os/persistentdata/persistentstorage/sqlite3api/TEST/TclScript/malloc5.test
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
sl@0
     1
# 2005 November 30
sl@0
     2
#
sl@0
     3
# The author disclaims copyright to this source code.  In place of
sl@0
     4
# a legal notice, here is a blessing:
sl@0
     5
#
sl@0
     6
#    May you do good and not evil.
sl@0
     7
#    May you find forgiveness for yourself and forgive others.
sl@0
     8
#    May you share freely, never taking more than you give.
sl@0
     9
#
sl@0
    10
#***********************************************************************
sl@0
    11
#
sl@0
    12
# This file contains test cases focused on the two memory-management APIs, 
sl@0
    13
# sqlite3_soft_heap_limit() and sqlite3_release_memory().
sl@0
    14
#
sl@0
    15
# Prior to version 3.6.2, calling sqlite3_release_memory() or exceeding
sl@0
    16
# the configured soft heap limit could cause sqlite to upgrade database 
sl@0
    17
# locks and flush dirty pages to the file system. As of 3.6.2, this is
sl@0
    18
# no longer the case. In version 3.6.2, sqlite3_release_memory() only
sl@0
    19
# reclaims clean pages. This test file has been updated accordingly.
sl@0
    20
#
sl@0
    21
# $Id: malloc5.test,v 1.20 2008/08/27 16:38:57 danielk1977 Exp $
sl@0
    22
sl@0
    23
set testdir [file dirname $argv0]
sl@0
    24
source $testdir/tester.tcl
sl@0
    25
source $testdir/malloc_common.tcl
sl@0
    26
db close
sl@0
    27
sl@0
    28
# Only run these tests if memory debugging is turned on.
sl@0
    29
#
sl@0
    30
if {!$MEMDEBUG} {
sl@0
    31
   puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..."
sl@0
    32
   finish_test
sl@0
    33
   return
sl@0
    34
}
sl@0
    35
sl@0
    36
# Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time.
sl@0
    37
ifcapable !memorymanage {
sl@0
    38
   finish_test
sl@0
    39
   return
sl@0
    40
}
sl@0
    41
sl@0
    42
sqlite3_soft_heap_limit 0
sl@0
    43
sqlite3 db test.db
sl@0
    44
sl@0
    45
do_test malloc5-1.1 {
sl@0
    46
  # Simplest possible test. Call sqlite3_release_memory when there is exactly
sl@0
    47
  # one unused page in a single pager cache. The page cannot be freed, as
sl@0
    48
  # it is dirty. So sqlite3_release_memory() returns 0.
sl@0
    49
  #
sl@0
    50
  execsql {
sl@0
    51
    PRAGMA auto_vacuum=OFF;
sl@0
    52
    BEGIN;
sl@0
    53
    CREATE TABLE abc(a, b, c);
sl@0
    54
  }
sl@0
    55
  sqlite3_release_memory
sl@0
    56
} {0}
sl@0
    57
sl@0
    58
do_test malloc5-1.2 {
sl@0
    59
  # Test that the transaction started in the above test is still active.
sl@0
    60
  # The lock on the database file should not have been upgraded (this was
sl@0
    61
  # not the case before version 3.6.2).
sl@0
    62
  #
sl@0
    63
  sqlite3 db2 test.db
sl@0
    64
  execsql { SELECT * FROM sqlite_master } db2
sl@0
    65
} {}
sl@0
    66
do_test malloc5-1.3 {
sl@0
    67
  # Call [sqlite3_release_memory] when there is exactly one unused page 
sl@0
    68
  # in the cache belonging to db2.
sl@0
    69
  #
sl@0
    70
  set ::pgalloc [sqlite3_release_memory]
sl@0
    71
  expr $::pgalloc > 0
sl@0
    72
} {1}
sl@0
    73
sl@0
    74
do_test malloc5-1.4 {
sl@0
    75
  # Commit the transaction and open a new one. Read 1 page into the cache.
sl@0
    76
  # Because the page is not dirty, it is eligible for collection even
sl@0
    77
  # before the transaction is concluded.
sl@0
    78
  #
sl@0
    79
  execsql {
sl@0
    80
    COMMIT;
sl@0
    81
    BEGIN;
sl@0
    82
    SELECT * FROM abc;
sl@0
    83
  }
sl@0
    84
  sqlite3_release_memory
sl@0
    85
} $::pgalloc
sl@0
    86
sl@0
    87
do_test malloc5-1.5 {
sl@0
    88
  # Conclude the transaction opened in the previous [do_test] block. This
sl@0
    89
  # causes another page (page 1) to become eligible for recycling.
sl@0
    90
  #
sl@0
    91
  execsql { COMMIT }
sl@0
    92
  sqlite3_release_memory
sl@0
    93
} $::pgalloc
sl@0
    94
sl@0
    95
do_test malloc5-1.6 {
sl@0
    96
  # Manipulate the cache so that it contains two unused pages. One requires 
sl@0
    97
  # a journal-sync to free, the other does not.
sl@0
    98
  db2 close
sl@0
    99
  execsql {
sl@0
   100
    BEGIN;
sl@0
   101
    SELECT * FROM abc;
sl@0
   102
    CREATE TABLE def(d, e, f);
sl@0
   103
  }
sl@0
   104
  sqlite3_release_memory 500
sl@0
   105
} $::pgalloc
sl@0
   106
sl@0
   107
do_test malloc5-1.7 {
sl@0
   108
  # Database should not be locked this time. 
sl@0
   109
  sqlite3 db2 test.db
sl@0
   110
  catchsql { SELECT * FROM abc } db2
sl@0
   111
} {0 {}}
sl@0
   112
do_test malloc5-1.8 {
sl@0
   113
  # Try to release another block of memory. This will fail as the only
sl@0
   114
  # pages currently in the cache are dirty (page 3) or pinned (page 1).
sl@0
   115
  db2 close
sl@0
   116
  sqlite3_release_memory 500
sl@0
   117
} 0
sl@0
   118
do_test malloc5-1.8 {
sl@0
   119
  # Database is still not locked.
sl@0
   120
  #
sl@0
   121
  sqlite3 db2 test.db
sl@0
   122
  catchsql { SELECT * FROM abc } db2
sl@0
   123
} {0 {}}
sl@0
   124
do_test malloc5-1.9 {
sl@0
   125
  execsql {
sl@0
   126
    COMMIT;
sl@0
   127
  }
sl@0
   128
} {}
sl@0
   129
sl@0
   130
do_test malloc5-2.1 {
sl@0
   131
  # Put some data in tables abc and def. Both tables are still wholly 
sl@0
   132
  # contained within their root pages.
sl@0
   133
  execsql {
sl@0
   134
    INSERT INTO abc VALUES(1, 2, 3);
sl@0
   135
    INSERT INTO abc VALUES(4, 5, 6);
sl@0
   136
    INSERT INTO def VALUES(7, 8, 9);
sl@0
   137
    INSERT INTO def VALUES(10,11,12);
sl@0
   138
  }
sl@0
   139
} {}
sl@0
   140
do_test malloc5-2.2 {
sl@0
   141
  # Load the root-page for table def into the cache. Then query table abc. 
sl@0
   142
  # Halfway through the query call sqlite3_release_memory(). The goal of this
sl@0
   143
  # test is to make sure we don't free pages that are in use (specifically, 
sl@0
   144
  # the root of table abc).
sl@0
   145
  sqlite3_release_memory
sl@0
   146
  set nRelease 0
sl@0
   147
  execsql { 
sl@0
   148
    BEGIN;
sl@0
   149
    SELECT * FROM def;
sl@0
   150
  }
sl@0
   151
  set data [list]
sl@0
   152
  db eval {SELECT * FROM abc} {
sl@0
   153
    incr nRelease [sqlite3_release_memory]
sl@0
   154
    lappend data $a $b $c
sl@0
   155
  }
sl@0
   156
  execsql {
sl@0
   157
    COMMIT;
sl@0
   158
  }
sl@0
   159
  list $nRelease $data
sl@0
   160
} [list $pgalloc [list 1 2 3 4 5 6]]
sl@0
   161
sl@0
   162
do_test malloc5-3.1 {
sl@0
   163
  # Simple test to show that if two pagers are opened from within this
sl@0
   164
  # thread, memory is freed from both when sqlite3_release_memory() is
sl@0
   165
  # called.
sl@0
   166
  execsql {
sl@0
   167
    BEGIN;
sl@0
   168
    SELECT * FROM abc;
sl@0
   169
  }
sl@0
   170
  execsql {
sl@0
   171
    SELECT * FROM sqlite_master;
sl@0
   172
    BEGIN;
sl@0
   173
    SELECT * FROM def;
sl@0
   174
  } db2
sl@0
   175
  sqlite3_release_memory
sl@0
   176
} [expr $::pgalloc * 2]
sl@0
   177
do_test malloc5-3.2 {
sl@0
   178
  concat \
sl@0
   179
    [execsql {SELECT * FROM abc; COMMIT}] \
sl@0
   180
    [execsql {SELECT * FROM def; COMMIT} db2]
sl@0
   181
} {1 2 3 4 5 6 7 8 9 10 11 12}
sl@0
   182
sl@0
   183
db2 close
sl@0
   184
puts "Highwater mark: [sqlite3_memory_highwater]"
sl@0
   185
sl@0
   186
# The following two test cases each execute a transaction in which 
sl@0
   187
# 10000 rows are inserted into table abc. The first test case is used
sl@0
   188
# to ensure that more than 1MB of dynamic memory is used to perform
sl@0
   189
# the transaction. 
sl@0
   190
#
sl@0
   191
# The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB)
sl@0
   192
# and tests to see that this limit is not exceeded at any point during 
sl@0
   193
# transaction execution.
sl@0
   194
#
sl@0
   195
# Before executing malloc5-4.* we save the value of the current soft heap 
sl@0
   196
# limit in variable ::soft_limit. The original value is restored after 
sl@0
   197
# running the tests.
sl@0
   198
#
sl@0
   199
set ::soft_limit [sqlite3_soft_heap_limit -1]
sl@0
   200
execsql {PRAGMA cache_size=2000}
sl@0
   201
do_test malloc5-4.1 {
sl@0
   202
  execsql {BEGIN;}
sl@0
   203
  execsql {DELETE FROM abc;}
sl@0
   204
  for {set i 0} {$i < 10000} {incr i} {
sl@0
   205
    execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');"
sl@0
   206
  }
sl@0
   207
  execsql {COMMIT;}
sl@0
   208
  sqlite3_release_memory
sl@0
   209
  sqlite3_memory_highwater 1
sl@0
   210
  execsql {SELECT * FROM abc}
sl@0
   211
  set nMaxBytes [sqlite3_memory_highwater 1]
sl@0
   212
  puts -nonewline " (Highwater mark: $nMaxBytes) "
sl@0
   213
  expr $nMaxBytes > 1000000
sl@0
   214
} {1}
sl@0
   215
do_test malloc5-4.2 {
sl@0
   216
  sqlite3_release_memory
sl@0
   217
  sqlite3_soft_heap_limit 100000
sl@0
   218
  sqlite3_memory_highwater 1
sl@0
   219
  execsql {SELECT * FROM abc}
sl@0
   220
  set nMaxBytes [sqlite3_memory_highwater 1]
sl@0
   221
  puts -nonewline " (Highwater mark: $nMaxBytes) "
sl@0
   222
  expr $nMaxBytes <= 100000
sl@0
   223
} {1}
sl@0
   224
do_test malloc5-4.3 {
sl@0
   225
  # Check that the content of table abc is at least roughly as expected.
sl@0
   226
  execsql {
sl@0
   227
    SELECT count(*), sum(a), sum(b) FROM abc;
sl@0
   228
  }
sl@0
   229
} [list 10000 [expr int(10000.0 * 4999.5)] [expr int(10000.0 * 4999.5)]]
sl@0
   230
sl@0
   231
# Restore the soft heap limit.
sl@0
   232
sqlite3_soft_heap_limit $::soft_limit
sl@0
   233
sl@0
   234
# Test that there are no problems calling sqlite3_release_memory when
sl@0
   235
# there are open in-memory databases.
sl@0
   236
#
sl@0
   237
# At one point these tests would cause a seg-fault.
sl@0
   238
#
sl@0
   239
do_test malloc5-5.1 {
sl@0
   240
  db close
sl@0
   241
  sqlite3 db :memory:
sl@0
   242
  execsql {
sl@0
   243
    BEGIN;
sl@0
   244
    CREATE TABLE abc(a, b, c);
sl@0
   245
    INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL);
sl@0
   246
    INSERT INTO abc SELECT * FROM abc;
sl@0
   247
    INSERT INTO abc SELECT * FROM abc;
sl@0
   248
    INSERT INTO abc SELECT * FROM abc;
sl@0
   249
    INSERT INTO abc SELECT * FROM abc;
sl@0
   250
    INSERT INTO abc SELECT * FROM abc;
sl@0
   251
    INSERT INTO abc SELECT * FROM abc;
sl@0
   252
    INSERT INTO abc SELECT * FROM abc;
sl@0
   253
  }
sl@0
   254
  sqlite3_release_memory
sl@0
   255
} 0
sl@0
   256
do_test malloc5-5.2 {
sl@0
   257
  sqlite3_soft_heap_limit 5000
sl@0
   258
  execsql {
sl@0
   259
    COMMIT;
sl@0
   260
    PRAGMA temp_store = memory;
sl@0
   261
    SELECT * FROM abc ORDER BY a;
sl@0
   262
  }
sl@0
   263
  expr 1
sl@0
   264
} {1}
sl@0
   265
sqlite3_soft_heap_limit $::soft_limit
sl@0
   266
sl@0
   267
#-------------------------------------------------------------------------
sl@0
   268
# The following test cases (malloc5-6.*) test the new global LRU list
sl@0
   269
# used to determine the pages to recycle when sqlite3_release_memory is
sl@0
   270
# called and there is more than one pager open.
sl@0
   271
#
sl@0
   272
proc nPage {db} {
sl@0
   273
  set bt [btree_from_db $db]
sl@0
   274
  array set stats [btree_pager_stats $bt]
sl@0
   275
  set stats(page)
sl@0
   276
}
sl@0
   277
db close
sl@0
   278
file delete -force test.db test.db-journal test2.db test2.db-journal
sl@0
   279
sl@0
   280
# This block of test-cases (malloc5-6.1.*) prepares two database files
sl@0
   281
# for the subsequent tests.
sl@0
   282
do_test malloc5-6.1.1 {
sl@0
   283
  sqlite3 db test.db
sl@0
   284
  execsql {
sl@0
   285
    PRAGMA page_size=1024;
sl@0
   286
    PRAGMA default_cache_size=10;
sl@0
   287
  }
sl@0
   288
  execsql {
sl@0
   289
    PRAGMA temp_store = memory;
sl@0
   290
    BEGIN;
sl@0
   291
    CREATE TABLE abc(a PRIMARY KEY, b, c);
sl@0
   292
    INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100));
sl@0
   293
    INSERT INTO abc 
sl@0
   294
        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
sl@0
   295
    INSERT INTO abc 
sl@0
   296
        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
sl@0
   297
    INSERT INTO abc 
sl@0
   298
        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
sl@0
   299
    INSERT INTO abc 
sl@0
   300
        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
sl@0
   301
    INSERT INTO abc 
sl@0
   302
        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
sl@0
   303
    INSERT INTO abc 
sl@0
   304
        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
sl@0
   305
    COMMIT;
sl@0
   306
  } 
sl@0
   307
  copy_file test.db test2.db
sl@0
   308
  sqlite3 db2 test2.db
sl@0
   309
  list \
sl@0
   310
    [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20]
sl@0
   311
} {1 1}
sl@0
   312
do_test malloc5-6.1.2 {
sl@0
   313
  list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2]
sl@0
   314
} {10 10}
sl@0
   315
sl@0
   316
do_test malloc5-6.2.1 {
sl@0
   317
breakpoint
sl@0
   318
  execsql {SELECT * FROM abc} db2
sl@0
   319
  execsql {SELECT * FROM abc} db
sl@0
   320
  expr [nPage db] + [nPage db2]
sl@0
   321
} {20}
sl@0
   322
sl@0
   323
do_test malloc5-6.2.2 {
sl@0
   324
  # If we now try to reclaim some memory, it should come from the db2 cache.
sl@0
   325
  sqlite3_release_memory 3000
sl@0
   326
  expr [nPage db] + [nPage db2]
sl@0
   327
} {17}
sl@0
   328
do_test malloc5-6.2.3 {
sl@0
   329
  # Access the db2 cache again, so that all the db2 pages have been used
sl@0
   330
  # more recently than all the db pages. Then try to reclaim 3000 bytes.
sl@0
   331
  # This time, 3 pages should be pulled from the db cache.
sl@0
   332
  execsql { SELECT * FROM abc } db2
sl@0
   333
  sqlite3_release_memory 3000
sl@0
   334
  expr [nPage db] + [nPage db2]
sl@0
   335
} {17}
sl@0
   336
sl@0
   337
do_test malloc5-6.3.1 {
sl@0
   338
  # Now open a transaction and update 2 pages in the db2 cache. Then
sl@0
   339
  # do a SELECT on the db cache so that all the db pages are more recently
sl@0
   340
  # used than the db2 pages. When we try to free memory, SQLite should
sl@0
   341
  # free the non-dirty db2 pages, then the db pages, then finally use
sl@0
   342
  # sync() to free up the dirty db2 pages. The only page that cannot be
sl@0
   343
  # freed is page1 of db2. Because there is an open transaction, the
sl@0
   344
  # btree layer holds a reference to page 1 in the db2 cache.
sl@0
   345
  execsql {
sl@0
   346
    BEGIN;
sl@0
   347
    UPDATE abc SET c = randstr(100,100) 
sl@0
   348
    WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc);
sl@0
   349
  } db2
sl@0
   350
  execsql { SELECT * FROM abc } db
sl@0
   351
  expr [nPage db] + [nPage db2]
sl@0
   352
} {20}
sl@0
   353
do_test malloc5-6.3.2 {
sl@0
   354
  # Try to release 7700 bytes. This should release all the 
sl@0
   355
  # non-dirty pages held by db2.
sl@0
   356
  sqlite3_release_memory [expr 7*1100]
sl@0
   357
  list [nPage db] [nPage db2]
sl@0
   358
} {10 3}
sl@0
   359
do_test malloc5-6.3.3 {
sl@0
   360
  # Try to release another 1000 bytes. This should come fromt the db
sl@0
   361
  # cache, since all three pages held by db2 are either in-use or diry.
sl@0
   362
  sqlite3_release_memory 1000
sl@0
   363
  list [nPage db] [nPage db2]
sl@0
   364
} {9 3}
sl@0
   365
do_test malloc5-6.3.4 {
sl@0
   366
  # Now release 9900 more (about 9 pages worth). This should expunge
sl@0
   367
  # the rest of the db cache. But the db2 cache remains intact, because
sl@0
   368
  # SQLite tries to avoid calling sync().
sl@0
   369
  sqlite3_release_memory 9900
sl@0
   370
  list [nPage db] [nPage db2]
sl@0
   371
} {0 3}
sl@0
   372
do_test malloc5-6.3.5 {
sl@0
   373
  # But if we are really insistent, SQLite will consent to call sync()
sl@0
   374
  # if there is no other option. UPDATE: As of 3.6.2, SQLite will not
sl@0
   375
  # call sync() in this scenario. So no further memory can be reclaimed.
sl@0
   376
  sqlite3_release_memory 1000
sl@0
   377
  list [nPage db] [nPage db2]
sl@0
   378
} {0 3}
sl@0
   379
do_test malloc5-6.3.6 {
sl@0
   380
  # The referenced page (page 1 of the db2 cache) will not be freed no
sl@0
   381
  # matter how much memory we ask for:
sl@0
   382
  sqlite3_release_memory 31459
sl@0
   383
  list [nPage db] [nPage db2]
sl@0
   384
} {0 3}
sl@0
   385
sl@0
   386
db2 close
sl@0
   387
sl@0
   388
sqlite3_soft_heap_limit $::soft_limit
sl@0
   389
finish_test
sl@0
   390
catch {db close}