sl@0
|
1 |
# 2005 November 30
|
sl@0
|
2 |
#
|
sl@0
|
3 |
# The author disclaims copyright to this source code. In place of
|
sl@0
|
4 |
# a legal notice, here is a blessing:
|
sl@0
|
5 |
#
|
sl@0
|
6 |
# May you do good and not evil.
|
sl@0
|
7 |
# May you find forgiveness for yourself and forgive others.
|
sl@0
|
8 |
# May you share freely, never taking more than you give.
|
sl@0
|
9 |
#
|
sl@0
|
10 |
#***********************************************************************
|
sl@0
|
11 |
#
|
sl@0
|
12 |
# This file contains test cases focused on the two memory-management APIs,
|
sl@0
|
13 |
# sqlite3_soft_heap_limit() and sqlite3_release_memory().
|
sl@0
|
14 |
#
|
sl@0
|
15 |
# Prior to version 3.6.2, calling sqlite3_release_memory() or exceeding
|
sl@0
|
16 |
# the configured soft heap limit could cause sqlite to upgrade database
|
sl@0
|
17 |
# locks and flush dirty pages to the file system. As of 3.6.2, this is
|
sl@0
|
18 |
# no longer the case. In version 3.6.2, sqlite3_release_memory() only
|
sl@0
|
19 |
# reclaims clean pages. This test file has been updated accordingly.
|
sl@0
|
20 |
#
|
sl@0
|
21 |
# $Id: malloc5.test,v 1.20 2008/08/27 16:38:57 danielk1977 Exp $
|
sl@0
|
22 |
|
sl@0
|
23 |
set testdir [file dirname $argv0]
|
sl@0
|
24 |
source $testdir/tester.tcl
|
sl@0
|
25 |
source $testdir/malloc_common.tcl
|
sl@0
|
26 |
db close
|
sl@0
|
27 |
|
sl@0
|
28 |
# Only run these tests if memory debugging is turned on.
|
sl@0
|
29 |
#
|
sl@0
|
30 |
if {!$MEMDEBUG} {
|
sl@0
|
31 |
puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..."
|
sl@0
|
32 |
finish_test
|
sl@0
|
33 |
return
|
sl@0
|
34 |
}
|
sl@0
|
35 |
|
sl@0
|
36 |
# Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time.
|
sl@0
|
37 |
ifcapable !memorymanage {
|
sl@0
|
38 |
finish_test
|
sl@0
|
39 |
return
|
sl@0
|
40 |
}
|
sl@0
|
41 |
|
sl@0
|
42 |
sqlite3_soft_heap_limit 0
|
sl@0
|
43 |
sqlite3 db test.db
|
sl@0
|
44 |
|
sl@0
|
45 |
do_test malloc5-1.1 {
|
sl@0
|
46 |
# Simplest possible test. Call sqlite3_release_memory when there is exactly
|
sl@0
|
47 |
# one unused page in a single pager cache. The page cannot be freed, as
|
sl@0
|
48 |
# it is dirty. So sqlite3_release_memory() returns 0.
|
sl@0
|
49 |
#
|
sl@0
|
50 |
execsql {
|
sl@0
|
51 |
PRAGMA auto_vacuum=OFF;
|
sl@0
|
52 |
BEGIN;
|
sl@0
|
53 |
CREATE TABLE abc(a, b, c);
|
sl@0
|
54 |
}
|
sl@0
|
55 |
sqlite3_release_memory
|
sl@0
|
56 |
} {0}
|
sl@0
|
57 |
|
sl@0
|
58 |
do_test malloc5-1.2 {
|
sl@0
|
59 |
# Test that the transaction started in the above test is still active.
|
sl@0
|
60 |
# The lock on the database file should not have been upgraded (this was
|
sl@0
|
61 |
# not the case before version 3.6.2).
|
sl@0
|
62 |
#
|
sl@0
|
63 |
sqlite3 db2 test.db
|
sl@0
|
64 |
execsql { SELECT * FROM sqlite_master } db2
|
sl@0
|
65 |
} {}
|
sl@0
|
66 |
do_test malloc5-1.3 {
|
sl@0
|
67 |
# Call [sqlite3_release_memory] when there is exactly one unused page
|
sl@0
|
68 |
# in the cache belonging to db2.
|
sl@0
|
69 |
#
|
sl@0
|
70 |
set ::pgalloc [sqlite3_release_memory]
|
sl@0
|
71 |
expr $::pgalloc > 0
|
sl@0
|
72 |
} {1}
|
sl@0
|
73 |
|
sl@0
|
74 |
do_test malloc5-1.4 {
|
sl@0
|
75 |
# Commit the transaction and open a new one. Read 1 page into the cache.
|
sl@0
|
76 |
# Because the page is not dirty, it is eligible for collection even
|
sl@0
|
77 |
# before the transaction is concluded.
|
sl@0
|
78 |
#
|
sl@0
|
79 |
execsql {
|
sl@0
|
80 |
COMMIT;
|
sl@0
|
81 |
BEGIN;
|
sl@0
|
82 |
SELECT * FROM abc;
|
sl@0
|
83 |
}
|
sl@0
|
84 |
sqlite3_release_memory
|
sl@0
|
85 |
} $::pgalloc
|
sl@0
|
86 |
|
sl@0
|
87 |
do_test malloc5-1.5 {
|
sl@0
|
88 |
# Conclude the transaction opened in the previous [do_test] block. This
|
sl@0
|
89 |
# causes another page (page 1) to become eligible for recycling.
|
sl@0
|
90 |
#
|
sl@0
|
91 |
execsql { COMMIT }
|
sl@0
|
92 |
sqlite3_release_memory
|
sl@0
|
93 |
} $::pgalloc
|
sl@0
|
94 |
|
sl@0
|
95 |
do_test malloc5-1.6 {
|
sl@0
|
96 |
# Manipulate the cache so that it contains two unused pages. One requires
|
sl@0
|
97 |
# a journal-sync to free, the other does not.
|
sl@0
|
98 |
db2 close
|
sl@0
|
99 |
execsql {
|
sl@0
|
100 |
BEGIN;
|
sl@0
|
101 |
SELECT * FROM abc;
|
sl@0
|
102 |
CREATE TABLE def(d, e, f);
|
sl@0
|
103 |
}
|
sl@0
|
104 |
sqlite3_release_memory 500
|
sl@0
|
105 |
} $::pgalloc
|
sl@0
|
106 |
|
sl@0
|
107 |
do_test malloc5-1.7 {
|
sl@0
|
108 |
# Database should not be locked this time.
|
sl@0
|
109 |
sqlite3 db2 test.db
|
sl@0
|
110 |
catchsql { SELECT * FROM abc } db2
|
sl@0
|
111 |
} {0 {}}
|
sl@0
|
112 |
do_test malloc5-1.8 {
|
sl@0
|
113 |
# Try to release another block of memory. This will fail as the only
|
sl@0
|
114 |
# pages currently in the cache are dirty (page 3) or pinned (page 1).
|
sl@0
|
115 |
db2 close
|
sl@0
|
116 |
sqlite3_release_memory 500
|
sl@0
|
117 |
} 0
|
sl@0
|
118 |
do_test malloc5-1.8 {
|
sl@0
|
119 |
# Database is still not locked.
|
sl@0
|
120 |
#
|
sl@0
|
121 |
sqlite3 db2 test.db
|
sl@0
|
122 |
catchsql { SELECT * FROM abc } db2
|
sl@0
|
123 |
} {0 {}}
|
sl@0
|
124 |
do_test malloc5-1.9 {
|
sl@0
|
125 |
execsql {
|
sl@0
|
126 |
COMMIT;
|
sl@0
|
127 |
}
|
sl@0
|
128 |
} {}
|
sl@0
|
129 |
|
sl@0
|
130 |
do_test malloc5-2.1 {
|
sl@0
|
131 |
# Put some data in tables abc and def. Both tables are still wholly
|
sl@0
|
132 |
# contained within their root pages.
|
sl@0
|
133 |
execsql {
|
sl@0
|
134 |
INSERT INTO abc VALUES(1, 2, 3);
|
sl@0
|
135 |
INSERT INTO abc VALUES(4, 5, 6);
|
sl@0
|
136 |
INSERT INTO def VALUES(7, 8, 9);
|
sl@0
|
137 |
INSERT INTO def VALUES(10,11,12);
|
sl@0
|
138 |
}
|
sl@0
|
139 |
} {}
|
sl@0
|
140 |
do_test malloc5-2.2 {
|
sl@0
|
141 |
# Load the root-page for table def into the cache. Then query table abc.
|
sl@0
|
142 |
# Halfway through the query call sqlite3_release_memory(). The goal of this
|
sl@0
|
143 |
# test is to make sure we don't free pages that are in use (specifically,
|
sl@0
|
144 |
# the root of table abc).
|
sl@0
|
145 |
sqlite3_release_memory
|
sl@0
|
146 |
set nRelease 0
|
sl@0
|
147 |
execsql {
|
sl@0
|
148 |
BEGIN;
|
sl@0
|
149 |
SELECT * FROM def;
|
sl@0
|
150 |
}
|
sl@0
|
151 |
set data [list]
|
sl@0
|
152 |
db eval {SELECT * FROM abc} {
|
sl@0
|
153 |
incr nRelease [sqlite3_release_memory]
|
sl@0
|
154 |
lappend data $a $b $c
|
sl@0
|
155 |
}
|
sl@0
|
156 |
execsql {
|
sl@0
|
157 |
COMMIT;
|
sl@0
|
158 |
}
|
sl@0
|
159 |
list $nRelease $data
|
sl@0
|
160 |
} [list $pgalloc [list 1 2 3 4 5 6]]
|
sl@0
|
161 |
|
sl@0
|
162 |
do_test malloc5-3.1 {
|
sl@0
|
163 |
# Simple test to show that if two pagers are opened from within this
|
sl@0
|
164 |
# thread, memory is freed from both when sqlite3_release_memory() is
|
sl@0
|
165 |
# called.
|
sl@0
|
166 |
execsql {
|
sl@0
|
167 |
BEGIN;
|
sl@0
|
168 |
SELECT * FROM abc;
|
sl@0
|
169 |
}
|
sl@0
|
170 |
execsql {
|
sl@0
|
171 |
SELECT * FROM sqlite_master;
|
sl@0
|
172 |
BEGIN;
|
sl@0
|
173 |
SELECT * FROM def;
|
sl@0
|
174 |
} db2
|
sl@0
|
175 |
sqlite3_release_memory
|
sl@0
|
176 |
} [expr $::pgalloc * 2]
|
sl@0
|
177 |
do_test malloc5-3.2 {
|
sl@0
|
178 |
concat \
|
sl@0
|
179 |
[execsql {SELECT * FROM abc; COMMIT}] \
|
sl@0
|
180 |
[execsql {SELECT * FROM def; COMMIT} db2]
|
sl@0
|
181 |
} {1 2 3 4 5 6 7 8 9 10 11 12}
|
sl@0
|
182 |
|
sl@0
|
183 |
db2 close
|
sl@0
|
184 |
puts "Highwater mark: [sqlite3_memory_highwater]"
|
sl@0
|
185 |
|
sl@0
|
186 |
# The following two test cases each execute a transaction in which
|
sl@0
|
187 |
# 10000 rows are inserted into table abc. The first test case is used
|
sl@0
|
188 |
# to ensure that more than 1MB of dynamic memory is used to perform
|
sl@0
|
189 |
# the transaction.
|
sl@0
|
190 |
#
|
sl@0
|
191 |
# The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB)
|
sl@0
|
192 |
# and tests to see that this limit is not exceeded at any point during
|
sl@0
|
193 |
# transaction execution.
|
sl@0
|
194 |
#
|
sl@0
|
195 |
# Before executing malloc5-4.* we save the value of the current soft heap
|
sl@0
|
196 |
# limit in variable ::soft_limit. The original value is restored after
|
sl@0
|
197 |
# running the tests.
|
sl@0
|
198 |
#
|
sl@0
|
199 |
set ::soft_limit [sqlite3_soft_heap_limit -1]
|
sl@0
|
200 |
execsql {PRAGMA cache_size=2000}
|
sl@0
|
201 |
do_test malloc5-4.1 {
|
sl@0
|
202 |
execsql {BEGIN;}
|
sl@0
|
203 |
execsql {DELETE FROM abc;}
|
sl@0
|
204 |
for {set i 0} {$i < 10000} {incr i} {
|
sl@0
|
205 |
execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');"
|
sl@0
|
206 |
}
|
sl@0
|
207 |
execsql {COMMIT;}
|
sl@0
|
208 |
sqlite3_release_memory
|
sl@0
|
209 |
sqlite3_memory_highwater 1
|
sl@0
|
210 |
execsql {SELECT * FROM abc}
|
sl@0
|
211 |
set nMaxBytes [sqlite3_memory_highwater 1]
|
sl@0
|
212 |
puts -nonewline " (Highwater mark: $nMaxBytes) "
|
sl@0
|
213 |
expr $nMaxBytes > 1000000
|
sl@0
|
214 |
} {1}
|
sl@0
|
215 |
do_test malloc5-4.2 {
|
sl@0
|
216 |
sqlite3_release_memory
|
sl@0
|
217 |
sqlite3_soft_heap_limit 100000
|
sl@0
|
218 |
sqlite3_memory_highwater 1
|
sl@0
|
219 |
execsql {SELECT * FROM abc}
|
sl@0
|
220 |
set nMaxBytes [sqlite3_memory_highwater 1]
|
sl@0
|
221 |
puts -nonewline " (Highwater mark: $nMaxBytes) "
|
sl@0
|
222 |
expr $nMaxBytes <= 100000
|
sl@0
|
223 |
} {1}
|
sl@0
|
224 |
do_test malloc5-4.3 {
|
sl@0
|
225 |
# Check that the content of table abc is at least roughly as expected.
|
sl@0
|
226 |
execsql {
|
sl@0
|
227 |
SELECT count(*), sum(a), sum(b) FROM abc;
|
sl@0
|
228 |
}
|
sl@0
|
229 |
} [list 10000 [expr int(10000.0 * 4999.5)] [expr int(10000.0 * 4999.5)]]
|
sl@0
|
230 |
|
sl@0
|
231 |
# Restore the soft heap limit.
|
sl@0
|
232 |
sqlite3_soft_heap_limit $::soft_limit
|
sl@0
|
233 |
|
sl@0
|
234 |
# Test that there are no problems calling sqlite3_release_memory when
|
sl@0
|
235 |
# there are open in-memory databases.
|
sl@0
|
236 |
#
|
sl@0
|
237 |
# At one point these tests would cause a seg-fault.
|
sl@0
|
238 |
#
|
sl@0
|
239 |
do_test malloc5-5.1 {
|
sl@0
|
240 |
db close
|
sl@0
|
241 |
sqlite3 db :memory:
|
sl@0
|
242 |
execsql {
|
sl@0
|
243 |
BEGIN;
|
sl@0
|
244 |
CREATE TABLE abc(a, b, c);
|
sl@0
|
245 |
INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL);
|
sl@0
|
246 |
INSERT INTO abc SELECT * FROM abc;
|
sl@0
|
247 |
INSERT INTO abc SELECT * FROM abc;
|
sl@0
|
248 |
INSERT INTO abc SELECT * FROM abc;
|
sl@0
|
249 |
INSERT INTO abc SELECT * FROM abc;
|
sl@0
|
250 |
INSERT INTO abc SELECT * FROM abc;
|
sl@0
|
251 |
INSERT INTO abc SELECT * FROM abc;
|
sl@0
|
252 |
INSERT INTO abc SELECT * FROM abc;
|
sl@0
|
253 |
}
|
sl@0
|
254 |
sqlite3_release_memory
|
sl@0
|
255 |
} 0
|
sl@0
|
256 |
do_test malloc5-5.2 {
|
sl@0
|
257 |
sqlite3_soft_heap_limit 5000
|
sl@0
|
258 |
execsql {
|
sl@0
|
259 |
COMMIT;
|
sl@0
|
260 |
PRAGMA temp_store = memory;
|
sl@0
|
261 |
SELECT * FROM abc ORDER BY a;
|
sl@0
|
262 |
}
|
sl@0
|
263 |
expr 1
|
sl@0
|
264 |
} {1}
|
sl@0
|
265 |
sqlite3_soft_heap_limit $::soft_limit
|
sl@0
|
266 |
|
sl@0
|
267 |
#-------------------------------------------------------------------------
|
sl@0
|
268 |
# The following test cases (malloc5-6.*) test the new global LRU list
|
sl@0
|
269 |
# used to determine the pages to recycle when sqlite3_release_memory is
|
sl@0
|
270 |
# called and there is more than one pager open.
|
sl@0
|
271 |
#
|
sl@0
|
272 |
proc nPage {db} {
|
sl@0
|
273 |
set bt [btree_from_db $db]
|
sl@0
|
274 |
array set stats [btree_pager_stats $bt]
|
sl@0
|
275 |
set stats(page)
|
sl@0
|
276 |
}
|
sl@0
|
277 |
db close
|
sl@0
|
278 |
file delete -force test.db test.db-journal test2.db test2.db-journal
|
sl@0
|
279 |
|
sl@0
|
280 |
# This block of test-cases (malloc5-6.1.*) prepares two database files
|
sl@0
|
281 |
# for the subsequent tests.
|
sl@0
|
282 |
do_test malloc5-6.1.1 {
|
sl@0
|
283 |
sqlite3 db test.db
|
sl@0
|
284 |
execsql {
|
sl@0
|
285 |
PRAGMA page_size=1024;
|
sl@0
|
286 |
PRAGMA default_cache_size=10;
|
sl@0
|
287 |
}
|
sl@0
|
288 |
execsql {
|
sl@0
|
289 |
PRAGMA temp_store = memory;
|
sl@0
|
290 |
BEGIN;
|
sl@0
|
291 |
CREATE TABLE abc(a PRIMARY KEY, b, c);
|
sl@0
|
292 |
INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100));
|
sl@0
|
293 |
INSERT INTO abc
|
sl@0
|
294 |
SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
|
sl@0
|
295 |
INSERT INTO abc
|
sl@0
|
296 |
SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
|
sl@0
|
297 |
INSERT INTO abc
|
sl@0
|
298 |
SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
|
sl@0
|
299 |
INSERT INTO abc
|
sl@0
|
300 |
SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
|
sl@0
|
301 |
INSERT INTO abc
|
sl@0
|
302 |
SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
|
sl@0
|
303 |
INSERT INTO abc
|
sl@0
|
304 |
SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
|
sl@0
|
305 |
COMMIT;
|
sl@0
|
306 |
}
|
sl@0
|
307 |
copy_file test.db test2.db
|
sl@0
|
308 |
sqlite3 db2 test2.db
|
sl@0
|
309 |
list \
|
sl@0
|
310 |
[expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20]
|
sl@0
|
311 |
} {1 1}
|
sl@0
|
312 |
do_test malloc5-6.1.2 {
|
sl@0
|
313 |
list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2]
|
sl@0
|
314 |
} {10 10}
|
sl@0
|
315 |
|
sl@0
|
316 |
do_test malloc5-6.2.1 {
|
sl@0
|
317 |
breakpoint
|
sl@0
|
318 |
execsql {SELECT * FROM abc} db2
|
sl@0
|
319 |
execsql {SELECT * FROM abc} db
|
sl@0
|
320 |
expr [nPage db] + [nPage db2]
|
sl@0
|
321 |
} {20}
|
sl@0
|
322 |
|
sl@0
|
323 |
do_test malloc5-6.2.2 {
|
sl@0
|
324 |
# If we now try to reclaim some memory, it should come from the db2 cache.
|
sl@0
|
325 |
sqlite3_release_memory 3000
|
sl@0
|
326 |
expr [nPage db] + [nPage db2]
|
sl@0
|
327 |
} {17}
|
sl@0
|
328 |
do_test malloc5-6.2.3 {
|
sl@0
|
329 |
# Access the db2 cache again, so that all the db2 pages have been used
|
sl@0
|
330 |
# more recently than all the db pages. Then try to reclaim 3000 bytes.
|
sl@0
|
331 |
# This time, 3 pages should be pulled from the db cache.
|
sl@0
|
332 |
execsql { SELECT * FROM abc } db2
|
sl@0
|
333 |
sqlite3_release_memory 3000
|
sl@0
|
334 |
expr [nPage db] + [nPage db2]
|
sl@0
|
335 |
} {17}
|
sl@0
|
336 |
|
sl@0
|
337 |
do_test malloc5-6.3.1 {
|
sl@0
|
338 |
# Now open a transaction and update 2 pages in the db2 cache. Then
|
sl@0
|
339 |
# do a SELECT on the db cache so that all the db pages are more recently
|
sl@0
|
340 |
# used than the db2 pages. When we try to free memory, SQLite should
|
sl@0
|
341 |
# free the non-dirty db2 pages, then the db pages, then finally use
|
sl@0
|
342 |
# sync() to free up the dirty db2 pages. The only page that cannot be
|
sl@0
|
343 |
# freed is page1 of db2. Because there is an open transaction, the
|
sl@0
|
344 |
# btree layer holds a reference to page 1 in the db2 cache.
|
sl@0
|
345 |
execsql {
|
sl@0
|
346 |
BEGIN;
|
sl@0
|
347 |
UPDATE abc SET c = randstr(100,100)
|
sl@0
|
348 |
WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc);
|
sl@0
|
349 |
} db2
|
sl@0
|
350 |
execsql { SELECT * FROM abc } db
|
sl@0
|
351 |
expr [nPage db] + [nPage db2]
|
sl@0
|
352 |
} {20}
|
sl@0
|
353 |
do_test malloc5-6.3.2 {
|
sl@0
|
354 |
# Try to release 7700 bytes. This should release all the
|
sl@0
|
355 |
# non-dirty pages held by db2.
|
sl@0
|
356 |
sqlite3_release_memory [expr 7*1100]
|
sl@0
|
357 |
list [nPage db] [nPage db2]
|
sl@0
|
358 |
} {10 3}
|
sl@0
|
359 |
do_test malloc5-6.3.3 {
|
sl@0
|
360 |
# Try to release another 1000 bytes. This should come fromt the db
|
sl@0
|
361 |
# cache, since all three pages held by db2 are either in-use or diry.
|
sl@0
|
362 |
sqlite3_release_memory 1000
|
sl@0
|
363 |
list [nPage db] [nPage db2]
|
sl@0
|
364 |
} {9 3}
|
sl@0
|
365 |
do_test malloc5-6.3.4 {
|
sl@0
|
366 |
# Now release 9900 more (about 9 pages worth). This should expunge
|
sl@0
|
367 |
# the rest of the db cache. But the db2 cache remains intact, because
|
sl@0
|
368 |
# SQLite tries to avoid calling sync().
|
sl@0
|
369 |
sqlite3_release_memory 9900
|
sl@0
|
370 |
list [nPage db] [nPage db2]
|
sl@0
|
371 |
} {0 3}
|
sl@0
|
372 |
do_test malloc5-6.3.5 {
|
sl@0
|
373 |
# But if we are really insistent, SQLite will consent to call sync()
|
sl@0
|
374 |
# if there is no other option. UPDATE: As of 3.6.2, SQLite will not
|
sl@0
|
375 |
# call sync() in this scenario. So no further memory can be reclaimed.
|
sl@0
|
376 |
sqlite3_release_memory 1000
|
sl@0
|
377 |
list [nPage db] [nPage db2]
|
sl@0
|
378 |
} {0 3}
|
sl@0
|
379 |
do_test malloc5-6.3.6 {
|
sl@0
|
380 |
# The referenced page (page 1 of the db2 cache) will not be freed no
|
sl@0
|
381 |
# matter how much memory we ask for:
|
sl@0
|
382 |
sqlite3_release_memory 31459
|
sl@0
|
383 |
list [nPage db] [nPage db2]
|
sl@0
|
384 |
} {0 3}
|
sl@0
|
385 |
|
sl@0
|
386 |
db2 close
|
sl@0
|
387 |
|
sl@0
|
388 |
sqlite3_soft_heap_limit $::soft_limit
|
sl@0
|
389 |
finish_test
|
sl@0
|
390 |
catch {db close}
|