sl@0
|
1 |
/*
|
sl@0
|
2 |
* Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
|
sl@0
|
3 |
* All rights reserved.
|
sl@0
|
4 |
* This component and the accompanying materials are made available
|
sl@0
|
5 |
* under the terms of the License "Eclipse Public License v1.0"
|
sl@0
|
6 |
* which accompanies this distribution, and is available
|
sl@0
|
7 |
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
sl@0
|
8 |
*
|
sl@0
|
9 |
* Initial Contributors:
|
sl@0
|
10 |
* Nokia Corporation - initial contribution.
|
sl@0
|
11 |
*
|
sl@0
|
12 |
* Contributors:
|
sl@0
|
13 |
*
|
sl@0
|
14 |
* Description:
|
sl@0
|
15 |
*
|
sl@0
|
16 |
*/
|
sl@0
|
17 |
|
sl@0
|
18 |
|
sl@0
|
19 |
/**
|
sl@0
|
20 |
@file
|
sl@0
|
21 |
@internalComponent
|
sl@0
|
22 |
@released
|
sl@0
|
23 |
*/
|
sl@0
|
24 |
#include <kernel/kern_priv.h>
|
sl@0
|
25 |
#include "cryptodriver.h"
|
sl@0
|
26 |
#ifdef __MARM__
|
sl@0
|
27 |
#include <omap_hrp/assp/shared/omap_reg.h>
|
sl@0
|
28 |
#include <omap_hrp/assp/shared/omap_interrupt.h>
|
sl@0
|
29 |
#endif
|
sl@0
|
30 |
#include "cryptoh4aes.h"
|
sl@0
|
31 |
|
sl@0
|
32 |
#if 0
|
sl@0
|
33 |
#undef __MARM__
|
sl@0
|
34 |
#ifndef __MARM__
|
sl@0
|
35 |
#warning "h/w disabled"
|
sl@0
|
36 |
#endif
|
sl@0
|
37 |
#endif
|
sl@0
|
38 |
|
sl@0
|
39 |
#ifdef DUMPBUFFER
|
sl@0
|
40 |
LOCAL_D void dumpBuffer(const char *aName, TUint32 *aBuf, TUint32 aLen);
|
sl@0
|
41 |
#else
|
sl@0
|
42 |
#define dumpBuffer(aName, aBuf, aLen)
|
sl@0
|
43 |
#endif
|
sl@0
|
44 |
|
sl@0
|
45 |
CryptoH4JobAes::CryptoH4JobAes(DLddChanAes &aLddChanAes)
|
sl@0
|
46 |
: iLddChanAes(aLddChanAes),
|
sl@0
|
47 |
iEncrypt(EFalse),
|
sl@0
|
48 |
iKeyLengthBytes(0),
|
sl@0
|
49 |
iSwWriteByteOffset(0),
|
sl@0
|
50 |
iHwReadIndex(0),
|
sl@0
|
51 |
iHwWriteIndex(0),
|
sl@0
|
52 |
iSwReadByteOffset(0),
|
sl@0
|
53 |
iHwRunning(EFalse),
|
sl@0
|
54 |
iDmaToHwPending(0),
|
sl@0
|
55 |
iDmaFromHwPending(0),
|
sl@0
|
56 |
#ifdef FAKE_DMA
|
sl@0
|
57 |
iFakeDmaToHwQueued(0),
|
sl@0
|
58 |
iFakeDmaFromHwQueued(0),
|
sl@0
|
59 |
#endif
|
sl@0
|
60 |
iDmaToHwCompleteDfc(DmaToHwCompleteDfc, this, 1), // DFC is priority '1'
|
sl@0
|
61 |
iDmaFromHwCompleteDfc(DmaFromHwCompleteDfc, this, 1)
|
sl@0
|
62 |
{
|
sl@0
|
63 |
TRACE_FUNCTION("CryptoH4JobAes");
|
sl@0
|
64 |
}
|
sl@0
|
65 |
|
sl@0
|
66 |
CryptoH4JobAes::~CryptoH4JobAes()
|
sl@0
|
67 |
{
|
sl@0
|
68 |
TRACE_FUNCTION("~CryptoH4JobAes");
|
sl@0
|
69 |
StopHw();
|
sl@0
|
70 |
}
|
sl@0
|
71 |
|
sl@0
|
72 |
|
sl@0
|
73 |
void CryptoH4JobAes::SetDfcQ(TDfcQue *aDfcQue)
|
sl@0
|
74 |
{
|
sl@0
|
75 |
TRACE_FUNCTION("SetDfcQ");
|
sl@0
|
76 |
iDmaToHwCompleteDfc.SetDfcQ(aDfcQue);
|
sl@0
|
77 |
iDmaFromHwCompleteDfc.SetDfcQ(aDfcQue);
|
sl@0
|
78 |
}
|
sl@0
|
79 |
|
sl@0
|
80 |
TUint8 *CryptoH4JobAes::GetKeyBuffer()
|
sl@0
|
81 |
{
|
sl@0
|
82 |
TRACE_FUNCTION("GetKeyBuffer");
|
sl@0
|
83 |
return (TUint8 *) &iKey;
|
sl@0
|
84 |
}
|
sl@0
|
85 |
|
sl@0
|
86 |
TUint8 *CryptoH4JobAes::GetIVBuffer()
|
sl@0
|
87 |
{
|
sl@0
|
88 |
TRACE_FUNCTION("GetIVBuffer");
|
sl@0
|
89 |
return (TUint8 *) &iIV;
|
sl@0
|
90 |
}
|
sl@0
|
91 |
|
sl@0
|
92 |
TUint32 CryptoH4JobAes::MaxBytes() const
|
sl@0
|
93 |
{
|
sl@0
|
94 |
TRACE_FUNCTION("MaxBytes");
|
sl@0
|
95 |
return sizeof(iAesBuffer); // return size in bytes
|
sl@0
|
96 |
}
|
sl@0
|
97 |
|
sl@0
|
98 |
TUint8 *CryptoH4JobAes::GetIOBuffer()
|
sl@0
|
99 |
{
|
sl@0
|
100 |
TRACE_FUNCTION("GetIOBuffer");
|
sl@0
|
101 |
return (TUint8 *) &iAesBuffer;
|
sl@0
|
102 |
}
|
sl@0
|
103 |
|
sl@0
|
104 |
void CryptoH4JobAes::GetToPddBuffer(TUint8 * &aBuf, TUint32 &aBufLen, TBool &aMore)
|
sl@0
|
105 |
{
|
sl@0
|
106 |
TRACE_FUNCTION("GetToPddBuffer");
|
sl@0
|
107 |
CheckIndexes();
|
sl@0
|
108 |
TUint8 *p = (TUint8 *) iAesBuffer;
|
sl@0
|
109 |
aBuf = &p[iSwWriteByteOffset];
|
sl@0
|
110 |
|
sl@0
|
111 |
if(iSwReadByteOffset > iSwWriteByteOffset)
|
sl@0
|
112 |
{
|
sl@0
|
113 |
// Available buffer is contiguous
|
sl@0
|
114 |
aBufLen = iSwReadByteOffset - iSwWriteByteOffset;
|
sl@0
|
115 |
if(aBufLen) --aBufLen; // Never use all space to stop index collision
|
sl@0
|
116 |
aMore = EFalse;
|
sl@0
|
117 |
return;
|
sl@0
|
118 |
}
|
sl@0
|
119 |
else
|
sl@0
|
120 |
{
|
sl@0
|
121 |
// Available data crosses buffer end so return two regions
|
sl@0
|
122 |
// OR indexes are equal
|
sl@0
|
123 |
aBufLen = sizeof(iAesBuffer) - iSwWriteByteOffset;
|
sl@0
|
124 |
if(iSwReadByteOffset == 0)
|
sl@0
|
125 |
{
|
sl@0
|
126 |
// Do not fill to end of buffer because index would wrap and collid
|
sl@0
|
127 |
--aBufLen;
|
sl@0
|
128 |
aMore = EFalse;
|
sl@0
|
129 |
return;
|
sl@0
|
130 |
}
|
sl@0
|
131 |
aMore = (iSwReadByteOffset != iSwWriteByteOffset); // Another region to read
|
sl@0
|
132 |
return;
|
sl@0
|
133 |
}
|
sl@0
|
134 |
// Never gets here
|
sl@0
|
135 |
}
|
sl@0
|
136 |
|
sl@0
|
137 |
void CryptoH4JobAes::BytesWrittenToPdd(TUint32 aBytes)
|
sl@0
|
138 |
{
|
sl@0
|
139 |
TRACE_FUNCTION("BytesWrittenToPdd");
|
sl@0
|
140 |
CheckIndexes();
|
sl@0
|
141 |
iSwWriteByteOffset += aBytes;
|
sl@0
|
142 |
if(iSwWriteByteOffset >= sizeof(iAesBuffer))
|
sl@0
|
143 |
{
|
sl@0
|
144 |
iSwWriteByteOffset -= sizeof(iAesBuffer);
|
sl@0
|
145 |
}
|
sl@0
|
146 |
|
sl@0
|
147 |
CheckIndexes();
|
sl@0
|
148 |
}
|
sl@0
|
149 |
|
sl@0
|
150 |
void CryptoH4JobAes::GetFromPddBuffer(TUint8 * &aBuf, TUint32 &aBufLen, TBool &aMore)
|
sl@0
|
151 |
{
|
sl@0
|
152 |
TRACE_FUNCTION("GetFromPddBuffer");
|
sl@0
|
153 |
CheckIndexes();
|
sl@0
|
154 |
TInt hwWrite8Index = iHwWriteIndex * 4;
|
sl@0
|
155 |
TUint8 *p = (TUint8 *) iAesBuffer;
|
sl@0
|
156 |
aBuf = &p[iSwReadByteOffset];
|
sl@0
|
157 |
|
sl@0
|
158 |
TInt len = hwWrite8Index - iSwReadByteOffset;
|
sl@0
|
159 |
if(len >= 0)
|
sl@0
|
160 |
{
|
sl@0
|
161 |
aBufLen = len;
|
sl@0
|
162 |
aMore = EFalse;
|
sl@0
|
163 |
}
|
sl@0
|
164 |
else
|
sl@0
|
165 |
{
|
sl@0
|
166 |
// Wrap round condition, but can only return contiguous bytes
|
sl@0
|
167 |
aBufLen = sizeof(iAesBuffer) - iSwReadByteOffset;
|
sl@0
|
168 |
aMore = (hwWrite8Index != 0);
|
sl@0
|
169 |
}
|
sl@0
|
170 |
CheckIndexes();
|
sl@0
|
171 |
}
|
sl@0
|
172 |
|
sl@0
|
173 |
void CryptoH4JobAes::BytesReadFromPdd(TUint32 aBytes)
|
sl@0
|
174 |
{
|
sl@0
|
175 |
TRACE_FUNCTION("BytesReadFromPdd");
|
sl@0
|
176 |
CheckIndexes();
|
sl@0
|
177 |
iSwReadByteOffset += aBytes;
|
sl@0
|
178 |
if(iSwReadByteOffset >= sizeof(iAesBuffer))
|
sl@0
|
179 |
{
|
sl@0
|
180 |
iSwReadByteOffset -= sizeof(iAesBuffer);
|
sl@0
|
181 |
}
|
sl@0
|
182 |
CheckIndexes();
|
sl@0
|
183 |
iReadRequestLength -= aBytes;
|
sl@0
|
184 |
}
|
sl@0
|
185 |
|
sl@0
|
186 |
|
sl@0
|
187 |
|
sl@0
|
188 |
TInt CryptoH4JobAes::SetDetails(DCryptoJobScheduler *aJobScheduler,
|
sl@0
|
189 |
MCryptoJobCallbacks *aCallbacks,
|
sl@0
|
190 |
TBool aEncrypt,
|
sl@0
|
191 |
TInt aKeyLengthBytes,
|
sl@0
|
192 |
RCryptoDriver::TChainingMode aMode)
|
sl@0
|
193 |
{
|
sl@0
|
194 |
TRACE_FUNCTION("TChainingMode");
|
sl@0
|
195 |
// Kern::Printf("AES Details %s: Key len %d, Mode %s (%d)",
|
sl@0
|
196 |
// aEncrypt?"Encrypt":"Decrypt", aKeyLengthBytes, (aMode == RCryptoDriver::ECbcMode)?"CBC":"ECB", aMode);
|
sl@0
|
197 |
|
sl@0
|
198 |
if(State() != ECreated)
|
sl@0
|
199 |
{
|
sl@0
|
200 |
return KErrArgument;
|
sl@0
|
201 |
}
|
sl@0
|
202 |
|
sl@0
|
203 |
iJobScheduler = aJobScheduler;
|
sl@0
|
204 |
iCallbacks = aCallbacks;
|
sl@0
|
205 |
iEncrypt = aEncrypt;
|
sl@0
|
206 |
iKeyLengthBytes = aKeyLengthBytes;
|
sl@0
|
207 |
|
sl@0
|
208 |
if((aMode != RCryptoDriver::EEcbMode) && (aMode != RCryptoDriver::ECbcMode))
|
sl@0
|
209 |
{
|
sl@0
|
210 |
return KErrArgument;
|
sl@0
|
211 |
}
|
sl@0
|
212 |
iMode = aMode;
|
sl@0
|
213 |
if(iMode == RCryptoDriver::ECbcMode)
|
sl@0
|
214 |
{
|
sl@0
|
215 |
// For CBC we need to save the IV incase we need to
|
sl@0
|
216 |
// re-initialise the h/w mid-job
|
sl@0
|
217 |
TUint32 *from;
|
sl@0
|
218 |
TUint32 *to;
|
sl@0
|
219 |
if(iEncrypt)
|
sl@0
|
220 |
{
|
sl@0
|
221 |
// For encryption - DoSaveState saves the last encrypted
|
sl@0
|
222 |
// block. We set this to the IV to handle the case where
|
sl@0
|
223 |
// we do not encrypt any blocks before being suspended.
|
sl@0
|
224 |
from = &iIV[0];
|
sl@0
|
225 |
to = &iAesBuffer[((sizeof(iAesBuffer)-16)/4)];
|
sl@0
|
226 |
}
|
sl@0
|
227 |
else
|
sl@0
|
228 |
{
|
sl@0
|
229 |
// For decryption - MaybeSetupWriteDmaToHw maintains
|
sl@0
|
230 |
// iSavedState as a copy of the last ciphertext
|
sl@0
|
231 |
// (pre-decryption) so DoSaveState does not need to do
|
sl@0
|
232 |
// anything.
|
sl@0
|
233 |
//
|
sl@0
|
234 |
// To cover the case where we do not decrypt any blocks
|
sl@0
|
235 |
// before being suspended, we initialise iSavedState to the IV.
|
sl@0
|
236 |
from = &iIV[0];
|
sl@0
|
237 |
to = &iSavedState[0];
|
sl@0
|
238 |
}
|
sl@0
|
239 |
// Save the IV
|
sl@0
|
240 |
*to++ = *from++;
|
sl@0
|
241 |
*to++ = *from++;
|
sl@0
|
242 |
*to++ = *from++;
|
sl@0
|
243 |
*to++ = *from++;
|
sl@0
|
244 |
if(iEncrypt)
|
sl@0
|
245 |
{
|
sl@0
|
246 |
dumpBuffer("SetDetails - end of iAesBuffer", to-4, 4);
|
sl@0
|
247 |
}
|
sl@0
|
248 |
else
|
sl@0
|
249 |
{
|
sl@0
|
250 |
dumpBuffer("SetDetails - iSavedState", iSavedState, 4);
|
sl@0
|
251 |
}
|
sl@0
|
252 |
}
|
sl@0
|
253 |
|
sl@0
|
254 |
// Reset indexes
|
sl@0
|
255 |
iSwWriteByteOffset = 0;
|
sl@0
|
256 |
iHwReadIndex = 0,
|
sl@0
|
257 |
iHwWriteIndex = 0,
|
sl@0
|
258 |
iSwReadByteOffset = 0;
|
sl@0
|
259 |
|
sl@0
|
260 |
return KErrNone;
|
sl@0
|
261 |
}
|
sl@0
|
262 |
|
sl@0
|
263 |
void CryptoH4JobAes::DoSlice(TBool aFirstSlice)
|
sl@0
|
264 |
{
|
sl@0
|
265 |
TRACE_FUNCTION("DoSlice");
|
sl@0
|
266 |
// Kern::Printf("DoSlice %s", aFirstSlice?"FIRST":"");
|
sl@0
|
267 |
if(aFirstSlice)
|
sl@0
|
268 |
{
|
sl@0
|
269 |
SetupHw(EFalse);
|
sl@0
|
270 |
}
|
sl@0
|
271 |
|
sl@0
|
272 |
// Push any available data to user
|
sl@0
|
273 |
TInt r = iCallbacks->DataAvailable();
|
sl@0
|
274 |
if(r != KErrNone)
|
sl@0
|
275 |
{
|
sl@0
|
276 |
iJobScheduler->JobComplete(this,r);
|
sl@0
|
277 |
return;
|
sl@0
|
278 |
}
|
sl@0
|
279 |
// Read available data from user
|
sl@0
|
280 |
r = iCallbacks->DataRequired();
|
sl@0
|
281 |
if(r != KErrNone)
|
sl@0
|
282 |
{
|
sl@0
|
283 |
iJobScheduler->JobComplete(this,r);
|
sl@0
|
284 |
return;
|
sl@0
|
285 |
}
|
sl@0
|
286 |
|
sl@0
|
287 |
// Setup to read data (if enough is available).
|
sl@0
|
288 |
// Kern::Printf("DoSlice - calling MaybeSetupWriteDmaToHw");
|
sl@0
|
289 |
MaybeSetupWriteDmaToHw();
|
sl@0
|
290 |
|
sl@0
|
291 |
FAKE_DMA();
|
sl@0
|
292 |
|
sl@0
|
293 |
if(!iDmaToHwPending && !iDmaFromHwPending)
|
sl@0
|
294 |
{
|
sl@0
|
295 |
Stalled();
|
sl@0
|
296 |
}
|
sl@0
|
297 |
|
sl@0
|
298 |
return;
|
sl@0
|
299 |
}
|
sl@0
|
300 |
|
sl@0
|
301 |
TBool CryptoH4JobAes::DoSaveState()
|
sl@0
|
302 |
{
|
sl@0
|
303 |
TRACE_FUNCTION("DoSaveState");
|
sl@0
|
304 |
|
sl@0
|
305 |
if((iMode == RCryptoDriver::ECbcMode) && iEncrypt)
|
sl@0
|
306 |
{
|
sl@0
|
307 |
// Doing CBC encryption - Need to save a copy of the last
|
sl@0
|
308 |
// ciphertext block (after encryption) so we can use it as the
|
sl@0
|
309 |
// IV if we are later resumed.
|
sl@0
|
310 |
//
|
sl@0
|
311 |
// Last block processed by h/w just BEFORE iHwWriteIndex. If
|
sl@0
|
312 |
// we have not processed any data, then SetDetails will have
|
sl@0
|
313 |
// initialised this to the IV
|
sl@0
|
314 |
TInt32 fromIndex = (iHwWriteIndex!=0) ? (iHwWriteIndex-4) : ((sizeof(iAesBuffer)-16)/4);
|
sl@0
|
315 |
TUint32 *from = &iAesBuffer[fromIndex];
|
sl@0
|
316 |
TUint32 *to = &iSavedState[0];
|
sl@0
|
317 |
*to++ = *from++;
|
sl@0
|
318 |
*to++ = *from++;
|
sl@0
|
319 |
*to++ = *from++;
|
sl@0
|
320 |
*to++ = *from++;
|
sl@0
|
321 |
dumpBuffer("DoSaveState - iSavedState", iSavedState, 4);
|
sl@0
|
322 |
}
|
sl@0
|
323 |
|
sl@0
|
324 |
StopHw();
|
sl@0
|
325 |
return ETrue; // We want DoRestoreState to be called
|
sl@0
|
326 |
}
|
sl@0
|
327 |
|
sl@0
|
328 |
void CryptoH4JobAes::DoRestoreState()
|
sl@0
|
329 |
{
|
sl@0
|
330 |
TRACE_FUNCTION("DoRestoreState");
|
sl@0
|
331 |
SetupHw(ETrue);
|
sl@0
|
332 |
}
|
sl@0
|
333 |
|
sl@0
|
334 |
void CryptoH4JobAes::DoReleaseHw()
|
sl@0
|
335 |
{
|
sl@0
|
336 |
TRACE_FUNCTION("DoReleaseHw");
|
sl@0
|
337 |
StopHw();
|
sl@0
|
338 |
#ifndef FAKE_DMA
|
sl@0
|
339 |
// Cancel DFCs - Doesn't work for FAKE_DMA case....
|
sl@0
|
340 |
iDmaToHwCompleteDfc.Cancel();
|
sl@0
|
341 |
iDmaFromHwCompleteDfc.Cancel();
|
sl@0
|
342 |
#endif
|
sl@0
|
343 |
}
|
sl@0
|
344 |
|
sl@0
|
345 |
void CryptoH4JobAes::MaybeSetupWriteDmaToHw()
|
sl@0
|
346 |
{
|
sl@0
|
347 |
TRACE_FUNCTION("MaybeSetupWriteDmaToHw");
|
sl@0
|
348 |
if(!iDmaToHwPending)
|
sl@0
|
349 |
{
|
sl@0
|
350 |
// Calculate space between H/W read index and S/W write index or end of buffer
|
sl@0
|
351 |
TInt hwReadIndex8 = iHwReadIndex*4;
|
sl@0
|
352 |
TInt avail = (iSwWriteByteOffset >= hwReadIndex8) ? (iSwWriteByteOffset - hwReadIndex8) : (sizeof(iAesBuffer) - hwReadIndex8);
|
sl@0
|
353 |
|
sl@0
|
354 |
if(avail >= 16)
|
sl@0
|
355 |
{
|
sl@0
|
356 |
// At least another block of data is available.
|
sl@0
|
357 |
if((avail <= 31) && (iMode == RCryptoDriver::ECbcMode) && !iEncrypt)
|
sl@0
|
358 |
{
|
sl@0
|
359 |
// Only one complete block is available
|
sl@0
|
360 |
|
sl@0
|
361 |
// Doing CBC decryption, so need to save a copy of the
|
sl@0
|
362 |
// last ciphertext block (before it is decrypted) so we
|
sl@0
|
363 |
// can use it as the IV if we are kicked off the h/w
|
sl@0
|
364 |
// and have to reconfigure.
|
sl@0
|
365 |
// Last block available for h/w is at hwReadIndex8
|
sl@0
|
366 |
TUint32 *from = &iAesBuffer[iHwReadIndex];
|
sl@0
|
367 |
TUint32 *to = &iSavedState[0];
|
sl@0
|
368 |
*to++ = *from++;
|
sl@0
|
369 |
*to++ = *from++;
|
sl@0
|
370 |
*to++ = *from++;
|
sl@0
|
371 |
*to++ = *from++;
|
sl@0
|
372 |
dumpBuffer("MaybeSetupWriteDmaToHw - iSavedState", iSavedState, 4);
|
sl@0
|
373 |
}
|
sl@0
|
374 |
SetupDma((TUint32)&iAesBuffer[iHwReadIndex], ETrue);
|
sl@0
|
375 |
}
|
sl@0
|
376 |
}
|
sl@0
|
377 |
}
|
sl@0
|
378 |
|
sl@0
|
379 |
|
sl@0
|
380 |
#ifdef FAKE_DMA
|
sl@0
|
381 |
void CryptoH4JobAes::FakeDma()
|
sl@0
|
382 |
{
|
sl@0
|
383 |
TRACE_FUNCTION("FakeDma");
|
sl@0
|
384 |
if(iFakeDmaToHwQueued < iDmaToHwPending)
|
sl@0
|
385 |
{
|
sl@0
|
386 |
// Calculate number of 32 bit values in the h/w
|
sl@0
|
387 |
TInt inHw32 = iHwReadIndex - iHwWriteIndex;
|
sl@0
|
388 |
if(inHw32 < 0)
|
sl@0
|
389 |
{
|
sl@0
|
390 |
inHw32 += sizeof(iAesBuffer)/sizeof(iAesBuffer[0]);
|
sl@0
|
391 |
}
|
sl@0
|
392 |
// Convert to number of 16 byte blocks in h/w
|
sl@0
|
393 |
TInt inHwBlocks = inHw32/4;
|
sl@0
|
394 |
|
sl@0
|
395 |
if((inHwBlocks + iFakeDmaToHwQueued) < 2)
|
sl@0
|
396 |
{
|
sl@0
|
397 |
// Pipeline is not full, so the next DMA to complete would be a "to h/w"
|
sl@0
|
398 |
// Wait for h/w to be ready
|
sl@0
|
399 |
#ifdef __MARM__
|
sl@0
|
400 |
// Kern::Printf("CryptoH4JobAes::FakeDma - Start waiting for h/w input ready (%x)", TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL));
|
sl@0
|
401 |
while(! (TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL) & KHtAesCtrlInputReady))
|
sl@0
|
402 |
{
|
sl@0
|
403 |
Kern::Printf("CryptoH4JobAes::FakeDma - Waiting for h/w input ready (%x)", TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL));
|
sl@0
|
404 |
}
|
sl@0
|
405 |
#endif
|
sl@0
|
406 |
// Queue the fake "to dma" complete DFC
|
sl@0
|
407 |
iDmaToHwCompleteDfc.Enque();
|
sl@0
|
408 |
++iFakeDmaToHwQueued;
|
sl@0
|
409 |
return;
|
sl@0
|
410 |
}
|
sl@0
|
411 |
}
|
sl@0
|
412 |
|
sl@0
|
413 |
// Either pipeline is full, or we are out of input data.
|
sl@0
|
414 |
|
sl@0
|
415 |
// Check for output
|
sl@0
|
416 |
if(iFakeDmaFromHwQueued < iDmaFromHwPending)
|
sl@0
|
417 |
{
|
sl@0
|
418 |
#ifdef __MARM__
|
sl@0
|
419 |
// Kern::Printf("CryptoH4JobAes::FakeDma - Start waiting for output ready (%x)", TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL));
|
sl@0
|
420 |
while(! (TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL) & KHtAesCtrlOutputReady))
|
sl@0
|
421 |
{
|
sl@0
|
422 |
Kern::Printf("CryptoH4JobAes::FakeDma - waiting for output ready (%x)",TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL));
|
sl@0
|
423 |
}
|
sl@0
|
424 |
#endif
|
sl@0
|
425 |
// Queue the fake "from dma" complete DFC
|
sl@0
|
426 |
iDmaFromHwCompleteDfc.Enque();
|
sl@0
|
427 |
++iFakeDmaFromHwQueued;
|
sl@0
|
428 |
return;
|
sl@0
|
429 |
}
|
sl@0
|
430 |
|
sl@0
|
431 |
return;
|
sl@0
|
432 |
}
|
sl@0
|
433 |
#endif
|
sl@0
|
434 |
|
sl@0
|
435 |
|
sl@0
|
436 |
|
sl@0
|
437 |
|
sl@0
|
438 |
void CryptoH4JobAes::SetupHw(TBool aUseSavedState)
|
sl@0
|
439 |
{
|
sl@0
|
440 |
TRACE_FUNCTION("SetupHw");
|
sl@0
|
441 |
// Kern::Printf("SetupHw");
|
sl@0
|
442 |
#ifdef __MARM__
|
sl@0
|
443 |
// AES_MASK
|
sl@0
|
444 |
#ifdef FAKE_DMA
|
sl@0
|
445 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_MASK, KHtAesMaskAutoIdle);
|
sl@0
|
446 |
#else
|
sl@0
|
447 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_MASK,
|
sl@0
|
448 |
KHtAesMaskDmaReqIn | KHtAesMaskDmaReqOut | KHtAesMaskAutoIdle);
|
sl@0
|
449 |
#endif
|
sl@0
|
450 |
iHwRunning = EFalse; // Previous MASK register write cleared the start bit.
|
sl@0
|
451 |
|
sl@0
|
452 |
TUint32 ctrl = 0;
|
sl@0
|
453 |
if(iEncrypt)
|
sl@0
|
454 |
{
|
sl@0
|
455 |
ctrl |= KHtAesCtrlDirection;
|
sl@0
|
456 |
}
|
sl@0
|
457 |
|
sl@0
|
458 |
switch(iKeyLengthBytes)
|
sl@0
|
459 |
{
|
sl@0
|
460 |
case 32:
|
sl@0
|
461 |
// KEYS
|
sl@0
|
462 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY1_L, iKey[0]);
|
sl@0
|
463 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY1_H, iKey[1]);
|
sl@0
|
464 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY2_L, iKey[2]);
|
sl@0
|
465 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY2_H, iKey[3]);
|
sl@0
|
466 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY3_L, iKey[4]);
|
sl@0
|
467 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY3_H, iKey[5]);
|
sl@0
|
468 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY4_L, iKey[6]);
|
sl@0
|
469 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY4_H, iKey[7]);
|
sl@0
|
470 |
ctrl |= KHtAesCtrlKeySize256;
|
sl@0
|
471 |
break;
|
sl@0
|
472 |
case 24:
|
sl@0
|
473 |
// KEYS
|
sl@0
|
474 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY1_L, iKey[0]);
|
sl@0
|
475 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY1_H, iKey[1]);
|
sl@0
|
476 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY2_L, iKey[2]);
|
sl@0
|
477 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY2_H, iKey[3]);
|
sl@0
|
478 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY3_L, iKey[4]);
|
sl@0
|
479 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY3_H, iKey[5]);
|
sl@0
|
480 |
ctrl |= KHtAesCtrlKeySize192;
|
sl@0
|
481 |
break;
|
sl@0
|
482 |
case 16:
|
sl@0
|
483 |
// KEYS
|
sl@0
|
484 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY1_L, iKey[0]);
|
sl@0
|
485 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY1_H, iKey[1]);
|
sl@0
|
486 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY2_L, iKey[2]);
|
sl@0
|
487 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY2_H, iKey[3]);
|
sl@0
|
488 |
ctrl |= KHtAesCtrlKeySize128;
|
sl@0
|
489 |
break;
|
sl@0
|
490 |
}
|
sl@0
|
491 |
|
sl@0
|
492 |
|
sl@0
|
493 |
|
sl@0
|
494 |
// IV (CBC only)
|
sl@0
|
495 |
if(iMode == RCryptoDriver::ECbcMode)
|
sl@0
|
496 |
{
|
sl@0
|
497 |
if(!aUseSavedState)
|
sl@0
|
498 |
{
|
sl@0
|
499 |
// Kern::Printf("Setting IV");
|
sl@0
|
500 |
// Set IV
|
sl@0
|
501 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_IV_1, iIV[0]);
|
sl@0
|
502 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_IV_2, iIV[1]);
|
sl@0
|
503 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_IV_3, iIV[2]);
|
sl@0
|
504 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_IV_4, iIV[3]);
|
sl@0
|
505 |
dumpBuffer("SetupHw(EFalse) - iIV", iIV, 4);
|
sl@0
|
506 |
}
|
sl@0
|
507 |
else
|
sl@0
|
508 |
{
|
sl@0
|
509 |
// Set IV to saved state
|
sl@0
|
510 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_IV_1, iSavedState[0]);
|
sl@0
|
511 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_IV_2, iSavedState[1]);
|
sl@0
|
512 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_IV_3, iSavedState[2]);
|
sl@0
|
513 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_IV_4, iSavedState[3]);
|
sl@0
|
514 |
dumpBuffer("SetupHw(ETrue) - iSavedState", iSavedState, 4);
|
sl@0
|
515 |
}
|
sl@0
|
516 |
|
sl@0
|
517 |
ctrl |= KHsAesCtrlCBC;
|
sl@0
|
518 |
}
|
sl@0
|
519 |
|
sl@0
|
520 |
// AES_CTRL
|
sl@0
|
521 |
// Kern::Printf("Setting crtl to %x", ctrl);
|
sl@0
|
522 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_CTRL, ctrl);
|
sl@0
|
523 |
|
sl@0
|
524 |
// AES_MASK START bit to start DMA
|
sl@0
|
525 |
// This is done by SetupDma
|
sl@0
|
526 |
#else
|
sl@0
|
527 |
(void)aUseSavedState;
|
sl@0
|
528 |
|
sl@0
|
529 |
#endif
|
sl@0
|
530 |
}
|
sl@0
|
531 |
|
sl@0
|
532 |
void CryptoH4JobAes::SetupDma(TUint32 aPtr, TBool aToHw)
|
sl@0
|
533 |
{
|
sl@0
|
534 |
TRACE_FUNCTION("SetupDma");
|
sl@0
|
535 |
// Kern::Printf("\t\tSetupDMA - %s, iHwReadIndex %d iHwWriteIndex %d",
|
sl@0
|
536 |
// aToHw?"toHw":"fromHw", iHwReadIndex, iHwWriteIndex);
|
sl@0
|
537 |
// Start the h/w
|
sl@0
|
538 |
if(!iHwRunning)
|
sl@0
|
539 |
{
|
sl@0
|
540 |
// Kern::Printf("SetupDma - starting h/w");
|
sl@0
|
541 |
#ifdef __MARM__
|
sl@0
|
542 |
// If h/w is not enabled yet, then set the start bit. This is
|
sl@0
|
543 |
// required even when NOT using DMA...
|
sl@0
|
544 |
TUint32 mask = TOmap::Register32(KHwBaseAesReg + KHoAES_MASK);
|
sl@0
|
545 |
// Kern::Printf("mask is %x", mask);
|
sl@0
|
546 |
mask |= KHtDesMaskDmaReqStart;
|
sl@0
|
547 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_MASK, mask);
|
sl@0
|
548 |
// Kern::Printf("changed to %x", TOmap::Register32(KHwBaseAesReg + KHoAES_MASK));
|
sl@0
|
549 |
#else
|
sl@0
|
550 |
(void)aPtr;
|
sl@0
|
551 |
#endif
|
sl@0
|
552 |
iHwRunning = ETrue;
|
sl@0
|
553 |
}
|
sl@0
|
554 |
|
sl@0
|
555 |
if(aToHw)
|
sl@0
|
556 |
{
|
sl@0
|
557 |
++iDmaToHwPending;
|
sl@0
|
558 |
SetRunning(ETrue);
|
sl@0
|
559 |
}
|
sl@0
|
560 |
else
|
sl@0
|
561 |
{
|
sl@0
|
562 |
++iDmaFromHwPending;
|
sl@0
|
563 |
SetRunning(ETrue);
|
sl@0
|
564 |
}
|
sl@0
|
565 |
|
sl@0
|
566 |
}
|
sl@0
|
567 |
|
sl@0
|
568 |
|
sl@0
|
569 |
void CryptoH4JobAes::StopHw()
|
sl@0
|
570 |
{
|
sl@0
|
571 |
TRACE_FUNCTION("StopHw");
|
sl@0
|
572 |
#ifdef __MARM__
|
sl@0
|
573 |
// Disable h/w
|
sl@0
|
574 |
TUint32 mask = TOmap::Register32(KHwBaseAesReg + KHoAES_MASK);
|
sl@0
|
575 |
mask &= ~KHtDesMaskDmaReqStart;
|
sl@0
|
576 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_MASK, mask);
|
sl@0
|
577 |
#endif
|
sl@0
|
578 |
iHwRunning = EFalse;
|
sl@0
|
579 |
}
|
sl@0
|
580 |
|
sl@0
|
581 |
|
sl@0
|
582 |
|
sl@0
|
583 |
/**
|
sl@0
|
584 |
Called when the current h/w opperation is complete
|
sl@0
|
585 |
*/
|
sl@0
|
586 |
void CryptoH4JobAes::DmaComplete(DDmaRequest::TResult aResult, TAny *aPtr)
|
sl@0
|
587 |
{
|
sl@0
|
588 |
TRACE_FUNCTION("TResult");
|
sl@0
|
589 |
(void)aResult;
|
sl@0
|
590 |
// Queue our DFC to action the DMA complete notification in our thread.
|
sl@0
|
591 |
reinterpret_cast<TDfc *>(aPtr)->Enque();
|
sl@0
|
592 |
}
|
sl@0
|
593 |
|
sl@0
|
594 |
|
sl@0
|
595 |
|
sl@0
|
596 |
|
sl@0
|
597 |
void CryptoH4JobAes::DmaToHwCompleteDfc(TAny* aPtr)
|
sl@0
|
598 |
{
|
sl@0
|
599 |
((CryptoH4JobAes*)aPtr)->DoDmaToHwCompleteDfc();
|
sl@0
|
600 |
}
|
sl@0
|
601 |
|
sl@0
|
602 |
|
sl@0
|
603 |
void CryptoH4JobAes::DoDmaToHwCompleteDfc()
|
sl@0
|
604 |
{
|
sl@0
|
605 |
TRACE_FUNCTION("DoDmaToHwCompleteDfc");
|
sl@0
|
606 |
// Kern::Printf("**DoDmaToHwCompleteDfc iHwReadIndex %d, iHwWriteIndex %d",iHwReadIndex, iHwWriteIndex);
|
sl@0
|
607 |
--iDmaToHwPending;
|
sl@0
|
608 |
if(iDmaToHwPending < 0) Kern::Fault("DoDmaToHwCompleteDfc - iDmaToHwPending is negative",1);
|
sl@0
|
609 |
|
sl@0
|
610 |
#ifdef FAKE_DMA
|
sl@0
|
611 |
--iFakeDmaToHwQueued;
|
sl@0
|
612 |
if(iFakeDmaToHwQueued < 0) Kern::Fault("DoDmaToHwCompleteDfc - iFakeDmaToHwQueued is negative",2);
|
sl@0
|
613 |
#endif
|
sl@0
|
614 |
|
sl@0
|
615 |
CheckIndexes();
|
sl@0
|
616 |
|
sl@0
|
617 |
#ifdef __MARM__
|
sl@0
|
618 |
if(! (TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL) & KHtAesCtrlInputReady))
|
sl@0
|
619 |
{
|
sl@0
|
620 |
Kern::Fault("DoDmaToHwCompleteDfc - h/w not ready for input!",3);
|
sl@0
|
621 |
}
|
sl@0
|
622 |
// Kern::Printf("DoDmaToHwCompleteDfc - Writing data into h/w index %d (%x)", iHwReadIndex, TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL));
|
sl@0
|
623 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_DATA_1, iAesBuffer[iHwReadIndex]);
|
sl@0
|
624 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_DATA_2, iAesBuffer[iHwReadIndex+1]);
|
sl@0
|
625 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_DATA_3, iAesBuffer[iHwReadIndex+2]);
|
sl@0
|
626 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_DATA_4, iAesBuffer[iHwReadIndex+3]);
|
sl@0
|
627 |
#endif
|
sl@0
|
628 |
|
sl@0
|
629 |
// Update index to point at next block to be passed to the h/w
|
sl@0
|
630 |
iHwReadIndex += 4; // 4x32bit == 16bytes == block length
|
sl@0
|
631 |
if(iHwReadIndex == sizeof(iAesBuffer)/sizeof(TUint32))
|
sl@0
|
632 |
{
|
sl@0
|
633 |
iHwReadIndex = 0;
|
sl@0
|
634 |
}
|
sl@0
|
635 |
|
sl@0
|
636 |
if(!iDmaFromHwPending)
|
sl@0
|
637 |
{
|
sl@0
|
638 |
SetupDma((TUint32)&iAesBuffer[iHwWriteIndex], EFalse);
|
sl@0
|
639 |
}
|
sl@0
|
640 |
|
sl@0
|
641 |
CheckIndexes();
|
sl@0
|
642 |
|
sl@0
|
643 |
// Setup to read data (if enough is available).
|
sl@0
|
644 |
MaybeSetupWriteDmaToHw();
|
sl@0
|
645 |
|
sl@0
|
646 |
FAKE_DMA();
|
sl@0
|
647 |
}
|
sl@0
|
648 |
|
sl@0
|
649 |
void CryptoH4JobAes::DmaFromHwCompleteDfc(TAny* aPtr)
|
sl@0
|
650 |
{
|
sl@0
|
651 |
((CryptoH4JobAes*)aPtr)->DoDmaFromHwCompleteDfc();
|
sl@0
|
652 |
}
|
sl@0
|
653 |
|
sl@0
|
654 |
|
sl@0
|
655 |
void CryptoH4JobAes::DoDmaFromHwCompleteDfc()
|
sl@0
|
656 |
{
|
sl@0
|
657 |
TRACE_FUNCTION("DoDmaFromHwCompleteDfc");
|
sl@0
|
658 |
// Kern::Printf("**DoDmaFromHwCompleteDfc iHwReadIndex %d, iHwWriteIndex %d", iHwReadIndex, iHwWriteIndex);
|
sl@0
|
659 |
|
sl@0
|
660 |
--iDmaFromHwPending;
|
sl@0
|
661 |
if(iDmaFromHwPending < 0) Kern::Fault("DoDmaFromHwCompleteDfc - iDmaFromHwPending is negative",1);
|
sl@0
|
662 |
|
sl@0
|
663 |
#ifdef FAKE_DMA
|
sl@0
|
664 |
--iFakeDmaFromHwQueued;
|
sl@0
|
665 |
if(iFakeDmaFromHwQueued < 0) Kern::Fault("iFakeDmaFromHwQueued - iFakeDmaFromHwQueued is negative",2);
|
sl@0
|
666 |
#endif
|
sl@0
|
667 |
|
sl@0
|
668 |
CheckIndexes();
|
sl@0
|
669 |
|
sl@0
|
670 |
#ifdef __MARM__
|
sl@0
|
671 |
if(! (TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL) & KHtAesCtrlOutputReady))
|
sl@0
|
672 |
{
|
sl@0
|
673 |
Kern::Fault("DoDmaToHwCompleteDfc - h/w not ready for output!",3);
|
sl@0
|
674 |
}
|
sl@0
|
675 |
|
sl@0
|
676 |
// Kern::Printf("DoDmaFromHwCompleteDfc - Reading data from h/w index %d (%x)", iHwWriteIndex, TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL));
|
sl@0
|
677 |
iAesBuffer[iHwWriteIndex] = TOmap::Register32(KHwBaseAesReg + KHoAES_DATA_1);
|
sl@0
|
678 |
iAesBuffer[iHwWriteIndex+1] = TOmap::Register32(KHwBaseAesReg + KHoAES_DATA_2);
|
sl@0
|
679 |
iAesBuffer[iHwWriteIndex+2] = TOmap::Register32(KHwBaseAesReg + KHoAES_DATA_3);
|
sl@0
|
680 |
iAesBuffer[iHwWriteIndex+3] = TOmap::Register32(KHwBaseAesReg + KHoAES_DATA_4);
|
sl@0
|
681 |
#endif
|
sl@0
|
682 |
|
sl@0
|
683 |
// Update index to point at next block to be read from the h/w
|
sl@0
|
684 |
iHwWriteIndex += 4; // 4x32bit == 16bytes == block length
|
sl@0
|
685 |
if(iHwWriteIndex == sizeof(iAesBuffer)/sizeof(TUint32))
|
sl@0
|
686 |
{
|
sl@0
|
687 |
iHwWriteIndex= 0;
|
sl@0
|
688 |
}
|
sl@0
|
689 |
|
sl@0
|
690 |
CheckIndexes();
|
sl@0
|
691 |
|
sl@0
|
692 |
|
sl@0
|
693 |
|
sl@0
|
694 |
TInt hwWrite8Index = iHwWriteIndex * 4;
|
sl@0
|
695 |
TInt hwRead8Index = iHwReadIndex * 4;
|
sl@0
|
696 |
|
sl@0
|
697 |
// Check if we either have enough data to finish the current LDD
|
sl@0
|
698 |
// user read request, or if we are running out of space
|
sl@0
|
699 |
//
|
sl@0
|
700 |
// Calculate data available for xfer to user
|
sl@0
|
701 |
TInt availableForUser = hwWrite8Index - iSwReadByteOffset;
|
sl@0
|
702 |
if(availableForUser < 0)
|
sl@0
|
703 |
{
|
sl@0
|
704 |
availableForUser += sizeof(iAesBuffer);
|
sl@0
|
705 |
}
|
sl@0
|
706 |
|
sl@0
|
707 |
if((availableForUser >= sizeof(iAesBuffer) - 32) ||
|
sl@0
|
708 |
(availableForUser >= iReadRequestLength))
|
sl@0
|
709 |
{
|
sl@0
|
710 |
// Pass available data to user
|
sl@0
|
711 |
TInt r = iCallbacks->DataAvailable();
|
sl@0
|
712 |
if(r != KErrNone)
|
sl@0
|
713 |
{
|
sl@0
|
714 |
iJobScheduler->JobComplete(this,r);
|
sl@0
|
715 |
return;
|
sl@0
|
716 |
}
|
sl@0
|
717 |
}
|
sl@0
|
718 |
|
sl@0
|
719 |
// Are we running short of data?
|
sl@0
|
720 |
TInt availableForHw = iSwWriteByteOffset - hwRead8Index;
|
sl@0
|
721 |
if(availableForHw < 0)
|
sl@0
|
722 |
{
|
sl@0
|
723 |
availableForHw += sizeof(iAesBuffer);
|
sl@0
|
724 |
}
|
sl@0
|
725 |
|
sl@0
|
726 |
if(availableForHw < 16)
|
sl@0
|
727 |
{
|
sl@0
|
728 |
TInt r = iCallbacks->DataRequired();
|
sl@0
|
729 |
if(r != KErrNone)
|
sl@0
|
730 |
{
|
sl@0
|
731 |
iJobScheduler->JobComplete(this,r);
|
sl@0
|
732 |
return;
|
sl@0
|
733 |
}
|
sl@0
|
734 |
}
|
sl@0
|
735 |
|
sl@0
|
736 |
// Kick off a new to h/w DMA if one is not already running
|
sl@0
|
737 |
MaybeSetupWriteDmaToHw();
|
sl@0
|
738 |
|
sl@0
|
739 |
// Current h/w -> iAesBuffer DMA request has completed
|
sl@0
|
740 |
if(iHwWriteIndex != iHwReadIndex)
|
sl@0
|
741 |
{
|
sl@0
|
742 |
SetupDma((TUint32)&iAesBuffer[iHwWriteIndex], EFalse);
|
sl@0
|
743 |
}
|
sl@0
|
744 |
|
sl@0
|
745 |
if(!iDmaToHwPending && ! iDmaFromHwPending)
|
sl@0
|
746 |
{
|
sl@0
|
747 |
// Kern::Printf("\t\tDoDmaFromHwCompleteDfc STALLED (underrun), iHwReadIndex %d iHwWriteIndex %d",
|
sl@0
|
748 |
// iHwReadIndex, iHwWriteIndex);
|
sl@0
|
749 |
// Run out of data to process!
|
sl@0
|
750 |
// Tell the scheduler that we are stalled & therefore this slice is done
|
sl@0
|
751 |
Stalled();
|
sl@0
|
752 |
return;
|
sl@0
|
753 |
}
|
sl@0
|
754 |
|
sl@0
|
755 |
|
sl@0
|
756 |
CheckIndexes();
|
sl@0
|
757 |
|
sl@0
|
758 |
FAKE_DMA();
|
sl@0
|
759 |
}
|
sl@0
|
760 |
|
sl@0
|
761 |
void CryptoH4JobAes::CheckIndexes() const
|
sl@0
|
762 |
{
|
sl@0
|
763 |
TRACE_FUNCTION("CheckIndexes");
|
sl@0
|
764 |
if(iSwWriteByteOffset < 0 || iSwWriteByteOffset > sizeof(iAesBuffer)) Kern::Fault("CryptoH4JobAes::checkIndexes", 1);
|
sl@0
|
765 |
|
sl@0
|
766 |
if(iHwReadIndex < 0 || iHwReadIndex > sizeof(iAesBuffer)/sizeof(iAesBuffer[0])) Kern::Fault("CryptoH4JobAes::checkIndexes", 2);
|
sl@0
|
767 |
|
sl@0
|
768 |
if(iHwWriteIndex < 0 || iHwWriteIndex > sizeof(iAesBuffer)/sizeof(iAesBuffer[0])) Kern::Fault("CryptoH4JobAes::checkIndexes", 3);
|
sl@0
|
769 |
|
sl@0
|
770 |
if(iSwReadByteOffset < 0 || iSwReadByteOffset > sizeof(iAesBuffer)) Kern::Fault("CryptoH4JobAes::checkIndexes", 4);
|
sl@0
|
771 |
|
sl@0
|
772 |
|
sl@0
|
773 |
TInt32 d = iSwWriteByteOffset;
|
sl@0
|
774 |
TInt32 c = iHwReadIndex * 4;
|
sl@0
|
775 |
TInt32 b = iHwWriteIndex * 4;
|
sl@0
|
776 |
TInt32 a = iSwReadByteOffset;
|
sl@0
|
777 |
|
sl@0
|
778 |
// Kern::Printf("%d %d %d %d", a, b, c, d);
|
sl@0
|
779 |
|
sl@0
|
780 |
TInt32 offset = 0;
|
sl@0
|
781 |
if(b < a) offset = sizeof(iAesBuffer);
|
sl@0
|
782 |
b += offset;
|
sl@0
|
783 |
if(c < b) offset = sizeof(iAesBuffer);
|
sl@0
|
784 |
c += offset;
|
sl@0
|
785 |
if(d < c) offset = sizeof(iAesBuffer);
|
sl@0
|
786 |
d += offset;
|
sl@0
|
787 |
|
sl@0
|
788 |
if(a>b) Kern::Fault("CryptoH4JobAes::CheckIndexes", 5);
|
sl@0
|
789 |
if(b>c) Kern::Fault("CryptoH4JobAes::CheckIndexes", 6);
|
sl@0
|
790 |
if(c>d) Kern::Fault("CryptoH4JobAes::CheckIndexes", 7);
|
sl@0
|
791 |
}
|
sl@0
|
792 |
|
sl@0
|
793 |
|
sl@0
|
794 |
void CryptoH4JobAes::NotifyReadRequestLength(TUint32 aReadRequestLength)
|
sl@0
|
795 |
{
|
sl@0
|
796 |
TRACE_FUNCTION("NotifyReadRequestLength");
|
sl@0
|
797 |
iReadRequestLength = aReadRequestLength;
|
sl@0
|
798 |
}
|
sl@0
|
799 |
|
sl@0
|
800 |
/**
|
sl@0
|
801 |
HwPerfCheck
|
sl@0
|
802 |
|
sl@0
|
803 |
This function uses 100% of the CPU power to attempt to drive
|
sl@0
|
804 |
the AES h/w as fast as possible.
|
sl@0
|
805 |
|
sl@0
|
806 |
This will give some indication of the maximum achievable speed of the h/w
|
sl@0
|
807 |
excluding the overhead of (almost all of) the driver framework.
|
sl@0
|
808 |
*/
|
sl@0
|
809 |
void CryptoH4JobAes::HwPerfCheck()
|
sl@0
|
810 |
{
|
sl@0
|
811 |
TRACE_FUNCTION("HwPerfCheck");
|
sl@0
|
812 |
SetupHw(EFalse);
|
sl@0
|
813 |
|
sl@0
|
814 |
// Start h/w
|
sl@0
|
815 |
#ifdef __MARM__
|
sl@0
|
816 |
TUint32 mask = TOmap::Register32(KHwBaseAesReg + KHoAES_MASK);
|
sl@0
|
817 |
mask |= KHtDesMaskDmaReqStart;
|
sl@0
|
818 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_MASK, mask);
|
sl@0
|
819 |
#endif
|
sl@0
|
820 |
|
sl@0
|
821 |
// Reset indexes
|
sl@0
|
822 |
iSwWriteByteOffset = 0;
|
sl@0
|
823 |
iHwReadIndex = 0,
|
sl@0
|
824 |
iHwWriteIndex = 0,
|
sl@0
|
825 |
iSwReadByteOffset = 0;
|
sl@0
|
826 |
|
sl@0
|
827 |
// Read data
|
sl@0
|
828 |
iCallbacks->DataRequired();
|
sl@0
|
829 |
// Process all data
|
sl@0
|
830 |
while(iHwWriteIndex*4 < iSwWriteByteOffset)
|
sl@0
|
831 |
{
|
sl@0
|
832 |
#ifdef __MARM__
|
sl@0
|
833 |
// Kern::Printf("Ctrl %08x", TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL));
|
sl@0
|
834 |
#endif
|
sl@0
|
835 |
// Have we got more data to write to h/w?
|
sl@0
|
836 |
if(iHwReadIndex < iSwWriteByteOffset/4)
|
sl@0
|
837 |
{
|
sl@0
|
838 |
// Yes, but is h/w ready for it?
|
sl@0
|
839 |
#ifdef __MARM__
|
sl@0
|
840 |
if(TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL) & KHtAesCtrlInputReady)
|
sl@0
|
841 |
{
|
sl@0
|
842 |
// Kern::Printf("toHw iHwReadIndex=%d", iHwReadIndex);
|
sl@0
|
843 |
// ok, write data to h/w
|
sl@0
|
844 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_DATA_1, iAesBuffer[iHwReadIndex]);
|
sl@0
|
845 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_DATA_2, iAesBuffer[iHwReadIndex+1]);
|
sl@0
|
846 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_DATA_3, iAesBuffer[iHwReadIndex+2]);
|
sl@0
|
847 |
TOmap::SetRegister32(KHwBaseAesReg + KHoAES_DATA_4, iAesBuffer[iHwReadIndex+3]);
|
sl@0
|
848 |
iHwReadIndex += 4;
|
sl@0
|
849 |
}
|
sl@0
|
850 |
#else
|
sl@0
|
851 |
iHwReadIndex += 4;
|
sl@0
|
852 |
#endif
|
sl@0
|
853 |
}
|
sl@0
|
854 |
// Do we expect more data from the h/w?
|
sl@0
|
855 |
if(iHwWriteIndex < iSwWriteByteOffset/4)
|
sl@0
|
856 |
{
|
sl@0
|
857 |
// Yes, but is h/w ready?
|
sl@0
|
858 |
#ifdef __MARM__
|
sl@0
|
859 |
if(TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL) & KHtAesCtrlOutputReady)
|
sl@0
|
860 |
{
|
sl@0
|
861 |
// Kern::Printf("ReadHw to iHwWriteIndex=%d", iHwWriteIndex);
|
sl@0
|
862 |
iAesBuffer[iHwWriteIndex] = TOmap::Register32(KHwBaseAesReg + KHoAES_DATA_1);
|
sl@0
|
863 |
iAesBuffer[iHwWriteIndex+1] = TOmap::Register32(KHwBaseAesReg + KHoAES_DATA_2);
|
sl@0
|
864 |
iAesBuffer[iHwWriteIndex+2] = TOmap::Register32(KHwBaseAesReg + KHoAES_DATA_3);
|
sl@0
|
865 |
iAesBuffer[iHwWriteIndex+3] = TOmap::Register32(KHwBaseAesReg + KHoAES_DATA_4);
|
sl@0
|
866 |
iHwWriteIndex += 4;
|
sl@0
|
867 |
}
|
sl@0
|
868 |
#else
|
sl@0
|
869 |
iHwWriteIndex += 4;
|
sl@0
|
870 |
#endif
|
sl@0
|
871 |
}
|
sl@0
|
872 |
}
|
sl@0
|
873 |
|
sl@0
|
874 |
// Write data back to user
|
sl@0
|
875 |
iCallbacks->DataAvailable();
|
sl@0
|
876 |
}
|
sl@0
|
877 |
|
sl@0
|
878 |
|
sl@0
|
879 |
|
sl@0
|
880 |
|
sl@0
|
881 |
#ifdef TDFC_WRAPPER
|
sl@0
|
882 |
TDfcWrapper::TDfcWrapper(const TDfcWrapper &aOrig)
|
sl@0
|
883 |
: TDfc(DfcWrapperFunc, this, aOrig.iPriority)
|
sl@0
|
884 |
{
|
sl@0
|
885 |
TRACE_FUNCTION("TDfcWrapper");
|
sl@0
|
886 |
iRealFunction = aOrig.iRealFunction,
|
sl@0
|
887 |
iRealPtr = aOrig.iRealPtr;
|
sl@0
|
888 |
SetDfcQ(aOrig.iDfcQ);
|
sl@0
|
889 |
}
|
sl@0
|
890 |
|
sl@0
|
891 |
|
sl@0
|
892 |
TDfcWrapper::TDfcWrapper(TDfcFn aFunction, TAny* aPtr, TInt aPriority)
|
sl@0
|
893 |
: TDfc(DfcWrapperFunc, this, aPriority),
|
sl@0
|
894 |
iRealFunction(aFunction),
|
sl@0
|
895 |
iRealPtr(aPtr)
|
sl@0
|
896 |
{
|
sl@0
|
897 |
TRACE_FUNCTION("TDfcWrapper");
|
sl@0
|
898 |
}
|
sl@0
|
899 |
|
sl@0
|
900 |
void TDfcWrapper::Enque()
|
sl@0
|
901 |
{
|
sl@0
|
902 |
TRACE_FUNCTION("Enque");
|
sl@0
|
903 |
// Clone self and queue the clone
|
sl@0
|
904 |
TDfcWrapper *p = new TDfcWrapper(*this);
|
sl@0
|
905 |
p->BaseEnque();
|
sl@0
|
906 |
}
|
sl@0
|
907 |
|
sl@0
|
908 |
void TDfcWrapper::BaseEnque()
|
sl@0
|
909 |
{
|
sl@0
|
910 |
TRACE_FUNCTION("BaseEnque");
|
sl@0
|
911 |
TDfc::Enque();
|
sl@0
|
912 |
}
|
sl@0
|
913 |
|
sl@0
|
914 |
|
sl@0
|
915 |
void TDfcWrapper::DfcWrapperFunc(TAny* aPtr)
|
sl@0
|
916 |
{
|
sl@0
|
917 |
TRACE_FUNCTION("DfcWrapperFunc");
|
sl@0
|
918 |
TDfcWrapper *p = (TDfcWrapper *) aPtr;
|
sl@0
|
919 |
p->iRealFunction(p->iRealPtr);
|
sl@0
|
920 |
delete p;
|
sl@0
|
921 |
}
|
sl@0
|
922 |
#endif
|
sl@0
|
923 |
|
sl@0
|
924 |
#ifdef DUMPBUFFER
|
sl@0
|
925 |
LOCAL_D void dumpBuffer(const char *aName, TUint32 *aBuf, TUint32 aLen)
|
sl@0
|
926 |
{
|
sl@0
|
927 |
Kern::Printf("%s =", aName);
|
sl@0
|
928 |
TUint8 *buf8 = reinterpret_cast<TUint8 *>(aBuf);
|
sl@0
|
929 |
for(TInt i = 0 ; i < aLen*4; ++i)
|
sl@0
|
930 |
{
|
sl@0
|
931 |
if(i%16 == 0)
|
sl@0
|
932 |
{
|
sl@0
|
933 |
Kern::Printf("\n ");
|
sl@0
|
934 |
}
|
sl@0
|
935 |
Kern::Printf("%02x ", buf8[i]);
|
sl@0
|
936 |
}
|
sl@0
|
937 |
Kern::Printf("\n");
|
sl@0
|
938 |
}
|
sl@0
|
939 |
#endif
|
sl@0
|
940 |
|
sl@0
|
941 |
// End of file
|