os/persistentdata/persistentstorage/sqlite3api/TEST/TclScript/malloc5.test
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/persistentdata/persistentstorage/sqlite3api/TEST/TclScript/malloc5.test	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,390 @@
     1.4 +# 2005 November 30
     1.5 +#
     1.6 +# The author disclaims copyright to this source code.  In place of
     1.7 +# a legal notice, here is a blessing:
     1.8 +#
     1.9 +#    May you do good and not evil.
    1.10 +#    May you find forgiveness for yourself and forgive others.
    1.11 +#    May you share freely, never taking more than you give.
    1.12 +#
    1.13 +#***********************************************************************
    1.14 +#
    1.15 +# This file contains test cases focused on the two memory-management APIs, 
    1.16 +# sqlite3_soft_heap_limit() and sqlite3_release_memory().
    1.17 +#
    1.18 +# Prior to version 3.6.2, calling sqlite3_release_memory() or exceeding
    1.19 +# the configured soft heap limit could cause sqlite to upgrade database 
    1.20 +# locks and flush dirty pages to the file system. As of 3.6.2, this is
    1.21 +# no longer the case. In version 3.6.2, sqlite3_release_memory() only
    1.22 +# reclaims clean pages. This test file has been updated accordingly.
    1.23 +#
    1.24 +# $Id: malloc5.test,v 1.20 2008/08/27 16:38:57 danielk1977 Exp $
    1.25 +
    1.26 +set testdir [file dirname $argv0]
    1.27 +source $testdir/tester.tcl
    1.28 +source $testdir/malloc_common.tcl
    1.29 +db close
    1.30 +
    1.31 +# Only run these tests if memory debugging is turned on.
    1.32 +#
    1.33 +if {!$MEMDEBUG} {
    1.34 +   puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..."
    1.35 +   finish_test
    1.36 +   return
    1.37 +}
    1.38 +
    1.39 +# Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time.
    1.40 +ifcapable !memorymanage {
    1.41 +   finish_test
    1.42 +   return
    1.43 +}
    1.44 +
    1.45 +sqlite3_soft_heap_limit 0
    1.46 +sqlite3 db test.db
    1.47 +
    1.48 +do_test malloc5-1.1 {
    1.49 +  # Simplest possible test. Call sqlite3_release_memory when there is exactly
    1.50 +  # one unused page in a single pager cache. The page cannot be freed, as
    1.51 +  # it is dirty. So sqlite3_release_memory() returns 0.
    1.52 +  #
    1.53 +  execsql {
    1.54 +    PRAGMA auto_vacuum=OFF;
    1.55 +    BEGIN;
    1.56 +    CREATE TABLE abc(a, b, c);
    1.57 +  }
    1.58 +  sqlite3_release_memory
    1.59 +} {0}
    1.60 +
    1.61 +do_test malloc5-1.2 {
    1.62 +  # Test that the transaction started in the above test is still active.
    1.63 +  # The lock on the database file should not have been upgraded (this was
    1.64 +  # not the case before version 3.6.2).
    1.65 +  #
    1.66 +  sqlite3 db2 test.db
    1.67 +  execsql { SELECT * FROM sqlite_master } db2
    1.68 +} {}
    1.69 +do_test malloc5-1.3 {
    1.70 +  # Call [sqlite3_release_memory] when there is exactly one unused page 
    1.71 +  # in the cache belonging to db2.
    1.72 +  #
    1.73 +  set ::pgalloc [sqlite3_release_memory]
    1.74 +  expr $::pgalloc > 0
    1.75 +} {1}
    1.76 +
    1.77 +do_test malloc5-1.4 {
    1.78 +  # Commit the transaction and open a new one. Read 1 page into the cache.
    1.79 +  # Because the page is not dirty, it is eligible for collection even
    1.80 +  # before the transaction is concluded.
    1.81 +  #
    1.82 +  execsql {
    1.83 +    COMMIT;
    1.84 +    BEGIN;
    1.85 +    SELECT * FROM abc;
    1.86 +  }
    1.87 +  sqlite3_release_memory
    1.88 +} $::pgalloc
    1.89 +
    1.90 +do_test malloc5-1.5 {
    1.91 +  # Conclude the transaction opened in the previous [do_test] block. This
    1.92 +  # causes another page (page 1) to become eligible for recycling.
    1.93 +  #
    1.94 +  execsql { COMMIT }
    1.95 +  sqlite3_release_memory
    1.96 +} $::pgalloc
    1.97 +
    1.98 +do_test malloc5-1.6 {
    1.99 +  # Manipulate the cache so that it contains two unused pages. One requires 
   1.100 +  # a journal-sync to free, the other does not.
   1.101 +  db2 close
   1.102 +  execsql {
   1.103 +    BEGIN;
   1.104 +    SELECT * FROM abc;
   1.105 +    CREATE TABLE def(d, e, f);
   1.106 +  }
   1.107 +  sqlite3_release_memory 500
   1.108 +} $::pgalloc
   1.109 +
   1.110 +do_test malloc5-1.7 {
   1.111 +  # Database should not be locked this time. 
   1.112 +  sqlite3 db2 test.db
   1.113 +  catchsql { SELECT * FROM abc } db2
   1.114 +} {0 {}}
   1.115 +do_test malloc5-1.8 {
   1.116 +  # Try to release another block of memory. This will fail as the only
   1.117 +  # pages currently in the cache are dirty (page 3) or pinned (page 1).
   1.118 +  db2 close
   1.119 +  sqlite3_release_memory 500
   1.120 +} 0
   1.121 +do_test malloc5-1.8 {
   1.122 +  # Database is still not locked.
   1.123 +  #
   1.124 +  sqlite3 db2 test.db
   1.125 +  catchsql { SELECT * FROM abc } db2
   1.126 +} {0 {}}
   1.127 +do_test malloc5-1.9 {
   1.128 +  execsql {
   1.129 +    COMMIT;
   1.130 +  }
   1.131 +} {}
   1.132 +
   1.133 +do_test malloc5-2.1 {
   1.134 +  # Put some data in tables abc and def. Both tables are still wholly 
   1.135 +  # contained within their root pages.
   1.136 +  execsql {
   1.137 +    INSERT INTO abc VALUES(1, 2, 3);
   1.138 +    INSERT INTO abc VALUES(4, 5, 6);
   1.139 +    INSERT INTO def VALUES(7, 8, 9);
   1.140 +    INSERT INTO def VALUES(10,11,12);
   1.141 +  }
   1.142 +} {}
   1.143 +do_test malloc5-2.2 {
   1.144 +  # Load the root-page for table def into the cache. Then query table abc. 
   1.145 +  # Halfway through the query call sqlite3_release_memory(). The goal of this
   1.146 +  # test is to make sure we don't free pages that are in use (specifically, 
   1.147 +  # the root of table abc).
   1.148 +  sqlite3_release_memory
   1.149 +  set nRelease 0
   1.150 +  execsql { 
   1.151 +    BEGIN;
   1.152 +    SELECT * FROM def;
   1.153 +  }
   1.154 +  set data [list]
   1.155 +  db eval {SELECT * FROM abc} {
   1.156 +    incr nRelease [sqlite3_release_memory]
   1.157 +    lappend data $a $b $c
   1.158 +  }
   1.159 +  execsql {
   1.160 +    COMMIT;
   1.161 +  }
   1.162 +  list $nRelease $data
   1.163 +} [list $pgalloc [list 1 2 3 4 5 6]]
   1.164 +
   1.165 +do_test malloc5-3.1 {
   1.166 +  # Simple test to show that if two pagers are opened from within this
   1.167 +  # thread, memory is freed from both when sqlite3_release_memory() is
   1.168 +  # called.
   1.169 +  execsql {
   1.170 +    BEGIN;
   1.171 +    SELECT * FROM abc;
   1.172 +  }
   1.173 +  execsql {
   1.174 +    SELECT * FROM sqlite_master;
   1.175 +    BEGIN;
   1.176 +    SELECT * FROM def;
   1.177 +  } db2
   1.178 +  sqlite3_release_memory
   1.179 +} [expr $::pgalloc * 2]
   1.180 +do_test malloc5-3.2 {
   1.181 +  concat \
   1.182 +    [execsql {SELECT * FROM abc; COMMIT}] \
   1.183 +    [execsql {SELECT * FROM def; COMMIT} db2]
   1.184 +} {1 2 3 4 5 6 7 8 9 10 11 12}
   1.185 +
   1.186 +db2 close
   1.187 +puts "Highwater mark: [sqlite3_memory_highwater]"
   1.188 +
   1.189 +# The following two test cases each execute a transaction in which 
   1.190 +# 10000 rows are inserted into table abc. The first test case is used
   1.191 +# to ensure that more than 1MB of dynamic memory is used to perform
   1.192 +# the transaction. 
   1.193 +#
   1.194 +# The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB)
   1.195 +# and tests to see that this limit is not exceeded at any point during 
   1.196 +# transaction execution.
   1.197 +#
   1.198 +# Before executing malloc5-4.* we save the value of the current soft heap 
   1.199 +# limit in variable ::soft_limit. The original value is restored after 
   1.200 +# running the tests.
   1.201 +#
   1.202 +set ::soft_limit [sqlite3_soft_heap_limit -1]
   1.203 +execsql {PRAGMA cache_size=2000}
   1.204 +do_test malloc5-4.1 {
   1.205 +  execsql {BEGIN;}
   1.206 +  execsql {DELETE FROM abc;}
   1.207 +  for {set i 0} {$i < 10000} {incr i} {
   1.208 +    execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');"
   1.209 +  }
   1.210 +  execsql {COMMIT;}
   1.211 +  sqlite3_release_memory
   1.212 +  sqlite3_memory_highwater 1
   1.213 +  execsql {SELECT * FROM abc}
   1.214 +  set nMaxBytes [sqlite3_memory_highwater 1]
   1.215 +  puts -nonewline " (Highwater mark: $nMaxBytes) "
   1.216 +  expr $nMaxBytes > 1000000
   1.217 +} {1}
   1.218 +do_test malloc5-4.2 {
   1.219 +  sqlite3_release_memory
   1.220 +  sqlite3_soft_heap_limit 100000
   1.221 +  sqlite3_memory_highwater 1
   1.222 +  execsql {SELECT * FROM abc}
   1.223 +  set nMaxBytes [sqlite3_memory_highwater 1]
   1.224 +  puts -nonewline " (Highwater mark: $nMaxBytes) "
   1.225 +  expr $nMaxBytes <= 100000
   1.226 +} {1}
   1.227 +do_test malloc5-4.3 {
   1.228 +  # Check that the content of table abc is at least roughly as expected.
   1.229 +  execsql {
   1.230 +    SELECT count(*), sum(a), sum(b) FROM abc;
   1.231 +  }
   1.232 +} [list 10000 [expr int(10000.0 * 4999.5)] [expr int(10000.0 * 4999.5)]]
   1.233 +
   1.234 +# Restore the soft heap limit.
   1.235 +sqlite3_soft_heap_limit $::soft_limit
   1.236 +
   1.237 +# Test that there are no problems calling sqlite3_release_memory when
   1.238 +# there are open in-memory databases.
   1.239 +#
   1.240 +# At one point these tests would cause a seg-fault.
   1.241 +#
   1.242 +do_test malloc5-5.1 {
   1.243 +  db close
   1.244 +  sqlite3 db :memory:
   1.245 +  execsql {
   1.246 +    BEGIN;
   1.247 +    CREATE TABLE abc(a, b, c);
   1.248 +    INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL);
   1.249 +    INSERT INTO abc SELECT * FROM abc;
   1.250 +    INSERT INTO abc SELECT * FROM abc;
   1.251 +    INSERT INTO abc SELECT * FROM abc;
   1.252 +    INSERT INTO abc SELECT * FROM abc;
   1.253 +    INSERT INTO abc SELECT * FROM abc;
   1.254 +    INSERT INTO abc SELECT * FROM abc;
   1.255 +    INSERT INTO abc SELECT * FROM abc;
   1.256 +  }
   1.257 +  sqlite3_release_memory
   1.258 +} 0
   1.259 +do_test malloc5-5.2 {
   1.260 +  sqlite3_soft_heap_limit 5000
   1.261 +  execsql {
   1.262 +    COMMIT;
   1.263 +    PRAGMA temp_store = memory;
   1.264 +    SELECT * FROM abc ORDER BY a;
   1.265 +  }
   1.266 +  expr 1
   1.267 +} {1}
   1.268 +sqlite3_soft_heap_limit $::soft_limit
   1.269 +
   1.270 +#-------------------------------------------------------------------------
   1.271 +# The following test cases (malloc5-6.*) test the new global LRU list
   1.272 +# used to determine the pages to recycle when sqlite3_release_memory is
   1.273 +# called and there is more than one pager open.
   1.274 +#
   1.275 +proc nPage {db} {
   1.276 +  set bt [btree_from_db $db]
   1.277 +  array set stats [btree_pager_stats $bt]
   1.278 +  set stats(page)
   1.279 +}
   1.280 +db close
   1.281 +file delete -force test.db test.db-journal test2.db test2.db-journal
   1.282 +
   1.283 +# This block of test-cases (malloc5-6.1.*) prepares two database files
   1.284 +# for the subsequent tests.
   1.285 +do_test malloc5-6.1.1 {
   1.286 +  sqlite3 db test.db
   1.287 +  execsql {
   1.288 +    PRAGMA page_size=1024;
   1.289 +    PRAGMA default_cache_size=10;
   1.290 +  }
   1.291 +  execsql {
   1.292 +    PRAGMA temp_store = memory;
   1.293 +    BEGIN;
   1.294 +    CREATE TABLE abc(a PRIMARY KEY, b, c);
   1.295 +    INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100));
   1.296 +    INSERT INTO abc 
   1.297 +        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
   1.298 +    INSERT INTO abc 
   1.299 +        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
   1.300 +    INSERT INTO abc 
   1.301 +        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
   1.302 +    INSERT INTO abc 
   1.303 +        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
   1.304 +    INSERT INTO abc 
   1.305 +        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
   1.306 +    INSERT INTO abc 
   1.307 +        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
   1.308 +    COMMIT;
   1.309 +  } 
   1.310 +  copy_file test.db test2.db
   1.311 +  sqlite3 db2 test2.db
   1.312 +  list \
   1.313 +    [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20]
   1.314 +} {1 1}
   1.315 +do_test malloc5-6.1.2 {
   1.316 +  list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2]
   1.317 +} {10 10}
   1.318 +
   1.319 +do_test malloc5-6.2.1 {
   1.320 +breakpoint
   1.321 +  execsql {SELECT * FROM abc} db2
   1.322 +  execsql {SELECT * FROM abc} db
   1.323 +  expr [nPage db] + [nPage db2]
   1.324 +} {20}
   1.325 +
   1.326 +do_test malloc5-6.2.2 {
   1.327 +  # If we now try to reclaim some memory, it should come from the db2 cache.
   1.328 +  sqlite3_release_memory 3000
   1.329 +  expr [nPage db] + [nPage db2]
   1.330 +} {17}
   1.331 +do_test malloc5-6.2.3 {
   1.332 +  # Access the db2 cache again, so that all the db2 pages have been used
   1.333 +  # more recently than all the db pages. Then try to reclaim 3000 bytes.
   1.334 +  # This time, 3 pages should be pulled from the db cache.
   1.335 +  execsql { SELECT * FROM abc } db2
   1.336 +  sqlite3_release_memory 3000
   1.337 +  expr [nPage db] + [nPage db2]
   1.338 +} {17}
   1.339 +
   1.340 +do_test malloc5-6.3.1 {
   1.341 +  # Now open a transaction and update 2 pages in the db2 cache. Then
   1.342 +  # do a SELECT on the db cache so that all the db pages are more recently
   1.343 +  # used than the db2 pages. When we try to free memory, SQLite should
   1.344 +  # free the non-dirty db2 pages, then the db pages, then finally use
   1.345 +  # sync() to free up the dirty db2 pages. The only page that cannot be
   1.346 +  # freed is page1 of db2. Because there is an open transaction, the
   1.347 +  # btree layer holds a reference to page 1 in the db2 cache.
   1.348 +  execsql {
   1.349 +    BEGIN;
   1.350 +    UPDATE abc SET c = randstr(100,100) 
   1.351 +    WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc);
   1.352 +  } db2
   1.353 +  execsql { SELECT * FROM abc } db
   1.354 +  expr [nPage db] + [nPage db2]
   1.355 +} {20}
   1.356 +do_test malloc5-6.3.2 {
   1.357 +  # Try to release 7700 bytes. This should release all the 
   1.358 +  # non-dirty pages held by db2.
   1.359 +  sqlite3_release_memory [expr 7*1100]
   1.360 +  list [nPage db] [nPage db2]
   1.361 +} {10 3}
   1.362 +do_test malloc5-6.3.3 {
   1.363 +  # Try to release another 1000 bytes. This should come fromt the db
   1.364 +  # cache, since all three pages held by db2 are either in-use or diry.
   1.365 +  sqlite3_release_memory 1000
   1.366 +  list [nPage db] [nPage db2]
   1.367 +} {9 3}
   1.368 +do_test malloc5-6.3.4 {
   1.369 +  # Now release 9900 more (about 9 pages worth). This should expunge
   1.370 +  # the rest of the db cache. But the db2 cache remains intact, because
   1.371 +  # SQLite tries to avoid calling sync().
   1.372 +  sqlite3_release_memory 9900
   1.373 +  list [nPage db] [nPage db2]
   1.374 +} {0 3}
   1.375 +do_test malloc5-6.3.5 {
   1.376 +  # But if we are really insistent, SQLite will consent to call sync()
   1.377 +  # if there is no other option. UPDATE: As of 3.6.2, SQLite will not
   1.378 +  # call sync() in this scenario. So no further memory can be reclaimed.
   1.379 +  sqlite3_release_memory 1000
   1.380 +  list [nPage db] [nPage db2]
   1.381 +} {0 3}
   1.382 +do_test malloc5-6.3.6 {
   1.383 +  # The referenced page (page 1 of the db2 cache) will not be freed no
   1.384 +  # matter how much memory we ask for:
   1.385 +  sqlite3_release_memory 31459
   1.386 +  list [nPage db] [nPage db2]
   1.387 +} {0 3}
   1.388 +
   1.389 +db2 close
   1.390 +
   1.391 +sqlite3_soft_heap_limit $::soft_limit
   1.392 +finish_test
   1.393 +catch {db close}