os/security/cryptoplugins/cryptospiplugins/test/h4drv/crypto_h4/cryptoh4aes.cpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/security/cryptoplugins/cryptospiplugins/test/h4drv/crypto_h4/cryptoh4aes.cpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,941 @@
     1.4 +/*
     1.5 +* Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
     1.6 +* All rights reserved.
     1.7 +* This component and the accompanying materials are made available
     1.8 +* under the terms of the License "Eclipse Public License v1.0"
     1.9 +* which accompanies this distribution, and is available
    1.10 +* at the URL "http://www.eclipse.org/legal/epl-v10.html".
    1.11 +*
    1.12 +* Initial Contributors:
    1.13 +* Nokia Corporation - initial contribution.
    1.14 +*
    1.15 +* Contributors:
    1.16 +*
    1.17 +* Description: 
    1.18 +*
    1.19 +*/
    1.20 +
    1.21 +
    1.22 +/**
    1.23 + @file
    1.24 + @internalComponent
    1.25 + @released
    1.26 +*/
    1.27 +#include <kernel/kern_priv.h>
    1.28 +#include "cryptodriver.h"
    1.29 +#ifdef __MARM__
    1.30 +#include <omap_hrp/assp/shared/omap_reg.h>
    1.31 +#include <omap_hrp/assp/shared/omap_interrupt.h>
    1.32 +#endif
    1.33 +#include "cryptoh4aes.h"
    1.34 +
    1.35 +#if 0
    1.36 +#undef __MARM__
    1.37 +#ifndef __MARM__
    1.38 +#warning "h/w disabled"
    1.39 +#endif
    1.40 +#endif
    1.41 +
    1.42 +#ifdef DUMPBUFFER
    1.43 +LOCAL_D void dumpBuffer(const char *aName, TUint32 *aBuf, TUint32 aLen);
    1.44 +#else
    1.45 +#define dumpBuffer(aName, aBuf, aLen)
    1.46 +#endif
    1.47 +
    1.48 +CryptoH4JobAes::CryptoH4JobAes(DLddChanAes &aLddChanAes)
    1.49 +	: iLddChanAes(aLddChanAes),
    1.50 +	  iEncrypt(EFalse),
    1.51 +	  iKeyLengthBytes(0),
    1.52 +	  iSwWriteByteOffset(0),
    1.53 +	  iHwReadIndex(0),
    1.54 +	  iHwWriteIndex(0),
    1.55 +	  iSwReadByteOffset(0),
    1.56 +	  iHwRunning(EFalse),
    1.57 +	  iDmaToHwPending(0),
    1.58 +	  iDmaFromHwPending(0),
    1.59 +#ifdef FAKE_DMA
    1.60 +	  iFakeDmaToHwQueued(0),
    1.61 +	  iFakeDmaFromHwQueued(0),
    1.62 +#endif
    1.63 +	  iDmaToHwCompleteDfc(DmaToHwCompleteDfc, this, 1), // DFC is priority '1'
    1.64 +	  iDmaFromHwCompleteDfc(DmaFromHwCompleteDfc, this, 1)
    1.65 +	{
    1.66 +	TRACE_FUNCTION("CryptoH4JobAes");
    1.67 +	}
    1.68 +
    1.69 +CryptoH4JobAes::~CryptoH4JobAes()
    1.70 +	{
    1.71 +	TRACE_FUNCTION("~CryptoH4JobAes");
    1.72 +	StopHw();
    1.73 +	}
    1.74 +
    1.75 +
    1.76 +void CryptoH4JobAes::SetDfcQ(TDfcQue *aDfcQue)
    1.77 +	{
    1.78 +	TRACE_FUNCTION("SetDfcQ");
    1.79 +	iDmaToHwCompleteDfc.SetDfcQ(aDfcQue);
    1.80 +	iDmaFromHwCompleteDfc.SetDfcQ(aDfcQue);
    1.81 +	}
    1.82 +
    1.83 +TUint8 *CryptoH4JobAes::GetKeyBuffer()
    1.84 +	{
    1.85 +	TRACE_FUNCTION("GetKeyBuffer");
    1.86 +	return (TUint8 *) &iKey;
    1.87 +	}
    1.88 +
    1.89 +TUint8 *CryptoH4JobAes::GetIVBuffer()
    1.90 +	{
    1.91 +	TRACE_FUNCTION("GetIVBuffer");
    1.92 +	return (TUint8 *) &iIV;
    1.93 +	}
    1.94 +	
    1.95 +TUint32 CryptoH4JobAes::MaxBytes() const
    1.96 +	{
    1.97 +	TRACE_FUNCTION("MaxBytes");
    1.98 +	return sizeof(iAesBuffer); // return size in bytes
    1.99 +	}
   1.100 +
   1.101 +TUint8 *CryptoH4JobAes::GetIOBuffer()
   1.102 +	{
   1.103 +	TRACE_FUNCTION("GetIOBuffer");
   1.104 +	return (TUint8 *) &iAesBuffer;
   1.105 +	}
   1.106 +
   1.107 +void CryptoH4JobAes::GetToPddBuffer(TUint8 * &aBuf, TUint32 &aBufLen, TBool &aMore)
   1.108 +	{
   1.109 +	TRACE_FUNCTION("GetToPddBuffer");
   1.110 +	CheckIndexes();
   1.111 +	TUint8 *p = (TUint8 *) iAesBuffer;
   1.112 +	aBuf = &p[iSwWriteByteOffset];
   1.113 +
   1.114 +	if(iSwReadByteOffset > iSwWriteByteOffset)
   1.115 +		{
   1.116 +		// Available buffer is contiguous
   1.117 +		aBufLen = iSwReadByteOffset - iSwWriteByteOffset;
   1.118 +		if(aBufLen) --aBufLen; // Never use all space to stop index collision
   1.119 +		aMore = EFalse;
   1.120 +		return;
   1.121 +		}
   1.122 +	else
   1.123 +		{
   1.124 +		// Available data crosses buffer end so return two regions
   1.125 +		// OR indexes are equal
   1.126 +		aBufLen = sizeof(iAesBuffer) - iSwWriteByteOffset;
   1.127 +		if(iSwReadByteOffset == 0)
   1.128 +			{
   1.129 +			// Do not fill to end of buffer because index would wrap and collid
   1.130 +			--aBufLen;
   1.131 +			aMore = EFalse;
   1.132 +			return;
   1.133 +			}
   1.134 +		aMore = (iSwReadByteOffset != iSwWriteByteOffset); // Another region to read
   1.135 +		return;
   1.136 +		}
   1.137 +	// Never gets here
   1.138 +	}
   1.139 +
   1.140 +void CryptoH4JobAes::BytesWrittenToPdd(TUint32 aBytes)
   1.141 +	{
   1.142 +	TRACE_FUNCTION("BytesWrittenToPdd");
   1.143 +	CheckIndexes();
   1.144 +	iSwWriteByteOffset += aBytes;
   1.145 +	if(iSwWriteByteOffset >= sizeof(iAesBuffer))
   1.146 +		{
   1.147 +		iSwWriteByteOffset -= sizeof(iAesBuffer);
   1.148 +		}
   1.149 +		
   1.150 +	CheckIndexes();
   1.151 +	}
   1.152 +
   1.153 +void CryptoH4JobAes::GetFromPddBuffer(TUint8 * &aBuf, TUint32 &aBufLen, TBool &aMore)
   1.154 +	{
   1.155 +	TRACE_FUNCTION("GetFromPddBuffer");
   1.156 +	CheckIndexes();
   1.157 +	TInt hwWrite8Index = iHwWriteIndex * 4;
   1.158 +	TUint8 *p = (TUint8 *) iAesBuffer;
   1.159 +	aBuf = &p[iSwReadByteOffset];
   1.160 +
   1.161 +	TInt len = hwWrite8Index - iSwReadByteOffset;
   1.162 +	if(len >= 0)
   1.163 +		{
   1.164 +		aBufLen = len;
   1.165 +		aMore = EFalse;
   1.166 +		}
   1.167 +	else
   1.168 +		{
   1.169 +		// Wrap round condition, but can only return contiguous bytes
   1.170 +		aBufLen = sizeof(iAesBuffer) - iSwReadByteOffset;
   1.171 +		aMore = (hwWrite8Index != 0);
   1.172 +		}
   1.173 +	CheckIndexes();
   1.174 +	}
   1.175 +
   1.176 +void CryptoH4JobAes::BytesReadFromPdd(TUint32 aBytes)
   1.177 +	{
   1.178 +	TRACE_FUNCTION("BytesReadFromPdd");
   1.179 +	CheckIndexes();
   1.180 +	iSwReadByteOffset += aBytes;
   1.181 +	if(iSwReadByteOffset >= sizeof(iAesBuffer))
   1.182 +		{
   1.183 +		iSwReadByteOffset -= sizeof(iAesBuffer);
   1.184 +		}
   1.185 +	CheckIndexes();
   1.186 +	iReadRequestLength -= aBytes;
   1.187 +	}
   1.188 +
   1.189 +
   1.190 +
   1.191 +TInt CryptoH4JobAes::SetDetails(DCryptoJobScheduler *aJobScheduler, 
   1.192 +								MCryptoJobCallbacks *aCallbacks,
   1.193 +								TBool aEncrypt, 
   1.194 +								TInt aKeyLengthBytes,
   1.195 +								RCryptoDriver::TChainingMode aMode)
   1.196 +	{
   1.197 +	TRACE_FUNCTION("TChainingMode");
   1.198 +	//	Kern::Printf("AES Details %s: Key len %d, Mode %s (%d)",
   1.199 +	//				 aEncrypt?"Encrypt":"Decrypt", aKeyLengthBytes, (aMode == RCryptoDriver::ECbcMode)?"CBC":"ECB", aMode);
   1.200 +
   1.201 +	if(State() != ECreated)
   1.202 +		{
   1.203 +        return KErrArgument;
   1.204 +		}
   1.205 +	
   1.206 +	iJobScheduler = aJobScheduler;
   1.207 +	iCallbacks = aCallbacks;
   1.208 +	iEncrypt = aEncrypt;
   1.209 +	iKeyLengthBytes = aKeyLengthBytes;
   1.210 +
   1.211 +	if((aMode != RCryptoDriver::EEcbMode) && (aMode != RCryptoDriver::ECbcMode))
   1.212 +		{
   1.213 +		return KErrArgument;
   1.214 +		}
   1.215 +	iMode = aMode;
   1.216 +	if(iMode == RCryptoDriver::ECbcMode)
   1.217 +		{
   1.218 +		// For CBC we need to save the IV incase we need to
   1.219 +		// re-initialise the h/w mid-job
   1.220 +		TUint32 *from;
   1.221 +		TUint32 *to;
   1.222 +		if(iEncrypt)
   1.223 +			{
   1.224 +			// For encryption - DoSaveState saves the last encrypted
   1.225 +			// block. We set this to the IV to handle the case where
   1.226 +			// we do not encrypt any blocks before being suspended.
   1.227 +			from = &iIV[0];
   1.228 +			to = &iAesBuffer[((sizeof(iAesBuffer)-16)/4)];
   1.229 +			}
   1.230 +		else
   1.231 +			{
   1.232 +			// For decryption - MaybeSetupWriteDmaToHw maintains
   1.233 +			// iSavedState as a copy of the last ciphertext
   1.234 +			// (pre-decryption) so DoSaveState does not need to do
   1.235 +			// anything.
   1.236 +			//
   1.237 +			// To cover the case where we do not decrypt any blocks
   1.238 +			// before being suspended, we initialise iSavedState to the IV.
   1.239 +			from = &iIV[0];
   1.240 +			to = &iSavedState[0];
   1.241 +			}
   1.242 +		// Save the IV
   1.243 +		*to++ = *from++;
   1.244 +		*to++ = *from++;
   1.245 +		*to++ = *from++;
   1.246 +		*to++ = *from++;
   1.247 +		if(iEncrypt)
   1.248 +			{
   1.249 +			dumpBuffer("SetDetails - end of iAesBuffer", to-4, 4);
   1.250 +			}
   1.251 +		else
   1.252 +			{
   1.253 +			dumpBuffer("SetDetails - iSavedState", iSavedState, 4);
   1.254 +			}
   1.255 +		}
   1.256 +
   1.257 +	// Reset indexes
   1.258 +	iSwWriteByteOffset = 0;
   1.259 +	iHwReadIndex = 0,
   1.260 +	iHwWriteIndex = 0,
   1.261 +	iSwReadByteOffset = 0;
   1.262 +
   1.263 +	return KErrNone;
   1.264 +	}
   1.265 +
   1.266 +void CryptoH4JobAes::DoSlice(TBool aFirstSlice)
   1.267 +	{
   1.268 +	TRACE_FUNCTION("DoSlice");
   1.269 +	//	Kern::Printf("DoSlice %s", aFirstSlice?"FIRST":"");
   1.270 +	if(aFirstSlice)
   1.271 +		{
   1.272 +		SetupHw(EFalse);
   1.273 +		}
   1.274 +	
   1.275 +	// Push any available data to user
   1.276 +	TInt r = iCallbacks->DataAvailable();
   1.277 +	if(r != KErrNone)
   1.278 +		{
   1.279 +		iJobScheduler->JobComplete(this,r);
   1.280 +		return;
   1.281 +		}
   1.282 +	// Read available data from user
   1.283 +	r = iCallbacks->DataRequired();
   1.284 +	if(r != KErrNone)
   1.285 +		{
   1.286 +		iJobScheduler->JobComplete(this,r);
   1.287 +		return;
   1.288 +		}
   1.289 +	
   1.290 +	// Setup to read data (if enough is available).
   1.291 +	// 	Kern::Printf("DoSlice - calling MaybeSetupWriteDmaToHw");
   1.292 +	MaybeSetupWriteDmaToHw();
   1.293 +
   1.294 +	FAKE_DMA();
   1.295 +
   1.296 +	if(!iDmaToHwPending && !iDmaFromHwPending)
   1.297 +		{
   1.298 +		Stalled();
   1.299 +		}
   1.300 +
   1.301 +	return;
   1.302 +	}
   1.303 +
   1.304 +TBool CryptoH4JobAes::DoSaveState()
   1.305 +	{
   1.306 +	TRACE_FUNCTION("DoSaveState");
   1.307 +
   1.308 +	if((iMode == RCryptoDriver::ECbcMode) && iEncrypt)
   1.309 +		{
   1.310 +		// Doing CBC encryption - Need to save a copy of the last
   1.311 +		// ciphertext block (after encryption) so we can use it as the
   1.312 +		// IV if we are later resumed.
   1.313 +		//
   1.314 +		// Last block processed by h/w just BEFORE iHwWriteIndex. If
   1.315 +		// we have not processed any data, then SetDetails will have
   1.316 +		// initialised this to the IV
   1.317 +		TInt32 fromIndex = (iHwWriteIndex!=0) ? (iHwWriteIndex-4) : ((sizeof(iAesBuffer)-16)/4);
   1.318 +		TUint32 *from = &iAesBuffer[fromIndex];
   1.319 +		TUint32 *to = &iSavedState[0];
   1.320 +		*to++ = *from++;
   1.321 +		*to++ = *from++;
   1.322 +		*to++ = *from++;
   1.323 +		*to++ = *from++;
   1.324 +		dumpBuffer("DoSaveState - iSavedState", iSavedState, 4);
   1.325 +		}
   1.326 +
   1.327 +	StopHw();
   1.328 +	return ETrue; // We want DoRestoreState to be called
   1.329 +	}
   1.330 +
   1.331 +void CryptoH4JobAes::DoRestoreState()
   1.332 +	{
   1.333 +	TRACE_FUNCTION("DoRestoreState");
   1.334 +	SetupHw(ETrue);
   1.335 +	}
   1.336 +
   1.337 +void CryptoH4JobAes::DoReleaseHw()
   1.338 +	{
   1.339 +	TRACE_FUNCTION("DoReleaseHw");
   1.340 +	StopHw();
   1.341 +#ifndef FAKE_DMA
   1.342 +	// Cancel DFCs - Doesn't work for FAKE_DMA case....
   1.343 +	iDmaToHwCompleteDfc.Cancel();
   1.344 +	iDmaFromHwCompleteDfc.Cancel();
   1.345 +#endif
   1.346 +	}
   1.347 +
   1.348 +void CryptoH4JobAes::MaybeSetupWriteDmaToHw()
   1.349 +	{
   1.350 +	TRACE_FUNCTION("MaybeSetupWriteDmaToHw");
   1.351 +	if(!iDmaToHwPending)
   1.352 +		{
   1.353 +		// Calculate space between H/W read index and S/W write index or end of buffer
   1.354 +		TInt hwReadIndex8 = iHwReadIndex*4;
   1.355 +		TInt avail = (iSwWriteByteOffset >= hwReadIndex8) ? (iSwWriteByteOffset - hwReadIndex8) : (sizeof(iAesBuffer) - hwReadIndex8);
   1.356 +		
   1.357 +		if(avail >= 16)
   1.358 +			{
   1.359 +			// At least another block of data is available.
   1.360 +			if((avail <= 31) && (iMode == RCryptoDriver::ECbcMode) && !iEncrypt)
   1.361 +				{
   1.362 +				// Only one complete block is available
   1.363 +
   1.364 +				// Doing CBC decryption, so need to save a copy of the
   1.365 +				// last ciphertext block (before it is decrypted) so we
   1.366 +				// can use it as the IV if we are kicked off the h/w
   1.367 +				// and have to reconfigure.
   1.368 +				// Last block available for h/w is at hwReadIndex8
   1.369 +				TUint32 *from = &iAesBuffer[iHwReadIndex];
   1.370 +				TUint32 *to = &iSavedState[0];
   1.371 +				*to++ = *from++;
   1.372 +				*to++ = *from++;
   1.373 +				*to++ = *from++;
   1.374 +				*to++ = *from++;
   1.375 +				dumpBuffer("MaybeSetupWriteDmaToHw - iSavedState", iSavedState, 4);
   1.376 +				}
   1.377 +			SetupDma((TUint32)&iAesBuffer[iHwReadIndex], ETrue);
   1.378 +			}
   1.379 +		}
   1.380 +	}
   1.381 +
   1.382 +
   1.383 +#ifdef FAKE_DMA
   1.384 +void CryptoH4JobAes::FakeDma()
   1.385 +	{
   1.386 +	TRACE_FUNCTION("FakeDma");
   1.387 +	if(iFakeDmaToHwQueued < iDmaToHwPending)
   1.388 +		{
   1.389 +		// Calculate number of 32 bit values in the h/w
   1.390 +		TInt inHw32 = iHwReadIndex - iHwWriteIndex;
   1.391 +		if(inHw32 < 0)
   1.392 +			{
   1.393 +			inHw32 += sizeof(iAesBuffer)/sizeof(iAesBuffer[0]);
   1.394 +			}
   1.395 +		// Convert to number of 16 byte blocks in h/w
   1.396 +		TInt inHwBlocks = inHw32/4;
   1.397 +
   1.398 +		if((inHwBlocks + iFakeDmaToHwQueued) < 2)
   1.399 +			{
   1.400 +			// Pipeline is not full, so the next DMA to complete would be a "to h/w"
   1.401 +			// Wait for h/w to be ready
   1.402 +#ifdef __MARM__
   1.403 +			//		Kern::Printf("CryptoH4JobAes::FakeDma - Start waiting for h/w input ready (%x)", TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL));
   1.404 +			while(! (TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL) & KHtAesCtrlInputReady))
   1.405 +				{
   1.406 +				Kern::Printf("CryptoH4JobAes::FakeDma - Waiting for h/w input ready (%x)", TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL));
   1.407 +				}
   1.408 +#endif			
   1.409 +			// Queue the fake "to dma" complete DFC
   1.410 +			iDmaToHwCompleteDfc.Enque();
   1.411 +			++iFakeDmaToHwQueued;
   1.412 +			return;
   1.413 +			}
   1.414 +		}
   1.415 +
   1.416 +	// Either pipeline is full, or we are out of input data.
   1.417 +
   1.418 +	// Check for output
   1.419 +	if(iFakeDmaFromHwQueued < iDmaFromHwPending)
   1.420 +		{
   1.421 +#ifdef __MARM__
   1.422 +		//		Kern::Printf("CryptoH4JobAes::FakeDma - Start waiting for output ready (%x)", TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL));
   1.423 +		while(! (TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL) & KHtAesCtrlOutputReady))
   1.424 +			{
   1.425 +			Kern::Printf("CryptoH4JobAes::FakeDma - waiting for output ready (%x)",TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL));
   1.426 +			}
   1.427 +#endif
   1.428 +		// Queue the fake "from dma" complete DFC
   1.429 +		iDmaFromHwCompleteDfc.Enque();
   1.430 +		++iFakeDmaFromHwQueued;
   1.431 +		return;
   1.432 +		}
   1.433 +
   1.434 +	return;
   1.435 +	}
   1.436 +#endif
   1.437 +
   1.438 +
   1.439 +
   1.440 +
   1.441 +void CryptoH4JobAes::SetupHw(TBool aUseSavedState)
   1.442 +	{
   1.443 +	TRACE_FUNCTION("SetupHw");
   1.444 +	//	Kern::Printf("SetupHw");
   1.445 +#ifdef __MARM__
   1.446 +	// AES_MASK
   1.447 +#ifdef FAKE_DMA
   1.448 +	TOmap::SetRegister32(KHwBaseAesReg + KHoAES_MASK, KHtAesMaskAutoIdle);
   1.449 +#else
   1.450 +	TOmap::SetRegister32(KHwBaseAesReg + KHoAES_MASK, 
   1.451 +						 KHtAesMaskDmaReqIn | KHtAesMaskDmaReqOut | KHtAesMaskAutoIdle);
   1.452 +#endif
   1.453 +	iHwRunning = EFalse; // Previous MASK register write cleared the start bit.
   1.454 +	
   1.455 +	TUint32 ctrl = 0;
   1.456 +	if(iEncrypt)
   1.457 +		{
   1.458 +			ctrl |= KHtAesCtrlDirection;
   1.459 +		}
   1.460 +
   1.461 +	switch(iKeyLengthBytes)
   1.462 +		{
   1.463 +		case 32:
   1.464 +			// KEYS
   1.465 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY1_L, iKey[0]);
   1.466 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY1_H, iKey[1]);
   1.467 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY2_L, iKey[2]);
   1.468 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY2_H, iKey[3]);
   1.469 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY3_L, iKey[4]);
   1.470 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY3_H, iKey[5]);
   1.471 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY4_L, iKey[6]);
   1.472 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY4_H, iKey[7]);
   1.473 +			ctrl |= KHtAesCtrlKeySize256;
   1.474 +			break;
   1.475 +		case 24:
   1.476 +			// KEYS
   1.477 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY1_L, iKey[0]);
   1.478 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY1_H, iKey[1]);
   1.479 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY2_L, iKey[2]);
   1.480 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY2_H, iKey[3]);
   1.481 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY3_L, iKey[4]);
   1.482 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY3_H, iKey[5]);
   1.483 +			ctrl |= KHtAesCtrlKeySize192;
   1.484 +			break;
   1.485 +		case 16:
   1.486 +			// KEYS
   1.487 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY1_L, iKey[0]);
   1.488 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY1_H, iKey[1]);
   1.489 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY2_L, iKey[2]);
   1.490 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_KEY2_H, iKey[3]);
   1.491 +			ctrl |= KHtAesCtrlKeySize128;
   1.492 +			break;
   1.493 +		}
   1.494 +	
   1.495 +			
   1.496 +	
   1.497 +	// IV (CBC only)
   1.498 +	if(iMode == RCryptoDriver::ECbcMode)
   1.499 +		{
   1.500 +		if(!aUseSavedState)
   1.501 +			{
   1.502 +			//		Kern::Printf("Setting IV");
   1.503 +			// Set IV
   1.504 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_IV_1, iIV[0]);
   1.505 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_IV_2, iIV[1]);
   1.506 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_IV_3, iIV[2]);
   1.507 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_IV_4, iIV[3]);
   1.508 +			dumpBuffer("SetupHw(EFalse) - iIV", iIV, 4);
   1.509 +			}
   1.510 +		else
   1.511 +			{
   1.512 +			// Set IV to saved state
   1.513 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_IV_1, iSavedState[0]);
   1.514 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_IV_2, iSavedState[1]);
   1.515 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_IV_3, iSavedState[2]);
   1.516 +			TOmap::SetRegister32(KHwBaseAesReg + KHoAES_IV_4, iSavedState[3]);
   1.517 +			dumpBuffer("SetupHw(ETrue) - iSavedState", iSavedState, 4);
   1.518 +			}
   1.519 +		
   1.520 +		ctrl |= KHsAesCtrlCBC;
   1.521 +		}
   1.522 +	
   1.523 +	// AES_CTRL
   1.524 +	//	Kern::Printf("Setting crtl to %x", ctrl);
   1.525 +	TOmap::SetRegister32(KHwBaseAesReg + KHoAES_CTRL, ctrl);
   1.526 +
   1.527 +	// AES_MASK START bit to start DMA
   1.528 +	// This is done by SetupDma
   1.529 +#else
   1.530 +	(void)aUseSavedState;
   1.531 +
   1.532 +#endif
   1.533 +	}
   1.534 +
   1.535 +void CryptoH4JobAes::SetupDma(TUint32 aPtr, TBool aToHw)
   1.536 +	{
   1.537 +	TRACE_FUNCTION("SetupDma");
   1.538 +	//	Kern::Printf("\t\tSetupDMA - %s, iHwReadIndex %d iHwWriteIndex %d", 
   1.539 +	//				 aToHw?"toHw":"fromHw", iHwReadIndex, iHwWriteIndex);
   1.540 +	// Start the h/w
   1.541 +	if(!iHwRunning)
   1.542 +		{
   1.543 +		//		Kern::Printf("SetupDma - starting h/w");
   1.544 +#ifdef __MARM__
   1.545 +		// If h/w is not enabled yet, then set the start bit. This is
   1.546 +		// required even when NOT using DMA...
   1.547 +		TUint32 mask = TOmap::Register32(KHwBaseAesReg + KHoAES_MASK);
   1.548 +		//		Kern::Printf("mask is %x", mask);
   1.549 +		mask |= KHtDesMaskDmaReqStart;
   1.550 +		TOmap::SetRegister32(KHwBaseAesReg + KHoAES_MASK, mask);
   1.551 +		//		Kern::Printf("changed to %x", TOmap::Register32(KHwBaseAesReg + KHoAES_MASK));
   1.552 +#else
   1.553 +		(void)aPtr;
   1.554 +#endif
   1.555 +		iHwRunning = ETrue;
   1.556 +		}
   1.557 +
   1.558 +	if(aToHw)
   1.559 +		{
   1.560 +		++iDmaToHwPending;
   1.561 +		SetRunning(ETrue);
   1.562 +		}
   1.563 +	else
   1.564 +		{
   1.565 +		++iDmaFromHwPending;
   1.566 +		SetRunning(ETrue);
   1.567 +		}
   1.568 +	
   1.569 +	}
   1.570 +
   1.571 +
   1.572 +void CryptoH4JobAes::StopHw()
   1.573 +	{
   1.574 +	TRACE_FUNCTION("StopHw");
   1.575 +#ifdef __MARM__
   1.576 +	// Disable h/w
   1.577 +	TUint32 mask = TOmap::Register32(KHwBaseAesReg + KHoAES_MASK);
   1.578 +	mask &= ~KHtDesMaskDmaReqStart;
   1.579 +	TOmap::SetRegister32(KHwBaseAesReg + KHoAES_MASK, mask);
   1.580 +#endif
   1.581 +	iHwRunning = EFalse;
   1.582 +	}
   1.583 +
   1.584 +
   1.585 +
   1.586 +/**
   1.587 +  Called when the current h/w opperation is complete
   1.588 +*/
   1.589 +void CryptoH4JobAes::DmaComplete(DDmaRequest::TResult aResult, TAny *aPtr)
   1.590 +	{
   1.591 +	TRACE_FUNCTION("TResult");
   1.592 +	(void)aResult;
   1.593 +	// Queue our DFC to action the DMA complete notification in our thread.
   1.594 +	reinterpret_cast<TDfc *>(aPtr)->Enque();
   1.595 +	}
   1.596 +
   1.597 +
   1.598 +
   1.599 +
   1.600 +void CryptoH4JobAes::DmaToHwCompleteDfc(TAny* aPtr)
   1.601 +    {
   1.602 +    ((CryptoH4JobAes*)aPtr)->DoDmaToHwCompleteDfc();
   1.603 +    }
   1.604 +
   1.605 +
   1.606 +void CryptoH4JobAes::DoDmaToHwCompleteDfc()
   1.607 +	{
   1.608 +	TRACE_FUNCTION("DoDmaToHwCompleteDfc");
   1.609 +	//	Kern::Printf("**DoDmaToHwCompleteDfc iHwReadIndex %d, iHwWriteIndex %d",iHwReadIndex, iHwWriteIndex);
   1.610 +	--iDmaToHwPending;
   1.611 +	if(iDmaToHwPending < 0) Kern::Fault("DoDmaToHwCompleteDfc - iDmaToHwPending is negative",1);
   1.612 +
   1.613 +#ifdef FAKE_DMA
   1.614 +	--iFakeDmaToHwQueued;
   1.615 +	if(iFakeDmaToHwQueued < 0) Kern::Fault("DoDmaToHwCompleteDfc - iFakeDmaToHwQueued is negative",2);
   1.616 +#endif
   1.617 +
   1.618 +	CheckIndexes();
   1.619 +
   1.620 +#ifdef __MARM__
   1.621 +	if(! (TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL) & KHtAesCtrlInputReady))
   1.622 +		{
   1.623 +		Kern::Fault("DoDmaToHwCompleteDfc - h/w not ready for input!",3);
   1.624 +		}
   1.625 +	//		Kern::Printf("DoDmaToHwCompleteDfc - Writing data into h/w index %d (%x)", iHwReadIndex, TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL));
   1.626 +	TOmap::SetRegister32(KHwBaseAesReg + KHoAES_DATA_1, iAesBuffer[iHwReadIndex]);
   1.627 +	TOmap::SetRegister32(KHwBaseAesReg + KHoAES_DATA_2, iAesBuffer[iHwReadIndex+1]);
   1.628 +	TOmap::SetRegister32(KHwBaseAesReg + KHoAES_DATA_3, iAesBuffer[iHwReadIndex+2]);
   1.629 +	TOmap::SetRegister32(KHwBaseAesReg + KHoAES_DATA_4, iAesBuffer[iHwReadIndex+3]);
   1.630 +#endif
   1.631 +
   1.632 +	// Update index to point at next block to be passed to the h/w
   1.633 +	iHwReadIndex += 4; // 4x32bit == 16bytes == block length
   1.634 +	if(iHwReadIndex == sizeof(iAesBuffer)/sizeof(TUint32))
   1.635 +		{
   1.636 +		iHwReadIndex = 0;
   1.637 +		}
   1.638 +
   1.639 +	if(!iDmaFromHwPending)
   1.640 +		{
   1.641 +		SetupDma((TUint32)&iAesBuffer[iHwWriteIndex], EFalse);
   1.642 +		}
   1.643 +	
   1.644 +	CheckIndexes();
   1.645 +	
   1.646 +	// Setup to read data (if enough is available).
   1.647 +	MaybeSetupWriteDmaToHw();
   1.648 +	
   1.649 +	FAKE_DMA();
   1.650 +	}
   1.651 +
   1.652 +void CryptoH4JobAes::DmaFromHwCompleteDfc(TAny* aPtr)
   1.653 +    {
   1.654 +    ((CryptoH4JobAes*)aPtr)->DoDmaFromHwCompleteDfc();
   1.655 +    }
   1.656 +
   1.657 +
   1.658 +void CryptoH4JobAes::DoDmaFromHwCompleteDfc()
   1.659 +	{
   1.660 +	TRACE_FUNCTION("DoDmaFromHwCompleteDfc");
   1.661 +	//	Kern::Printf("**DoDmaFromHwCompleteDfc iHwReadIndex %d, iHwWriteIndex %d", iHwReadIndex, iHwWriteIndex);
   1.662 +
   1.663 +	--iDmaFromHwPending;
   1.664 +	if(iDmaFromHwPending < 0) Kern::Fault("DoDmaFromHwCompleteDfc - iDmaFromHwPending is negative",1);
   1.665 +
   1.666 +#ifdef FAKE_DMA
   1.667 +	--iFakeDmaFromHwQueued;
   1.668 +	if(iFakeDmaFromHwQueued < 0) Kern::Fault("iFakeDmaFromHwQueued - iFakeDmaFromHwQueued is negative",2);
   1.669 +#endif
   1.670 +
   1.671 +	CheckIndexes();
   1.672 +
   1.673 +#ifdef __MARM__
   1.674 +	if(! (TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL) & KHtAesCtrlOutputReady))
   1.675 +		{
   1.676 +		Kern::Fault("DoDmaToHwCompleteDfc - h/w not ready for output!",3);
   1.677 +		}
   1.678 +
   1.679 +	//	Kern::Printf("DoDmaFromHwCompleteDfc - Reading data from h/w index %d (%x)", iHwWriteIndex, TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL));
   1.680 +	iAesBuffer[iHwWriteIndex] = TOmap::Register32(KHwBaseAesReg + KHoAES_DATA_1);
   1.681 +	iAesBuffer[iHwWriteIndex+1] = TOmap::Register32(KHwBaseAesReg + KHoAES_DATA_2);
   1.682 +	iAesBuffer[iHwWriteIndex+2] = TOmap::Register32(KHwBaseAesReg + KHoAES_DATA_3);
   1.683 +	iAesBuffer[iHwWriteIndex+3] = TOmap::Register32(KHwBaseAesReg + KHoAES_DATA_4);
   1.684 +#endif
   1.685 +
   1.686 +	// Update index to point at next block to be read from the h/w
   1.687 +	iHwWriteIndex += 4; // 4x32bit == 16bytes == block length
   1.688 +	if(iHwWriteIndex == sizeof(iAesBuffer)/sizeof(TUint32))
   1.689 +		{
   1.690 +		iHwWriteIndex= 0;
   1.691 +		}
   1.692 +
   1.693 +	CheckIndexes();
   1.694 +
   1.695 +
   1.696 +
   1.697 +	TInt hwWrite8Index = iHwWriteIndex * 4;
   1.698 +	TInt hwRead8Index = iHwReadIndex * 4;
   1.699 +
   1.700 +	// Check if we either have enough data to finish the current LDD
   1.701 +	// user read request, or if we are running out of space
   1.702 +	//
   1.703 +	// Calculate data available for xfer to user
   1.704 +	TInt availableForUser = hwWrite8Index - iSwReadByteOffset;
   1.705 +	if(availableForUser < 0)
   1.706 +		{
   1.707 +		availableForUser += sizeof(iAesBuffer);
   1.708 +		}
   1.709 +
   1.710 +	if((availableForUser >= sizeof(iAesBuffer) - 32) ||
   1.711 +	   (availableForUser >= iReadRequestLength))
   1.712 +		{
   1.713 +		// Pass available data to user
   1.714 +		TInt r = iCallbacks->DataAvailable();
   1.715 +		if(r != KErrNone)
   1.716 +			{
   1.717 +			iJobScheduler->JobComplete(this,r);
   1.718 +			return;
   1.719 +			}
   1.720 +		}
   1.721 +
   1.722 +	// Are we running short of data?
   1.723 +	TInt availableForHw = iSwWriteByteOffset - hwRead8Index;
   1.724 +	if(availableForHw < 0)
   1.725 +		{
   1.726 +		availableForHw += sizeof(iAesBuffer);
   1.727 +		}
   1.728 +	
   1.729 +	if(availableForHw < 16)
   1.730 +		{
   1.731 +		TInt r = iCallbacks->DataRequired();
   1.732 +		if(r != KErrNone)
   1.733 +			{
   1.734 +			iJobScheduler->JobComplete(this,r);
   1.735 +			return;
   1.736 +			}
   1.737 +		}
   1.738 +
   1.739 +	// Kick off a new to h/w DMA if one is not already running
   1.740 +	MaybeSetupWriteDmaToHw();
   1.741 +		
   1.742 +	// Current h/w -> iAesBuffer DMA request has completed
   1.743 +	if(iHwWriteIndex != iHwReadIndex)
   1.744 +		{
   1.745 +		SetupDma((TUint32)&iAesBuffer[iHwWriteIndex], EFalse);
   1.746 +		}
   1.747 +
   1.748 +	if(!iDmaToHwPending && ! iDmaFromHwPending)
   1.749 +		{
   1.750 +		//		Kern::Printf("\t\tDoDmaFromHwCompleteDfc STALLED (underrun), iHwReadIndex %d iHwWriteIndex %d",
   1.751 +		//					 iHwReadIndex, iHwWriteIndex);
   1.752 +		// Run out of data to process!
   1.753 +		// Tell the scheduler that we are stalled & therefore this slice is done
   1.754 +		Stalled();
   1.755 +		return;
   1.756 +		}
   1.757 +
   1.758 +
   1.759 +	CheckIndexes();
   1.760 +
   1.761 +	FAKE_DMA();
   1.762 +	}
   1.763 +
   1.764 +void CryptoH4JobAes::CheckIndexes() const
   1.765 +	{
   1.766 +	TRACE_FUNCTION("CheckIndexes");
   1.767 +	if(iSwWriteByteOffset < 0 || iSwWriteByteOffset > sizeof(iAesBuffer)) Kern::Fault("CryptoH4JobAes::checkIndexes", 1);
   1.768 +
   1.769 +	if(iHwReadIndex < 0 || iHwReadIndex > sizeof(iAesBuffer)/sizeof(iAesBuffer[0])) Kern::Fault("CryptoH4JobAes::checkIndexes", 2);
   1.770 +
   1.771 +	if(iHwWriteIndex < 0 || iHwWriteIndex > sizeof(iAesBuffer)/sizeof(iAesBuffer[0])) Kern::Fault("CryptoH4JobAes::checkIndexes", 3);
   1.772 +
   1.773 +	if(iSwReadByteOffset < 0 || iSwReadByteOffset > sizeof(iAesBuffer)) Kern::Fault("CryptoH4JobAes::checkIndexes", 4);
   1.774 +	
   1.775 +	
   1.776 +	TInt32 d = iSwWriteByteOffset;
   1.777 +	TInt32 c = iHwReadIndex * 4;
   1.778 +	TInt32 b = 	iHwWriteIndex * 4;
   1.779 +	TInt32 a = 	iSwReadByteOffset;
   1.780 +
   1.781 +	//	Kern::Printf("%d %d %d %d", a, b, c, d);
   1.782 +	
   1.783 +	TInt32 offset = 0;
   1.784 +	if(b < a) offset = sizeof(iAesBuffer);
   1.785 +	b += offset;
   1.786 +	if(c < b) offset = sizeof(iAesBuffer);
   1.787 +	c += offset;
   1.788 +	if(d < c) offset = sizeof(iAesBuffer);
   1.789 +	d += offset;
   1.790 +	
   1.791 +	if(a>b) Kern::Fault("CryptoH4JobAes::CheckIndexes", 5);
   1.792 +	if(b>c) Kern::Fault("CryptoH4JobAes::CheckIndexes", 6);
   1.793 +	if(c>d) Kern::Fault("CryptoH4JobAes::CheckIndexes", 7);
   1.794 +	}
   1.795 +
   1.796 +
   1.797 +void CryptoH4JobAes::NotifyReadRequestLength(TUint32 aReadRequestLength)
   1.798 +	{
   1.799 +	TRACE_FUNCTION("NotifyReadRequestLength");
   1.800 +	iReadRequestLength = aReadRequestLength;
   1.801 +	}
   1.802 +
   1.803 +/**
   1.804 +   HwPerfCheck
   1.805 +
   1.806 +   This function uses 100% of the CPU power to attempt to drive
   1.807 +   the AES h/w as fast as possible.
   1.808 +
   1.809 +   This will give some indication of the maximum achievable speed of the h/w
   1.810 +   excluding the overhead of (almost all of) the driver framework.
   1.811 + */
   1.812 +void CryptoH4JobAes::HwPerfCheck()
   1.813 +	{
   1.814 +	TRACE_FUNCTION("HwPerfCheck");
   1.815 +	SetupHw(EFalse);
   1.816 +
   1.817 +	// Start h/w
   1.818 +#ifdef __MARM__
   1.819 +	TUint32 mask = TOmap::Register32(KHwBaseAesReg + KHoAES_MASK);
   1.820 +	mask |= KHtDesMaskDmaReqStart;
   1.821 +	TOmap::SetRegister32(KHwBaseAesReg + KHoAES_MASK, mask);
   1.822 +#endif
   1.823 +
   1.824 +	// Reset indexes
   1.825 +	iSwWriteByteOffset = 0;
   1.826 +	iHwReadIndex = 0,
   1.827 +	iHwWriteIndex = 0,
   1.828 +	iSwReadByteOffset = 0;
   1.829 +
   1.830 +	// Read data
   1.831 +	iCallbacks->DataRequired();
   1.832 +	// Process all data
   1.833 +	while(iHwWriteIndex*4 < iSwWriteByteOffset)
   1.834 +		{
   1.835 +#ifdef __MARM__
   1.836 +		//		Kern::Printf("Ctrl %08x", TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL));
   1.837 +#endif
   1.838 +		// Have we got more data to write to h/w?
   1.839 +		if(iHwReadIndex < iSwWriteByteOffset/4)
   1.840 +			{
   1.841 +			// Yes, but is h/w ready for it?
   1.842 +#ifdef __MARM__
   1.843 +			if(TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL) & KHtAesCtrlInputReady)
   1.844 +				{
   1.845 +				//				Kern::Printf("toHw iHwReadIndex=%d", iHwReadIndex);
   1.846 +				// ok, write data to h/w
   1.847 +				TOmap::SetRegister32(KHwBaseAesReg + KHoAES_DATA_1, iAesBuffer[iHwReadIndex]);
   1.848 +				TOmap::SetRegister32(KHwBaseAesReg + KHoAES_DATA_2, iAesBuffer[iHwReadIndex+1]);
   1.849 +				TOmap::SetRegister32(KHwBaseAesReg + KHoAES_DATA_3, iAesBuffer[iHwReadIndex+2]);
   1.850 +				TOmap::SetRegister32(KHwBaseAesReg + KHoAES_DATA_4, iAesBuffer[iHwReadIndex+3]);
   1.851 +				iHwReadIndex += 4;
   1.852 +				}
   1.853 +#else
   1.854 +			iHwReadIndex += 4;
   1.855 +#endif
   1.856 +			}
   1.857 +		// Do we expect more data from the h/w?
   1.858 +		if(iHwWriteIndex < iSwWriteByteOffset/4)
   1.859 +			{
   1.860 +			// Yes, but is h/w ready?
   1.861 +#ifdef __MARM__
   1.862 +			if(TOmap::Register32(KHwBaseAesReg + KHoAES_CTRL) & KHtAesCtrlOutputReady)
   1.863 +				{
   1.864 +				//				Kern::Printf("ReadHw to iHwWriteIndex=%d", iHwWriteIndex);
   1.865 +				iAesBuffer[iHwWriteIndex] = TOmap::Register32(KHwBaseAesReg + KHoAES_DATA_1);
   1.866 +				iAesBuffer[iHwWriteIndex+1] = TOmap::Register32(KHwBaseAesReg + KHoAES_DATA_2);
   1.867 +				iAesBuffer[iHwWriteIndex+2] = TOmap::Register32(KHwBaseAesReg + KHoAES_DATA_3);
   1.868 +				iAesBuffer[iHwWriteIndex+3] = TOmap::Register32(KHwBaseAesReg + KHoAES_DATA_4);
   1.869 +				iHwWriteIndex += 4;
   1.870 +				}
   1.871 +#else
   1.872 +			iHwWriteIndex += 4;
   1.873 +#endif
   1.874 +			}
   1.875 +		}
   1.876 +	
   1.877 +	// Write data back to user
   1.878 +	iCallbacks->DataAvailable();
   1.879 +	}
   1.880 +
   1.881 +
   1.882 +
   1.883 +	
   1.884 +#ifdef TDFC_WRAPPER
   1.885 +TDfcWrapper::TDfcWrapper(const TDfcWrapper &aOrig)
   1.886 +	: TDfc(DfcWrapperFunc, this, aOrig.iPriority)
   1.887 +	{
   1.888 +	TRACE_FUNCTION("TDfcWrapper");
   1.889 +	iRealFunction = aOrig.iRealFunction,
   1.890 +	iRealPtr = aOrig.iRealPtr;
   1.891 +	SetDfcQ(aOrig.iDfcQ);
   1.892 +	}
   1.893 +
   1.894 +
   1.895 +TDfcWrapper::TDfcWrapper(TDfcFn aFunction, TAny* aPtr, TInt aPriority)
   1.896 +	: TDfc(DfcWrapperFunc, this, aPriority),
   1.897 +	  iRealFunction(aFunction),
   1.898 +	  iRealPtr(aPtr)
   1.899 +	{
   1.900 +	TRACE_FUNCTION("TDfcWrapper");
   1.901 +	}
   1.902 +
   1.903 +void TDfcWrapper::Enque()
   1.904 +	{
   1.905 +	TRACE_FUNCTION("Enque");
   1.906 +	// Clone self and queue the clone
   1.907 +	TDfcWrapper *p = new TDfcWrapper(*this);
   1.908 +	p->BaseEnque();
   1.909 +	}
   1.910 +
   1.911 +void TDfcWrapper::BaseEnque()
   1.912 +	{
   1.913 +	TRACE_FUNCTION("BaseEnque");
   1.914 +	TDfc::Enque();
   1.915 +	}
   1.916 +
   1.917 +
   1.918 +void TDfcWrapper::DfcWrapperFunc(TAny* aPtr)
   1.919 +	{
   1.920 +	TRACE_FUNCTION("DfcWrapperFunc");
   1.921 +	TDfcWrapper *p = (TDfcWrapper *) aPtr;
   1.922 +	p->iRealFunction(p->iRealPtr);
   1.923 +	delete p;
   1.924 +	}
   1.925 +#endif
   1.926 +
   1.927 +#ifdef DUMPBUFFER
   1.928 +LOCAL_D void dumpBuffer(const char *aName, TUint32 *aBuf, TUint32 aLen)
   1.929 +	{
   1.930 +	Kern::Printf("%s =", aName);
   1.931 +	TUint8 *buf8 = reinterpret_cast<TUint8 *>(aBuf);
   1.932 +	for(TInt i = 0 ; i < aLen*4; ++i)
   1.933 +		{
   1.934 +		if(i%16 == 0)
   1.935 +			{
   1.936 +			Kern::Printf("\n    ");
   1.937 +			}
   1.938 +		Kern::Printf("%02x ", buf8[i]);
   1.939 +		}
   1.940 +	Kern::Printf("\n");
   1.941 +	}
   1.942 +#endif
   1.943 +
   1.944 +// End of file