar[i]);
   255     p->aVar[i].flags = MEM_Null;
   256   }
   257   sqlite3_mutex_leave(mutex);
   258   return rc;
   259 }
   260 
   261 
   262 /**************************** sqlite3_value_  *******************************
   263 ** The following routines extract information from a Mem or sqlite3_value
   264 ** structure.
   265 */
   266 const void *sqlite3_value_blob(sqlite3_value *pVal){
   267   Mem *p = (Mem*)pVal;
   268   if( p->flags & (MEM_Blob|MEM_Str) ){
   269     sqlite3VdbeMemExpandBlob(p);
   270     p->flags &= ~MEM_Str;
   271     p->flags |= MEM_Blob;
   272     return p->z;
   273   }else{
   274     return sqlite3_value_text(pVal);
   275   }
   276 }
   277 int sqlite3_value_bytes(sqlite3_value *pVal){
   278   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
   279 }
   280 int sqlite3_value_bytes16(sqlite3_value *pVal){
   281   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
   282 }
   283 double sqlite3_value_double(sqlite3_value *pVal){
   284   return sqlite3VdbeRealValue((Mem*)pVal);
   285 }
   286 int sqlite3_value_int(sqlite3_value *pVal){
   287   return sqlite3VdbeIntValue((Mem*)pVal);
   288 }
   289 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
   290   return sqlite3VdbeIntValue((Mem*)pVal);
   291 }
   292 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
   293   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
   294 }
   295 #ifndef SQLITE_OMIT_UTF16
   296 const void *sqlite3_value_text16(sqlite3_value* pVal){
   297   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
   298 }
   299 const void *sqlite3_value_text16be(sqlite3_value *pVal){
   300   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
   301 }
   302 const void *sqlite3_value_text16le(sqlite3_value *pVal){
   303   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
   304 }
   305 #endif /* SQLITE_OMIT_UTF16 */
   306 int sqlite3_value_type(sqlite3_value* pVal){
   307   return pVal->type;
   308 }
   309 
   310 /**************************** sqlite3_result_  *******************************
   311 ** The following routines are used by user-defined functions to specify
   312 ** the function result.
   313 */
   314 void sqlite3_result_blob(
   315   sqlite3_context *pCtx, 
   316   const void *z, 
   317   int n, 
   318   void (*xDel)(void *)
   319 ){
   320   assert( n>=0 );
   321   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
   322   sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
   323 }
   324 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
   325   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
   326   sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
   327 }
   328 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
   329   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
   330   pCtx->isError = SQLITE_ERROR;
   331   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
   332 }
   333 #ifndef SQLITE_OMIT_UTF16
   334 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
   335   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
   336   pCtx->isError = SQLITE_ERROR;
   337   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
   338 }
   339 #endif
   340 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
   341   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
   342   sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
   343 }
   344 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
   345   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
   346   sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
   347 }
   348 void sqlite3_result_null(sqlite3_context *pCtx){
   349   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
   350   sqlite3VdbeMemSetNull(&pCtx->s);
   351 }
   352 void sqlite3_result_text(
   353   sqlite3_context *pCtx, 
   354   const char *z, 
   355   int n,
   356   void (*xDel)(void *)
   357 ){
   358   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
   359   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
   360 }
   361 #ifndef SQLITE_OMIT_UTF16
   362 void sqlite3_result_text16(
   363   sqlite3_context *pCtx, 
   364   const void *z, 
   365   int n, 
   366   void (*xDel)(void *)
   367 ){
   368   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
   369   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
   370 }
   371 void sqlite3_result_text16be(
   372   sqlite3_context *pCtx, 
   373   const void *z, 
   374   int n, 
   375   void (*xDel)(void *)
   376 ){
   377   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
   378   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
   379 }
   380 void sqlite3_result_text16le(
   381   sqlite3_context *pCtx, 
   382   const void *z, 
   383   int n, 
   384   void (*xDel)(void *)
   385 ){
   386   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
   387   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
   388 }
   389 #endif /* SQLITE_OMIT_UTF16 */
   390 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
   391   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
   392   sqlite3VdbeMemCopy(&pCtx->s, pValue);
   393 }
   394 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
   395   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
   396   sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
   397 }
   398 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
   399   pCtx->isError = errCode;
   400 }
   401 
   402 /* Force an SQLITE_TOOBIG error. */
   403 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
   404   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
   405   pCtx->isError = SQLITE_TOOBIG;
   406   sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, 
   407                        SQLITE_UTF8, SQLITE_STATIC);
   408 }
   409 
   410 /* An SQLITE_NOMEM error. */
   411 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
   412   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
   413   sqlite3VdbeMemSetNull(&pCtx->s);
   414   pCtx->isError = SQLITE_NOMEM;
   415   pCtx->s.db->mallocFailed = 1;
   416 }
   417 
   418 /*
   419 ** Execute the statement pStmt, either until a row of data is ready, the
   420 ** statement is completely executed or an error occurs.
   421 **
   422 ** This routine implements the bulk of the logic behind the sqlite_step()
   423 ** API.  The only thing omitted is the automatic recompile if a 
   424 ** schema change has occurred.  That detail is handled by the
   425 ** outer sqlite3_step() wrapper procedure.
   426 */
   427 static int sqlite3Step(Vdbe *p){
   428   sqlite3 *db;
   429   int rc;
   430 
   431   assert(p);
   432   if( p->magic!=VDBE_MAGIC_RUN ){
   433     return SQLITE_MISUSE;
   434   }
   435 
   436   /* Assert that malloc() has not failed */
   437   db = p->db;
   438   if( db->mallocFailed ){
   439     return SQLITE_NOMEM;
   440   }
   441 
   442   if( p->pc<=0 && p->expired ){
   443     if( p->rc==SQLITE_OK ){
   444       p->rc = SQLITE_SCHEMA;
   445     }
   446     rc = SQLITE_ERROR;
   447     goto end_of_step;
   448   }
   449   if( sqlite3SafetyOn(db) ){
   450     p->rc = SQLITE_MISUSE;
   451     return SQLITE_MISUSE;
   452   }
   453   if( p->pc<0 ){
   454     /* If there are no other statements currently running, then
   455     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
   456     ** from interrupting a statement that has not yet started.
   457     */
   458     if( db->activeVdbeCnt==0 ){
   459       db->u1.isInterrupted = 0;
   460     }
   461 
   462 #ifndef SQLITE_OMIT_TRACE
   463     if( db->xProfile && !db->init.busy ){
   464       double rNow;
   465       sqlite3OsCurrentTime(db->pVfs, &rNow);
   466       p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
   467     }
   468 #endif
   469 
   470     db->activeVdbeCnt++;
   471     p->pc = 0;
   472     stmtLruRemove(p);
   473   }
   474 #ifndef SQLITE_OMIT_EXPLAIN
   475   if( p->explain ){
   476     rc = sqlite3VdbeList(p);
   477   }else
   478 #endif /* SQLITE_OMIT_EXPLAIN */
   479   {
   480     rc = sqlite3VdbeExec(p);
   481   }
   482 
   483   if( sqlite3SafetyOff(db) ){
   484     rc = SQLITE_MISUSE;
   485   }
   486 
   487 #ifndef SQLITE_OMIT_TRACE
   488   /* Invoke the profile callback if there is one
   489   */
   490   if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp>0
   491            && p->aOp[0].opcode==OP_Trace && p->aOp[0].p4.z!=0 ){
   492     double rNow;
   493     u64 elapseTime;
   494 
   495     sqlite3OsCurrentTime(db->pVfs, &rNow);
   496     elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
   497     db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime);
   498   }
   499 #endif
   500 
   501   db->errCode = rc;
   502   /*sqlite3Error(p->db, rc, 0);*/
   503   p->rc = sqlite3ApiExit(p->db, p->rc);
   504 end_of_step:
   505   assert( (rc&0xff)==rc );
   506   if( p->zSql && (rc&0xff)<SQLITE_ROW ){
   507     /* This behavior occurs if sqlite3_prepare_v2() was used to build
   508     ** the prepared statement.  Return error codes directly */
   509     p->db->errCode = p->rc;
   510     /* sqlite3Error(p->db, p->rc, 0); */
   511     return p->rc;
   512   }else{
   513     /* This is for legacy sqlite3_prepare() builds and when the code
   514     ** is SQLITE_ROW or SQLITE_DONE */
   515     return rc;
   516   }
   517 }
   518 
   519 /*
   520 ** This is the top-level implementation of sqlite3_step().  Call
   521 ** sqlite3Step() to do most of the work.  If a schema error occurs,
   522 ** call sqlite3Reprepare() and try again.
   523 */
   524 #ifdef SQLITE_OMIT_PARSER
   525 int sqlite3_step(sqlite3_stmt *pStmt){
   526   int rc = SQLITE_MISUSE;
   527   if( pStmt ){
   528     Vdbe *v;
   529     v = (Vdbe*)pStmt;
   530     sqlite3_mutex_enter(v->db->mutex);
   531     rc = sqlite3Step(v);
   532     sqlite3_mutex_leave(v->db->mutex);
   533   }
   534   return rc;
   535 }
   536 #else
   537 int sqlite3_step(sqlite3_stmt *pStmt){
   538   int rc = SQLITE_MISUSE;
   539   if( pStmt ){
   540     int cnt = 0;
   541     Vdbe *v = (Vdbe*)pStmt;
   542     sqlite3 *db = v->db;
   543     sqlite3_mutex_enter(db->mutex);
   544     while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
   545            && cnt++ < 5
   546            && vdbeReprepare(v) ){
   547       sqlite3_reset(pStmt);
   548       v->expired = 0;
   549     }
   550     if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){
   551       /* This case occurs after failing to recompile an sql statement. 
   552       ** The error message from the SQL compiler has already been loaded 
   553       ** into the database handle. This block copies the error message 
   554       ** from the database handle into the statement and sets the statement
   555       ** program counter to 0 to ensure that when the statement is 
   556       ** finalized or reset the parser error message is available via
   557       ** sqlite3_errmsg() and sqlite3_errcode().
   558       */
   559       const char *zErr = (const char *)sqlite3_value_text(db->pErr); 
   560       sqlite3DbFree(db, v->zErrMsg);
   561       if( !db->mallocFailed ){
   562         v->zErrMsg = sqlite3DbStrDup(db, zErr);
   563       } else {
   564         v->zErrMsg = 0;
   565         v->rc = SQLITE_NOMEM;
   566       }
   567     }
   568     rc = sqlite3ApiExit(db, rc);
   569     sqlite3_mutex_leave(db->mutex);
   570   }
   571   return rc;
   572 }
   573 #endif
   574 
   575 /*
   576 ** Extract the user data from a sqlite3_context structure and return a
   577 ** pointer to it.
   578 */
   579 void *sqlite3_user_data(sqlite3_context *p){
   580   assert( p && p->pFunc );
   581   return p->pFunc->pUserData;
   582 }
   583 
   584 /*
   585 ** Extract the user data from a sqlite3_context structure and return a
   586 ** pointer to it.
   587 */
   588 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
   589   assert( p && p->pFunc );
   590   return p->s.db;
   591 }
   592 
   593 /*
   594 ** The following is the implementation of an SQL function that always
   595 ** fails with an error message stating that the function is used in the
   596 ** wrong context.  The sqlite3_overload_function() API might construct
   597 ** SQL function that use this routine so that the functions will exist
   598 ** for name resolution but are actually overloaded by the xFindFunction
   599 ** method of virtual tables.
   600 */
   601 void sqlite3InvalidFunction(
   602   sqlite3_context *context,  /* The function calling context */
   603   int argc,                  /* Number of arguments to the function */
   604   sqlite3_value **argv       /* Value of each argument */
   605 ){
   606   const char *zName = context->pFunc->zName;
   607   char *zErr;
   608   zErr = sqlite3MPrintf(0,
   609       "unable to use function %s in the requested context", zName);
   610   sqlite3_result_error(context, zErr, -1);
   611   sqlite3_free(zErr);
   612 }
   613 
   614 /*
   615 ** Allocate or return the aggregate context for a user function.  A new
   616 ** context is allocated on the first call.  Subsequent calls return the
   617 ** same context that was returned on prior calls.
   618 */
   619 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
   620   Mem *pMem;
   621   assert( p && p->pFunc && p->pFunc->xStep );
   622   assert( sqlite3_mutex_held(p->s.db->mutex) );
   623   pMem = p->pMem;
   624   if( (pMem->flags & MEM_Agg)==0 ){
   625     if( nByte==0 ){
   626       sqlite3VdbeMemReleaseExternal(pMem);
   627       pMem->flags = MEM_Null;
   628       pMem->z = 0;
   629     }else{
   630       sqlite3VdbeMemGrow(pMem, nByte, 0);
   631       pMem->flags = MEM_Agg;
   632       pMem->u.pDef = p->pFunc;
   633       if( pMem->z ){
   634         memset(pMem->z, 0, nByte);
   635       }
   636     }
   637   }
   638   return (void*)pMem->z;
   639 }
   640 
   641 /*
   642 ** Return the auxilary data pointer, if any, for the iArg'th argument to
   643 ** the user-function defined by pCtx.
   644 */
   645 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
   646   VdbeFunc *pVdbeFunc;
   647 
   648   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
   649   pVdbeFunc = pCtx->pVdbeFunc;
   650   if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
   651     return 0;
   652   }
   653   return pVdbeFunc->apAux[iArg].pAux;
   654 }
   655 
   656 /*
   657 ** Set the auxilary data pointer and delete function, for the iArg'th
   658 ** argument to the user-function defined by pCtx. Any previous value is
   659 ** deleted by calling the delete function specified when it was set.
   660 */
   661 void sqlite3_set_auxdata(
   662   sqlite3_context *pCtx, 
   663   int iArg, 
   664   void *pAux, 
   665   void (*xDelete)(void*)
   666 ){
   667   struct AuxData *pAuxData;
   668   VdbeFunc *pVdbeFunc;
   669   if( iArg<0 ) goto failed;
   670 
   671   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
   672   pVdbeFunc = pCtx->pVdbeFunc;
   673   if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
   674     int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
   675     int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
   676     pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
   677     if( !pVdbeFunc ){
   678       goto failed;
   679     }
   680     pCtx->pVdbeFunc = pVdbeFunc;
   681     memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
   682     pVdbeFunc->nAux = iArg+1;
   683     pVdbeFunc->pFunc = pCtx->pFunc;
   684   }
   685 
   686   pAuxData = &pVdbeFunc->apAux[iArg];
   687   if( pAuxData->pAux && pAuxData->xDelete ){
   688     pAuxData->xDelete(pAuxData->pAux);
   689   }
   690   pAuxData->pAux = pAux;
   691   pAuxData->xDelete = xDelete;
   692   return;
   693 
   694 failed:
   695   if( xDelete ){
   696     xDelete(pAux);
   697   }
   698 }
   699 
   700 #ifndef SQLITE_OMIT_DEPRECATED
   701 /*
   702 ** Return the number of times the Step function of a aggregate has been 
   703 ** called.
   704 **
   705 ** This function is deprecated.  Do not use it for new code.  It is
   706 ** provide only to avoid breaking legacy code.  New aggregate function
   707 ** implementations should keep their own counts within their aggregate
   708 ** context.
   709 */
   710 int sqlite3_aggregate_count(sqlite3_context *p){
   711   assert( p && p->pFunc && p->pFunc->xStep );
   712   return p->pMem->n;
   713 }
   714 #endif
   715 
   716 /*
   717 ** Return the number of columns in the result set for the statement pStmt.
   718 */
   719 int sqlite3_column_count(sqlite3_stmt *pStmt){
   720   Vdbe *pVm = (Vdbe *)pStmt;
   721   return pVm ? pVm->nResColumn : 0;
   722 }
   723 
   724 /*
   725 ** Return the number of values available from the current row of the
   726 ** currently executing statement pStmt.
   727 */
   728 int sqlite3_data_count(sqlite3_stmt *pStmt){
   729   Vdbe *pVm = (Vdbe *)pStmt;
   730   if( pVm==0 || pVm->pResultSet==0 ) return 0;
   731   return pVm->nResColumn;
   732 }
   733 
   734 
   735 /*
   736 ** Check to see if column iCol of the given statement is valid.  If
   737 ** it is, return a pointer to the Mem for the value of that column.
   738 ** If iCol is not valid, return a pointer to a Mem which has a value
   739 ** of NULL.
   740 */
   741 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
   742   Vdbe *pVm;
   743   int vals;
   744   Mem *pOut;
   745 
   746   pVm = (Vdbe *)pStmt;
   747   if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
   748     sqlite3_mutex_enter(pVm->db->mutex);
   749     vals = sqlite3_data_count(pStmt);
   750     pOut = &pVm->pResultSet[i];
   751   }else{
   752     static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 };
   753     if( pVm->db ){
   754       sqlite3_mutex_enter(pVm->db->mutex);
   755       sqlite3Error(pVm->db, SQLITE_RANGE, 0);
   756     }
   757     pOut = (Mem*)&nullMem;
   758   }
   759   return pOut;
   760 }
   761 
   762 /*
   763 ** This function is called after invoking an sqlite3_value_XXX function on a 
   764 ** column value (i.e. a value returned by evaluating an SQL expression in the
   765 ** select list of a SELECT statement) that may cause a malloc() failure. If 
   766 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
   767 ** code of statement pStmt set to SQLITE_NOMEM.
   768 **
   769 ** Specifically, this is called from within:
   770 **
   771 **     sqlite3_column_int()
   772 **     sqlite3_column_int64()
   773 **     sqlite3_column_text()
   774 **     sqlite3_column_text16()
   775 **     sqlite3_column_real()
   776 **     sqlite3_column_bytes()
   777 **     sqlite3_column_bytes16()
   778 **
   779 ** But not for sqlite3_column_blob(), which never calls malloc().
   780 */
   781 static void columnMallocFailure(sqlite3_stmt *pStmt)
   782 {
   783   /* If malloc() failed during an encoding conversion within an
   784   ** sqlite3_column_XXX API, then set the return code of the statement to
   785   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
   786   ** and _finalize() will return NOMEM.
   787   */
   788   Vdbe *p = (Vdbe *)pStmt;
   789   if( p ){
   790     p->rc = sqlite3ApiExit(p->db, p->rc);
   791     sqlite3_mutex_leave(p->db->mutex);
   792   }
   793 }
   794 
   795 /**************************** sqlite3_column_  *******************************
   796 ** The following routines are used to access elements of the current row
   797 ** in the result set.
   798 */
   799 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
   800   const void *val;
   801   val = sqlite3_value_blob( columnMem(pStmt,i) );
   802   /* Even though there is no encoding conversion, value_blob() might
   803   ** need to call malloc() to expand the result of a zeroblob() 
   804   ** expression. 
   805   */
   806   columnMallocFailure(pStmt);
   807   return val;
   808 }
   809 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
   810   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
   811   columnMallocFailure(pStmt);
   812   return val;
   813 }
   814 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
   815   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
   816   columnMallocFailure(pStmt);
   817   return val;
   818 }
   819 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
   820   double val = sqlite3_value_double( columnMem(pStmt,i) );
   821   columnMallocFailure(pStmt);
   822   return val;
   823 }
   824 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
   825   int val = sqlite3_value_int( columnMem(pStmt,i) );
   826   columnMallocFailure(pStmt);
   827   return val;
   828 }
   829 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
   830   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
   831   columnMallocFailure(pStmt);
   832   return val;
   833 }
   834 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
   835   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
   836   columnMallocFailure(pStmt);
   837   return val;
   838 }
   839 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
   840   Mem *pOut = columnMem(pStmt, i);
   841   if( pOut->flags&MEM_Static ){
   842     pOut->flags &= ~MEM_Static;
   843     pOut->flags |= MEM_Ephem;
   844   }
   845   columnMallocFailure(pStmt);
   846   return (sqlite3_value *)pOut;
   847 }
   848 #ifndef SQLITE_OMIT_UTF16
   849 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
   850   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
   851   columnMallocFailure(pStmt);
   852   return val;
   853 }
   854 #endif /* SQLITE_OMIT_UTF16 */
   855 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
   856   int iType = sqlite3_value_type( columnMem(pStmt,i) );
   857   columnMallocFailure(pStmt);
   858   return iType;
   859 }
   860 
   861 /* The following function is experimental and subject to change or
   862 ** removal */
   863 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
   864 **  return sqlite3_value_numeric_type( columnMem(pStmt,i) );
   865 **}
   866 */
   867 
   868 /*
   869 ** Convert the N-th element of pStmt->pColName[] into a string using
   870 ** xFunc() then return that string.  If N is out of range, return 0.
   871 **
   872 ** There are up to 5 names for each column.  useType determines which
   873 ** name is returned.  Here are the names:
   874 **
   875 **    0      The column name as it should be displayed for output
   876 **    1      The datatype name for the column
   877 **    2      The name of the database that the column derives from
   878 **    3      The name of the table that the column derives from
   879 **    4      The name of the table column that the result column derives from
   880 **
   881 ** If the result is not a simple column reference (if it is an expression
   882 ** or a constant) then useTypes 2, 3, and 4 return NULL.
   883 */
   884 static const void *columnName(
   885   sqlite3_stmt *pStmt,
   886   int N,
   887   const void *(*xFunc)(Mem*),
   888   int useType
   889 ){
   890   const void *ret = 0;
   891   Vdbe *p = (Vdbe *)pStmt;
   892   int n;
   893   
   894 
   895   if( p!=0 ){
   896     n = sqlite3_column_count(pStmt);
   897     if( N<n && N>=0 ){
   898       N += useType*n;
   899       sqlite3_mutex_enter(p->db->mutex);
   900       ret = xFunc(&p->aColName[N]);
   901 
   902       /* A malloc may have failed inside of the xFunc() call. If this
   903       ** is the case, clear the mallocFailed flag and return NULL.
   904       */
   905       if( p->db && p->db->mallocFailed ){
   906         p->db->mallocFailed = 0;
   907         ret = 0;
   908       }
   909       sqlite3_mutex_leave(p->db->mutex);
   910     }
   911   }
   912   return ret;
   913 }
   914 
   915 /*
   916 ** Return the name of the Nth column of the result set returned by SQL
   917 ** statement pStmt.
   918 */
   919 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
   920   return columnName(
   921       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
   922 }
   923 #ifndef SQLITE_OMIT_UTF16
   924 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
   925   return columnName(
   926       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
   927 }
   928 #endif
   929 
   930 /*
   931 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
   932 ** not define OMIT_DECLTYPE.
   933 */
   934 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
   935 # error "Must not define both SQLITE_OMIT_DECLTYPE \
   936          and SQLITE_ENABLE_COLUMN_METADATA"
   937 #endif
   938 
   939 #ifndef SQLITE_OMIT_DECLTYPE
   940 /*
   941 ** Return the column declaration type (if applicable) of the 'i'th column
   942 ** of the result set of SQL statement pStmt.
   943 */
   944 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
   945   return columnName(
   946       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
   947 }
   948 #ifndef SQLITE_OMIT_UTF16
   949 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
   950   return columnName(
   951       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
   952 }
   953 #endif /* SQLITE_OMIT_UTF16 */
   954 #endif /* SQLITE_OMIT_DECLTYPE */
   955 
   956 #ifdef SQLITE_ENABLE_COLUMN_METADATA
   957 /*
   958 ** Return the name of the database from which a result column derives.
   959 ** NULL is returned if the result column is an expression or constant or
   960 ** anything else which is not an unabiguous reference to a database column.
   961 */
   962 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
   963   return columnName(
   964       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
   965 }
   966 #ifndef SQLITE_OMIT_UTF16
   967 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
   968   return columnName(
   969       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
   970 }
   971 #endif /* SQLITE_OMIT_UTF16 */
   972 
   973 /*
   974 ** Return the name of the table from which a result column derives.
   975 ** NULL is returned if the result column is an expression or constant or
   976 ** anything else which is not an unabiguous reference to a database column.
   977 */
   978 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
   979   return columnName(
   980       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
   981 }
   982 #ifndef SQLITE_OMIT_UTF16
   983 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
   984   return columnName(
   985       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
   986 }
   987 #endif /* SQLITE_OMIT_UTF16 */
   988 
   989 /*
   990 ** Return the name of the table column from which a result column derives.
   991 ** NULL is returned if the result column is an expression or constant or
   992 ** anything else which is not an unabiguous reference to a database column.
   993 */
   994 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
   995   return columnName(
   996       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
   997 }
   998 #ifndef SQLITE_OMIT_UTF16
   999 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
  1000   return columnName(
  1001       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
  1002 }
  1003 #endif /* SQLITE_OMIT_UTF16 */
  1004 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
  1005 
  1006 
  1007 /******************************* sqlite3_bind_  ***************************
  1008 ** 
  1009 ** Routines used to attach values to wildcards in a compiled SQL statement.
  1010 */
  1011 /*
  1012 ** Unbind the value bound to variable i in virtual machine p. This is the 
  1013 ** the same as binding a NULL value to the column. If the "i" parameter is
  1014 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
  1015 **
  1016 ** A successful evaluation of this routine acquires the mutex on p.
  1017 ** the mutex is released if any kind of error occurs.
  1018 **
  1019 ** The error code stored in database p->db is overwritten with the return
  1020 ** value in any case.
  1021 */
  1022 static int vdbeUnbind(Vdbe *p, int i){
  1023   Mem *pVar;
  1024   if( p==0 ) return SQLITE_MISUSE;
  1025   sqlite3_mutex_enter(p->db->mutex);
  1026   if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
  1027     sqlite3Error(p->db, SQLITE_MISUSE, 0);
  1028     sqlite3_mutex_leave(p->db->mutex);
  1029     return SQLITE_MISUSE;
  1030   }
  1031   if( i<1 || i>p->nVar ){
  1032     sqlite3Error(p->db, SQLITE_RANGE, 0);
  1033     sqlite3_mutex_leave(p->db->mutex);
  1034     return SQLITE_RANGE;
  1035   }
  1036   i--;
  1037   pVar = &p->aVar[i];
  1038   sqlite3VdbeMemRelease(pVar);
  1039   pVar->flags = MEM_Null;
  1040   sqlite3Error(p->db, SQLITE_OK, 0);
  1041   return SQLITE_OK;
  1042 }
  1043 
  1044 /*
  1045 ** Bind a text or BLOB value.
  1046 */
  1047 static int bindText(
  1048   sqlite3_stmt *pStmt,   /* The statement to bind against */
  1049   int i,                 /* Index of the parameter to bind */
  1050   const void *zData,     /* Pointer to the data to be bound */
  1051   int nData,             /* Number of bytes of data to be bound */
  1052   void (*xDel)(void*),   /* Destructor for the data */
  1053   int encoding           /* Encoding for the data */
  1054 ){
  1055   Vdbe *p = (Vdbe *)pStmt;
  1056   Mem *pVar;
  1057   int rc;
  1058 
  1059   rc = vdbeUnbind(p, i);
  1060   if( rc==SQLITE_OK ){
  1061     if( zData!=0 ){
  1062       pVar = &p->aVar[i-1];
  1063       rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
  1064       if( rc==SQLITE_OK && encoding!=0 ){
  1065         rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
  1066       }
  1067       sqlite3Error(p->db, rc, 0);
  1068       rc = sqlite3ApiExit(p->db, rc);
  1069     }
  1070     sqlite3_mutex_leave(p->db->mutex);
  1071   }
  1072   return rc;
  1073 }
  1074 
  1075 
  1076 /*
  1077 ** Bind a blob value to an SQL statement variable.
  1078 */
  1079 int sqlite3_bind_blob(
  1080   sqlite3_stmt *pStmt, 
  1081   int i, 
  1082   const void *zData, 
  1083   int nData, 
  1084   void (*xDel)(void*)
  1085 ){
  1086   return bindText(pStmt, i, zData, nData, xDel, 0);
  1087 }
  1088 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
  1089   int rc;
  1090   Vdbe *p = (Vdbe *)pStmt;
  1091   rc = vdbeUnbind(p, i);
  1092   if( rc==SQLITE_OK ){
  1093     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
  1094     sqlite3_mutex_leave(p->db->mutex);
  1095   }
  1096   return rc;
  1097 }
  1098 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
  1099   return sqlite3_bind_int64(p, i, (i64)iValue);
  1100 }
  1101 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
  1102   int rc;
  1103   Vdbe *p = (Vdbe *)pStmt;
  1104   rc = vdbeUnbind(p, i);
  1105   if( rc==SQLITE_OK ){
  1106     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
  1107     sqlite3_mutex_leave(p->db->mutex);
  1108   }
  1109   return rc;
  1110 }
  1111 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
  1112   int rc;
  1113   Vdbe *p = (Vdbe*)pStmt;
  1114   rc = vdbeUnbind(p, i);
  1115   if( rc==SQLITE_OK ){
  1116     sqlite3_mutex_leave(p->db->mutex);
  1117   }
  1118   return rc;
  1119 }
  1120 int sqlite3_bind_text( 
  1121   sqlite3_stmt *pStmt, 
  1122   int i, 
  1123   const char *zData, 
  1124   int nData, 
  1125   void (*xDel)(void*)
  1126 ){
  1127   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
  1128 }
  1129 #ifndef SQLITE_OMIT_UTF16
  1130 int sqlite3_bind_text16(
  1131   sqlite3_stmt *pStmt, 
  1132   int i, 
  1133   const void *zData, 
  1134   int nData, 
  1135   void (*xDel)(void*)
  1136 ){
  1137   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
  1138 }
  1139 #endif /* SQLITE_OMIT_UTF16 */
  1140 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
  1141   int rc;
  1142   Vdbe *p = (Vdbe *)pStmt;
  1143   rc = vdbeUnbind(p, i);
  1144   if( rc==SQLITE_OK ){
  1145     rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
  1146     if( rc==SQLITE_OK ){
  1147       rc = sqlite3VdbeChangeEncoding(&p->aVar[i-1], ENC(p->db));
  1148     }
  1149     sqlite3_mutex_leave(p->db->mutex);
  1150   }
  1151   rc = sqlite3ApiExit(p->db, rc);
  1152   return rc;
  1153 }
  1154 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
  1155   int rc;
  1156   Vdbe *p = (Vdbe *)pStmt;
  1157   rc = vdbeUnbind(p, i);
  1158   if( rc==SQLITE_OK ){
  1159     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
  1160     sqlite3_mutex_leave(p->db->mutex);
  1161   }
  1162   return rc;
  1163 }
  1164 
  1165 /*
  1166 ** Return the number of wildcards that can be potentially bound to.
  1167 ** This routine is added to support DBD::SQLite.  
  1168 */
  1169 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
  1170   Vdbe *p = (Vdbe*)pStmt;
  1171   return p ? p->nVar : 0;
  1172 }
  1173 
  1174 /*
  1175 ** Create a mapping from variable numbers to variable names
  1176 ** in the Vdbe.azVar[] array, if such a mapping does not already
  1177 ** exist.
  1178 */
  1179 static void createVarMap(Vdbe *p){
  1180   if( !p->okVar ){
  1181     sqlite3_mutex_enter(p->db->mutex);
  1182     if( !p->okVar ){
  1183       int j;
  1184       Op *pOp;
  1185       for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
  1186         if( pOp->opcode==OP_Variable ){
  1187           assert( pOp->p1>0 && pOp->p1<=p->nVar );
  1188           p->azVar[pOp->p1-1] = pOp->p4.z;
  1189         }
  1190       }
  1191       p->okVar = 1;
  1192     }
  1193     sqlite3_mutex_leave(p->db->mutex);
  1194   }
  1195 }
  1196 
  1197 /*
  1198 ** Return the name of a wildcard parameter.  Return NULL if the index
  1199 ** is out of range or if the wildcard is unnamed.
  1200 **
  1201 ** The result is always UTF-8.
  1202 */
  1203 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
  1204   Vdbe *p = (Vdbe*)pStmt;
  1205   if( p==0 || i<1 || i>p->nVar ){
  1206     return 0;
  1207   }
  1208   createVarMap(p);
  1209   return p->azVar[i-1];
  1210 }
  1211 
  1212 /*
  1213 ** Given a wildcard parameter name, return the index of the variable
  1214 ** with that name.  If there is no variable with the given name,
  1215 ** return 0.
  1216 */
  1217 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
  1218   Vdbe *p = (Vdbe*)pStmt;
  1219   int i;
  1220   if( p==0 ){
  1221     return 0;
  1222   }
  1223   createVarMap(p); 
  1224   if( zName ){
  1225     for(i=0; i<p->nVar; i++){
  1226       const char *z = p->azVar[i];
  1227       if( z && strcmp(z,zName)==0 ){
  1228         return i+1;
  1229       }
  1230     }
  1231   }
  1232   return 0;
  1233 }
  1234 
  1235 /*
  1236 ** Transfer all bindings from the first statement over to the second.
  1237 ** If the two statements contain a different number of bindings, then
  1238 ** an SQLITE_ERROR is returned.
  1239 */
  1240 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
  1241   Vdbe *pFrom = (Vdbe*)pFromStmt;
  1242   Vdbe *pTo = (Vdbe*)pToStmt;
  1243   int i, rc = SQLITE_OK;
  1244   if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
  1245     || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT)
  1246     || pTo->db!=pFrom->db ){
  1247     return SQLITE_MISUSE;
  1248   }
  1249   if( pFrom->nVar!=pTo->nVar ){
  1250     return SQLITE_ERROR;
  1251   }
  1252   sqlite3_mutex_enter(pTo->db->mutex);
  1253   for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
  1254     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
  1255   }
  1256   sqlite3_mutex_leave(pTo->db->mutex);
  1257   assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
  1258   return rc;
  1259 }
  1260 
  1261 #ifndef SQLITE_OMIT_DEPRECATED
  1262 /*
  1263 ** Deprecated external interface.  Internal/core SQLite code
  1264 ** should call sqlite3TransferBindings.
  1265 */
  1266 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
  1267   return sqlite3TransferBindings(pFromStmt, pToStmt);
  1268 }
  1269 #endif
  1270 
  1271 /*
  1272 ** Return the sqlite3* database handle to which the prepared statement given
  1273 ** in the argument belongs.  This is the same database handle that was
  1274 ** the first argument to the sqlite3_prepare() that was used to create
  1275 ** the statement in the first place.
  1276 */
  1277 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
  1278   return pStmt ? ((Vdbe*)pStmt)->db : 0;
  1279 }
  1280 
  1281 /*
  1282 ** Return a pointer to the next prepared statement after pStmt associated
  1283 ** with database connection pDb.  If pStmt is NULL, return the first
  1284 ** prepared statement for the database connection.  Return NULL if there
  1285 ** are no more.
  1286 */
  1287 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
  1288   sqlite3_stmt *pNext;
  1289   sqlite3_mutex_enter(pDb->mutex);
  1290   if( pStmt==0 ){
  1291     pNext = (sqlite3_stmt*)pDb->pVdbe;
  1292   }else{
  1293     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
  1294   }
  1295   sqlite3_mutex_leave(pDb->mutex);
  1296   return pNext;
  1297 }
  1298 
  1299 /*
  1300 ** Return the value of a status counter for a prepared statement
  1301 */
  1302 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
  1303   Vdbe *pVdbe = (Vdbe*)pStmt;
  1304   int v = pVdbe->aCounter[op-1];
  1305   if( resetFlag ) pVdbe->aCounter[op-1] = 0;
  1306   return v;
  1307 }