sl@0
|
1 |
/* fts2 has a design flaw which can lead to database corruption (see
|
sl@0
|
2 |
** below). It is recommended not to use it any longer, instead use
|
sl@0
|
3 |
** fts3 (or higher). If you believe that your use of fts2 is safe,
|
sl@0
|
4 |
** add -DSQLITE_ENABLE_BROKEN_FTS2=1 to your CFLAGS.
|
sl@0
|
5 |
*/
|
sl@0
|
6 |
#if (!defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)) \
|
sl@0
|
7 |
&& !defined(SQLITE_ENABLE_BROKEN_FTS2)
|
sl@0
|
8 |
#error fts2 has a design flaw and has been deprecated.
|
sl@0
|
9 |
#endif
|
sl@0
|
10 |
/* The flaw is that fts2 uses the content table's unaliased rowid as
|
sl@0
|
11 |
** the unique docid. fts2 embeds the rowid in the index it builds,
|
sl@0
|
12 |
** and expects the rowid to not change. The SQLite VACUUM operation
|
sl@0
|
13 |
** will renumber such rowids, thereby breaking fts2. If you are using
|
sl@0
|
14 |
** fts2 in a system which has disabled VACUUM, then you can continue
|
sl@0
|
15 |
** to use it safely. Note that PRAGMA auto_vacuum does NOT disable
|
sl@0
|
16 |
** VACUUM, though systems using auto_vacuum are unlikely to invoke
|
sl@0
|
17 |
** VACUUM.
|
sl@0
|
18 |
**
|
sl@0
|
19 |
** Unlike fts1, which is safe across VACUUM if you never delete
|
sl@0
|
20 |
** documents, fts2 has a second exposure to this flaw, in the segments
|
sl@0
|
21 |
** table. So fts2 should be considered unsafe across VACUUM in all
|
sl@0
|
22 |
** cases.
|
sl@0
|
23 |
*/
|
sl@0
|
24 |
|
sl@0
|
25 |
/*
|
sl@0
|
26 |
** 2006 Oct 10
|
sl@0
|
27 |
**
|
sl@0
|
28 |
** The author disclaims copyright to this source code. In place of
|
sl@0
|
29 |
** a legal notice, here is a blessing:
|
sl@0
|
30 |
**
|
sl@0
|
31 |
** May you do good and not evil.
|
sl@0
|
32 |
** May you find forgiveness for yourself and forgive others.
|
sl@0
|
33 |
** May you share freely, never taking more than you give.
|
sl@0
|
34 |
**
|
sl@0
|
35 |
******************************************************************************
|
sl@0
|
36 |
**
|
sl@0
|
37 |
** This is an SQLite module implementing full-text search.
|
sl@0
|
38 |
*/
|
sl@0
|
39 |
|
sl@0
|
40 |
/*
|
sl@0
|
41 |
** The code in this file is only compiled if:
|
sl@0
|
42 |
**
|
sl@0
|
43 |
** * The FTS2 module is being built as an extension
|
sl@0
|
44 |
** (in which case SQLITE_CORE is not defined), or
|
sl@0
|
45 |
**
|
sl@0
|
46 |
** * The FTS2 module is being built into the core of
|
sl@0
|
47 |
** SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
|
sl@0
|
48 |
*/
|
sl@0
|
49 |
|
sl@0
|
50 |
/* TODO(shess) Consider exporting this comment to an HTML file or the
|
sl@0
|
51 |
** wiki.
|
sl@0
|
52 |
*/
|
sl@0
|
53 |
/* The full-text index is stored in a series of b+tree (-like)
|
sl@0
|
54 |
** structures called segments which map terms to doclists. The
|
sl@0
|
55 |
** structures are like b+trees in layout, but are constructed from the
|
sl@0
|
56 |
** bottom up in optimal fashion and are not updatable. Since trees
|
sl@0
|
57 |
** are built from the bottom up, things will be described from the
|
sl@0
|
58 |
** bottom up.
|
sl@0
|
59 |
**
|
sl@0
|
60 |
**
|
sl@0
|
61 |
**** Varints ****
|
sl@0
|
62 |
** The basic unit of encoding is a variable-length integer called a
|
sl@0
|
63 |
** varint. We encode variable-length integers in little-endian order
|
sl@0
|
64 |
** using seven bits * per byte as follows:
|
sl@0
|
65 |
**
|
sl@0
|
66 |
** KEY:
|
sl@0
|
67 |
** A = 0xxxxxxx 7 bits of data and one flag bit
|
sl@0
|
68 |
** B = 1xxxxxxx 7 bits of data and one flag bit
|
sl@0
|
69 |
**
|
sl@0
|
70 |
** 7 bits - A
|
sl@0
|
71 |
** 14 bits - BA
|
sl@0
|
72 |
** 21 bits - BBA
|
sl@0
|
73 |
** and so on.
|
sl@0
|
74 |
**
|
sl@0
|
75 |
** This is identical to how sqlite encodes varints (see util.c).
|
sl@0
|
76 |
**
|
sl@0
|
77 |
**
|
sl@0
|
78 |
**** Document lists ****
|
sl@0
|
79 |
** A doclist (document list) holds a docid-sorted list of hits for a
|
sl@0
|
80 |
** given term. Doclists hold docids, and can optionally associate
|
sl@0
|
81 |
** token positions and offsets with docids.
|
sl@0
|
82 |
**
|
sl@0
|
83 |
** A DL_POSITIONS_OFFSETS doclist is stored like this:
|
sl@0
|
84 |
**
|
sl@0
|
85 |
** array {
|
sl@0
|
86 |
** varint docid;
|
sl@0
|
87 |
** array { (position list for column 0)
|
sl@0
|
88 |
** varint position; (delta from previous position plus POS_BASE)
|
sl@0
|
89 |
** varint startOffset; (delta from previous startOffset)
|
sl@0
|
90 |
** varint endOffset; (delta from startOffset)
|
sl@0
|
91 |
** }
|
sl@0
|
92 |
** array {
|
sl@0
|
93 |
** varint POS_COLUMN; (marks start of position list for new column)
|
sl@0
|
94 |
** varint column; (index of new column)
|
sl@0
|
95 |
** array {
|
sl@0
|
96 |
** varint position; (delta from previous position plus POS_BASE)
|
sl@0
|
97 |
** varint startOffset;(delta from previous startOffset)
|
sl@0
|
98 |
** varint endOffset; (delta from startOffset)
|
sl@0
|
99 |
** }
|
sl@0
|
100 |
** }
|
sl@0
|
101 |
** varint POS_END; (marks end of positions for this document.
|
sl@0
|
102 |
** }
|
sl@0
|
103 |
**
|
sl@0
|
104 |
** Here, array { X } means zero or more occurrences of X, adjacent in
|
sl@0
|
105 |
** memory. A "position" is an index of a token in the token stream
|
sl@0
|
106 |
** generated by the tokenizer, while an "offset" is a byte offset,
|
sl@0
|
107 |
** both based at 0. Note that POS_END and POS_COLUMN occur in the
|
sl@0
|
108 |
** same logical place as the position element, and act as sentinals
|
sl@0
|
109 |
** ending a position list array.
|
sl@0
|
110 |
**
|
sl@0
|
111 |
** A DL_POSITIONS doclist omits the startOffset and endOffset
|
sl@0
|
112 |
** information. A DL_DOCIDS doclist omits both the position and
|
sl@0
|
113 |
** offset information, becoming an array of varint-encoded docids.
|
sl@0
|
114 |
**
|
sl@0
|
115 |
** On-disk data is stored as type DL_DEFAULT, so we don't serialize
|
sl@0
|
116 |
** the type. Due to how deletion is implemented in the segmentation
|
sl@0
|
117 |
** system, on-disk doclists MUST store at least positions.
|
sl@0
|
118 |
**
|
sl@0
|
119 |
**
|
sl@0
|
120 |
**** Segment leaf nodes ****
|
sl@0
|
121 |
** Segment leaf nodes store terms and doclists, ordered by term. Leaf
|
sl@0
|
122 |
** nodes are written using LeafWriter, and read using LeafReader (to
|
sl@0
|
123 |
** iterate through a single leaf node's data) and LeavesReader (to
|
sl@0
|
124 |
** iterate through a segment's entire leaf layer). Leaf nodes have
|
sl@0
|
125 |
** the format:
|
sl@0
|
126 |
**
|
sl@0
|
127 |
** varint iHeight; (height from leaf level, always 0)
|
sl@0
|
128 |
** varint nTerm; (length of first term)
|
sl@0
|
129 |
** char pTerm[nTerm]; (content of first term)
|
sl@0
|
130 |
** varint nDoclist; (length of term's associated doclist)
|
sl@0
|
131 |
** char pDoclist[nDoclist]; (content of doclist)
|
sl@0
|
132 |
** array {
|
sl@0
|
133 |
** (further terms are delta-encoded)
|
sl@0
|
134 |
** varint nPrefix; (length of prefix shared with previous term)
|
sl@0
|
135 |
** varint nSuffix; (length of unshared suffix)
|
sl@0
|
136 |
** char pTermSuffix[nSuffix];(unshared suffix of next term)
|
sl@0
|
137 |
** varint nDoclist; (length of term's associated doclist)
|
sl@0
|
138 |
** char pDoclist[nDoclist]; (content of doclist)
|
sl@0
|
139 |
** }
|
sl@0
|
140 |
**
|
sl@0
|
141 |
** Here, array { X } means zero or more occurrences of X, adjacent in
|
sl@0
|
142 |
** memory.
|
sl@0
|
143 |
**
|
sl@0
|
144 |
** Leaf nodes are broken into blocks which are stored contiguously in
|
sl@0
|
145 |
** the %_segments table in sorted order. This means that when the end
|
sl@0
|
146 |
** of a node is reached, the next term is in the node with the next
|
sl@0
|
147 |
** greater node id.
|
sl@0
|
148 |
**
|
sl@0
|
149 |
** New data is spilled to a new leaf node when the current node
|
sl@0
|
150 |
** exceeds LEAF_MAX bytes (default 2048). New data which itself is
|
sl@0
|
151 |
** larger than STANDALONE_MIN (default 1024) is placed in a standalone
|
sl@0
|
152 |
** node (a leaf node with a single term and doclist). The goal of
|
sl@0
|
153 |
** these settings is to pack together groups of small doclists while
|
sl@0
|
154 |
** making it efficient to directly access large doclists. The
|
sl@0
|
155 |
** assumption is that large doclists represent terms which are more
|
sl@0
|
156 |
** likely to be query targets.
|
sl@0
|
157 |
**
|
sl@0
|
158 |
** TODO(shess) It may be useful for blocking decisions to be more
|
sl@0
|
159 |
** dynamic. For instance, it may make more sense to have a 2.5k leaf
|
sl@0
|
160 |
** node rather than splitting into 2k and .5k nodes. My intuition is
|
sl@0
|
161 |
** that this might extend through 2x or 4x the pagesize.
|
sl@0
|
162 |
**
|
sl@0
|
163 |
**
|
sl@0
|
164 |
**** Segment interior nodes ****
|
sl@0
|
165 |
** Segment interior nodes store blockids for subtree nodes and terms
|
sl@0
|
166 |
** to describe what data is stored by the each subtree. Interior
|
sl@0
|
167 |
** nodes are written using InteriorWriter, and read using
|
sl@0
|
168 |
** InteriorReader. InteriorWriters are created as needed when
|
sl@0
|
169 |
** SegmentWriter creates new leaf nodes, or when an interior node
|
sl@0
|
170 |
** itself grows too big and must be split. The format of interior
|
sl@0
|
171 |
** nodes:
|
sl@0
|
172 |
**
|
sl@0
|
173 |
** varint iHeight; (height from leaf level, always >0)
|
sl@0
|
174 |
** varint iBlockid; (block id of node's leftmost subtree)
|
sl@0
|
175 |
** optional {
|
sl@0
|
176 |
** varint nTerm; (length of first term)
|
sl@0
|
177 |
** char pTerm[nTerm]; (content of first term)
|
sl@0
|
178 |
** array {
|
sl@0
|
179 |
** (further terms are delta-encoded)
|
sl@0
|
180 |
** varint nPrefix; (length of shared prefix with previous term)
|
sl@0
|
181 |
** varint nSuffix; (length of unshared suffix)
|
sl@0
|
182 |
** char pTermSuffix[nSuffix]; (unshared suffix of next term)
|
sl@0
|
183 |
** }
|
sl@0
|
184 |
** }
|
sl@0
|
185 |
**
|
sl@0
|
186 |
** Here, optional { X } means an optional element, while array { X }
|
sl@0
|
187 |
** means zero or more occurrences of X, adjacent in memory.
|
sl@0
|
188 |
**
|
sl@0
|
189 |
** An interior node encodes n terms separating n+1 subtrees. The
|
sl@0
|
190 |
** subtree blocks are contiguous, so only the first subtree's blockid
|
sl@0
|
191 |
** is encoded. The subtree at iBlockid will contain all terms less
|
sl@0
|
192 |
** than the first term encoded (or all terms if no term is encoded).
|
sl@0
|
193 |
** Otherwise, for terms greater than or equal to pTerm[i] but less
|
sl@0
|
194 |
** than pTerm[i+1], the subtree for that term will be rooted at
|
sl@0
|
195 |
** iBlockid+i. Interior nodes only store enough term data to
|
sl@0
|
196 |
** distinguish adjacent children (if the rightmost term of the left
|
sl@0
|
197 |
** child is "something", and the leftmost term of the right child is
|
sl@0
|
198 |
** "wicked", only "w" is stored).
|
sl@0
|
199 |
**
|
sl@0
|
200 |
** New data is spilled to a new interior node at the same height when
|
sl@0
|
201 |
** the current node exceeds INTERIOR_MAX bytes (default 2048).
|
sl@0
|
202 |
** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
|
sl@0
|
203 |
** interior nodes and making the tree too skinny. The interior nodes
|
sl@0
|
204 |
** at a given height are naturally tracked by interior nodes at
|
sl@0
|
205 |
** height+1, and so on.
|
sl@0
|
206 |
**
|
sl@0
|
207 |
**
|
sl@0
|
208 |
**** Segment directory ****
|
sl@0
|
209 |
** The segment directory in table %_segdir stores meta-information for
|
sl@0
|
210 |
** merging and deleting segments, and also the root node of the
|
sl@0
|
211 |
** segment's tree.
|
sl@0
|
212 |
**
|
sl@0
|
213 |
** The root node is the top node of the segment's tree after encoding
|
sl@0
|
214 |
** the entire segment, restricted to ROOT_MAX bytes (default 1024).
|
sl@0
|
215 |
** This could be either a leaf node or an interior node. If the top
|
sl@0
|
216 |
** node requires more than ROOT_MAX bytes, it is flushed to %_segments
|
sl@0
|
217 |
** and a new root interior node is generated (which should always fit
|
sl@0
|
218 |
** within ROOT_MAX because it only needs space for 2 varints, the
|
sl@0
|
219 |
** height and the blockid of the previous root).
|
sl@0
|
220 |
**
|
sl@0
|
221 |
** The meta-information in the segment directory is:
|
sl@0
|
222 |
** level - segment level (see below)
|
sl@0
|
223 |
** idx - index within level
|
sl@0
|
224 |
** - (level,idx uniquely identify a segment)
|
sl@0
|
225 |
** start_block - first leaf node
|
sl@0
|
226 |
** leaves_end_block - last leaf node
|
sl@0
|
227 |
** end_block - last block (including interior nodes)
|
sl@0
|
228 |
** root - contents of root node
|
sl@0
|
229 |
**
|
sl@0
|
230 |
** If the root node is a leaf node, then start_block,
|
sl@0
|
231 |
** leaves_end_block, and end_block are all 0.
|
sl@0
|
232 |
**
|
sl@0
|
233 |
**
|
sl@0
|
234 |
**** Segment merging ****
|
sl@0
|
235 |
** To amortize update costs, segments are groups into levels and
|
sl@0
|
236 |
** merged in matches. Each increase in level represents exponentially
|
sl@0
|
237 |
** more documents.
|
sl@0
|
238 |
**
|
sl@0
|
239 |
** New documents (actually, document updates) are tokenized and
|
sl@0
|
240 |
** written individually (using LeafWriter) to a level 0 segment, with
|
sl@0
|
241 |
** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
|
sl@0
|
242 |
** level 0 segments are merged into a single level 1 segment. Level 1
|
sl@0
|
243 |
** is populated like level 0, and eventually MERGE_COUNT level 1
|
sl@0
|
244 |
** segments are merged to a single level 2 segment (representing
|
sl@0
|
245 |
** MERGE_COUNT^2 updates), and so on.
|
sl@0
|
246 |
**
|
sl@0
|
247 |
** A segment merge traverses all segments at a given level in
|
sl@0
|
248 |
** parallel, performing a straightforward sorted merge. Since segment
|
sl@0
|
249 |
** leaf nodes are written in to the %_segments table in order, this
|
sl@0
|
250 |
** merge traverses the underlying sqlite disk structures efficiently.
|
sl@0
|
251 |
** After the merge, all segment blocks from the merged level are
|
sl@0
|
252 |
** deleted.
|
sl@0
|
253 |
**
|
sl@0
|
254 |
** MERGE_COUNT controls how often we merge segments. 16 seems to be
|
sl@0
|
255 |
** somewhat of a sweet spot for insertion performance. 32 and 64 show
|
sl@0
|
256 |
** very similar performance numbers to 16 on insertion, though they're
|
sl@0
|
257 |
** a tiny bit slower (perhaps due to more overhead in merge-time
|
sl@0
|
258 |
** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
|
sl@0
|
259 |
** 16, 2 about 66% slower than 16.
|
sl@0
|
260 |
**
|
sl@0
|
261 |
** At query time, high MERGE_COUNT increases the number of segments
|
sl@0
|
262 |
** which need to be scanned and merged. For instance, with 100k docs
|
sl@0
|
263 |
** inserted:
|
sl@0
|
264 |
**
|
sl@0
|
265 |
** MERGE_COUNT segments
|
sl@0
|
266 |
** 16 25
|
sl@0
|
267 |
** 8 12
|
sl@0
|
268 |
** 4 10
|
sl@0
|
269 |
** 2 6
|
sl@0
|
270 |
**
|
sl@0
|
271 |
** This appears to have only a moderate impact on queries for very
|
sl@0
|
272 |
** frequent terms (which are somewhat dominated by segment merge
|
sl@0
|
273 |
** costs), and infrequent and non-existent terms still seem to be fast
|
sl@0
|
274 |
** even with many segments.
|
sl@0
|
275 |
**
|
sl@0
|
276 |
** TODO(shess) That said, it would be nice to have a better query-side
|
sl@0
|
277 |
** argument for MERGE_COUNT of 16. Also, it is possible/likely that
|
sl@0
|
278 |
** optimizations to things like doclist merging will swing the sweet
|
sl@0
|
279 |
** spot around.
|
sl@0
|
280 |
**
|
sl@0
|
281 |
**
|
sl@0
|
282 |
**
|
sl@0
|
283 |
**** Handling of deletions and updates ****
|
sl@0
|
284 |
** Since we're using a segmented structure, with no docid-oriented
|
sl@0
|
285 |
** index into the term index, we clearly cannot simply update the term
|
sl@0
|
286 |
** index when a document is deleted or updated. For deletions, we
|
sl@0
|
287 |
** write an empty doclist (varint(docid) varint(POS_END)), for updates
|
sl@0
|
288 |
** we simply write the new doclist. Segment merges overwrite older
|
sl@0
|
289 |
** data for a particular docid with newer data, so deletes or updates
|
sl@0
|
290 |
** will eventually overtake the earlier data and knock it out. The
|
sl@0
|
291 |
** query logic likewise merges doclists so that newer data knocks out
|
sl@0
|
292 |
** older data.
|
sl@0
|
293 |
**
|
sl@0
|
294 |
** TODO(shess) Provide a VACUUM type operation to clear out all
|
sl@0
|
295 |
** deletions and duplications. This would basically be a forced merge
|
sl@0
|
296 |
** into a single segment.
|
sl@0
|
297 |
*/
|
sl@0
|
298 |
|
sl@0
|
299 |
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)
|
sl@0
|
300 |
|
sl@0
|
301 |
#if defined(SQLITE_ENABLE_FTS2) && !defined(SQLITE_CORE)
|
sl@0
|
302 |
# define SQLITE_CORE 1
|
sl@0
|
303 |
#endif
|
sl@0
|
304 |
|
sl@0
|
305 |
#include <assert.h>
|
sl@0
|
306 |
#include <stdlib.h>
|
sl@0
|
307 |
#include <stdio.h>
|
sl@0
|
308 |
#include <string.h>
|
sl@0
|
309 |
#include <ctype.h>
|
sl@0
|
310 |
|
sl@0
|
311 |
#include "fts2.h"
|
sl@0
|
312 |
#include "fts2_hash.h"
|
sl@0
|
313 |
#include "fts2_tokenizer.h"
|
sl@0
|
314 |
#include "sqlite3.h"
|
sl@0
|
315 |
#include "sqlite3ext.h"
|
sl@0
|
316 |
SQLITE_EXTENSION_INIT1
|
sl@0
|
317 |
|
sl@0
|
318 |
|
sl@0
|
319 |
/* TODO(shess) MAN, this thing needs some refactoring. At minimum, it
|
sl@0
|
320 |
** would be nice to order the file better, perhaps something along the
|
sl@0
|
321 |
** lines of:
|
sl@0
|
322 |
**
|
sl@0
|
323 |
** - utility functions
|
sl@0
|
324 |
** - table setup functions
|
sl@0
|
325 |
** - table update functions
|
sl@0
|
326 |
** - table query functions
|
sl@0
|
327 |
**
|
sl@0
|
328 |
** Put the query functions last because they're likely to reference
|
sl@0
|
329 |
** typedefs or functions from the table update section.
|
sl@0
|
330 |
*/
|
sl@0
|
331 |
|
sl@0
|
332 |
#if 0
|
sl@0
|
333 |
# define TRACE(A) printf A; fflush(stdout)
|
sl@0
|
334 |
#else
|
sl@0
|
335 |
# define TRACE(A)
|
sl@0
|
336 |
#endif
|
sl@0
|
337 |
|
sl@0
|
338 |
/* It is not safe to call isspace(), tolower(), or isalnum() on
|
sl@0
|
339 |
** hi-bit-set characters. This is the same solution used in the
|
sl@0
|
340 |
** tokenizer.
|
sl@0
|
341 |
*/
|
sl@0
|
342 |
/* TODO(shess) The snippet-generation code should be using the
|
sl@0
|
343 |
** tokenizer-generated tokens rather than doing its own local
|
sl@0
|
344 |
** tokenization.
|
sl@0
|
345 |
*/
|
sl@0
|
346 |
/* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */
|
sl@0
|
347 |
static int safe_isspace(char c){
|
sl@0
|
348 |
return (c&0x80)==0 ? isspace(c) : 0;
|
sl@0
|
349 |
}
|
sl@0
|
350 |
static int safe_tolower(char c){
|
sl@0
|
351 |
return (c&0x80)==0 ? tolower(c) : c;
|
sl@0
|
352 |
}
|
sl@0
|
353 |
static int safe_isalnum(char c){
|
sl@0
|
354 |
return (c&0x80)==0 ? isalnum(c) : 0;
|
sl@0
|
355 |
}
|
sl@0
|
356 |
|
sl@0
|
357 |
typedef enum DocListType {
|
sl@0
|
358 |
DL_DOCIDS, /* docids only */
|
sl@0
|
359 |
DL_POSITIONS, /* docids + positions */
|
sl@0
|
360 |
DL_POSITIONS_OFFSETS /* docids + positions + offsets */
|
sl@0
|
361 |
} DocListType;
|
sl@0
|
362 |
|
sl@0
|
363 |
/*
|
sl@0
|
364 |
** By default, only positions and not offsets are stored in the doclists.
|
sl@0
|
365 |
** To change this so that offsets are stored too, compile with
|
sl@0
|
366 |
**
|
sl@0
|
367 |
** -DDL_DEFAULT=DL_POSITIONS_OFFSETS
|
sl@0
|
368 |
**
|
sl@0
|
369 |
** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted
|
sl@0
|
370 |
** into (no deletes or updates).
|
sl@0
|
371 |
*/
|
sl@0
|
372 |
#ifndef DL_DEFAULT
|
sl@0
|
373 |
# define DL_DEFAULT DL_POSITIONS
|
sl@0
|
374 |
#endif
|
sl@0
|
375 |
|
sl@0
|
376 |
enum {
|
sl@0
|
377 |
POS_END = 0, /* end of this position list */
|
sl@0
|
378 |
POS_COLUMN, /* followed by new column number */
|
sl@0
|
379 |
POS_BASE
|
sl@0
|
380 |
};
|
sl@0
|
381 |
|
sl@0
|
382 |
/* MERGE_COUNT controls how often we merge segments (see comment at
|
sl@0
|
383 |
** top of file).
|
sl@0
|
384 |
*/
|
sl@0
|
385 |
#define MERGE_COUNT 16
|
sl@0
|
386 |
|
sl@0
|
387 |
/* utility functions */
|
sl@0
|
388 |
|
sl@0
|
389 |
/* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single
|
sl@0
|
390 |
** record to prevent errors of the form:
|
sl@0
|
391 |
**
|
sl@0
|
392 |
** my_function(SomeType *b){
|
sl@0
|
393 |
** memset(b, '\0', sizeof(b)); // sizeof(b)!=sizeof(*b)
|
sl@0
|
394 |
** }
|
sl@0
|
395 |
*/
|
sl@0
|
396 |
/* TODO(shess) Obvious candidates for a header file. */
|
sl@0
|
397 |
#define CLEAR(b) memset(b, '\0', sizeof(*(b)))
|
sl@0
|
398 |
|
sl@0
|
399 |
#ifndef NDEBUG
|
sl@0
|
400 |
# define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b)))
|
sl@0
|
401 |
#else
|
sl@0
|
402 |
# define SCRAMBLE(b)
|
sl@0
|
403 |
#endif
|
sl@0
|
404 |
|
sl@0
|
405 |
/* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */
|
sl@0
|
406 |
#define VARINT_MAX 10
|
sl@0
|
407 |
|
sl@0
|
408 |
/* Write a 64-bit variable-length integer to memory starting at p[0].
|
sl@0
|
409 |
* The length of data written will be between 1 and VARINT_MAX bytes.
|
sl@0
|
410 |
* The number of bytes written is returned. */
|
sl@0
|
411 |
static int putVarint(char *p, sqlite_int64 v){
|
sl@0
|
412 |
unsigned char *q = (unsigned char *) p;
|
sl@0
|
413 |
sqlite_uint64 vu = v;
|
sl@0
|
414 |
do{
|
sl@0
|
415 |
*q++ = (unsigned char) ((vu & 0x7f) | 0x80);
|
sl@0
|
416 |
vu >>= 7;
|
sl@0
|
417 |
}while( vu!=0 );
|
sl@0
|
418 |
q[-1] &= 0x7f; /* turn off high bit in final byte */
|
sl@0
|
419 |
assert( q - (unsigned char *)p <= VARINT_MAX );
|
sl@0
|
420 |
return (int) (q - (unsigned char *)p);
|
sl@0
|
421 |
}
|
sl@0
|
422 |
|
sl@0
|
423 |
/* Read a 64-bit variable-length integer from memory starting at p[0].
|
sl@0
|
424 |
* Return the number of bytes read, or 0 on error.
|
sl@0
|
425 |
* The value is stored in *v. */
|
sl@0
|
426 |
static int getVarint(const char *p, sqlite_int64 *v){
|
sl@0
|
427 |
const unsigned char *q = (const unsigned char *) p;
|
sl@0
|
428 |
sqlite_uint64 x = 0, y = 1;
|
sl@0
|
429 |
while( (*q & 0x80) == 0x80 ){
|
sl@0
|
430 |
x += y * (*q++ & 0x7f);
|
sl@0
|
431 |
y <<= 7;
|
sl@0
|
432 |
if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */
|
sl@0
|
433 |
assert( 0 );
|
sl@0
|
434 |
return 0;
|
sl@0
|
435 |
}
|
sl@0
|
436 |
}
|
sl@0
|
437 |
x += y * (*q++);
|
sl@0
|
438 |
*v = (sqlite_int64) x;
|
sl@0
|
439 |
return (int) (q - (unsigned char *)p);
|
sl@0
|
440 |
}
|
sl@0
|
441 |
|
sl@0
|
442 |
static int getVarint32(const char *p, int *pi){
|
sl@0
|
443 |
sqlite_int64 i;
|
sl@0
|
444 |
int ret = getVarint(p, &i);
|
sl@0
|
445 |
*pi = (int) i;
|
sl@0
|
446 |
assert( *pi==i );
|
sl@0
|
447 |
return ret;
|
sl@0
|
448 |
}
|
sl@0
|
449 |
|
sl@0
|
450 |
/*******************************************************************/
|
sl@0
|
451 |
/* DataBuffer is used to collect data into a buffer in piecemeal
|
sl@0
|
452 |
** fashion. It implements the usual distinction between amount of
|
sl@0
|
453 |
** data currently stored (nData) and buffer capacity (nCapacity).
|
sl@0
|
454 |
**
|
sl@0
|
455 |
** dataBufferInit - create a buffer with given initial capacity.
|
sl@0
|
456 |
** dataBufferReset - forget buffer's data, retaining capacity.
|
sl@0
|
457 |
** dataBufferDestroy - free buffer's data.
|
sl@0
|
458 |
** dataBufferSwap - swap contents of two buffers.
|
sl@0
|
459 |
** dataBufferExpand - expand capacity without adding data.
|
sl@0
|
460 |
** dataBufferAppend - append data.
|
sl@0
|
461 |
** dataBufferAppend2 - append two pieces of data at once.
|
sl@0
|
462 |
** dataBufferReplace - replace buffer's data.
|
sl@0
|
463 |
*/
|
sl@0
|
464 |
typedef struct DataBuffer {
|
sl@0
|
465 |
char *pData; /* Pointer to malloc'ed buffer. */
|
sl@0
|
466 |
int nCapacity; /* Size of pData buffer. */
|
sl@0
|
467 |
int nData; /* End of data loaded into pData. */
|
sl@0
|
468 |
} DataBuffer;
|
sl@0
|
469 |
|
sl@0
|
470 |
static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){
|
sl@0
|
471 |
assert( nCapacity>=0 );
|
sl@0
|
472 |
pBuffer->nData = 0;
|
sl@0
|
473 |
pBuffer->nCapacity = nCapacity;
|
sl@0
|
474 |
pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity);
|
sl@0
|
475 |
}
|
sl@0
|
476 |
static void dataBufferReset(DataBuffer *pBuffer){
|
sl@0
|
477 |
pBuffer->nData = 0;
|
sl@0
|
478 |
}
|
sl@0
|
479 |
static void dataBufferDestroy(DataBuffer *pBuffer){
|
sl@0
|
480 |
if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData);
|
sl@0
|
481 |
SCRAMBLE(pBuffer);
|
sl@0
|
482 |
}
|
sl@0
|
483 |
static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){
|
sl@0
|
484 |
DataBuffer tmp = *pBuffer1;
|
sl@0
|
485 |
*pBuffer1 = *pBuffer2;
|
sl@0
|
486 |
*pBuffer2 = tmp;
|
sl@0
|
487 |
}
|
sl@0
|
488 |
static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){
|
sl@0
|
489 |
assert( nAddCapacity>0 );
|
sl@0
|
490 |
/* TODO(shess) Consider expanding more aggressively. Note that the
|
sl@0
|
491 |
** underlying malloc implementation may take care of such things for
|
sl@0
|
492 |
** us already.
|
sl@0
|
493 |
*/
|
sl@0
|
494 |
if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){
|
sl@0
|
495 |
pBuffer->nCapacity = pBuffer->nData+nAddCapacity;
|
sl@0
|
496 |
pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity);
|
sl@0
|
497 |
}
|
sl@0
|
498 |
}
|
sl@0
|
499 |
static void dataBufferAppend(DataBuffer *pBuffer,
|
sl@0
|
500 |
const char *pSource, int nSource){
|
sl@0
|
501 |
assert( nSource>0 && pSource!=NULL );
|
sl@0
|
502 |
dataBufferExpand(pBuffer, nSource);
|
sl@0
|
503 |
memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource);
|
sl@0
|
504 |
pBuffer->nData += nSource;
|
sl@0
|
505 |
}
|
sl@0
|
506 |
static void dataBufferAppend2(DataBuffer *pBuffer,
|
sl@0
|
507 |
const char *pSource1, int nSource1,
|
sl@0
|
508 |
const char *pSource2, int nSource2){
|
sl@0
|
509 |
assert( nSource1>0 && pSource1!=NULL );
|
sl@0
|
510 |
assert( nSource2>0 && pSource2!=NULL );
|
sl@0
|
511 |
dataBufferExpand(pBuffer, nSource1+nSource2);
|
sl@0
|
512 |
memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1);
|
sl@0
|
513 |
memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2);
|
sl@0
|
514 |
pBuffer->nData += nSource1+nSource2;
|
sl@0
|
515 |
}
|
sl@0
|
516 |
static void dataBufferReplace(DataBuffer *pBuffer,
|
sl@0
|
517 |
const char *pSource, int nSource){
|
sl@0
|
518 |
dataBufferReset(pBuffer);
|
sl@0
|
519 |
dataBufferAppend(pBuffer, pSource, nSource);
|
sl@0
|
520 |
}
|
sl@0
|
521 |
|
sl@0
|
522 |
/* StringBuffer is a null-terminated version of DataBuffer. */
|
sl@0
|
523 |
typedef struct StringBuffer {
|
sl@0
|
524 |
DataBuffer b; /* Includes null terminator. */
|
sl@0
|
525 |
} StringBuffer;
|
sl@0
|
526 |
|
sl@0
|
527 |
static void initStringBuffer(StringBuffer *sb){
|
sl@0
|
528 |
dataBufferInit(&sb->b, 100);
|
sl@0
|
529 |
dataBufferReplace(&sb->b, "", 1);
|
sl@0
|
530 |
}
|
sl@0
|
531 |
static int stringBufferLength(StringBuffer *sb){
|
sl@0
|
532 |
return sb->b.nData-1;
|
sl@0
|
533 |
}
|
sl@0
|
534 |
static char *stringBufferData(StringBuffer *sb){
|
sl@0
|
535 |
return sb->b.pData;
|
sl@0
|
536 |
}
|
sl@0
|
537 |
static void stringBufferDestroy(StringBuffer *sb){
|
sl@0
|
538 |
dataBufferDestroy(&sb->b);
|
sl@0
|
539 |
}
|
sl@0
|
540 |
|
sl@0
|
541 |
static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){
|
sl@0
|
542 |
assert( sb->b.nData>0 );
|
sl@0
|
543 |
if( nFrom>0 ){
|
sl@0
|
544 |
sb->b.nData--;
|
sl@0
|
545 |
dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1);
|
sl@0
|
546 |
}
|
sl@0
|
547 |
}
|
sl@0
|
548 |
static void append(StringBuffer *sb, const char *zFrom){
|
sl@0
|
549 |
nappend(sb, zFrom, strlen(zFrom));
|
sl@0
|
550 |
}
|
sl@0
|
551 |
|
sl@0
|
552 |
/* Append a list of strings separated by commas. */
|
sl@0
|
553 |
static void appendList(StringBuffer *sb, int nString, char **azString){
|
sl@0
|
554 |
int i;
|
sl@0
|
555 |
for(i=0; i<nString; ++i){
|
sl@0
|
556 |
if( i>0 ) append(sb, ", ");
|
sl@0
|
557 |
append(sb, azString[i]);
|
sl@0
|
558 |
}
|
sl@0
|
559 |
}
|
sl@0
|
560 |
|
sl@0
|
561 |
static int endsInWhiteSpace(StringBuffer *p){
|
sl@0
|
562 |
return stringBufferLength(p)>0 &&
|
sl@0
|
563 |
safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]);
|
sl@0
|
564 |
}
|
sl@0
|
565 |
|
sl@0
|
566 |
/* If the StringBuffer ends in something other than white space, add a
|
sl@0
|
567 |
** single space character to the end.
|
sl@0
|
568 |
*/
|
sl@0
|
569 |
static void appendWhiteSpace(StringBuffer *p){
|
sl@0
|
570 |
if( stringBufferLength(p)==0 ) return;
|
sl@0
|
571 |
if( !endsInWhiteSpace(p) ) append(p, " ");
|
sl@0
|
572 |
}
|
sl@0
|
573 |
|
sl@0
|
574 |
/* Remove white space from the end of the StringBuffer */
|
sl@0
|
575 |
static void trimWhiteSpace(StringBuffer *p){
|
sl@0
|
576 |
while( endsInWhiteSpace(p) ){
|
sl@0
|
577 |
p->b.pData[--p->b.nData-1] = '\0';
|
sl@0
|
578 |
}
|
sl@0
|
579 |
}
|
sl@0
|
580 |
|
sl@0
|
581 |
/*******************************************************************/
|
sl@0
|
582 |
/* DLReader is used to read document elements from a doclist. The
|
sl@0
|
583 |
** current docid is cached, so dlrDocid() is fast. DLReader does not
|
sl@0
|
584 |
** own the doclist buffer.
|
sl@0
|
585 |
**
|
sl@0
|
586 |
** dlrAtEnd - true if there's no more data to read.
|
sl@0
|
587 |
** dlrDocid - docid of current document.
|
sl@0
|
588 |
** dlrDocData - doclist data for current document (including docid).
|
sl@0
|
589 |
** dlrDocDataBytes - length of same.
|
sl@0
|
590 |
** dlrAllDataBytes - length of all remaining data.
|
sl@0
|
591 |
** dlrPosData - position data for current document.
|
sl@0
|
592 |
** dlrPosDataLen - length of pos data for current document (incl POS_END).
|
sl@0
|
593 |
** dlrStep - step to current document.
|
sl@0
|
594 |
** dlrInit - initial for doclist of given type against given data.
|
sl@0
|
595 |
** dlrDestroy - clean up.
|
sl@0
|
596 |
**
|
sl@0
|
597 |
** Expected usage is something like:
|
sl@0
|
598 |
**
|
sl@0
|
599 |
** DLReader reader;
|
sl@0
|
600 |
** dlrInit(&reader, pData, nData);
|
sl@0
|
601 |
** while( !dlrAtEnd(&reader) ){
|
sl@0
|
602 |
** // calls to dlrDocid() and kin.
|
sl@0
|
603 |
** dlrStep(&reader);
|
sl@0
|
604 |
** }
|
sl@0
|
605 |
** dlrDestroy(&reader);
|
sl@0
|
606 |
*/
|
sl@0
|
607 |
typedef struct DLReader {
|
sl@0
|
608 |
DocListType iType;
|
sl@0
|
609 |
const char *pData;
|
sl@0
|
610 |
int nData;
|
sl@0
|
611 |
|
sl@0
|
612 |
sqlite_int64 iDocid;
|
sl@0
|
613 |
int nElement;
|
sl@0
|
614 |
} DLReader;
|
sl@0
|
615 |
|
sl@0
|
616 |
static int dlrAtEnd(DLReader *pReader){
|
sl@0
|
617 |
assert( pReader->nData>=0 );
|
sl@0
|
618 |
return pReader->nData==0;
|
sl@0
|
619 |
}
|
sl@0
|
620 |
static sqlite_int64 dlrDocid(DLReader *pReader){
|
sl@0
|
621 |
assert( !dlrAtEnd(pReader) );
|
sl@0
|
622 |
return pReader->iDocid;
|
sl@0
|
623 |
}
|
sl@0
|
624 |
static const char *dlrDocData(DLReader *pReader){
|
sl@0
|
625 |
assert( !dlrAtEnd(pReader) );
|
sl@0
|
626 |
return pReader->pData;
|
sl@0
|
627 |
}
|
sl@0
|
628 |
static int dlrDocDataBytes(DLReader *pReader){
|
sl@0
|
629 |
assert( !dlrAtEnd(pReader) );
|
sl@0
|
630 |
return pReader->nElement;
|
sl@0
|
631 |
}
|
sl@0
|
632 |
static int dlrAllDataBytes(DLReader *pReader){
|
sl@0
|
633 |
assert( !dlrAtEnd(pReader) );
|
sl@0
|
634 |
return pReader->nData;
|
sl@0
|
635 |
}
|
sl@0
|
636 |
/* TODO(shess) Consider adding a field to track iDocid varint length
|
sl@0
|
637 |
** to make these two functions faster. This might matter (a tiny bit)
|
sl@0
|
638 |
** for queries.
|
sl@0
|
639 |
*/
|
sl@0
|
640 |
static const char *dlrPosData(DLReader *pReader){
|
sl@0
|
641 |
sqlite_int64 iDummy;
|
sl@0
|
642 |
int n = getVarint(pReader->pData, &iDummy);
|
sl@0
|
643 |
assert( !dlrAtEnd(pReader) );
|
sl@0
|
644 |
return pReader->pData+n;
|
sl@0
|
645 |
}
|
sl@0
|
646 |
static int dlrPosDataLen(DLReader *pReader){
|
sl@0
|
647 |
sqlite_int64 iDummy;
|
sl@0
|
648 |
int n = getVarint(pReader->pData, &iDummy);
|
sl@0
|
649 |
assert( !dlrAtEnd(pReader) );
|
sl@0
|
650 |
return pReader->nElement-n;
|
sl@0
|
651 |
}
|
sl@0
|
652 |
static void dlrStep(DLReader *pReader){
|
sl@0
|
653 |
assert( !dlrAtEnd(pReader) );
|
sl@0
|
654 |
|
sl@0
|
655 |
/* Skip past current doclist element. */
|
sl@0
|
656 |
assert( pReader->nElement<=pReader->nData );
|
sl@0
|
657 |
pReader->pData += pReader->nElement;
|
sl@0
|
658 |
pReader->nData -= pReader->nElement;
|
sl@0
|
659 |
|
sl@0
|
660 |
/* If there is more data, read the next doclist element. */
|
sl@0
|
661 |
if( pReader->nData!=0 ){
|
sl@0
|
662 |
sqlite_int64 iDocidDelta;
|
sl@0
|
663 |
int iDummy, n = getVarint(pReader->pData, &iDocidDelta);
|
sl@0
|
664 |
pReader->iDocid += iDocidDelta;
|
sl@0
|
665 |
if( pReader->iType>=DL_POSITIONS ){
|
sl@0
|
666 |
assert( n<pReader->nData );
|
sl@0
|
667 |
while( 1 ){
|
sl@0
|
668 |
n += getVarint32(pReader->pData+n, &iDummy);
|
sl@0
|
669 |
assert( n<=pReader->nData );
|
sl@0
|
670 |
if( iDummy==POS_END ) break;
|
sl@0
|
671 |
if( iDummy==POS_COLUMN ){
|
sl@0
|
672 |
n += getVarint32(pReader->pData+n, &iDummy);
|
sl@0
|
673 |
assert( n<pReader->nData );
|
sl@0
|
674 |
}else if( pReader->iType==DL_POSITIONS_OFFSETS ){
|
sl@0
|
675 |
n += getVarint32(pReader->pData+n, &iDummy);
|
sl@0
|
676 |
n += getVarint32(pReader->pData+n, &iDummy);
|
sl@0
|
677 |
assert( n<pReader->nData );
|
sl@0
|
678 |
}
|
sl@0
|
679 |
}
|
sl@0
|
680 |
}
|
sl@0
|
681 |
pReader->nElement = n;
|
sl@0
|
682 |
assert( pReader->nElement<=pReader->nData );
|
sl@0
|
683 |
}
|
sl@0
|
684 |
}
|
sl@0
|
685 |
static void dlrInit(DLReader *pReader, DocListType iType,
|
sl@0
|
686 |
const char *pData, int nData){
|
sl@0
|
687 |
assert( pData!=NULL && nData!=0 );
|
sl@0
|
688 |
pReader->iType = iType;
|
sl@0
|
689 |
pReader->pData = pData;
|
sl@0
|
690 |
pReader->nData = nData;
|
sl@0
|
691 |
pReader->nElement = 0;
|
sl@0
|
692 |
pReader->iDocid = 0;
|
sl@0
|
693 |
|
sl@0
|
694 |
/* Load the first element's data. There must be a first element. */
|
sl@0
|
695 |
dlrStep(pReader);
|
sl@0
|
696 |
}
|
sl@0
|
697 |
static void dlrDestroy(DLReader *pReader){
|
sl@0
|
698 |
SCRAMBLE(pReader);
|
sl@0
|
699 |
}
|
sl@0
|
700 |
|
sl@0
|
701 |
#ifndef NDEBUG
|
sl@0
|
702 |
/* Verify that the doclist can be validly decoded. Also returns the
|
sl@0
|
703 |
** last docid found because it is convenient in other assertions for
|
sl@0
|
704 |
** DLWriter.
|
sl@0
|
705 |
*/
|
sl@0
|
706 |
static void docListValidate(DocListType iType, const char *pData, int nData,
|
sl@0
|
707 |
sqlite_int64 *pLastDocid){
|
sl@0
|
708 |
sqlite_int64 iPrevDocid = 0;
|
sl@0
|
709 |
assert( nData>0 );
|
sl@0
|
710 |
assert( pData!=0 );
|
sl@0
|
711 |
assert( pData+nData>pData );
|
sl@0
|
712 |
while( nData!=0 ){
|
sl@0
|
713 |
sqlite_int64 iDocidDelta;
|
sl@0
|
714 |
int n = getVarint(pData, &iDocidDelta);
|
sl@0
|
715 |
iPrevDocid += iDocidDelta;
|
sl@0
|
716 |
if( iType>DL_DOCIDS ){
|
sl@0
|
717 |
int iDummy;
|
sl@0
|
718 |
while( 1 ){
|
sl@0
|
719 |
n += getVarint32(pData+n, &iDummy);
|
sl@0
|
720 |
if( iDummy==POS_END ) break;
|
sl@0
|
721 |
if( iDummy==POS_COLUMN ){
|
sl@0
|
722 |
n += getVarint32(pData+n, &iDummy);
|
sl@0
|
723 |
}else if( iType>DL_POSITIONS ){
|
sl@0
|
724 |
n += getVarint32(pData+n, &iDummy);
|
sl@0
|
725 |
n += getVarint32(pData+n, &iDummy);
|
sl@0
|
726 |
}
|
sl@0
|
727 |
assert( n<=nData );
|
sl@0
|
728 |
}
|
sl@0
|
729 |
}
|
sl@0
|
730 |
assert( n<=nData );
|
sl@0
|
731 |
pData += n;
|
sl@0
|
732 |
nData -= n;
|
sl@0
|
733 |
}
|
sl@0
|
734 |
if( pLastDocid ) *pLastDocid = iPrevDocid;
|
sl@0
|
735 |
}
|
sl@0
|
736 |
#define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o)
|
sl@0
|
737 |
#else
|
sl@0
|
738 |
#define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 )
|
sl@0
|
739 |
#endif
|
sl@0
|
740 |
|
sl@0
|
741 |
/*******************************************************************/
|
sl@0
|
742 |
/* DLWriter is used to write doclist data to a DataBuffer. DLWriter
|
sl@0
|
743 |
** always appends to the buffer and does not own it.
|
sl@0
|
744 |
**
|
sl@0
|
745 |
** dlwInit - initialize to write a given type doclistto a buffer.
|
sl@0
|
746 |
** dlwDestroy - clear the writer's memory. Does not free buffer.
|
sl@0
|
747 |
** dlwAppend - append raw doclist data to buffer.
|
sl@0
|
748 |
** dlwCopy - copy next doclist from reader to writer.
|
sl@0
|
749 |
** dlwAdd - construct doclist element and append to buffer.
|
sl@0
|
750 |
** Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter).
|
sl@0
|
751 |
*/
|
sl@0
|
752 |
typedef struct DLWriter {
|
sl@0
|
753 |
DocListType iType;
|
sl@0
|
754 |
DataBuffer *b;
|
sl@0
|
755 |
sqlite_int64 iPrevDocid;
|
sl@0
|
756 |
#ifndef NDEBUG
|
sl@0
|
757 |
int has_iPrevDocid;
|
sl@0
|
758 |
#endif
|
sl@0
|
759 |
} DLWriter;
|
sl@0
|
760 |
|
sl@0
|
761 |
static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){
|
sl@0
|
762 |
pWriter->b = b;
|
sl@0
|
763 |
pWriter->iType = iType;
|
sl@0
|
764 |
pWriter->iPrevDocid = 0;
|
sl@0
|
765 |
#ifndef NDEBUG
|
sl@0
|
766 |
pWriter->has_iPrevDocid = 0;
|
sl@0
|
767 |
#endif
|
sl@0
|
768 |
}
|
sl@0
|
769 |
static void dlwDestroy(DLWriter *pWriter){
|
sl@0
|
770 |
SCRAMBLE(pWriter);
|
sl@0
|
771 |
}
|
sl@0
|
772 |
/* iFirstDocid is the first docid in the doclist in pData. It is
|
sl@0
|
773 |
** needed because pData may point within a larger doclist, in which
|
sl@0
|
774 |
** case the first item would be delta-encoded.
|
sl@0
|
775 |
**
|
sl@0
|
776 |
** iLastDocid is the final docid in the doclist in pData. It is
|
sl@0
|
777 |
** needed to create the new iPrevDocid for future delta-encoding. The
|
sl@0
|
778 |
** code could decode the passed doclist to recreate iLastDocid, but
|
sl@0
|
779 |
** the only current user (docListMerge) already has decoded this
|
sl@0
|
780 |
** information.
|
sl@0
|
781 |
*/
|
sl@0
|
782 |
/* TODO(shess) This has become just a helper for docListMerge.
|
sl@0
|
783 |
** Consider a refactor to make this cleaner.
|
sl@0
|
784 |
*/
|
sl@0
|
785 |
static void dlwAppend(DLWriter *pWriter,
|
sl@0
|
786 |
const char *pData, int nData,
|
sl@0
|
787 |
sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){
|
sl@0
|
788 |
sqlite_int64 iDocid = 0;
|
sl@0
|
789 |
char c[VARINT_MAX];
|
sl@0
|
790 |
int nFirstOld, nFirstNew; /* Old and new varint len of first docid. */
|
sl@0
|
791 |
#ifndef NDEBUG
|
sl@0
|
792 |
sqlite_int64 iLastDocidDelta;
|
sl@0
|
793 |
#endif
|
sl@0
|
794 |
|
sl@0
|
795 |
/* Recode the initial docid as delta from iPrevDocid. */
|
sl@0
|
796 |
nFirstOld = getVarint(pData, &iDocid);
|
sl@0
|
797 |
assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) );
|
sl@0
|
798 |
nFirstNew = putVarint(c, iFirstDocid-pWriter->iPrevDocid);
|
sl@0
|
799 |
|
sl@0
|
800 |
/* Verify that the incoming doclist is valid AND that it ends with
|
sl@0
|
801 |
** the expected docid. This is essential because we'll trust this
|
sl@0
|
802 |
** docid in future delta-encoding.
|
sl@0
|
803 |
*/
|
sl@0
|
804 |
ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta);
|
sl@0
|
805 |
assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta );
|
sl@0
|
806 |
|
sl@0
|
807 |
/* Append recoded initial docid and everything else. Rest of docids
|
sl@0
|
808 |
** should have been delta-encoded from previous initial docid.
|
sl@0
|
809 |
*/
|
sl@0
|
810 |
if( nFirstOld<nData ){
|
sl@0
|
811 |
dataBufferAppend2(pWriter->b, c, nFirstNew,
|
sl@0
|
812 |
pData+nFirstOld, nData-nFirstOld);
|
sl@0
|
813 |
}else{
|
sl@0
|
814 |
dataBufferAppend(pWriter->b, c, nFirstNew);
|
sl@0
|
815 |
}
|
sl@0
|
816 |
pWriter->iPrevDocid = iLastDocid;
|
sl@0
|
817 |
}
|
sl@0
|
818 |
static void dlwCopy(DLWriter *pWriter, DLReader *pReader){
|
sl@0
|
819 |
dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader),
|
sl@0
|
820 |
dlrDocid(pReader), dlrDocid(pReader));
|
sl@0
|
821 |
}
|
sl@0
|
822 |
static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){
|
sl@0
|
823 |
char c[VARINT_MAX];
|
sl@0
|
824 |
int n = putVarint(c, iDocid-pWriter->iPrevDocid);
|
sl@0
|
825 |
|
sl@0
|
826 |
/* Docids must ascend. */
|
sl@0
|
827 |
assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid );
|
sl@0
|
828 |
assert( pWriter->iType==DL_DOCIDS );
|
sl@0
|
829 |
|
sl@0
|
830 |
dataBufferAppend(pWriter->b, c, n);
|
sl@0
|
831 |
pWriter->iPrevDocid = iDocid;
|
sl@0
|
832 |
#ifndef NDEBUG
|
sl@0
|
833 |
pWriter->has_iPrevDocid = 1;
|
sl@0
|
834 |
#endif
|
sl@0
|
835 |
}
|
sl@0
|
836 |
|
sl@0
|
837 |
/*******************************************************************/
|
sl@0
|
838 |
/* PLReader is used to read data from a document's position list. As
|
sl@0
|
839 |
** the caller steps through the list, data is cached so that varints
|
sl@0
|
840 |
** only need to be decoded once.
|
sl@0
|
841 |
**
|
sl@0
|
842 |
** plrInit, plrDestroy - create/destroy a reader.
|
sl@0
|
843 |
** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors
|
sl@0
|
844 |
** plrAtEnd - at end of stream, only call plrDestroy once true.
|
sl@0
|
845 |
** plrStep - step to the next element.
|
sl@0
|
846 |
*/
|
sl@0
|
847 |
typedef struct PLReader {
|
sl@0
|
848 |
/* These refer to the next position's data. nData will reach 0 when
|
sl@0
|
849 |
** reading the last position, so plrStep() signals EOF by setting
|
sl@0
|
850 |
** pData to NULL.
|
sl@0
|
851 |
*/
|
sl@0
|
852 |
const char *pData;
|
sl@0
|
853 |
int nData;
|
sl@0
|
854 |
|
sl@0
|
855 |
DocListType iType;
|
sl@0
|
856 |
int iColumn; /* the last column read */
|
sl@0
|
857 |
int iPosition; /* the last position read */
|
sl@0
|
858 |
int iStartOffset; /* the last start offset read */
|
sl@0
|
859 |
int iEndOffset; /* the last end offset read */
|
sl@0
|
860 |
} PLReader;
|
sl@0
|
861 |
|
sl@0
|
862 |
static int plrAtEnd(PLReader *pReader){
|
sl@0
|
863 |
return pReader->pData==NULL;
|
sl@0
|
864 |
}
|
sl@0
|
865 |
static int plrColumn(PLReader *pReader){
|
sl@0
|
866 |
assert( !plrAtEnd(pReader) );
|
sl@0
|
867 |
return pReader->iColumn;
|
sl@0
|
868 |
}
|
sl@0
|
869 |
static int plrPosition(PLReader *pReader){
|
sl@0
|
870 |
assert( !plrAtEnd(pReader) );
|
sl@0
|
871 |
return pReader->iPosition;
|
sl@0
|
872 |
}
|
sl@0
|
873 |
static int plrStartOffset(PLReader *pReader){
|
sl@0
|
874 |
assert( !plrAtEnd(pReader) );
|
sl@0
|
875 |
return pReader->iStartOffset;
|
sl@0
|
876 |
}
|
sl@0
|
877 |
static int plrEndOffset(PLReader *pReader){
|
sl@0
|
878 |
assert( !plrAtEnd(pReader) );
|
sl@0
|
879 |
return pReader->iEndOffset;
|
sl@0
|
880 |
}
|
sl@0
|
881 |
static void plrStep(PLReader *pReader){
|
sl@0
|
882 |
int i, n;
|
sl@0
|
883 |
|
sl@0
|
884 |
assert( !plrAtEnd(pReader) );
|
sl@0
|
885 |
|
sl@0
|
886 |
if( pReader->nData==0 ){
|
sl@0
|
887 |
pReader->pData = NULL;
|
sl@0
|
888 |
return;
|
sl@0
|
889 |
}
|
sl@0
|
890 |
|
sl@0
|
891 |
n = getVarint32(pReader->pData, &i);
|
sl@0
|
892 |
if( i==POS_COLUMN ){
|
sl@0
|
893 |
n += getVarint32(pReader->pData+n, &pReader->iColumn);
|
sl@0
|
894 |
pReader->iPosition = 0;
|
sl@0
|
895 |
pReader->iStartOffset = 0;
|
sl@0
|
896 |
n += getVarint32(pReader->pData+n, &i);
|
sl@0
|
897 |
}
|
sl@0
|
898 |
/* Should never see adjacent column changes. */
|
sl@0
|
899 |
assert( i!=POS_COLUMN );
|
sl@0
|
900 |
|
sl@0
|
901 |
if( i==POS_END ){
|
sl@0
|
902 |
pReader->nData = 0;
|
sl@0
|
903 |
pReader->pData = NULL;
|
sl@0
|
904 |
return;
|
sl@0
|
905 |
}
|
sl@0
|
906 |
|
sl@0
|
907 |
pReader->iPosition += i-POS_BASE;
|
sl@0
|
908 |
if( pReader->iType==DL_POSITIONS_OFFSETS ){
|
sl@0
|
909 |
n += getVarint32(pReader->pData+n, &i);
|
sl@0
|
910 |
pReader->iStartOffset += i;
|
sl@0
|
911 |
n += getVarint32(pReader->pData+n, &i);
|
sl@0
|
912 |
pReader->iEndOffset = pReader->iStartOffset+i;
|
sl@0
|
913 |
}
|
sl@0
|
914 |
assert( n<=pReader->nData );
|
sl@0
|
915 |
pReader->pData += n;
|
sl@0
|
916 |
pReader->nData -= n;
|
sl@0
|
917 |
}
|
sl@0
|
918 |
|
sl@0
|
919 |
static void plrInit(PLReader *pReader, DLReader *pDLReader){
|
sl@0
|
920 |
pReader->pData = dlrPosData(pDLReader);
|
sl@0
|
921 |
pReader->nData = dlrPosDataLen(pDLReader);
|
sl@0
|
922 |
pReader->iType = pDLReader->iType;
|
sl@0
|
923 |
pReader->iColumn = 0;
|
sl@0
|
924 |
pReader->iPosition = 0;
|
sl@0
|
925 |
pReader->iStartOffset = 0;
|
sl@0
|
926 |
pReader->iEndOffset = 0;
|
sl@0
|
927 |
plrStep(pReader);
|
sl@0
|
928 |
}
|
sl@0
|
929 |
static void plrDestroy(PLReader *pReader){
|
sl@0
|
930 |
SCRAMBLE(pReader);
|
sl@0
|
931 |
}
|
sl@0
|
932 |
|
sl@0
|
933 |
/*******************************************************************/
|
sl@0
|
934 |
/* PLWriter is used in constructing a document's position list. As a
|
sl@0
|
935 |
** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op.
|
sl@0
|
936 |
** PLWriter writes to the associated DLWriter's buffer.
|
sl@0
|
937 |
**
|
sl@0
|
938 |
** plwInit - init for writing a document's poslist.
|
sl@0
|
939 |
** plwDestroy - clear a writer.
|
sl@0
|
940 |
** plwAdd - append position and offset information.
|
sl@0
|
941 |
** plwCopy - copy next position's data from reader to writer.
|
sl@0
|
942 |
** plwTerminate - add any necessary doclist terminator.
|
sl@0
|
943 |
**
|
sl@0
|
944 |
** Calling plwAdd() after plwTerminate() may result in a corrupt
|
sl@0
|
945 |
** doclist.
|
sl@0
|
946 |
*/
|
sl@0
|
947 |
/* TODO(shess) Until we've written the second item, we can cache the
|
sl@0
|
948 |
** first item's information. Then we'd have three states:
|
sl@0
|
949 |
**
|
sl@0
|
950 |
** - initialized with docid, no positions.
|
sl@0
|
951 |
** - docid and one position.
|
sl@0
|
952 |
** - docid and multiple positions.
|
sl@0
|
953 |
**
|
sl@0
|
954 |
** Only the last state needs to actually write to dlw->b, which would
|
sl@0
|
955 |
** be an improvement in the DLCollector case.
|
sl@0
|
956 |
*/
|
sl@0
|
957 |
typedef struct PLWriter {
|
sl@0
|
958 |
DLWriter *dlw;
|
sl@0
|
959 |
|
sl@0
|
960 |
int iColumn; /* the last column written */
|
sl@0
|
961 |
int iPos; /* the last position written */
|
sl@0
|
962 |
int iOffset; /* the last start offset written */
|
sl@0
|
963 |
} PLWriter;
|
sl@0
|
964 |
|
sl@0
|
965 |
/* TODO(shess) In the case where the parent is reading these values
|
sl@0
|
966 |
** from a PLReader, we could optimize to a copy if that PLReader has
|
sl@0
|
967 |
** the same type as pWriter.
|
sl@0
|
968 |
*/
|
sl@0
|
969 |
static void plwAdd(PLWriter *pWriter, int iColumn, int iPos,
|
sl@0
|
970 |
int iStartOffset, int iEndOffset){
|
sl@0
|
971 |
/* Worst-case space for POS_COLUMN, iColumn, iPosDelta,
|
sl@0
|
972 |
** iStartOffsetDelta, and iEndOffsetDelta.
|
sl@0
|
973 |
*/
|
sl@0
|
974 |
char c[5*VARINT_MAX];
|
sl@0
|
975 |
int n = 0;
|
sl@0
|
976 |
|
sl@0
|
977 |
/* Ban plwAdd() after plwTerminate(). */
|
sl@0
|
978 |
assert( pWriter->iPos!=-1 );
|
sl@0
|
979 |
|
sl@0
|
980 |
if( pWriter->dlw->iType==DL_DOCIDS ) return;
|
sl@0
|
981 |
|
sl@0
|
982 |
if( iColumn!=pWriter->iColumn ){
|
sl@0
|
983 |
n += putVarint(c+n, POS_COLUMN);
|
sl@0
|
984 |
n += putVarint(c+n, iColumn);
|
sl@0
|
985 |
pWriter->iColumn = iColumn;
|
sl@0
|
986 |
pWriter->iPos = 0;
|
sl@0
|
987 |
pWriter->iOffset = 0;
|
sl@0
|
988 |
}
|
sl@0
|
989 |
assert( iPos>=pWriter->iPos );
|
sl@0
|
990 |
n += putVarint(c+n, POS_BASE+(iPos-pWriter->iPos));
|
sl@0
|
991 |
pWriter->iPos = iPos;
|
sl@0
|
992 |
if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){
|
sl@0
|
993 |
assert( iStartOffset>=pWriter->iOffset );
|
sl@0
|
994 |
n += putVarint(c+n, iStartOffset-pWriter->iOffset);
|
sl@0
|
995 |
pWriter->iOffset = iStartOffset;
|
sl@0
|
996 |
assert( iEndOffset>=iStartOffset );
|
sl@0
|
997 |
n += putVarint(c+n, iEndOffset-iStartOffset);
|
sl@0
|
998 |
}
|
sl@0
|
999 |
dataBufferAppend(pWriter->dlw->b, c, n);
|
sl@0
|
1000 |
}
|
sl@0
|
1001 |
static void plwCopy(PLWriter *pWriter, PLReader *pReader){
|
sl@0
|
1002 |
plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader),
|
sl@0
|
1003 |
plrStartOffset(pReader), plrEndOffset(pReader));
|
sl@0
|
1004 |
}
|
sl@0
|
1005 |
static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){
|
sl@0
|
1006 |
char c[VARINT_MAX];
|
sl@0
|
1007 |
int n;
|
sl@0
|
1008 |
|
sl@0
|
1009 |
pWriter->dlw = dlw;
|
sl@0
|
1010 |
|
sl@0
|
1011 |
/* Docids must ascend. */
|
sl@0
|
1012 |
assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid );
|
sl@0
|
1013 |
n = putVarint(c, iDocid-pWriter->dlw->iPrevDocid);
|
sl@0
|
1014 |
dataBufferAppend(pWriter->dlw->b, c, n);
|
sl@0
|
1015 |
pWriter->dlw->iPrevDocid = iDocid;
|
sl@0
|
1016 |
#ifndef NDEBUG
|
sl@0
|
1017 |
pWriter->dlw->has_iPrevDocid = 1;
|
sl@0
|
1018 |
#endif
|
sl@0
|
1019 |
|
sl@0
|
1020 |
pWriter->iColumn = 0;
|
sl@0
|
1021 |
pWriter->iPos = 0;
|
sl@0
|
1022 |
pWriter->iOffset = 0;
|
sl@0
|
1023 |
}
|
sl@0
|
1024 |
/* TODO(shess) Should plwDestroy() also terminate the doclist? But
|
sl@0
|
1025 |
** then plwDestroy() would no longer be just a destructor, it would
|
sl@0
|
1026 |
** also be doing work, which isn't consistent with the overall idiom.
|
sl@0
|
1027 |
** Another option would be for plwAdd() to always append any necessary
|
sl@0
|
1028 |
** terminator, so that the output is always correct. But that would
|
sl@0
|
1029 |
** add incremental work to the common case with the only benefit being
|
sl@0
|
1030 |
** API elegance. Punt for now.
|
sl@0
|
1031 |
*/
|
sl@0
|
1032 |
static void plwTerminate(PLWriter *pWriter){
|
sl@0
|
1033 |
if( pWriter->dlw->iType>DL_DOCIDS ){
|
sl@0
|
1034 |
char c[VARINT_MAX];
|
sl@0
|
1035 |
int n = putVarint(c, POS_END);
|
sl@0
|
1036 |
dataBufferAppend(pWriter->dlw->b, c, n);
|
sl@0
|
1037 |
}
|
sl@0
|
1038 |
#ifndef NDEBUG
|
sl@0
|
1039 |
/* Mark as terminated for assert in plwAdd(). */
|
sl@0
|
1040 |
pWriter->iPos = -1;
|
sl@0
|
1041 |
#endif
|
sl@0
|
1042 |
}
|
sl@0
|
1043 |
static void plwDestroy(PLWriter *pWriter){
|
sl@0
|
1044 |
SCRAMBLE(pWriter);
|
sl@0
|
1045 |
}
|
sl@0
|
1046 |
|
sl@0
|
1047 |
/*******************************************************************/
|
sl@0
|
1048 |
/* DLCollector wraps PLWriter and DLWriter to provide a
|
sl@0
|
1049 |
** dynamically-allocated doclist area to use during tokenization.
|
sl@0
|
1050 |
**
|
sl@0
|
1051 |
** dlcNew - malloc up and initialize a collector.
|
sl@0
|
1052 |
** dlcDelete - destroy a collector and all contained items.
|
sl@0
|
1053 |
** dlcAddPos - append position and offset information.
|
sl@0
|
1054 |
** dlcAddDoclist - add the collected doclist to the given buffer.
|
sl@0
|
1055 |
** dlcNext - terminate the current document and open another.
|
sl@0
|
1056 |
*/
|
sl@0
|
1057 |
typedef struct DLCollector {
|
sl@0
|
1058 |
DataBuffer b;
|
sl@0
|
1059 |
DLWriter dlw;
|
sl@0
|
1060 |
PLWriter plw;
|
sl@0
|
1061 |
} DLCollector;
|
sl@0
|
1062 |
|
sl@0
|
1063 |
/* TODO(shess) This could also be done by calling plwTerminate() and
|
sl@0
|
1064 |
** dataBufferAppend(). I tried that, expecting nominal performance
|
sl@0
|
1065 |
** differences, but it seemed to pretty reliably be worth 1% to code
|
sl@0
|
1066 |
** it this way. I suspect it is the incremental malloc overhead (some
|
sl@0
|
1067 |
** percentage of the plwTerminate() calls will cause a realloc), so
|
sl@0
|
1068 |
** this might be worth revisiting if the DataBuffer implementation
|
sl@0
|
1069 |
** changes.
|
sl@0
|
1070 |
*/
|
sl@0
|
1071 |
static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){
|
sl@0
|
1072 |
if( pCollector->dlw.iType>DL_DOCIDS ){
|
sl@0
|
1073 |
char c[VARINT_MAX];
|
sl@0
|
1074 |
int n = putVarint(c, POS_END);
|
sl@0
|
1075 |
dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n);
|
sl@0
|
1076 |
}else{
|
sl@0
|
1077 |
dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData);
|
sl@0
|
1078 |
}
|
sl@0
|
1079 |
}
|
sl@0
|
1080 |
static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){
|
sl@0
|
1081 |
plwTerminate(&pCollector->plw);
|
sl@0
|
1082 |
plwDestroy(&pCollector->plw);
|
sl@0
|
1083 |
plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
|
sl@0
|
1084 |
}
|
sl@0
|
1085 |
static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos,
|
sl@0
|
1086 |
int iStartOffset, int iEndOffset){
|
sl@0
|
1087 |
plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset);
|
sl@0
|
1088 |
}
|
sl@0
|
1089 |
|
sl@0
|
1090 |
static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){
|
sl@0
|
1091 |
DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector));
|
sl@0
|
1092 |
dataBufferInit(&pCollector->b, 0);
|
sl@0
|
1093 |
dlwInit(&pCollector->dlw, iType, &pCollector->b);
|
sl@0
|
1094 |
plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
|
sl@0
|
1095 |
return pCollector;
|
sl@0
|
1096 |
}
|
sl@0
|
1097 |
static void dlcDelete(DLCollector *pCollector){
|
sl@0
|
1098 |
plwDestroy(&pCollector->plw);
|
sl@0
|
1099 |
dlwDestroy(&pCollector->dlw);
|
sl@0
|
1100 |
dataBufferDestroy(&pCollector->b);
|
sl@0
|
1101 |
SCRAMBLE(pCollector);
|
sl@0
|
1102 |
sqlite3_free(pCollector);
|
sl@0
|
1103 |
}
|
sl@0
|
1104 |
|
sl@0
|
1105 |
|
sl@0
|
1106 |
/* Copy the doclist data of iType in pData/nData into *out, trimming
|
sl@0
|
1107 |
** unnecessary data as we go. Only columns matching iColumn are
|
sl@0
|
1108 |
** copied, all columns copied if iColumn is -1. Elements with no
|
sl@0
|
1109 |
** matching columns are dropped. The output is an iOutType doclist.
|
sl@0
|
1110 |
*/
|
sl@0
|
1111 |
/* NOTE(shess) This code is only valid after all doclists are merged.
|
sl@0
|
1112 |
** If this is run before merges, then doclist items which represent
|
sl@0
|
1113 |
** deletion will be trimmed, and will thus not effect a deletion
|
sl@0
|
1114 |
** during the merge.
|
sl@0
|
1115 |
*/
|
sl@0
|
1116 |
static void docListTrim(DocListType iType, const char *pData, int nData,
|
sl@0
|
1117 |
int iColumn, DocListType iOutType, DataBuffer *out){
|
sl@0
|
1118 |
DLReader dlReader;
|
sl@0
|
1119 |
DLWriter dlWriter;
|
sl@0
|
1120 |
|
sl@0
|
1121 |
assert( iOutType<=iType );
|
sl@0
|
1122 |
|
sl@0
|
1123 |
dlrInit(&dlReader, iType, pData, nData);
|
sl@0
|
1124 |
dlwInit(&dlWriter, iOutType, out);
|
sl@0
|
1125 |
|
sl@0
|
1126 |
while( !dlrAtEnd(&dlReader) ){
|
sl@0
|
1127 |
PLReader plReader;
|
sl@0
|
1128 |
PLWriter plWriter;
|
sl@0
|
1129 |
int match = 0;
|
sl@0
|
1130 |
|
sl@0
|
1131 |
plrInit(&plReader, &dlReader);
|
sl@0
|
1132 |
|
sl@0
|
1133 |
while( !plrAtEnd(&plReader) ){
|
sl@0
|
1134 |
if( iColumn==-1 || plrColumn(&plReader)==iColumn ){
|
sl@0
|
1135 |
if( !match ){
|
sl@0
|
1136 |
plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader));
|
sl@0
|
1137 |
match = 1;
|
sl@0
|
1138 |
}
|
sl@0
|
1139 |
plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader),
|
sl@0
|
1140 |
plrStartOffset(&plReader), plrEndOffset(&plReader));
|
sl@0
|
1141 |
}
|
sl@0
|
1142 |
plrStep(&plReader);
|
sl@0
|
1143 |
}
|
sl@0
|
1144 |
if( match ){
|
sl@0
|
1145 |
plwTerminate(&plWriter);
|
sl@0
|
1146 |
plwDestroy(&plWriter);
|
sl@0
|
1147 |
}
|
sl@0
|
1148 |
|
sl@0
|
1149 |
plrDestroy(&plReader);
|
sl@0
|
1150 |
dlrStep(&dlReader);
|
sl@0
|
1151 |
}
|
sl@0
|
1152 |
dlwDestroy(&dlWriter);
|
sl@0
|
1153 |
dlrDestroy(&dlReader);
|
sl@0
|
1154 |
}
|
sl@0
|
1155 |
|
sl@0
|
1156 |
/* Used by docListMerge() to keep doclists in the ascending order by
|
sl@0
|
1157 |
** docid, then ascending order by age (so the newest comes first).
|
sl@0
|
1158 |
*/
|
sl@0
|
1159 |
typedef struct OrderedDLReader {
|
sl@0
|
1160 |
DLReader *pReader;
|
sl@0
|
1161 |
|
sl@0
|
1162 |
/* TODO(shess) If we assume that docListMerge pReaders is ordered by
|
sl@0
|
1163 |
** age (which we do), then we could use pReader comparisons to break
|
sl@0
|
1164 |
** ties.
|
sl@0
|
1165 |
*/
|
sl@0
|
1166 |
int idx;
|
sl@0
|
1167 |
} OrderedDLReader;
|
sl@0
|
1168 |
|
sl@0
|
1169 |
/* Order eof to end, then by docid asc, idx desc. */
|
sl@0
|
1170 |
static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){
|
sl@0
|
1171 |
if( dlrAtEnd(r1->pReader) ){
|
sl@0
|
1172 |
if( dlrAtEnd(r2->pReader) ) return 0; /* Both atEnd(). */
|
sl@0
|
1173 |
return 1; /* Only r1 atEnd(). */
|
sl@0
|
1174 |
}
|
sl@0
|
1175 |
if( dlrAtEnd(r2->pReader) ) return -1; /* Only r2 atEnd(). */
|
sl@0
|
1176 |
|
sl@0
|
1177 |
if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1;
|
sl@0
|
1178 |
if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1;
|
sl@0
|
1179 |
|
sl@0
|
1180 |
/* Descending on idx. */
|
sl@0
|
1181 |
return r2->idx-r1->idx;
|
sl@0
|
1182 |
}
|
sl@0
|
1183 |
|
sl@0
|
1184 |
/* Bubble p[0] to appropriate place in p[1..n-1]. Assumes that
|
sl@0
|
1185 |
** p[1..n-1] is already sorted.
|
sl@0
|
1186 |
*/
|
sl@0
|
1187 |
/* TODO(shess) Is this frequent enough to warrant a binary search?
|
sl@0
|
1188 |
** Before implementing that, instrument the code to check. In most
|
sl@0
|
1189 |
** current usage, I expect that p[0] will be less than p[1] a very
|
sl@0
|
1190 |
** high proportion of the time.
|
sl@0
|
1191 |
*/
|
sl@0
|
1192 |
static void orderedDLReaderReorder(OrderedDLReader *p, int n){
|
sl@0
|
1193 |
while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){
|
sl@0
|
1194 |
OrderedDLReader tmp = p[0];
|
sl@0
|
1195 |
p[0] = p[1];
|
sl@0
|
1196 |
p[1] = tmp;
|
sl@0
|
1197 |
n--;
|
sl@0
|
1198 |
p++;
|
sl@0
|
1199 |
}
|
sl@0
|
1200 |
}
|
sl@0
|
1201 |
|
sl@0
|
1202 |
/* Given an array of doclist readers, merge their doclist elements
|
sl@0
|
1203 |
** into out in sorted order (by docid), dropping elements from older
|
sl@0
|
1204 |
** readers when there is a duplicate docid. pReaders is assumed to be
|
sl@0
|
1205 |
** ordered by age, oldest first.
|
sl@0
|
1206 |
*/
|
sl@0
|
1207 |
/* TODO(shess) nReaders must be <= MERGE_COUNT. This should probably
|
sl@0
|
1208 |
** be fixed.
|
sl@0
|
1209 |
*/
|
sl@0
|
1210 |
static void docListMerge(DataBuffer *out,
|
sl@0
|
1211 |
DLReader *pReaders, int nReaders){
|
sl@0
|
1212 |
OrderedDLReader readers[MERGE_COUNT];
|
sl@0
|
1213 |
DLWriter writer;
|
sl@0
|
1214 |
int i, n;
|
sl@0
|
1215 |
const char *pStart = 0;
|
sl@0
|
1216 |
int nStart = 0;
|
sl@0
|
1217 |
sqlite_int64 iFirstDocid = 0, iLastDocid = 0;
|
sl@0
|
1218 |
|
sl@0
|
1219 |
assert( nReaders>0 );
|
sl@0
|
1220 |
if( nReaders==1 ){
|
sl@0
|
1221 |
dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders));
|
sl@0
|
1222 |
return;
|
sl@0
|
1223 |
}
|
sl@0
|
1224 |
|
sl@0
|
1225 |
assert( nReaders<=MERGE_COUNT );
|
sl@0
|
1226 |
n = 0;
|
sl@0
|
1227 |
for(i=0; i<nReaders; i++){
|
sl@0
|
1228 |
assert( pReaders[i].iType==pReaders[0].iType );
|
sl@0
|
1229 |
readers[i].pReader = pReaders+i;
|
sl@0
|
1230 |
readers[i].idx = i;
|
sl@0
|
1231 |
n += dlrAllDataBytes(&pReaders[i]);
|
sl@0
|
1232 |
}
|
sl@0
|
1233 |
/* Conservatively size output to sum of inputs. Output should end
|
sl@0
|
1234 |
** up strictly smaller than input.
|
sl@0
|
1235 |
*/
|
sl@0
|
1236 |
dataBufferExpand(out, n);
|
sl@0
|
1237 |
|
sl@0
|
1238 |
/* Get the readers into sorted order. */
|
sl@0
|
1239 |
while( i-->0 ){
|
sl@0
|
1240 |
orderedDLReaderReorder(readers+i, nReaders-i);
|
sl@0
|
1241 |
}
|
sl@0
|
1242 |
|
sl@0
|
1243 |
dlwInit(&writer, pReaders[0].iType, out);
|
sl@0
|
1244 |
while( !dlrAtEnd(readers[0].pReader) ){
|
sl@0
|
1245 |
sqlite_int64 iDocid = dlrDocid(readers[0].pReader);
|
sl@0
|
1246 |
|
sl@0
|
1247 |
/* If this is a continuation of the current buffer to copy, extend
|
sl@0
|
1248 |
** that buffer. memcpy() seems to be more efficient if it has a
|
sl@0
|
1249 |
** lots of data to copy.
|
sl@0
|
1250 |
*/
|
sl@0
|
1251 |
if( dlrDocData(readers[0].pReader)==pStart+nStart ){
|
sl@0
|
1252 |
nStart += dlrDocDataBytes(readers[0].pReader);
|
sl@0
|
1253 |
}else{
|
sl@0
|
1254 |
if( pStart!=0 ){
|
sl@0
|
1255 |
dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
|
sl@0
|
1256 |
}
|
sl@0
|
1257 |
pStart = dlrDocData(readers[0].pReader);
|
sl@0
|
1258 |
nStart = dlrDocDataBytes(readers[0].pReader);
|
sl@0
|
1259 |
iFirstDocid = iDocid;
|
sl@0
|
1260 |
}
|
sl@0
|
1261 |
iLastDocid = iDocid;
|
sl@0
|
1262 |
dlrStep(readers[0].pReader);
|
sl@0
|
1263 |
|
sl@0
|
1264 |
/* Drop all of the older elements with the same docid. */
|
sl@0
|
1265 |
for(i=1; i<nReaders &&
|
sl@0
|
1266 |
!dlrAtEnd(readers[i].pReader) &&
|
sl@0
|
1267 |
dlrDocid(readers[i].pReader)==iDocid; i++){
|
sl@0
|
1268 |
dlrStep(readers[i].pReader);
|
sl@0
|
1269 |
}
|
sl@0
|
1270 |
|
sl@0
|
1271 |
/* Get the readers back into order. */
|
sl@0
|
1272 |
while( i-->0 ){
|
sl@0
|
1273 |
orderedDLReaderReorder(readers+i, nReaders-i);
|
sl@0
|
1274 |
}
|
sl@0
|
1275 |
}
|
sl@0
|
1276 |
|
sl@0
|
1277 |
/* Copy over any remaining elements. */
|
sl@0
|
1278 |
if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
|
sl@0
|
1279 |
dlwDestroy(&writer);
|
sl@0
|
1280 |
}
|
sl@0
|
1281 |
|
sl@0
|
1282 |
/* Helper function for posListUnion(). Compares the current position
|
sl@0
|
1283 |
** between left and right, returning as standard C idiom of <0 if
|
sl@0
|
1284 |
** left<right, >0 if left>right, and 0 if left==right. "End" always
|
sl@0
|
1285 |
** compares greater.
|
sl@0
|
1286 |
*/
|
sl@0
|
1287 |
static int posListCmp(PLReader *pLeft, PLReader *pRight){
|
sl@0
|
1288 |
assert( pLeft->iType==pRight->iType );
|
sl@0
|
1289 |
if( pLeft->iType==DL_DOCIDS ) return 0;
|
sl@0
|
1290 |
|
sl@0
|
1291 |
if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1;
|
sl@0
|
1292 |
if( plrAtEnd(pRight) ) return -1;
|
sl@0
|
1293 |
|
sl@0
|
1294 |
if( plrColumn(pLeft)<plrColumn(pRight) ) return -1;
|
sl@0
|
1295 |
if( plrColumn(pLeft)>plrColumn(pRight) ) return 1;
|
sl@0
|
1296 |
|
sl@0
|
1297 |
if( plrPosition(pLeft)<plrPosition(pRight) ) return -1;
|
sl@0
|
1298 |
if( plrPosition(pLeft)>plrPosition(pRight) ) return 1;
|
sl@0
|
1299 |
if( pLeft->iType==DL_POSITIONS ) return 0;
|
sl@0
|
1300 |
|
sl@0
|
1301 |
if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1;
|
sl@0
|
1302 |
if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1;
|
sl@0
|
1303 |
|
sl@0
|
1304 |
if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1;
|
sl@0
|
1305 |
if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1;
|
sl@0
|
1306 |
|
sl@0
|
1307 |
return 0;
|
sl@0
|
1308 |
}
|
sl@0
|
1309 |
|
sl@0
|
1310 |
/* Write the union of position lists in pLeft and pRight to pOut.
|
sl@0
|
1311 |
** "Union" in this case meaning "All unique position tuples". Should
|
sl@0
|
1312 |
** work with any doclist type, though both inputs and the output
|
sl@0
|
1313 |
** should be the same type.
|
sl@0
|
1314 |
*/
|
sl@0
|
1315 |
static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){
|
sl@0
|
1316 |
PLReader left, right;
|
sl@0
|
1317 |
PLWriter writer;
|
sl@0
|
1318 |
|
sl@0
|
1319 |
assert( dlrDocid(pLeft)==dlrDocid(pRight) );
|
sl@0
|
1320 |
assert( pLeft->iType==pRight->iType );
|
sl@0
|
1321 |
assert( pLeft->iType==pOut->iType );
|
sl@0
|
1322 |
|
sl@0
|
1323 |
plrInit(&left, pLeft);
|
sl@0
|
1324 |
plrInit(&right, pRight);
|
sl@0
|
1325 |
plwInit(&writer, pOut, dlrDocid(pLeft));
|
sl@0
|
1326 |
|
sl@0
|
1327 |
while( !plrAtEnd(&left) || !plrAtEnd(&right) ){
|
sl@0
|
1328 |
int c = posListCmp(&left, &right);
|
sl@0
|
1329 |
if( c<0 ){
|
sl@0
|
1330 |
plwCopy(&writer, &left);
|
sl@0
|
1331 |
plrStep(&left);
|
sl@0
|
1332 |
}else if( c>0 ){
|
sl@0
|
1333 |
plwCopy(&writer, &right);
|
sl@0
|
1334 |
plrStep(&right);
|
sl@0
|
1335 |
}else{
|
sl@0
|
1336 |
plwCopy(&writer, &left);
|
sl@0
|
1337 |
plrStep(&left);
|
sl@0
|
1338 |
plrStep(&right);
|
sl@0
|
1339 |
}
|
sl@0
|
1340 |
}
|
sl@0
|
1341 |
|
sl@0
|
1342 |
plwTerminate(&writer);
|
sl@0
|
1343 |
plwDestroy(&writer);
|
sl@0
|
1344 |
plrDestroy(&left);
|
sl@0
|
1345 |
plrDestroy(&right);
|
sl@0
|
1346 |
}
|
sl@0
|
1347 |
|
sl@0
|
1348 |
/* Write the union of doclists in pLeft and pRight to pOut. For
|
sl@0
|
1349 |
** docids in common between the inputs, the union of the position
|
sl@0
|
1350 |
** lists is written. Inputs and outputs are always type DL_DEFAULT.
|
sl@0
|
1351 |
*/
|
sl@0
|
1352 |
static void docListUnion(
|
sl@0
|
1353 |
const char *pLeft, int nLeft,
|
sl@0
|
1354 |
const char *pRight, int nRight,
|
sl@0
|
1355 |
DataBuffer *pOut /* Write the combined doclist here */
|
sl@0
|
1356 |
){
|
sl@0
|
1357 |
DLReader left, right;
|
sl@0
|
1358 |
DLWriter writer;
|
sl@0
|
1359 |
|
sl@0
|
1360 |
if( nLeft==0 ){
|
sl@0
|
1361 |
if( nRight!=0) dataBufferAppend(pOut, pRight, nRight);
|
sl@0
|
1362 |
return;
|
sl@0
|
1363 |
}
|
sl@0
|
1364 |
if( nRight==0 ){
|
sl@0
|
1365 |
dataBufferAppend(pOut, pLeft, nLeft);
|
sl@0
|
1366 |
return;
|
sl@0
|
1367 |
}
|
sl@0
|
1368 |
|
sl@0
|
1369 |
dlrInit(&left, DL_DEFAULT, pLeft, nLeft);
|
sl@0
|
1370 |
dlrInit(&right, DL_DEFAULT, pRight, nRight);
|
sl@0
|
1371 |
dlwInit(&writer, DL_DEFAULT, pOut);
|
sl@0
|
1372 |
|
sl@0
|
1373 |
while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
|
sl@0
|
1374 |
if( dlrAtEnd(&right) ){
|
sl@0
|
1375 |
dlwCopy(&writer, &left);
|
sl@0
|
1376 |
dlrStep(&left);
|
sl@0
|
1377 |
}else if( dlrAtEnd(&left) ){
|
sl@0
|
1378 |
dlwCopy(&writer, &right);
|
sl@0
|
1379 |
dlrStep(&right);
|
sl@0
|
1380 |
}else if( dlrDocid(&left)<dlrDocid(&right) ){
|
sl@0
|
1381 |
dlwCopy(&writer, &left);
|
sl@0
|
1382 |
dlrStep(&left);
|
sl@0
|
1383 |
}else if( dlrDocid(&left)>dlrDocid(&right) ){
|
sl@0
|
1384 |
dlwCopy(&writer, &right);
|
sl@0
|
1385 |
dlrStep(&right);
|
sl@0
|
1386 |
}else{
|
sl@0
|
1387 |
posListUnion(&left, &right, &writer);
|
sl@0
|
1388 |
dlrStep(&left);
|
sl@0
|
1389 |
dlrStep(&right);
|
sl@0
|
1390 |
}
|
sl@0
|
1391 |
}
|
sl@0
|
1392 |
|
sl@0
|
1393 |
dlrDestroy(&left);
|
sl@0
|
1394 |
dlrDestroy(&right);
|
sl@0
|
1395 |
dlwDestroy(&writer);
|
sl@0
|
1396 |
}
|
sl@0
|
1397 |
|
sl@0
|
1398 |
/* pLeft and pRight are DLReaders positioned to the same docid.
|
sl@0
|
1399 |
**
|
sl@0
|
1400 |
** If there are no instances in pLeft or pRight where the position
|
sl@0
|
1401 |
** of pLeft is one less than the position of pRight, then this
|
sl@0
|
1402 |
** routine adds nothing to pOut.
|
sl@0
|
1403 |
**
|
sl@0
|
1404 |
** If there are one or more instances where positions from pLeft
|
sl@0
|
1405 |
** are exactly one less than positions from pRight, then add a new
|
sl@0
|
1406 |
** document record to pOut. If pOut wants to hold positions, then
|
sl@0
|
1407 |
** include the positions from pRight that are one more than a
|
sl@0
|
1408 |
** position in pLeft. In other words: pRight.iPos==pLeft.iPos+1.
|
sl@0
|
1409 |
*/
|
sl@0
|
1410 |
static void posListPhraseMerge(DLReader *pLeft, DLReader *pRight,
|
sl@0
|
1411 |
DLWriter *pOut){
|
sl@0
|
1412 |
PLReader left, right;
|
sl@0
|
1413 |
PLWriter writer;
|
sl@0
|
1414 |
int match = 0;
|
sl@0
|
1415 |
|
sl@0
|
1416 |
assert( dlrDocid(pLeft)==dlrDocid(pRight) );
|
sl@0
|
1417 |
assert( pOut->iType!=DL_POSITIONS_OFFSETS );
|
sl@0
|
1418 |
|
sl@0
|
1419 |
plrInit(&left, pLeft);
|
sl@0
|
1420 |
plrInit(&right, pRight);
|
sl@0
|
1421 |
|
sl@0
|
1422 |
while( !plrAtEnd(&left) && !plrAtEnd(&right) ){
|
sl@0
|
1423 |
if( plrColumn(&left)<plrColumn(&right) ){
|
sl@0
|
1424 |
plrStep(&left);
|
sl@0
|
1425 |
}else if( plrColumn(&left)>plrColumn(&right) ){
|
sl@0
|
1426 |
plrStep(&right);
|
sl@0
|
1427 |
}else if( plrPosition(&left)+1<plrPosition(&right) ){
|
sl@0
|
1428 |
plrStep(&left);
|
sl@0
|
1429 |
}else if( plrPosition(&left)+1>plrPosition(&right) ){
|
sl@0
|
1430 |
plrStep(&right);
|
sl@0
|
1431 |
}else{
|
sl@0
|
1432 |
if( !match ){
|
sl@0
|
1433 |
plwInit(&writer, pOut, dlrDocid(pLeft));
|
sl@0
|
1434 |
match = 1;
|
sl@0
|
1435 |
}
|
sl@0
|
1436 |
plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0);
|
sl@0
|
1437 |
plrStep(&left);
|
sl@0
|
1438 |
plrStep(&right);
|
sl@0
|
1439 |
}
|
sl@0
|
1440 |
}
|
sl@0
|
1441 |
|
sl@0
|
1442 |
if( match ){
|
sl@0
|
1443 |
plwTerminate(&writer);
|
sl@0
|
1444 |
plwDestroy(&writer);
|
sl@0
|
1445 |
}
|
sl@0
|
1446 |
|
sl@0
|
1447 |
plrDestroy(&left);
|
sl@0
|
1448 |
plrDestroy(&right);
|
sl@0
|
1449 |
}
|
sl@0
|
1450 |
|
sl@0
|
1451 |
/* We have two doclists with positions: pLeft and pRight.
|
sl@0
|
1452 |
** Write the phrase intersection of these two doclists into pOut.
|
sl@0
|
1453 |
**
|
sl@0
|
1454 |
** A phrase intersection means that two documents only match
|
sl@0
|
1455 |
** if pLeft.iPos+1==pRight.iPos.
|
sl@0
|
1456 |
**
|
sl@0
|
1457 |
** iType controls the type of data written to pOut. If iType is
|
sl@0
|
1458 |
** DL_POSITIONS, the positions are those from pRight.
|
sl@0
|
1459 |
*/
|
sl@0
|
1460 |
static void docListPhraseMerge(
|
sl@0
|
1461 |
const char *pLeft, int nLeft,
|
sl@0
|
1462 |
const char *pRight, int nRight,
|
sl@0
|
1463 |
DocListType iType,
|
sl@0
|
1464 |
DataBuffer *pOut /* Write the combined doclist here */
|
sl@0
|
1465 |
){
|
sl@0
|
1466 |
DLReader left, right;
|
sl@0
|
1467 |
DLWriter writer;
|
sl@0
|
1468 |
|
sl@0
|
1469 |
if( nLeft==0 || nRight==0 ) return;
|
sl@0
|
1470 |
|
sl@0
|
1471 |
assert( iType!=DL_POSITIONS_OFFSETS );
|
sl@0
|
1472 |
|
sl@0
|
1473 |
dlrInit(&left, DL_POSITIONS, pLeft, nLeft);
|
sl@0
|
1474 |
dlrInit(&right, DL_POSITIONS, pRight, nRight);
|
sl@0
|
1475 |
dlwInit(&writer, iType, pOut);
|
sl@0
|
1476 |
|
sl@0
|
1477 |
while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
|
sl@0
|
1478 |
if( dlrDocid(&left)<dlrDocid(&right) ){
|
sl@0
|
1479 |
dlrStep(&left);
|
sl@0
|
1480 |
}else if( dlrDocid(&right)<dlrDocid(&left) ){
|
sl@0
|
1481 |
dlrStep(&right);
|
sl@0
|
1482 |
}else{
|
sl@0
|
1483 |
posListPhraseMerge(&left, &right, &writer);
|
sl@0
|
1484 |
dlrStep(&left);
|
sl@0
|
1485 |
dlrStep(&right);
|
sl@0
|
1486 |
}
|
sl@0
|
1487 |
}
|
sl@0
|
1488 |
|
sl@0
|
1489 |
dlrDestroy(&left);
|
sl@0
|
1490 |
dlrDestroy(&right);
|
sl@0
|
1491 |
dlwDestroy(&writer);
|
sl@0
|
1492 |
}
|
sl@0
|
1493 |
|
sl@0
|
1494 |
/* We have two DL_DOCIDS doclists: pLeft and pRight.
|
sl@0
|
1495 |
** Write the intersection of these two doclists into pOut as a
|
sl@0
|
1496 |
** DL_DOCIDS doclist.
|
sl@0
|
1497 |
*/
|
sl@0
|
1498 |
static void docListAndMerge(
|
sl@0
|
1499 |
const char *pLeft, int nLeft,
|
sl@0
|
1500 |
const char *pRight, int nRight,
|
sl@0
|
1501 |
DataBuffer *pOut /* Write the combined doclist here */
|
sl@0
|
1502 |
){
|
sl@0
|
1503 |
DLReader left, right;
|
sl@0
|
1504 |
DLWriter writer;
|
sl@0
|
1505 |
|
sl@0
|
1506 |
if( nLeft==0 || nRight==0 ) return;
|
sl@0
|
1507 |
|
sl@0
|
1508 |
dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
|
sl@0
|
1509 |
dlrInit(&right, DL_DOCIDS, pRight, nRight);
|
sl@0
|
1510 |
dlwInit(&writer, DL_DOCIDS, pOut);
|
sl@0
|
1511 |
|
sl@0
|
1512 |
while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
|
sl@0
|
1513 |
if( dlrDocid(&left)<dlrDocid(&right) ){
|
sl@0
|
1514 |
dlrStep(&left);
|
sl@0
|
1515 |
}else if( dlrDocid(&right)<dlrDocid(&left) ){
|
sl@0
|
1516 |
dlrStep(&right);
|
sl@0
|
1517 |
}else{
|
sl@0
|
1518 |
dlwAdd(&writer, dlrDocid(&left));
|
sl@0
|
1519 |
dlrStep(&left);
|
sl@0
|
1520 |
dlrStep(&right);
|
sl@0
|
1521 |
}
|
sl@0
|
1522 |
}
|
sl@0
|
1523 |
|
sl@0
|
1524 |
dlrDestroy(&left);
|
sl@0
|
1525 |
dlrDestroy(&right);
|
sl@0
|
1526 |
dlwDestroy(&writer);
|
sl@0
|
1527 |
}
|
sl@0
|
1528 |
|
sl@0
|
1529 |
/* We have two DL_DOCIDS doclists: pLeft and pRight.
|
sl@0
|
1530 |
** Write the union of these two doclists into pOut as a
|
sl@0
|
1531 |
** DL_DOCIDS doclist.
|
sl@0
|
1532 |
*/
|
sl@0
|
1533 |
static void docListOrMerge(
|
sl@0
|
1534 |
const char *pLeft, int nLeft,
|
sl@0
|
1535 |
const char *pRight, int nRight,
|
sl@0
|
1536 |
DataBuffer *pOut /* Write the combined doclist here */
|
sl@0
|
1537 |
){
|
sl@0
|
1538 |
DLReader left, right;
|
sl@0
|
1539 |
DLWriter writer;
|
sl@0
|
1540 |
|
sl@0
|
1541 |
if( nLeft==0 ){
|
sl@0
|
1542 |
if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight);
|
sl@0
|
1543 |
return;
|
sl@0
|
1544 |
}
|
sl@0
|
1545 |
if( nRight==0 ){
|
sl@0
|
1546 |
dataBufferAppend(pOut, pLeft, nLeft);
|
sl@0
|
1547 |
return;
|
sl@0
|
1548 |
}
|
sl@0
|
1549 |
|
sl@0
|
1550 |
dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
|
sl@0
|
1551 |
dlrInit(&right, DL_DOCIDS, pRight, nRight);
|
sl@0
|
1552 |
dlwInit(&writer, DL_DOCIDS, pOut);
|
sl@0
|
1553 |
|
sl@0
|
1554 |
while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
|
sl@0
|
1555 |
if( dlrAtEnd(&right) ){
|
sl@0
|
1556 |
dlwAdd(&writer, dlrDocid(&left));
|
sl@0
|
1557 |
dlrStep(&left);
|
sl@0
|
1558 |
}else if( dlrAtEnd(&left) ){
|
sl@0
|
1559 |
dlwAdd(&writer, dlrDocid(&right));
|
sl@0
|
1560 |
dlrStep(&right);
|
sl@0
|
1561 |
}else if( dlrDocid(&left)<dlrDocid(&right) ){
|
sl@0
|
1562 |
dlwAdd(&writer, dlrDocid(&left));
|
sl@0
|
1563 |
dlrStep(&left);
|
sl@0
|
1564 |
}else if( dlrDocid(&right)<dlrDocid(&left) ){
|
sl@0
|
1565 |
dlwAdd(&writer, dlrDocid(&right));
|
sl@0
|
1566 |
dlrStep(&right);
|
sl@0
|
1567 |
}else{
|
sl@0
|
1568 |
dlwAdd(&writer, dlrDocid(&left));
|
sl@0
|
1569 |
dlrStep(&left);
|
sl@0
|
1570 |
dlrStep(&right);
|
sl@0
|
1571 |
}
|
sl@0
|
1572 |
}
|
sl@0
|
1573 |
|
sl@0
|
1574 |
dlrDestroy(&left);
|
sl@0
|
1575 |
dlrDestroy(&right);
|
sl@0
|
1576 |
dlwDestroy(&writer);
|
sl@0
|
1577 |
}
|
sl@0
|
1578 |
|
sl@0
|
1579 |
/* We have two DL_DOCIDS doclists: pLeft and pRight.
|
sl@0
|
1580 |
** Write into pOut as DL_DOCIDS doclist containing all documents that
|
sl@0
|
1581 |
** occur in pLeft but not in pRight.
|
sl@0
|
1582 |
*/
|
sl@0
|
1583 |
static void docListExceptMerge(
|
sl@0
|
1584 |
const char *pLeft, int nLeft,
|
sl@0
|
1585 |
const char *pRight, int nRight,
|
sl@0
|
1586 |
DataBuffer *pOut /* Write the combined doclist here */
|
sl@0
|
1587 |
){
|
sl@0
|
1588 |
DLReader left, right;
|
sl@0
|
1589 |
DLWriter writer;
|
sl@0
|
1590 |
|
sl@0
|
1591 |
if( nLeft==0 ) return;
|
sl@0
|
1592 |
if( nRight==0 ){
|
sl@0
|
1593 |
dataBufferAppend(pOut, pLeft, nLeft);
|
sl@0
|
1594 |
return;
|
sl@0
|
1595 |
}
|
sl@0
|
1596 |
|
sl@0
|
1597 |
dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
|
sl@0
|
1598 |
dlrInit(&right, DL_DOCIDS, pRight, nRight);
|
sl@0
|
1599 |
dlwInit(&writer, DL_DOCIDS, pOut);
|
sl@0
|
1600 |
|
sl@0
|
1601 |
while( !dlrAtEnd(&left) ){
|
sl@0
|
1602 |
while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){
|
sl@0
|
1603 |
dlrStep(&right);
|
sl@0
|
1604 |
}
|
sl@0
|
1605 |
if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){
|
sl@0
|
1606 |
dlwAdd(&writer, dlrDocid(&left));
|
sl@0
|
1607 |
}
|
sl@0
|
1608 |
dlrStep(&left);
|
sl@0
|
1609 |
}
|
sl@0
|
1610 |
|
sl@0
|
1611 |
dlrDestroy(&left);
|
sl@0
|
1612 |
dlrDestroy(&right);
|
sl@0
|
1613 |
dlwDestroy(&writer);
|
sl@0
|
1614 |
}
|
sl@0
|
1615 |
|
sl@0
|
1616 |
static char *string_dup_n(const char *s, int n){
|
sl@0
|
1617 |
char *str = sqlite3_malloc(n + 1);
|
sl@0
|
1618 |
memcpy(str, s, n);
|
sl@0
|
1619 |
str[n] = '\0';
|
sl@0
|
1620 |
return str;
|
sl@0
|
1621 |
}
|
sl@0
|
1622 |
|
sl@0
|
1623 |
/* Duplicate a string; the caller must free() the returned string.
|
sl@0
|
1624 |
* (We don't use strdup() since it is not part of the standard C library and
|
sl@0
|
1625 |
* may not be available everywhere.) */
|
sl@0
|
1626 |
static char *string_dup(const char *s){
|
sl@0
|
1627 |
return string_dup_n(s, strlen(s));
|
sl@0
|
1628 |
}
|
sl@0
|
1629 |
|
sl@0
|
1630 |
/* Format a string, replacing each occurrence of the % character with
|
sl@0
|
1631 |
* zDb.zName. This may be more convenient than sqlite_mprintf()
|
sl@0
|
1632 |
* when one string is used repeatedly in a format string.
|
sl@0
|
1633 |
* The caller must free() the returned string. */
|
sl@0
|
1634 |
static char *string_format(const char *zFormat,
|
sl@0
|
1635 |
const char *zDb, const char *zName){
|
sl@0
|
1636 |
const char *p;
|
sl@0
|
1637 |
size_t len = 0;
|
sl@0
|
1638 |
size_t nDb = strlen(zDb);
|
sl@0
|
1639 |
size_t nName = strlen(zName);
|
sl@0
|
1640 |
size_t nFullTableName = nDb+1+nName;
|
sl@0
|
1641 |
char *result;
|
sl@0
|
1642 |
char *r;
|
sl@0
|
1643 |
|
sl@0
|
1644 |
/* first compute length needed */
|
sl@0
|
1645 |
for(p = zFormat ; *p ; ++p){
|
sl@0
|
1646 |
len += (*p=='%' ? nFullTableName : 1);
|
sl@0
|
1647 |
}
|
sl@0
|
1648 |
len += 1; /* for null terminator */
|
sl@0
|
1649 |
|
sl@0
|
1650 |
r = result = sqlite3_malloc(len);
|
sl@0
|
1651 |
for(p = zFormat; *p; ++p){
|
sl@0
|
1652 |
if( *p=='%' ){
|
sl@0
|
1653 |
memcpy(r, zDb, nDb);
|
sl@0
|
1654 |
r += nDb;
|
sl@0
|
1655 |
*r++ = '.';
|
sl@0
|
1656 |
memcpy(r, zName, nName);
|
sl@0
|
1657 |
r += nName;
|
sl@0
|
1658 |
} else {
|
sl@0
|
1659 |
*r++ = *p;
|
sl@0
|
1660 |
}
|
sl@0
|
1661 |
}
|
sl@0
|
1662 |
*r++ = '\0';
|
sl@0
|
1663 |
assert( r == result + len );
|
sl@0
|
1664 |
return result;
|
sl@0
|
1665 |
}
|
sl@0
|
1666 |
|
sl@0
|
1667 |
static int sql_exec(sqlite3 *db, const char *zDb, const char *zName,
|
sl@0
|
1668 |
const char *zFormat){
|
sl@0
|
1669 |
char *zCommand = string_format(zFormat, zDb, zName);
|
sl@0
|
1670 |
int rc;
|
sl@0
|
1671 |
TRACE(("FTS2 sql: %s\n", zCommand));
|
sl@0
|
1672 |
rc = sqlite3_exec(db, zCommand, NULL, 0, NULL);
|
sl@0
|
1673 |
sqlite3_free(zCommand);
|
sl@0
|
1674 |
return rc;
|
sl@0
|
1675 |
}
|
sl@0
|
1676 |
|
sl@0
|
1677 |
static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName,
|
sl@0
|
1678 |
sqlite3_stmt **ppStmt, const char *zFormat){
|
sl@0
|
1679 |
char *zCommand = string_format(zFormat, zDb, zName);
|
sl@0
|
1680 |
int rc;
|
sl@0
|
1681 |
TRACE(("FTS2 prepare: %s\n", zCommand));
|
sl@0
|
1682 |
rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL);
|
sl@0
|
1683 |
sqlite3_free(zCommand);
|
sl@0
|
1684 |
return rc;
|
sl@0
|
1685 |
}
|
sl@0
|
1686 |
|
sl@0
|
1687 |
/* end utility functions */
|
sl@0
|
1688 |
|
sl@0
|
1689 |
/* Forward reference */
|
sl@0
|
1690 |
typedef struct fulltext_vtab fulltext_vtab;
|
sl@0
|
1691 |
|
sl@0
|
1692 |
/* A single term in a query is represented by an instances of
|
sl@0
|
1693 |
** the following structure.
|
sl@0
|
1694 |
*/
|
sl@0
|
1695 |
typedef struct QueryTerm {
|
sl@0
|
1696 |
short int nPhrase; /* How many following terms are part of the same phrase */
|
sl@0
|
1697 |
short int iPhrase; /* This is the i-th term of a phrase. */
|
sl@0
|
1698 |
short int iColumn; /* Column of the index that must match this term */
|
sl@0
|
1699 |
signed char isOr; /* this term is preceded by "OR" */
|
sl@0
|
1700 |
signed char isNot; /* this term is preceded by "-" */
|
sl@0
|
1701 |
signed char isPrefix; /* this term is followed by "*" */
|
sl@0
|
1702 |
char *pTerm; /* text of the term. '\000' terminated. malloced */
|
sl@0
|
1703 |
int nTerm; /* Number of bytes in pTerm[] */
|
sl@0
|
1704 |
} QueryTerm;
|
sl@0
|
1705 |
|
sl@0
|
1706 |
|
sl@0
|
1707 |
/* A query string is parsed into a Query structure.
|
sl@0
|
1708 |
*
|
sl@0
|
1709 |
* We could, in theory, allow query strings to be complicated
|
sl@0
|
1710 |
* nested expressions with precedence determined by parentheses.
|
sl@0
|
1711 |
* But none of the major search engines do this. (Perhaps the
|
sl@0
|
1712 |
* feeling is that an parenthesized expression is two complex of
|
sl@0
|
1713 |
* an idea for the average user to grasp.) Taking our lead from
|
sl@0
|
1714 |
* the major search engines, we will allow queries to be a list
|
sl@0
|
1715 |
* of terms (with an implied AND operator) or phrases in double-quotes,
|
sl@0
|
1716 |
* with a single optional "-" before each non-phrase term to designate
|
sl@0
|
1717 |
* negation and an optional OR connector.
|
sl@0
|
1718 |
*
|
sl@0
|
1719 |
* OR binds more tightly than the implied AND, which is what the
|
sl@0
|
1720 |
* major search engines seem to do. So, for example:
|
sl@0
|
1721 |
*
|
sl@0
|
1722 |
* [one two OR three] ==> one AND (two OR three)
|
sl@0
|
1723 |
* [one OR two three] ==> (one OR two) AND three
|
sl@0
|
1724 |
*
|
sl@0
|
1725 |
* A "-" before a term matches all entries that lack that term.
|
sl@0
|
1726 |
* The "-" must occur immediately before the term with in intervening
|
sl@0
|
1727 |
* space. This is how the search engines do it.
|
sl@0
|
1728 |
*
|
sl@0
|
1729 |
* A NOT term cannot be the right-hand operand of an OR. If this
|
sl@0
|
1730 |
* occurs in the query string, the NOT is ignored:
|
sl@0
|
1731 |
*
|
sl@0
|
1732 |
* [one OR -two] ==> one OR two
|
sl@0
|
1733 |
*
|
sl@0
|
1734 |
*/
|
sl@0
|
1735 |
typedef struct Query {
|
sl@0
|
1736 |
fulltext_vtab *pFts; /* The full text index */
|
sl@0
|
1737 |
int nTerms; /* Number of terms in the query */
|
sl@0
|
1738 |
QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */
|
sl@0
|
1739 |
int nextIsOr; /* Set the isOr flag on the next inserted term */
|
sl@0
|
1740 |
int nextColumn; /* Next word parsed must be in this column */
|
sl@0
|
1741 |
int dfltColumn; /* The default column */
|
sl@0
|
1742 |
} Query;
|
sl@0
|
1743 |
|
sl@0
|
1744 |
|
sl@0
|
1745 |
/*
|
sl@0
|
1746 |
** An instance of the following structure keeps track of generated
|
sl@0
|
1747 |
** matching-word offset information and snippets.
|
sl@0
|
1748 |
*/
|
sl@0
|
1749 |
typedef struct Snippet {
|
sl@0
|
1750 |
int nMatch; /* Total number of matches */
|
sl@0
|
1751 |
int nAlloc; /* Space allocated for aMatch[] */
|
sl@0
|
1752 |
struct snippetMatch { /* One entry for each matching term */
|
sl@0
|
1753 |
char snStatus; /* Status flag for use while constructing snippets */
|
sl@0
|
1754 |
short int iCol; /* The column that contains the match */
|
sl@0
|
1755 |
short int iTerm; /* The index in Query.pTerms[] of the matching term */
|
sl@0
|
1756 |
short int nByte; /* Number of bytes in the term */
|
sl@0
|
1757 |
int iStart; /* The offset to the first character of the term */
|
sl@0
|
1758 |
} *aMatch; /* Points to space obtained from malloc */
|
sl@0
|
1759 |
char *zOffset; /* Text rendering of aMatch[] */
|
sl@0
|
1760 |
int nOffset; /* strlen(zOffset) */
|
sl@0
|
1761 |
char *zSnippet; /* Snippet text */
|
sl@0
|
1762 |
int nSnippet; /* strlen(zSnippet) */
|
sl@0
|
1763 |
} Snippet;
|
sl@0
|
1764 |
|
sl@0
|
1765 |
|
sl@0
|
1766 |
typedef enum QueryType {
|
sl@0
|
1767 |
QUERY_GENERIC, /* table scan */
|
sl@0
|
1768 |
QUERY_ROWID, /* lookup by rowid */
|
sl@0
|
1769 |
QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/
|
sl@0
|
1770 |
} QueryType;
|
sl@0
|
1771 |
|
sl@0
|
1772 |
typedef enum fulltext_statement {
|
sl@0
|
1773 |
CONTENT_INSERT_STMT,
|
sl@0
|
1774 |
CONTENT_SELECT_STMT,
|
sl@0
|
1775 |
CONTENT_UPDATE_STMT,
|
sl@0
|
1776 |
CONTENT_DELETE_STMT,
|
sl@0
|
1777 |
CONTENT_EXISTS_STMT,
|
sl@0
|
1778 |
|
sl@0
|
1779 |
BLOCK_INSERT_STMT,
|
sl@0
|
1780 |
BLOCK_SELECT_STMT,
|
sl@0
|
1781 |
BLOCK_DELETE_STMT,
|
sl@0
|
1782 |
BLOCK_DELETE_ALL_STMT,
|
sl@0
|
1783 |
|
sl@0
|
1784 |
SEGDIR_MAX_INDEX_STMT,
|
sl@0
|
1785 |
SEGDIR_SET_STMT,
|
sl@0
|
1786 |
SEGDIR_SELECT_LEVEL_STMT,
|
sl@0
|
1787 |
SEGDIR_SPAN_STMT,
|
sl@0
|
1788 |
SEGDIR_DELETE_STMT,
|
sl@0
|
1789 |
SEGDIR_SELECT_SEGMENT_STMT,
|
sl@0
|
1790 |
SEGDIR_SELECT_ALL_STMT,
|
sl@0
|
1791 |
SEGDIR_DELETE_ALL_STMT,
|
sl@0
|
1792 |
SEGDIR_COUNT_STMT,
|
sl@0
|
1793 |
|
sl@0
|
1794 |
MAX_STMT /* Always at end! */
|
sl@0
|
1795 |
} fulltext_statement;
|
sl@0
|
1796 |
|
sl@0
|
1797 |
/* These must exactly match the enum above. */
|
sl@0
|
1798 |
/* TODO(shess): Is there some risk that a statement will be used in two
|
sl@0
|
1799 |
** cursors at once, e.g. if a query joins a virtual table to itself?
|
sl@0
|
1800 |
** If so perhaps we should move some of these to the cursor object.
|
sl@0
|
1801 |
*/
|
sl@0
|
1802 |
static const char *const fulltext_zStatement[MAX_STMT] = {
|
sl@0
|
1803 |
/* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */
|
sl@0
|
1804 |
/* CONTENT_SELECT */ "select * from %_content where rowid = ?",
|
sl@0
|
1805 |
/* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */
|
sl@0
|
1806 |
/* CONTENT_DELETE */ "delete from %_content where rowid = ?",
|
sl@0
|
1807 |
/* CONTENT_EXISTS */ "select rowid from %_content limit 1",
|
sl@0
|
1808 |
|
sl@0
|
1809 |
/* BLOCK_INSERT */ "insert into %_segments values (?)",
|
sl@0
|
1810 |
/* BLOCK_SELECT */ "select block from %_segments where rowid = ?",
|
sl@0
|
1811 |
/* BLOCK_DELETE */ "delete from %_segments where rowid between ? and ?",
|
sl@0
|
1812 |
/* BLOCK_DELETE_ALL */ "delete from %_segments",
|
sl@0
|
1813 |
|
sl@0
|
1814 |
/* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?",
|
sl@0
|
1815 |
/* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)",
|
sl@0
|
1816 |
/* SEGDIR_SELECT_LEVEL */
|
sl@0
|
1817 |
"select start_block, leaves_end_block, root from %_segdir "
|
sl@0
|
1818 |
" where level = ? order by idx",
|
sl@0
|
1819 |
/* SEGDIR_SPAN */
|
sl@0
|
1820 |
"select min(start_block), max(end_block) from %_segdir "
|
sl@0
|
1821 |
" where level = ? and start_block <> 0",
|
sl@0
|
1822 |
/* SEGDIR_DELETE */ "delete from %_segdir where level = ?",
|
sl@0
|
1823 |
|
sl@0
|
1824 |
/* NOTE(shess): The first three results of the following two
|
sl@0
|
1825 |
** statements must match.
|
sl@0
|
1826 |
*/
|
sl@0
|
1827 |
/* SEGDIR_SELECT_SEGMENT */
|
sl@0
|
1828 |
"select start_block, leaves_end_block, root from %_segdir "
|
sl@0
|
1829 |
" where level = ? and idx = ?",
|
sl@0
|
1830 |
/* SEGDIR_SELECT_ALL */
|
sl@0
|
1831 |
"select start_block, leaves_end_block, root from %_segdir "
|
sl@0
|
1832 |
" order by level desc, idx asc",
|
sl@0
|
1833 |
/* SEGDIR_DELETE_ALL */ "delete from %_segdir",
|
sl@0
|
1834 |
/* SEGDIR_COUNT */ "select count(*), ifnull(max(level),0) from %_segdir",
|
sl@0
|
1835 |
};
|
sl@0
|
1836 |
|
sl@0
|
1837 |
/*
|
sl@0
|
1838 |
** A connection to a fulltext index is an instance of the following
|
sl@0
|
1839 |
** structure. The xCreate and xConnect methods create an instance
|
sl@0
|
1840 |
** of this structure and xDestroy and xDisconnect free that instance.
|
sl@0
|
1841 |
** All other methods receive a pointer to the structure as one of their
|
sl@0
|
1842 |
** arguments.
|
sl@0
|
1843 |
*/
|
sl@0
|
1844 |
struct fulltext_vtab {
|
sl@0
|
1845 |
sqlite3_vtab base; /* Base class used by SQLite core */
|
sl@0
|
1846 |
sqlite3 *db; /* The database connection */
|
sl@0
|
1847 |
const char *zDb; /* logical database name */
|
sl@0
|
1848 |
const char *zName; /* virtual table name */
|
sl@0
|
1849 |
int nColumn; /* number of columns in virtual table */
|
sl@0
|
1850 |
char **azColumn; /* column names. malloced */
|
sl@0
|
1851 |
char **azContentColumn; /* column names in content table; malloced */
|
sl@0
|
1852 |
sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */
|
sl@0
|
1853 |
|
sl@0
|
1854 |
/* Precompiled statements which we keep as long as the table is
|
sl@0
|
1855 |
** open.
|
sl@0
|
1856 |
*/
|
sl@0
|
1857 |
sqlite3_stmt *pFulltextStatements[MAX_STMT];
|
sl@0
|
1858 |
|
sl@0
|
1859 |
/* Precompiled statements used for segment merges. We run a
|
sl@0
|
1860 |
** separate select across the leaf level of each tree being merged.
|
sl@0
|
1861 |
*/
|
sl@0
|
1862 |
sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT];
|
sl@0
|
1863 |
/* The statement used to prepare pLeafSelectStmts. */
|
sl@0
|
1864 |
#define LEAF_SELECT \
|
sl@0
|
1865 |
"select block from %_segments where rowid between ? and ? order by rowid"
|
sl@0
|
1866 |
|
sl@0
|
1867 |
/* These buffer pending index updates during transactions.
|
sl@0
|
1868 |
** nPendingData estimates the memory size of the pending data. It
|
sl@0
|
1869 |
** doesn't include the hash-bucket overhead, nor any malloc
|
sl@0
|
1870 |
** overhead. When nPendingData exceeds kPendingThreshold, the
|
sl@0
|
1871 |
** buffer is flushed even before the transaction closes.
|
sl@0
|
1872 |
** pendingTerms stores the data, and is only valid when nPendingData
|
sl@0
|
1873 |
** is >=0 (nPendingData<0 means pendingTerms has not been
|
sl@0
|
1874 |
** initialized). iPrevDocid is the last docid written, used to make
|
sl@0
|
1875 |
** certain we're inserting in sorted order.
|
sl@0
|
1876 |
*/
|
sl@0
|
1877 |
int nPendingData;
|
sl@0
|
1878 |
#define kPendingThreshold (1*1024*1024)
|
sl@0
|
1879 |
sqlite_int64 iPrevDocid;
|
sl@0
|
1880 |
fts2Hash pendingTerms;
|
sl@0
|
1881 |
};
|
sl@0
|
1882 |
|
sl@0
|
1883 |
/*
|
sl@0
|
1884 |
** When the core wants to do a query, it create a cursor using a
|
sl@0
|
1885 |
** call to xOpen. This structure is an instance of a cursor. It
|
sl@0
|
1886 |
** is destroyed by xClose.
|
sl@0
|
1887 |
*/
|
sl@0
|
1888 |
typedef struct fulltext_cursor {
|
sl@0
|
1889 |
sqlite3_vtab_cursor base; /* Base class used by SQLite core */
|
sl@0
|
1890 |
QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */
|
sl@0
|
1891 |
sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */
|
sl@0
|
1892 |
int eof; /* True if at End Of Results */
|
sl@0
|
1893 |
Query q; /* Parsed query string */
|
sl@0
|
1894 |
Snippet snippet; /* Cached snippet for the current row */
|
sl@0
|
1895 |
int iColumn; /* Column being searched */
|
sl@0
|
1896 |
DataBuffer result; /* Doclist results from fulltextQuery */
|
sl@0
|
1897 |
DLReader reader; /* Result reader if result not empty */
|
sl@0
|
1898 |
} fulltext_cursor;
|
sl@0
|
1899 |
|
sl@0
|
1900 |
static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){
|
sl@0
|
1901 |
return (fulltext_vtab *) c->base.pVtab;
|
sl@0
|
1902 |
}
|
sl@0
|
1903 |
|
sl@0
|
1904 |
static const sqlite3_module fts2Module; /* forward declaration */
|
sl@0
|
1905 |
|
sl@0
|
1906 |
/* Return a dynamically generated statement of the form
|
sl@0
|
1907 |
* insert into %_content (rowid, ...) values (?, ...)
|
sl@0
|
1908 |
*/
|
sl@0
|
1909 |
static const char *contentInsertStatement(fulltext_vtab *v){
|
sl@0
|
1910 |
StringBuffer sb;
|
sl@0
|
1911 |
int i;
|
sl@0
|
1912 |
|
sl@0
|
1913 |
initStringBuffer(&sb);
|
sl@0
|
1914 |
append(&sb, "insert into %_content (rowid, ");
|
sl@0
|
1915 |
appendList(&sb, v->nColumn, v->azContentColumn);
|
sl@0
|
1916 |
append(&sb, ") values (?");
|
sl@0
|
1917 |
for(i=0; i<v->nColumn; ++i)
|
sl@0
|
1918 |
append(&sb, ", ?");
|
sl@0
|
1919 |
append(&sb, ")");
|
sl@0
|
1920 |
return stringBufferData(&sb);
|
sl@0
|
1921 |
}
|
sl@0
|
1922 |
|
sl@0
|
1923 |
/* Return a dynamically generated statement of the form
|
sl@0
|
1924 |
* update %_content set [col_0] = ?, [col_1] = ?, ...
|
sl@0
|
1925 |
* where rowid = ?
|
sl@0
|
1926 |
*/
|
sl@0
|
1927 |
static const char *contentUpdateStatement(fulltext_vtab *v){
|
sl@0
|
1928 |
StringBuffer sb;
|
sl@0
|
1929 |
int i;
|
sl@0
|
1930 |
|
sl@0
|
1931 |
initStringBuffer(&sb);
|
sl@0
|
1932 |
append(&sb, "update %_content set ");
|
sl@0
|
1933 |
for(i=0; i<v->nColumn; ++i) {
|
sl@0
|
1934 |
if( i>0 ){
|
sl@0
|
1935 |
append(&sb, ", ");
|
sl@0
|
1936 |
}
|
sl@0
|
1937 |
append(&sb, v->azContentColumn[i]);
|
sl@0
|
1938 |
append(&sb, " = ?");
|
sl@0
|
1939 |
}
|
sl@0
|
1940 |
append(&sb, " where rowid = ?");
|
sl@0
|
1941 |
return stringBufferData(&sb);
|
sl@0
|
1942 |
}
|
sl@0
|
1943 |
|
sl@0
|
1944 |
/* Puts a freshly-prepared statement determined by iStmt in *ppStmt.
|
sl@0
|
1945 |
** If the indicated statement has never been prepared, it is prepared
|
sl@0
|
1946 |
** and cached, otherwise the cached version is reset.
|
sl@0
|
1947 |
*/
|
sl@0
|
1948 |
static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt,
|
sl@0
|
1949 |
sqlite3_stmt **ppStmt){
|
sl@0
|
1950 |
assert( iStmt<MAX_STMT );
|
sl@0
|
1951 |
if( v->pFulltextStatements[iStmt]==NULL ){
|
sl@0
|
1952 |
const char *zStmt;
|
sl@0
|
1953 |
int rc;
|
sl@0
|
1954 |
switch( iStmt ){
|
sl@0
|
1955 |
case CONTENT_INSERT_STMT:
|
sl@0
|
1956 |
zStmt = contentInsertStatement(v); break;
|
sl@0
|
1957 |
case CONTENT_UPDATE_STMT:
|
sl@0
|
1958 |
zStmt = contentUpdateStatement(v); break;
|
sl@0
|
1959 |
default:
|
sl@0
|
1960 |
zStmt = fulltext_zStatement[iStmt];
|
sl@0
|
1961 |
}
|
sl@0
|
1962 |
rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt],
|
sl@0
|
1963 |
zStmt);
|
sl@0
|
1964 |
if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt);
|
sl@0
|
1965 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
1966 |
} else {
|
sl@0
|
1967 |
int rc = sqlite3_reset(v->pFulltextStatements[iStmt]);
|
sl@0
|
1968 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
1969 |
}
|
sl@0
|
1970 |
|
sl@0
|
1971 |
*ppStmt = v->pFulltextStatements[iStmt];
|
sl@0
|
1972 |
return SQLITE_OK;
|
sl@0
|
1973 |
}
|
sl@0
|
1974 |
|
sl@0
|
1975 |
/* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and
|
sl@0
|
1976 |
** SQLITE_ROW to SQLITE_ERROR. Useful for statements like UPDATE,
|
sl@0
|
1977 |
** where we expect no results.
|
sl@0
|
1978 |
*/
|
sl@0
|
1979 |
static int sql_single_step(sqlite3_stmt *s){
|
sl@0
|
1980 |
int rc = sqlite3_step(s);
|
sl@0
|
1981 |
return (rc==SQLITE_DONE) ? SQLITE_OK : rc;
|
sl@0
|
1982 |
}
|
sl@0
|
1983 |
|
sl@0
|
1984 |
/* Like sql_get_statement(), but for special replicated LEAF_SELECT
|
sl@0
|
1985 |
** statements. idx -1 is a special case for an uncached version of
|
sl@0
|
1986 |
** the statement (used in the optimize implementation).
|
sl@0
|
1987 |
*/
|
sl@0
|
1988 |
/* TODO(shess) Write version for generic statements and then share
|
sl@0
|
1989 |
** that between the cached-statement functions.
|
sl@0
|
1990 |
*/
|
sl@0
|
1991 |
static int sql_get_leaf_statement(fulltext_vtab *v, int idx,
|
sl@0
|
1992 |
sqlite3_stmt **ppStmt){
|
sl@0
|
1993 |
assert( idx>=-1 && idx<MERGE_COUNT );
|
sl@0
|
1994 |
if( idx==-1 ){
|
sl@0
|
1995 |
return sql_prepare(v->db, v->zDb, v->zName, ppStmt, LEAF_SELECT);
|
sl@0
|
1996 |
}else if( v->pLeafSelectStmts[idx]==NULL ){
|
sl@0
|
1997 |
int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx],
|
sl@0
|
1998 |
LEAF_SELECT);
|
sl@0
|
1999 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2000 |
}else{
|
sl@0
|
2001 |
int rc = sqlite3_reset(v->pLeafSelectStmts[idx]);
|
sl@0
|
2002 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2003 |
}
|
sl@0
|
2004 |
|
sl@0
|
2005 |
*ppStmt = v->pLeafSelectStmts[idx];
|
sl@0
|
2006 |
return SQLITE_OK;
|
sl@0
|
2007 |
}
|
sl@0
|
2008 |
|
sl@0
|
2009 |
/* insert into %_content (rowid, ...) values ([rowid], [pValues]) */
|
sl@0
|
2010 |
static int content_insert(fulltext_vtab *v, sqlite3_value *rowid,
|
sl@0
|
2011 |
sqlite3_value **pValues){
|
sl@0
|
2012 |
sqlite3_stmt *s;
|
sl@0
|
2013 |
int i;
|
sl@0
|
2014 |
int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s);
|
sl@0
|
2015 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2016 |
|
sl@0
|
2017 |
rc = sqlite3_bind_value(s, 1, rowid);
|
sl@0
|
2018 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2019 |
|
sl@0
|
2020 |
for(i=0; i<v->nColumn; ++i){
|
sl@0
|
2021 |
rc = sqlite3_bind_value(s, 2+i, pValues[i]);
|
sl@0
|
2022 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2023 |
}
|
sl@0
|
2024 |
|
sl@0
|
2025 |
return sql_single_step(s);
|
sl@0
|
2026 |
}
|
sl@0
|
2027 |
|
sl@0
|
2028 |
/* update %_content set col0 = pValues[0], col1 = pValues[1], ...
|
sl@0
|
2029 |
* where rowid = [iRowid] */
|
sl@0
|
2030 |
static int content_update(fulltext_vtab *v, sqlite3_value **pValues,
|
sl@0
|
2031 |
sqlite_int64 iRowid){
|
sl@0
|
2032 |
sqlite3_stmt *s;
|
sl@0
|
2033 |
int i;
|
sl@0
|
2034 |
int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s);
|
sl@0
|
2035 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2036 |
|
sl@0
|
2037 |
for(i=0; i<v->nColumn; ++i){
|
sl@0
|
2038 |
rc = sqlite3_bind_value(s, 1+i, pValues[i]);
|
sl@0
|
2039 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2040 |
}
|
sl@0
|
2041 |
|
sl@0
|
2042 |
rc = sqlite3_bind_int64(s, 1+v->nColumn, iRowid);
|
sl@0
|
2043 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2044 |
|
sl@0
|
2045 |
return sql_single_step(s);
|
sl@0
|
2046 |
}
|
sl@0
|
2047 |
|
sl@0
|
2048 |
static void freeStringArray(int nString, const char **pString){
|
sl@0
|
2049 |
int i;
|
sl@0
|
2050 |
|
sl@0
|
2051 |
for (i=0 ; i < nString ; ++i) {
|
sl@0
|
2052 |
if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]);
|
sl@0
|
2053 |
}
|
sl@0
|
2054 |
sqlite3_free((void *) pString);
|
sl@0
|
2055 |
}
|
sl@0
|
2056 |
|
sl@0
|
2057 |
/* select * from %_content where rowid = [iRow]
|
sl@0
|
2058 |
* The caller must delete the returned array and all strings in it.
|
sl@0
|
2059 |
* null fields will be NULL in the returned array.
|
sl@0
|
2060 |
*
|
sl@0
|
2061 |
* TODO: Perhaps we should return pointer/length strings here for consistency
|
sl@0
|
2062 |
* with other code which uses pointer/length. */
|
sl@0
|
2063 |
static int content_select(fulltext_vtab *v, sqlite_int64 iRow,
|
sl@0
|
2064 |
const char ***pValues){
|
sl@0
|
2065 |
sqlite3_stmt *s;
|
sl@0
|
2066 |
const char **values;
|
sl@0
|
2067 |
int i;
|
sl@0
|
2068 |
int rc;
|
sl@0
|
2069 |
|
sl@0
|
2070 |
*pValues = NULL;
|
sl@0
|
2071 |
|
sl@0
|
2072 |
rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s);
|
sl@0
|
2073 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2074 |
|
sl@0
|
2075 |
rc = sqlite3_bind_int64(s, 1, iRow);
|
sl@0
|
2076 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2077 |
|
sl@0
|
2078 |
rc = sqlite3_step(s);
|
sl@0
|
2079 |
if( rc!=SQLITE_ROW ) return rc;
|
sl@0
|
2080 |
|
sl@0
|
2081 |
values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *));
|
sl@0
|
2082 |
for(i=0; i<v->nColumn; ++i){
|
sl@0
|
2083 |
if( sqlite3_column_type(s, i)==SQLITE_NULL ){
|
sl@0
|
2084 |
values[i] = NULL;
|
sl@0
|
2085 |
}else{
|
sl@0
|
2086 |
values[i] = string_dup((char*)sqlite3_column_text(s, i));
|
sl@0
|
2087 |
}
|
sl@0
|
2088 |
}
|
sl@0
|
2089 |
|
sl@0
|
2090 |
/* We expect only one row. We must execute another sqlite3_step()
|
sl@0
|
2091 |
* to complete the iteration; otherwise the table will remain locked. */
|
sl@0
|
2092 |
rc = sqlite3_step(s);
|
sl@0
|
2093 |
if( rc==SQLITE_DONE ){
|
sl@0
|
2094 |
*pValues = values;
|
sl@0
|
2095 |
return SQLITE_OK;
|
sl@0
|
2096 |
}
|
sl@0
|
2097 |
|
sl@0
|
2098 |
freeStringArray(v->nColumn, values);
|
sl@0
|
2099 |
return rc;
|
sl@0
|
2100 |
}
|
sl@0
|
2101 |
|
sl@0
|
2102 |
/* delete from %_content where rowid = [iRow ] */
|
sl@0
|
2103 |
static int content_delete(fulltext_vtab *v, sqlite_int64 iRow){
|
sl@0
|
2104 |
sqlite3_stmt *s;
|
sl@0
|
2105 |
int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s);
|
sl@0
|
2106 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2107 |
|
sl@0
|
2108 |
rc = sqlite3_bind_int64(s, 1, iRow);
|
sl@0
|
2109 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2110 |
|
sl@0
|
2111 |
return sql_single_step(s);
|
sl@0
|
2112 |
}
|
sl@0
|
2113 |
|
sl@0
|
2114 |
/* Returns SQLITE_ROW if any rows exist in %_content, SQLITE_DONE if
|
sl@0
|
2115 |
** no rows exist, and any error in case of failure.
|
sl@0
|
2116 |
*/
|
sl@0
|
2117 |
static int content_exists(fulltext_vtab *v){
|
sl@0
|
2118 |
sqlite3_stmt *s;
|
sl@0
|
2119 |
int rc = sql_get_statement(v, CONTENT_EXISTS_STMT, &s);
|
sl@0
|
2120 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2121 |
|
sl@0
|
2122 |
rc = sqlite3_step(s);
|
sl@0
|
2123 |
if( rc!=SQLITE_ROW ) return rc;
|
sl@0
|
2124 |
|
sl@0
|
2125 |
/* We expect only one row. We must execute another sqlite3_step()
|
sl@0
|
2126 |
* to complete the iteration; otherwise the table will remain locked. */
|
sl@0
|
2127 |
rc = sqlite3_step(s);
|
sl@0
|
2128 |
if( rc==SQLITE_DONE ) return SQLITE_ROW;
|
sl@0
|
2129 |
if( rc==SQLITE_ROW ) return SQLITE_ERROR;
|
sl@0
|
2130 |
return rc;
|
sl@0
|
2131 |
}
|
sl@0
|
2132 |
|
sl@0
|
2133 |
/* insert into %_segments values ([pData])
|
sl@0
|
2134 |
** returns assigned rowid in *piBlockid
|
sl@0
|
2135 |
*/
|
sl@0
|
2136 |
static int block_insert(fulltext_vtab *v, const char *pData, int nData,
|
sl@0
|
2137 |
sqlite_int64 *piBlockid){
|
sl@0
|
2138 |
sqlite3_stmt *s;
|
sl@0
|
2139 |
int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s);
|
sl@0
|
2140 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2141 |
|
sl@0
|
2142 |
rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC);
|
sl@0
|
2143 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2144 |
|
sl@0
|
2145 |
rc = sqlite3_step(s);
|
sl@0
|
2146 |
if( rc==SQLITE_ROW ) return SQLITE_ERROR;
|
sl@0
|
2147 |
if( rc!=SQLITE_DONE ) return rc;
|
sl@0
|
2148 |
|
sl@0
|
2149 |
*piBlockid = sqlite3_last_insert_rowid(v->db);
|
sl@0
|
2150 |
return SQLITE_OK;
|
sl@0
|
2151 |
}
|
sl@0
|
2152 |
|
sl@0
|
2153 |
/* delete from %_segments
|
sl@0
|
2154 |
** where rowid between [iStartBlockid] and [iEndBlockid]
|
sl@0
|
2155 |
**
|
sl@0
|
2156 |
** Deletes the range of blocks, inclusive, used to delete the blocks
|
sl@0
|
2157 |
** which form a segment.
|
sl@0
|
2158 |
*/
|
sl@0
|
2159 |
static int block_delete(fulltext_vtab *v,
|
sl@0
|
2160 |
sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){
|
sl@0
|
2161 |
sqlite3_stmt *s;
|
sl@0
|
2162 |
int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s);
|
sl@0
|
2163 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2164 |
|
sl@0
|
2165 |
rc = sqlite3_bind_int64(s, 1, iStartBlockid);
|
sl@0
|
2166 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2167 |
|
sl@0
|
2168 |
rc = sqlite3_bind_int64(s, 2, iEndBlockid);
|
sl@0
|
2169 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2170 |
|
sl@0
|
2171 |
return sql_single_step(s);
|
sl@0
|
2172 |
}
|
sl@0
|
2173 |
|
sl@0
|
2174 |
/* Returns SQLITE_ROW with *pidx set to the maximum segment idx found
|
sl@0
|
2175 |
** at iLevel. Returns SQLITE_DONE if there are no segments at
|
sl@0
|
2176 |
** iLevel. Otherwise returns an error.
|
sl@0
|
2177 |
*/
|
sl@0
|
2178 |
static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){
|
sl@0
|
2179 |
sqlite3_stmt *s;
|
sl@0
|
2180 |
int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s);
|
sl@0
|
2181 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2182 |
|
sl@0
|
2183 |
rc = sqlite3_bind_int(s, 1, iLevel);
|
sl@0
|
2184 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2185 |
|
sl@0
|
2186 |
rc = sqlite3_step(s);
|
sl@0
|
2187 |
/* Should always get at least one row due to how max() works. */
|
sl@0
|
2188 |
if( rc==SQLITE_DONE ) return SQLITE_DONE;
|
sl@0
|
2189 |
if( rc!=SQLITE_ROW ) return rc;
|
sl@0
|
2190 |
|
sl@0
|
2191 |
/* NULL means that there were no inputs to max(). */
|
sl@0
|
2192 |
if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
|
sl@0
|
2193 |
rc = sqlite3_step(s);
|
sl@0
|
2194 |
if( rc==SQLITE_ROW ) return SQLITE_ERROR;
|
sl@0
|
2195 |
return rc;
|
sl@0
|
2196 |
}
|
sl@0
|
2197 |
|
sl@0
|
2198 |
*pidx = sqlite3_column_int(s, 0);
|
sl@0
|
2199 |
|
sl@0
|
2200 |
/* We expect only one row. We must execute another sqlite3_step()
|
sl@0
|
2201 |
* to complete the iteration; otherwise the table will remain locked. */
|
sl@0
|
2202 |
rc = sqlite3_step(s);
|
sl@0
|
2203 |
if( rc==SQLITE_ROW ) return SQLITE_ERROR;
|
sl@0
|
2204 |
if( rc!=SQLITE_DONE ) return rc;
|
sl@0
|
2205 |
return SQLITE_ROW;
|
sl@0
|
2206 |
}
|
sl@0
|
2207 |
|
sl@0
|
2208 |
/* insert into %_segdir values (
|
sl@0
|
2209 |
** [iLevel], [idx],
|
sl@0
|
2210 |
** [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid],
|
sl@0
|
2211 |
** [pRootData]
|
sl@0
|
2212 |
** )
|
sl@0
|
2213 |
*/
|
sl@0
|
2214 |
static int segdir_set(fulltext_vtab *v, int iLevel, int idx,
|
sl@0
|
2215 |
sqlite_int64 iStartBlockid,
|
sl@0
|
2216 |
sqlite_int64 iLeavesEndBlockid,
|
sl@0
|
2217 |
sqlite_int64 iEndBlockid,
|
sl@0
|
2218 |
const char *pRootData, int nRootData){
|
sl@0
|
2219 |
sqlite3_stmt *s;
|
sl@0
|
2220 |
int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s);
|
sl@0
|
2221 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2222 |
|
sl@0
|
2223 |
rc = sqlite3_bind_int(s, 1, iLevel);
|
sl@0
|
2224 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2225 |
|
sl@0
|
2226 |
rc = sqlite3_bind_int(s, 2, idx);
|
sl@0
|
2227 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2228 |
|
sl@0
|
2229 |
rc = sqlite3_bind_int64(s, 3, iStartBlockid);
|
sl@0
|
2230 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2231 |
|
sl@0
|
2232 |
rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid);
|
sl@0
|
2233 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2234 |
|
sl@0
|
2235 |
rc = sqlite3_bind_int64(s, 5, iEndBlockid);
|
sl@0
|
2236 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2237 |
|
sl@0
|
2238 |
rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC);
|
sl@0
|
2239 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2240 |
|
sl@0
|
2241 |
return sql_single_step(s);
|
sl@0
|
2242 |
}
|
sl@0
|
2243 |
|
sl@0
|
2244 |
/* Queries %_segdir for the block span of the segments in level
|
sl@0
|
2245 |
** iLevel. Returns SQLITE_DONE if there are no blocks for iLevel,
|
sl@0
|
2246 |
** SQLITE_ROW if there are blocks, else an error.
|
sl@0
|
2247 |
*/
|
sl@0
|
2248 |
static int segdir_span(fulltext_vtab *v, int iLevel,
|
sl@0
|
2249 |
sqlite_int64 *piStartBlockid,
|
sl@0
|
2250 |
sqlite_int64 *piEndBlockid){
|
sl@0
|
2251 |
sqlite3_stmt *s;
|
sl@0
|
2252 |
int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s);
|
sl@0
|
2253 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2254 |
|
sl@0
|
2255 |
rc = sqlite3_bind_int(s, 1, iLevel);
|
sl@0
|
2256 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2257 |
|
sl@0
|
2258 |
rc = sqlite3_step(s);
|
sl@0
|
2259 |
if( rc==SQLITE_DONE ) return SQLITE_DONE; /* Should never happen */
|
sl@0
|
2260 |
if( rc!=SQLITE_ROW ) return rc;
|
sl@0
|
2261 |
|
sl@0
|
2262 |
/* This happens if all segments at this level are entirely inline. */
|
sl@0
|
2263 |
if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
|
sl@0
|
2264 |
/* We expect only one row. We must execute another sqlite3_step()
|
sl@0
|
2265 |
* to complete the iteration; otherwise the table will remain locked. */
|
sl@0
|
2266 |
int rc2 = sqlite3_step(s);
|
sl@0
|
2267 |
if( rc2==SQLITE_ROW ) return SQLITE_ERROR;
|
sl@0
|
2268 |
return rc2;
|
sl@0
|
2269 |
}
|
sl@0
|
2270 |
|
sl@0
|
2271 |
*piStartBlockid = sqlite3_column_int64(s, 0);
|
sl@0
|
2272 |
*piEndBlockid = sqlite3_column_int64(s, 1);
|
sl@0
|
2273 |
|
sl@0
|
2274 |
/* We expect only one row. We must execute another sqlite3_step()
|
sl@0
|
2275 |
* to complete the iteration; otherwise the table will remain locked. */
|
sl@0
|
2276 |
rc = sqlite3_step(s);
|
sl@0
|
2277 |
if( rc==SQLITE_ROW ) return SQLITE_ERROR;
|
sl@0
|
2278 |
if( rc!=SQLITE_DONE ) return rc;
|
sl@0
|
2279 |
return SQLITE_ROW;
|
sl@0
|
2280 |
}
|
sl@0
|
2281 |
|
sl@0
|
2282 |
/* Delete the segment blocks and segment directory records for all
|
sl@0
|
2283 |
** segments at iLevel.
|
sl@0
|
2284 |
*/
|
sl@0
|
2285 |
static int segdir_delete(fulltext_vtab *v, int iLevel){
|
sl@0
|
2286 |
sqlite3_stmt *s;
|
sl@0
|
2287 |
sqlite_int64 iStartBlockid, iEndBlockid;
|
sl@0
|
2288 |
int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid);
|
sl@0
|
2289 |
if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc;
|
sl@0
|
2290 |
|
sl@0
|
2291 |
if( rc==SQLITE_ROW ){
|
sl@0
|
2292 |
rc = block_delete(v, iStartBlockid, iEndBlockid);
|
sl@0
|
2293 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2294 |
}
|
sl@0
|
2295 |
|
sl@0
|
2296 |
/* Delete the segment directory itself. */
|
sl@0
|
2297 |
rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s);
|
sl@0
|
2298 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2299 |
|
sl@0
|
2300 |
rc = sqlite3_bind_int64(s, 1, iLevel);
|
sl@0
|
2301 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2302 |
|
sl@0
|
2303 |
return sql_single_step(s);
|
sl@0
|
2304 |
}
|
sl@0
|
2305 |
|
sl@0
|
2306 |
/* Delete entire fts index, SQLITE_OK on success, relevant error on
|
sl@0
|
2307 |
** failure.
|
sl@0
|
2308 |
*/
|
sl@0
|
2309 |
static int segdir_delete_all(fulltext_vtab *v){
|
sl@0
|
2310 |
sqlite3_stmt *s;
|
sl@0
|
2311 |
int rc = sql_get_statement(v, SEGDIR_DELETE_ALL_STMT, &s);
|
sl@0
|
2312 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2313 |
|
sl@0
|
2314 |
rc = sql_single_step(s);
|
sl@0
|
2315 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2316 |
|
sl@0
|
2317 |
rc = sql_get_statement(v, BLOCK_DELETE_ALL_STMT, &s);
|
sl@0
|
2318 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2319 |
|
sl@0
|
2320 |
return sql_single_step(s);
|
sl@0
|
2321 |
}
|
sl@0
|
2322 |
|
sl@0
|
2323 |
/* Returns SQLITE_OK with *pnSegments set to the number of entries in
|
sl@0
|
2324 |
** %_segdir and *piMaxLevel set to the highest level which has a
|
sl@0
|
2325 |
** segment. Otherwise returns the SQLite error which caused failure.
|
sl@0
|
2326 |
*/
|
sl@0
|
2327 |
static int segdir_count(fulltext_vtab *v, int *pnSegments, int *piMaxLevel){
|
sl@0
|
2328 |
sqlite3_stmt *s;
|
sl@0
|
2329 |
int rc = sql_get_statement(v, SEGDIR_COUNT_STMT, &s);
|
sl@0
|
2330 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2331 |
|
sl@0
|
2332 |
rc = sqlite3_step(s);
|
sl@0
|
2333 |
/* TODO(shess): This case should not be possible? Should stronger
|
sl@0
|
2334 |
** measures be taken if it happens?
|
sl@0
|
2335 |
*/
|
sl@0
|
2336 |
if( rc==SQLITE_DONE ){
|
sl@0
|
2337 |
*pnSegments = 0;
|
sl@0
|
2338 |
*piMaxLevel = 0;
|
sl@0
|
2339 |
return SQLITE_OK;
|
sl@0
|
2340 |
}
|
sl@0
|
2341 |
if( rc!=SQLITE_ROW ) return rc;
|
sl@0
|
2342 |
|
sl@0
|
2343 |
*pnSegments = sqlite3_column_int(s, 0);
|
sl@0
|
2344 |
*piMaxLevel = sqlite3_column_int(s, 1);
|
sl@0
|
2345 |
|
sl@0
|
2346 |
/* We expect only one row. We must execute another sqlite3_step()
|
sl@0
|
2347 |
* to complete the iteration; otherwise the table will remain locked. */
|
sl@0
|
2348 |
rc = sqlite3_step(s);
|
sl@0
|
2349 |
if( rc==SQLITE_DONE ) return SQLITE_OK;
|
sl@0
|
2350 |
if( rc==SQLITE_ROW ) return SQLITE_ERROR;
|
sl@0
|
2351 |
return rc;
|
sl@0
|
2352 |
}
|
sl@0
|
2353 |
|
sl@0
|
2354 |
/* TODO(shess) clearPendingTerms() is far down the file because
|
sl@0
|
2355 |
** writeZeroSegment() is far down the file because LeafWriter is far
|
sl@0
|
2356 |
** down the file. Consider refactoring the code to move the non-vtab
|
sl@0
|
2357 |
** code above the vtab code so that we don't need this forward
|
sl@0
|
2358 |
** reference.
|
sl@0
|
2359 |
*/
|
sl@0
|
2360 |
static int clearPendingTerms(fulltext_vtab *v);
|
sl@0
|
2361 |
|
sl@0
|
2362 |
/*
|
sl@0
|
2363 |
** Free the memory used to contain a fulltext_vtab structure.
|
sl@0
|
2364 |
*/
|
sl@0
|
2365 |
static void fulltext_vtab_destroy(fulltext_vtab *v){
|
sl@0
|
2366 |
int iStmt, i;
|
sl@0
|
2367 |
|
sl@0
|
2368 |
TRACE(("FTS2 Destroy %p\n", v));
|
sl@0
|
2369 |
for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){
|
sl@0
|
2370 |
if( v->pFulltextStatements[iStmt]!=NULL ){
|
sl@0
|
2371 |
sqlite3_finalize(v->pFulltextStatements[iStmt]);
|
sl@0
|
2372 |
v->pFulltextStatements[iStmt] = NULL;
|
sl@0
|
2373 |
}
|
sl@0
|
2374 |
}
|
sl@0
|
2375 |
|
sl@0
|
2376 |
for( i=0; i<MERGE_COUNT; i++ ){
|
sl@0
|
2377 |
if( v->pLeafSelectStmts[i]!=NULL ){
|
sl@0
|
2378 |
sqlite3_finalize(v->pLeafSelectStmts[i]);
|
sl@0
|
2379 |
v->pLeafSelectStmts[i] = NULL;
|
sl@0
|
2380 |
}
|
sl@0
|
2381 |
}
|
sl@0
|
2382 |
|
sl@0
|
2383 |
if( v->pTokenizer!=NULL ){
|
sl@0
|
2384 |
v->pTokenizer->pModule->xDestroy(v->pTokenizer);
|
sl@0
|
2385 |
v->pTokenizer = NULL;
|
sl@0
|
2386 |
}
|
sl@0
|
2387 |
|
sl@0
|
2388 |
clearPendingTerms(v);
|
sl@0
|
2389 |
|
sl@0
|
2390 |
sqlite3_free(v->azColumn);
|
sl@0
|
2391 |
for(i = 0; i < v->nColumn; ++i) {
|
sl@0
|
2392 |
sqlite3_free(v->azContentColumn[i]);
|
sl@0
|
2393 |
}
|
sl@0
|
2394 |
sqlite3_free(v->azContentColumn);
|
sl@0
|
2395 |
sqlite3_free(v);
|
sl@0
|
2396 |
}
|
sl@0
|
2397 |
|
sl@0
|
2398 |
/*
|
sl@0
|
2399 |
** Token types for parsing the arguments to xConnect or xCreate.
|
sl@0
|
2400 |
*/
|
sl@0
|
2401 |
#define TOKEN_EOF 0 /* End of file */
|
sl@0
|
2402 |
#define TOKEN_SPACE 1 /* Any kind of whitespace */
|
sl@0
|
2403 |
#define TOKEN_ID 2 /* An identifier */
|
sl@0
|
2404 |
#define TOKEN_STRING 3 /* A string literal */
|
sl@0
|
2405 |
#define TOKEN_PUNCT 4 /* A single punctuation character */
|
sl@0
|
2406 |
|
sl@0
|
2407 |
/*
|
sl@0
|
2408 |
** If X is a character that can be used in an identifier then
|
sl@0
|
2409 |
** IdChar(X) will be true. Otherwise it is false.
|
sl@0
|
2410 |
**
|
sl@0
|
2411 |
** For ASCII, any character with the high-order bit set is
|
sl@0
|
2412 |
** allowed in an identifier. For 7-bit characters,
|
sl@0
|
2413 |
** sqlite3IsIdChar[X] must be 1.
|
sl@0
|
2414 |
**
|
sl@0
|
2415 |
** Ticket #1066. the SQL standard does not allow '$' in the
|
sl@0
|
2416 |
** middle of identfiers. But many SQL implementations do.
|
sl@0
|
2417 |
** SQLite will allow '$' in identifiers for compatibility.
|
sl@0
|
2418 |
** But the feature is undocumented.
|
sl@0
|
2419 |
*/
|
sl@0
|
2420 |
static const char isIdChar[] = {
|
sl@0
|
2421 |
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
|
sl@0
|
2422 |
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
|
sl@0
|
2423 |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
|
sl@0
|
2424 |
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
|
sl@0
|
2425 |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
|
sl@0
|
2426 |
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
|
sl@0
|
2427 |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
|
sl@0
|
2428 |
};
|
sl@0
|
2429 |
#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isIdChar[c-0x20]))
|
sl@0
|
2430 |
|
sl@0
|
2431 |
|
sl@0
|
2432 |
/*
|
sl@0
|
2433 |
** Return the length of the token that begins at z[0].
|
sl@0
|
2434 |
** Store the token type in *tokenType before returning.
|
sl@0
|
2435 |
*/
|
sl@0
|
2436 |
static int getToken(const char *z, int *tokenType){
|
sl@0
|
2437 |
int i, c;
|
sl@0
|
2438 |
switch( *z ){
|
sl@0
|
2439 |
case 0: {
|
sl@0
|
2440 |
*tokenType = TOKEN_EOF;
|
sl@0
|
2441 |
return 0;
|
sl@0
|
2442 |
}
|
sl@0
|
2443 |
case ' ': case '\t': case '\n': case '\f': case '\r': {
|
sl@0
|
2444 |
for(i=1; safe_isspace(z[i]); i++){}
|
sl@0
|
2445 |
*tokenType = TOKEN_SPACE;
|
sl@0
|
2446 |
return i;
|
sl@0
|
2447 |
}
|
sl@0
|
2448 |
case '`':
|
sl@0
|
2449 |
case '\'':
|
sl@0
|
2450 |
case '"': {
|
sl@0
|
2451 |
int delim = z[0];
|
sl@0
|
2452 |
for(i=1; (c=z[i])!=0; i++){
|
sl@0
|
2453 |
if( c==delim ){
|
sl@0
|
2454 |
if( z[i+1]==delim ){
|
sl@0
|
2455 |
i++;
|
sl@0
|
2456 |
}else{
|
sl@0
|
2457 |
break;
|
sl@0
|
2458 |
}
|
sl@0
|
2459 |
}
|
sl@0
|
2460 |
}
|
sl@0
|
2461 |
*tokenType = TOKEN_STRING;
|
sl@0
|
2462 |
return i + (c!=0);
|
sl@0
|
2463 |
}
|
sl@0
|
2464 |
case '[': {
|
sl@0
|
2465 |
for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
|
sl@0
|
2466 |
*tokenType = TOKEN_ID;
|
sl@0
|
2467 |
return i;
|
sl@0
|
2468 |
}
|
sl@0
|
2469 |
default: {
|
sl@0
|
2470 |
if( !IdChar(*z) ){
|
sl@0
|
2471 |
break;
|
sl@0
|
2472 |
}
|
sl@0
|
2473 |
for(i=1; IdChar(z[i]); i++){}
|
sl@0
|
2474 |
*tokenType = TOKEN_ID;
|
sl@0
|
2475 |
return i;
|
sl@0
|
2476 |
}
|
sl@0
|
2477 |
}
|
sl@0
|
2478 |
*tokenType = TOKEN_PUNCT;
|
sl@0
|
2479 |
return 1;
|
sl@0
|
2480 |
}
|
sl@0
|
2481 |
|
sl@0
|
2482 |
/*
|
sl@0
|
2483 |
** A token extracted from a string is an instance of the following
|
sl@0
|
2484 |
** structure.
|
sl@0
|
2485 |
*/
|
sl@0
|
2486 |
typedef struct Token {
|
sl@0
|
2487 |
const char *z; /* Pointer to token text. Not '\000' terminated */
|
sl@0
|
2488 |
short int n; /* Length of the token text in bytes. */
|
sl@0
|
2489 |
} Token;
|
sl@0
|
2490 |
|
sl@0
|
2491 |
/*
|
sl@0
|
2492 |
** Given a input string (which is really one of the argv[] parameters
|
sl@0
|
2493 |
** passed into xConnect or xCreate) split the string up into tokens.
|
sl@0
|
2494 |
** Return an array of pointers to '\000' terminated strings, one string
|
sl@0
|
2495 |
** for each non-whitespace token.
|
sl@0
|
2496 |
**
|
sl@0
|
2497 |
** The returned array is terminated by a single NULL pointer.
|
sl@0
|
2498 |
**
|
sl@0
|
2499 |
** Space to hold the returned array is obtained from a single
|
sl@0
|
2500 |
** malloc and should be freed by passing the return value to free().
|
sl@0
|
2501 |
** The individual strings within the token list are all a part of
|
sl@0
|
2502 |
** the single memory allocation and will all be freed at once.
|
sl@0
|
2503 |
*/
|
sl@0
|
2504 |
static char **tokenizeString(const char *z, int *pnToken){
|
sl@0
|
2505 |
int nToken = 0;
|
sl@0
|
2506 |
Token *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) );
|
sl@0
|
2507 |
int n = 1;
|
sl@0
|
2508 |
int e, i;
|
sl@0
|
2509 |
int totalSize = 0;
|
sl@0
|
2510 |
char **azToken;
|
sl@0
|
2511 |
char *zCopy;
|
sl@0
|
2512 |
while( n>0 ){
|
sl@0
|
2513 |
n = getToken(z, &e);
|
sl@0
|
2514 |
if( e!=TOKEN_SPACE ){
|
sl@0
|
2515 |
aToken[nToken].z = z;
|
sl@0
|
2516 |
aToken[nToken].n = n;
|
sl@0
|
2517 |
nToken++;
|
sl@0
|
2518 |
totalSize += n+1;
|
sl@0
|
2519 |
}
|
sl@0
|
2520 |
z += n;
|
sl@0
|
2521 |
}
|
sl@0
|
2522 |
azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize );
|
sl@0
|
2523 |
zCopy = (char*)&azToken[nToken];
|
sl@0
|
2524 |
nToken--;
|
sl@0
|
2525 |
for(i=0; i<nToken; i++){
|
sl@0
|
2526 |
azToken[i] = zCopy;
|
sl@0
|
2527 |
n = aToken[i].n;
|
sl@0
|
2528 |
memcpy(zCopy, aToken[i].z, n);
|
sl@0
|
2529 |
zCopy[n] = 0;
|
sl@0
|
2530 |
zCopy += n+1;
|
sl@0
|
2531 |
}
|
sl@0
|
2532 |
azToken[nToken] = 0;
|
sl@0
|
2533 |
sqlite3_free(aToken);
|
sl@0
|
2534 |
*pnToken = nToken;
|
sl@0
|
2535 |
return azToken;
|
sl@0
|
2536 |
}
|
sl@0
|
2537 |
|
sl@0
|
2538 |
/*
|
sl@0
|
2539 |
** Convert an SQL-style quoted string into a normal string by removing
|
sl@0
|
2540 |
** the quote characters. The conversion is done in-place. If the
|
sl@0
|
2541 |
** input does not begin with a quote character, then this routine
|
sl@0
|
2542 |
** is a no-op.
|
sl@0
|
2543 |
**
|
sl@0
|
2544 |
** Examples:
|
sl@0
|
2545 |
**
|
sl@0
|
2546 |
** "abc" becomes abc
|
sl@0
|
2547 |
** 'xyz' becomes xyz
|
sl@0
|
2548 |
** [pqr] becomes pqr
|
sl@0
|
2549 |
** `mno` becomes mno
|
sl@0
|
2550 |
*/
|
sl@0
|
2551 |
static void dequoteString(char *z){
|
sl@0
|
2552 |
int quote;
|
sl@0
|
2553 |
int i, j;
|
sl@0
|
2554 |
if( z==0 ) return;
|
sl@0
|
2555 |
quote = z[0];
|
sl@0
|
2556 |
switch( quote ){
|
sl@0
|
2557 |
case '\'': break;
|
sl@0
|
2558 |
case '"': break;
|
sl@0
|
2559 |
case '`': break; /* For MySQL compatibility */
|
sl@0
|
2560 |
case '[': quote = ']'; break; /* For MS SqlServer compatibility */
|
sl@0
|
2561 |
default: return;
|
sl@0
|
2562 |
}
|
sl@0
|
2563 |
for(i=1, j=0; z[i]; i++){
|
sl@0
|
2564 |
if( z[i]==quote ){
|
sl@0
|
2565 |
if( z[i+1]==quote ){
|
sl@0
|
2566 |
z[j++] = quote;
|
sl@0
|
2567 |
i++;
|
sl@0
|
2568 |
}else{
|
sl@0
|
2569 |
z[j++] = 0;
|
sl@0
|
2570 |
break;
|
sl@0
|
2571 |
}
|
sl@0
|
2572 |
}else{
|
sl@0
|
2573 |
z[j++] = z[i];
|
sl@0
|
2574 |
}
|
sl@0
|
2575 |
}
|
sl@0
|
2576 |
}
|
sl@0
|
2577 |
|
sl@0
|
2578 |
/*
|
sl@0
|
2579 |
** The input azIn is a NULL-terminated list of tokens. Remove the first
|
sl@0
|
2580 |
** token and all punctuation tokens. Remove the quotes from
|
sl@0
|
2581 |
** around string literal tokens.
|
sl@0
|
2582 |
**
|
sl@0
|
2583 |
** Example:
|
sl@0
|
2584 |
**
|
sl@0
|
2585 |
** input: tokenize chinese ( 'simplifed' , 'mixed' )
|
sl@0
|
2586 |
** output: chinese simplifed mixed
|
sl@0
|
2587 |
**
|
sl@0
|
2588 |
** Another example:
|
sl@0
|
2589 |
**
|
sl@0
|
2590 |
** input: delimiters ( '[' , ']' , '...' )
|
sl@0
|
2591 |
** output: [ ] ...
|
sl@0
|
2592 |
*/
|
sl@0
|
2593 |
static void tokenListToIdList(char **azIn){
|
sl@0
|
2594 |
int i, j;
|
sl@0
|
2595 |
if( azIn ){
|
sl@0
|
2596 |
for(i=0, j=-1; azIn[i]; i++){
|
sl@0
|
2597 |
if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){
|
sl@0
|
2598 |
dequoteString(azIn[i]);
|
sl@0
|
2599 |
if( j>=0 ){
|
sl@0
|
2600 |
azIn[j] = azIn[i];
|
sl@0
|
2601 |
}
|
sl@0
|
2602 |
j++;
|
sl@0
|
2603 |
}
|
sl@0
|
2604 |
}
|
sl@0
|
2605 |
azIn[j] = 0;
|
sl@0
|
2606 |
}
|
sl@0
|
2607 |
}
|
sl@0
|
2608 |
|
sl@0
|
2609 |
|
sl@0
|
2610 |
/*
|
sl@0
|
2611 |
** Find the first alphanumeric token in the string zIn. Null-terminate
|
sl@0
|
2612 |
** this token. Remove any quotation marks. And return a pointer to
|
sl@0
|
2613 |
** the result.
|
sl@0
|
2614 |
*/
|
sl@0
|
2615 |
static char *firstToken(char *zIn, char **pzTail){
|
sl@0
|
2616 |
int n, ttype;
|
sl@0
|
2617 |
while(1){
|
sl@0
|
2618 |
n = getToken(zIn, &ttype);
|
sl@0
|
2619 |
if( ttype==TOKEN_SPACE ){
|
sl@0
|
2620 |
zIn += n;
|
sl@0
|
2621 |
}else if( ttype==TOKEN_EOF ){
|
sl@0
|
2622 |
*pzTail = zIn;
|
sl@0
|
2623 |
return 0;
|
sl@0
|
2624 |
}else{
|
sl@0
|
2625 |
zIn[n] = 0;
|
sl@0
|
2626 |
*pzTail = &zIn[1];
|
sl@0
|
2627 |
dequoteString(zIn);
|
sl@0
|
2628 |
return zIn;
|
sl@0
|
2629 |
}
|
sl@0
|
2630 |
}
|
sl@0
|
2631 |
/*NOTREACHED*/
|
sl@0
|
2632 |
}
|
sl@0
|
2633 |
|
sl@0
|
2634 |
/* Return true if...
|
sl@0
|
2635 |
**
|
sl@0
|
2636 |
** * s begins with the string t, ignoring case
|
sl@0
|
2637 |
** * s is longer than t
|
sl@0
|
2638 |
** * The first character of s beyond t is not a alphanumeric
|
sl@0
|
2639 |
**
|
sl@0
|
2640 |
** Ignore leading space in *s.
|
sl@0
|
2641 |
**
|
sl@0
|
2642 |
** To put it another way, return true if the first token of
|
sl@0
|
2643 |
** s[] is t[].
|
sl@0
|
2644 |
*/
|
sl@0
|
2645 |
static int startsWith(const char *s, const char *t){
|
sl@0
|
2646 |
while( safe_isspace(*s) ){ s++; }
|
sl@0
|
2647 |
while( *t ){
|
sl@0
|
2648 |
if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0;
|
sl@0
|
2649 |
}
|
sl@0
|
2650 |
return *s!='_' && !safe_isalnum(*s);
|
sl@0
|
2651 |
}
|
sl@0
|
2652 |
|
sl@0
|
2653 |
/*
|
sl@0
|
2654 |
** An instance of this structure defines the "spec" of a
|
sl@0
|
2655 |
** full text index. This structure is populated by parseSpec
|
sl@0
|
2656 |
** and use by fulltextConnect and fulltextCreate.
|
sl@0
|
2657 |
*/
|
sl@0
|
2658 |
typedef struct TableSpec {
|
sl@0
|
2659 |
const char *zDb; /* Logical database name */
|
sl@0
|
2660 |
const char *zName; /* Name of the full-text index */
|
sl@0
|
2661 |
int nColumn; /* Number of columns to be indexed */
|
sl@0
|
2662 |
char **azColumn; /* Original names of columns to be indexed */
|
sl@0
|
2663 |
char **azContentColumn; /* Column names for %_content */
|
sl@0
|
2664 |
char **azTokenizer; /* Name of tokenizer and its arguments */
|
sl@0
|
2665 |
} TableSpec;
|
sl@0
|
2666 |
|
sl@0
|
2667 |
/*
|
sl@0
|
2668 |
** Reclaim all of the memory used by a TableSpec
|
sl@0
|
2669 |
*/
|
sl@0
|
2670 |
static void clearTableSpec(TableSpec *p) {
|
sl@0
|
2671 |
sqlite3_free(p->azColumn);
|
sl@0
|
2672 |
sqlite3_free(p->azContentColumn);
|
sl@0
|
2673 |
sqlite3_free(p->azTokenizer);
|
sl@0
|
2674 |
}
|
sl@0
|
2675 |
|
sl@0
|
2676 |
/* Parse a CREATE VIRTUAL TABLE statement, which looks like this:
|
sl@0
|
2677 |
*
|
sl@0
|
2678 |
* CREATE VIRTUAL TABLE email
|
sl@0
|
2679 |
* USING fts2(subject, body, tokenize mytokenizer(myarg))
|
sl@0
|
2680 |
*
|
sl@0
|
2681 |
* We return parsed information in a TableSpec structure.
|
sl@0
|
2682 |
*
|
sl@0
|
2683 |
*/
|
sl@0
|
2684 |
static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv,
|
sl@0
|
2685 |
char**pzErr){
|
sl@0
|
2686 |
int i, n;
|
sl@0
|
2687 |
char *z, *zDummy;
|
sl@0
|
2688 |
char **azArg;
|
sl@0
|
2689 |
const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */
|
sl@0
|
2690 |
|
sl@0
|
2691 |
assert( argc>=3 );
|
sl@0
|
2692 |
/* Current interface:
|
sl@0
|
2693 |
** argv[0] - module name
|
sl@0
|
2694 |
** argv[1] - database name
|
sl@0
|
2695 |
** argv[2] - table name
|
sl@0
|
2696 |
** argv[3..] - columns, optionally followed by tokenizer specification
|
sl@0
|
2697 |
** and snippet delimiters specification.
|
sl@0
|
2698 |
*/
|
sl@0
|
2699 |
|
sl@0
|
2700 |
/* Make a copy of the complete argv[][] array in a single allocation.
|
sl@0
|
2701 |
** The argv[][] array is read-only and transient. We can write to the
|
sl@0
|
2702 |
** copy in order to modify things and the copy is persistent.
|
sl@0
|
2703 |
*/
|
sl@0
|
2704 |
CLEAR(pSpec);
|
sl@0
|
2705 |
for(i=n=0; i<argc; i++){
|
sl@0
|
2706 |
n += strlen(argv[i]) + 1;
|
sl@0
|
2707 |
}
|
sl@0
|
2708 |
azArg = sqlite3_malloc( sizeof(char*)*argc + n );
|
sl@0
|
2709 |
if( azArg==0 ){
|
sl@0
|
2710 |
return SQLITE_NOMEM;
|
sl@0
|
2711 |
}
|
sl@0
|
2712 |
z = (char*)&azArg[argc];
|
sl@0
|
2713 |
for(i=0; i<argc; i++){
|
sl@0
|
2714 |
azArg[i] = z;
|
sl@0
|
2715 |
strcpy(z, argv[i]);
|
sl@0
|
2716 |
z += strlen(z)+1;
|
sl@0
|
2717 |
}
|
sl@0
|
2718 |
|
sl@0
|
2719 |
/* Identify the column names and the tokenizer and delimiter arguments
|
sl@0
|
2720 |
** in the argv[][] array.
|
sl@0
|
2721 |
*/
|
sl@0
|
2722 |
pSpec->zDb = azArg[1];
|
sl@0
|
2723 |
pSpec->zName = azArg[2];
|
sl@0
|
2724 |
pSpec->nColumn = 0;
|
sl@0
|
2725 |
pSpec->azColumn = azArg;
|
sl@0
|
2726 |
zTokenizer = "tokenize simple";
|
sl@0
|
2727 |
for(i=3; i<argc; ++i){
|
sl@0
|
2728 |
if( startsWith(azArg[i],"tokenize") ){
|
sl@0
|
2729 |
zTokenizer = azArg[i];
|
sl@0
|
2730 |
}else{
|
sl@0
|
2731 |
z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy);
|
sl@0
|
2732 |
pSpec->nColumn++;
|
sl@0
|
2733 |
}
|
sl@0
|
2734 |
}
|
sl@0
|
2735 |
if( pSpec->nColumn==0 ){
|
sl@0
|
2736 |
azArg[0] = "content";
|
sl@0
|
2737 |
pSpec->nColumn = 1;
|
sl@0
|
2738 |
}
|
sl@0
|
2739 |
|
sl@0
|
2740 |
/*
|
sl@0
|
2741 |
** Construct the list of content column names.
|
sl@0
|
2742 |
**
|
sl@0
|
2743 |
** Each content column name will be of the form cNNAAAA
|
sl@0
|
2744 |
** where NN is the column number and AAAA is the sanitized
|
sl@0
|
2745 |
** column name. "sanitized" means that special characters are
|
sl@0
|
2746 |
** converted to "_". The cNN prefix guarantees that all column
|
sl@0
|
2747 |
** names are unique.
|
sl@0
|
2748 |
**
|
sl@0
|
2749 |
** The AAAA suffix is not strictly necessary. It is included
|
sl@0
|
2750 |
** for the convenience of people who might examine the generated
|
sl@0
|
2751 |
** %_content table and wonder what the columns are used for.
|
sl@0
|
2752 |
*/
|
sl@0
|
2753 |
pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) );
|
sl@0
|
2754 |
if( pSpec->azContentColumn==0 ){
|
sl@0
|
2755 |
clearTableSpec(pSpec);
|
sl@0
|
2756 |
return SQLITE_NOMEM;
|
sl@0
|
2757 |
}
|
sl@0
|
2758 |
for(i=0; i<pSpec->nColumn; i++){
|
sl@0
|
2759 |
char *p;
|
sl@0
|
2760 |
pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]);
|
sl@0
|
2761 |
for (p = pSpec->azContentColumn[i]; *p ; ++p) {
|
sl@0
|
2762 |
if( !safe_isalnum(*p) ) *p = '_';
|
sl@0
|
2763 |
}
|
sl@0
|
2764 |
}
|
sl@0
|
2765 |
|
sl@0
|
2766 |
/*
|
sl@0
|
2767 |
** Parse the tokenizer specification string.
|
sl@0
|
2768 |
*/
|
sl@0
|
2769 |
pSpec->azTokenizer = tokenizeString(zTokenizer, &n);
|
sl@0
|
2770 |
tokenListToIdList(pSpec->azTokenizer);
|
sl@0
|
2771 |
|
sl@0
|
2772 |
return SQLITE_OK;
|
sl@0
|
2773 |
}
|
sl@0
|
2774 |
|
sl@0
|
2775 |
/*
|
sl@0
|
2776 |
** Generate a CREATE TABLE statement that describes the schema of
|
sl@0
|
2777 |
** the virtual table. Return a pointer to this schema string.
|
sl@0
|
2778 |
**
|
sl@0
|
2779 |
** Space is obtained from sqlite3_mprintf() and should be freed
|
sl@0
|
2780 |
** using sqlite3_free().
|
sl@0
|
2781 |
*/
|
sl@0
|
2782 |
static char *fulltextSchema(
|
sl@0
|
2783 |
int nColumn, /* Number of columns */
|
sl@0
|
2784 |
const char *const* azColumn, /* List of columns */
|
sl@0
|
2785 |
const char *zTableName /* Name of the table */
|
sl@0
|
2786 |
){
|
sl@0
|
2787 |
int i;
|
sl@0
|
2788 |
char *zSchema, *zNext;
|
sl@0
|
2789 |
const char *zSep = "(";
|
sl@0
|
2790 |
zSchema = sqlite3_mprintf("CREATE TABLE x");
|
sl@0
|
2791 |
for(i=0; i<nColumn; i++){
|
sl@0
|
2792 |
zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]);
|
sl@0
|
2793 |
sqlite3_free(zSchema);
|
sl@0
|
2794 |
zSchema = zNext;
|
sl@0
|
2795 |
zSep = ",";
|
sl@0
|
2796 |
}
|
sl@0
|
2797 |
zNext = sqlite3_mprintf("%s,%Q)", zSchema, zTableName);
|
sl@0
|
2798 |
sqlite3_free(zSchema);
|
sl@0
|
2799 |
return zNext;
|
sl@0
|
2800 |
}
|
sl@0
|
2801 |
|
sl@0
|
2802 |
/*
|
sl@0
|
2803 |
** Build a new sqlite3_vtab structure that will describe the
|
sl@0
|
2804 |
** fulltext index defined by spec.
|
sl@0
|
2805 |
*/
|
sl@0
|
2806 |
static int constructVtab(
|
sl@0
|
2807 |
sqlite3 *db, /* The SQLite database connection */
|
sl@0
|
2808 |
fts2Hash *pHash, /* Hash table containing tokenizers */
|
sl@0
|
2809 |
TableSpec *spec, /* Parsed spec information from parseSpec() */
|
sl@0
|
2810 |
sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
|
sl@0
|
2811 |
char **pzErr /* Write any error message here */
|
sl@0
|
2812 |
){
|
sl@0
|
2813 |
int rc;
|
sl@0
|
2814 |
int n;
|
sl@0
|
2815 |
fulltext_vtab *v = 0;
|
sl@0
|
2816 |
const sqlite3_tokenizer_module *m = NULL;
|
sl@0
|
2817 |
char *schema;
|
sl@0
|
2818 |
|
sl@0
|
2819 |
char const *zTok; /* Name of tokenizer to use for this fts table */
|
sl@0
|
2820 |
int nTok; /* Length of zTok, including nul terminator */
|
sl@0
|
2821 |
|
sl@0
|
2822 |
v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab));
|
sl@0
|
2823 |
if( v==0 ) return SQLITE_NOMEM;
|
sl@0
|
2824 |
CLEAR(v);
|
sl@0
|
2825 |
/* sqlite will initialize v->base */
|
sl@0
|
2826 |
v->db = db;
|
sl@0
|
2827 |
v->zDb = spec->zDb; /* Freed when azColumn is freed */
|
sl@0
|
2828 |
v->zName = spec->zName; /* Freed when azColumn is freed */
|
sl@0
|
2829 |
v->nColumn = spec->nColumn;
|
sl@0
|
2830 |
v->azContentColumn = spec->azContentColumn;
|
sl@0
|
2831 |
spec->azContentColumn = 0;
|
sl@0
|
2832 |
v->azColumn = spec->azColumn;
|
sl@0
|
2833 |
spec->azColumn = 0;
|
sl@0
|
2834 |
|
sl@0
|
2835 |
if( spec->azTokenizer==0 ){
|
sl@0
|
2836 |
return SQLITE_NOMEM;
|
sl@0
|
2837 |
}
|
sl@0
|
2838 |
|
sl@0
|
2839 |
zTok = spec->azTokenizer[0];
|
sl@0
|
2840 |
if( !zTok ){
|
sl@0
|
2841 |
zTok = "simple";
|
sl@0
|
2842 |
}
|
sl@0
|
2843 |
nTok = strlen(zTok)+1;
|
sl@0
|
2844 |
|
sl@0
|
2845 |
m = (sqlite3_tokenizer_module *)sqlite3Fts2HashFind(pHash, zTok, nTok);
|
sl@0
|
2846 |
if( !m ){
|
sl@0
|
2847 |
*pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]);
|
sl@0
|
2848 |
rc = SQLITE_ERROR;
|
sl@0
|
2849 |
goto err;
|
sl@0
|
2850 |
}
|
sl@0
|
2851 |
|
sl@0
|
2852 |
for(n=0; spec->azTokenizer[n]; n++){}
|
sl@0
|
2853 |
if( n ){
|
sl@0
|
2854 |
rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1],
|
sl@0
|
2855 |
&v->pTokenizer);
|
sl@0
|
2856 |
}else{
|
sl@0
|
2857 |
rc = m->xCreate(0, 0, &v->pTokenizer);
|
sl@0
|
2858 |
}
|
sl@0
|
2859 |
if( rc!=SQLITE_OK ) goto err;
|
sl@0
|
2860 |
v->pTokenizer->pModule = m;
|
sl@0
|
2861 |
|
sl@0
|
2862 |
/* TODO: verify the existence of backing tables foo_content, foo_term */
|
sl@0
|
2863 |
|
sl@0
|
2864 |
schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn,
|
sl@0
|
2865 |
spec->zName);
|
sl@0
|
2866 |
rc = sqlite3_declare_vtab(db, schema);
|
sl@0
|
2867 |
sqlite3_free(schema);
|
sl@0
|
2868 |
if( rc!=SQLITE_OK ) goto err;
|
sl@0
|
2869 |
|
sl@0
|
2870 |
memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements));
|
sl@0
|
2871 |
|
sl@0
|
2872 |
/* Indicate that the buffer is not live. */
|
sl@0
|
2873 |
v->nPendingData = -1;
|
sl@0
|
2874 |
|
sl@0
|
2875 |
*ppVTab = &v->base;
|
sl@0
|
2876 |
TRACE(("FTS2 Connect %p\n", v));
|
sl@0
|
2877 |
|
sl@0
|
2878 |
return rc;
|
sl@0
|
2879 |
|
sl@0
|
2880 |
err:
|
sl@0
|
2881 |
fulltext_vtab_destroy(v);
|
sl@0
|
2882 |
return rc;
|
sl@0
|
2883 |
}
|
sl@0
|
2884 |
|
sl@0
|
2885 |
static int fulltextConnect(
|
sl@0
|
2886 |
sqlite3 *db,
|
sl@0
|
2887 |
void *pAux,
|
sl@0
|
2888 |
int argc, const char *const*argv,
|
sl@0
|
2889 |
sqlite3_vtab **ppVTab,
|
sl@0
|
2890 |
char **pzErr
|
sl@0
|
2891 |
){
|
sl@0
|
2892 |
TableSpec spec;
|
sl@0
|
2893 |
int rc = parseSpec(&spec, argc, argv, pzErr);
|
sl@0
|
2894 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2895 |
|
sl@0
|
2896 |
rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr);
|
sl@0
|
2897 |
clearTableSpec(&spec);
|
sl@0
|
2898 |
return rc;
|
sl@0
|
2899 |
}
|
sl@0
|
2900 |
|
sl@0
|
2901 |
/* The %_content table holds the text of each document, with
|
sl@0
|
2902 |
** the rowid used as the docid.
|
sl@0
|
2903 |
*/
|
sl@0
|
2904 |
/* TODO(shess) This comment needs elaboration to match the updated
|
sl@0
|
2905 |
** code. Work it into the top-of-file comment at that time.
|
sl@0
|
2906 |
*/
|
sl@0
|
2907 |
static int fulltextCreate(sqlite3 *db, void *pAux,
|
sl@0
|
2908 |
int argc, const char * const *argv,
|
sl@0
|
2909 |
sqlite3_vtab **ppVTab, char **pzErr){
|
sl@0
|
2910 |
int rc;
|
sl@0
|
2911 |
TableSpec spec;
|
sl@0
|
2912 |
StringBuffer schema;
|
sl@0
|
2913 |
TRACE(("FTS2 Create\n"));
|
sl@0
|
2914 |
|
sl@0
|
2915 |
rc = parseSpec(&spec, argc, argv, pzErr);
|
sl@0
|
2916 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
2917 |
|
sl@0
|
2918 |
initStringBuffer(&schema);
|
sl@0
|
2919 |
append(&schema, "CREATE TABLE %_content(");
|
sl@0
|
2920 |
appendList(&schema, spec.nColumn, spec.azContentColumn);
|
sl@0
|
2921 |
append(&schema, ")");
|
sl@0
|
2922 |
rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema));
|
sl@0
|
2923 |
stringBufferDestroy(&schema);
|
sl@0
|
2924 |
if( rc!=SQLITE_OK ) goto out;
|
sl@0
|
2925 |
|
sl@0
|
2926 |
rc = sql_exec(db, spec.zDb, spec.zName,
|
sl@0
|
2927 |
"create table %_segments(block blob);");
|
sl@0
|
2928 |
if( rc!=SQLITE_OK ) goto out;
|
sl@0
|
2929 |
|
sl@0
|
2930 |
rc = sql_exec(db, spec.zDb, spec.zName,
|
sl@0
|
2931 |
"create table %_segdir("
|
sl@0
|
2932 |
" level integer,"
|
sl@0
|
2933 |
" idx integer,"
|
sl@0
|
2934 |
" start_block integer,"
|
sl@0
|
2935 |
" leaves_end_block integer,"
|
sl@0
|
2936 |
" end_block integer,"
|
sl@0
|
2937 |
" root blob,"
|
sl@0
|
2938 |
" primary key(level, idx)"
|
sl@0
|
2939 |
");");
|
sl@0
|
2940 |
if( rc!=SQLITE_OK ) goto out;
|
sl@0
|
2941 |
|
sl@0
|
2942 |
rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr);
|
sl@0
|
2943 |
|
sl@0
|
2944 |
out:
|
sl@0
|
2945 |
clearTableSpec(&spec);
|
sl@0
|
2946 |
return rc;
|
sl@0
|
2947 |
}
|
sl@0
|
2948 |
|
sl@0
|
2949 |
/* Decide how to handle an SQL query. */
|
sl@0
|
2950 |
static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
|
sl@0
|
2951 |
int i;
|
sl@0
|
2952 |
TRACE(("FTS2 BestIndex\n"));
|
sl@0
|
2953 |
|
sl@0
|
2954 |
for(i=0; i<pInfo->nConstraint; ++i){
|
sl@0
|
2955 |
const struct sqlite3_index_constraint *pConstraint;
|
sl@0
|
2956 |
pConstraint = &pInfo->aConstraint[i];
|
sl@0
|
2957 |
if( pConstraint->usable ) {
|
sl@0
|
2958 |
if( pConstraint->iColumn==-1 &&
|
sl@0
|
2959 |
pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
|
sl@0
|
2960 |
pInfo->idxNum = QUERY_ROWID; /* lookup by rowid */
|
sl@0
|
2961 |
TRACE(("FTS2 QUERY_ROWID\n"));
|
sl@0
|
2962 |
} else if( pConstraint->iColumn>=0 &&
|
sl@0
|
2963 |
pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
|
sl@0
|
2964 |
/* full-text search */
|
sl@0
|
2965 |
pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn;
|
sl@0
|
2966 |
TRACE(("FTS2 QUERY_FULLTEXT %d\n", pConstraint->iColumn));
|
sl@0
|
2967 |
} else continue;
|
sl@0
|
2968 |
|
sl@0
|
2969 |
pInfo->aConstraintUsage[i].argvIndex = 1;
|
sl@0
|
2970 |
pInfo->aConstraintUsage[i].omit = 1;
|
sl@0
|
2971 |
|
sl@0
|
2972 |
/* An arbitrary value for now.
|
sl@0
|
2973 |
* TODO: Perhaps rowid matches should be considered cheaper than
|
sl@0
|
2974 |
* full-text searches. */
|
sl@0
|
2975 |
pInfo->estimatedCost = 1.0;
|
sl@0
|
2976 |
|
sl@0
|
2977 |
return SQLITE_OK;
|
sl@0
|
2978 |
}
|
sl@0
|
2979 |
}
|
sl@0
|
2980 |
pInfo->idxNum = QUERY_GENERIC;
|
sl@0
|
2981 |
return SQLITE_OK;
|
sl@0
|
2982 |
}
|
sl@0
|
2983 |
|
sl@0
|
2984 |
static int fulltextDisconnect(sqlite3_vtab *pVTab){
|
sl@0
|
2985 |
TRACE(("FTS2 Disconnect %p\n", pVTab));
|
sl@0
|
2986 |
fulltext_vtab_destroy((fulltext_vtab *)pVTab);
|
sl@0
|
2987 |
return SQLITE_OK;
|
sl@0
|
2988 |
}
|
sl@0
|
2989 |
|
sl@0
|
2990 |
static int fulltextDestroy(sqlite3_vtab *pVTab){
|
sl@0
|
2991 |
fulltext_vtab *v = (fulltext_vtab *)pVTab;
|
sl@0
|
2992 |
int rc;
|
sl@0
|
2993 |
|
sl@0
|
2994 |
TRACE(("FTS2 Destroy %p\n", pVTab));
|
sl@0
|
2995 |
rc = sql_exec(v->db, v->zDb, v->zName,
|
sl@0
|
2996 |
"drop table if exists %_content;"
|
sl@0
|
2997 |
"drop table if exists %_segments;"
|
sl@0
|
2998 |
"drop table if exists %_segdir;"
|
sl@0
|
2999 |
);
|
sl@0
|
3000 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
3001 |
|
sl@0
|
3002 |
fulltext_vtab_destroy((fulltext_vtab *)pVTab);
|
sl@0
|
3003 |
return SQLITE_OK;
|
sl@0
|
3004 |
}
|
sl@0
|
3005 |
|
sl@0
|
3006 |
static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
|
sl@0
|
3007 |
fulltext_cursor *c;
|
sl@0
|
3008 |
|
sl@0
|
3009 |
c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor));
|
sl@0
|
3010 |
if( c ){
|
sl@0
|
3011 |
memset(c, 0, sizeof(fulltext_cursor));
|
sl@0
|
3012 |
/* sqlite will initialize c->base */
|
sl@0
|
3013 |
*ppCursor = &c->base;
|
sl@0
|
3014 |
TRACE(("FTS2 Open %p: %p\n", pVTab, c));
|
sl@0
|
3015 |
return SQLITE_OK;
|
sl@0
|
3016 |
}else{
|
sl@0
|
3017 |
return SQLITE_NOMEM;
|
sl@0
|
3018 |
}
|
sl@0
|
3019 |
}
|
sl@0
|
3020 |
|
sl@0
|
3021 |
|
sl@0
|
3022 |
/* Free all of the dynamically allocated memory held by *q
|
sl@0
|
3023 |
*/
|
sl@0
|
3024 |
static void queryClear(Query *q){
|
sl@0
|
3025 |
int i;
|
sl@0
|
3026 |
for(i = 0; i < q->nTerms; ++i){
|
sl@0
|
3027 |
sqlite3_free(q->pTerms[i].pTerm);
|
sl@0
|
3028 |
}
|
sl@0
|
3029 |
sqlite3_free(q->pTerms);
|
sl@0
|
3030 |
CLEAR(q);
|
sl@0
|
3031 |
}
|
sl@0
|
3032 |
|
sl@0
|
3033 |
/* Free all of the dynamically allocated memory held by the
|
sl@0
|
3034 |
** Snippet
|
sl@0
|
3035 |
*/
|
sl@0
|
3036 |
static void snippetClear(Snippet *p){
|
sl@0
|
3037 |
sqlite3_free(p->aMatch);
|
sl@0
|
3038 |
sqlite3_free(p->zOffset);
|
sl@0
|
3039 |
sqlite3_free(p->zSnippet);
|
sl@0
|
3040 |
CLEAR(p);
|
sl@0
|
3041 |
}
|
sl@0
|
3042 |
/*
|
sl@0
|
3043 |
** Append a single entry to the p->aMatch[] log.
|
sl@0
|
3044 |
*/
|
sl@0
|
3045 |
static void snippetAppendMatch(
|
sl@0
|
3046 |
Snippet *p, /* Append the entry to this snippet */
|
sl@0
|
3047 |
int iCol, int iTerm, /* The column and query term */
|
sl@0
|
3048 |
int iStart, int nByte /* Offset and size of the match */
|
sl@0
|
3049 |
){
|
sl@0
|
3050 |
int i;
|
sl@0
|
3051 |
struct snippetMatch *pMatch;
|
sl@0
|
3052 |
if( p->nMatch+1>=p->nAlloc ){
|
sl@0
|
3053 |
p->nAlloc = p->nAlloc*2 + 10;
|
sl@0
|
3054 |
p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) );
|
sl@0
|
3055 |
if( p->aMatch==0 ){
|
sl@0
|
3056 |
p->nMatch = 0;
|
sl@0
|
3057 |
p->nAlloc = 0;
|
sl@0
|
3058 |
return;
|
sl@0
|
3059 |
}
|
sl@0
|
3060 |
}
|
sl@0
|
3061 |
i = p->nMatch++;
|
sl@0
|
3062 |
pMatch = &p->aMatch[i];
|
sl@0
|
3063 |
pMatch->iCol = iCol;
|
sl@0
|
3064 |
pMatch->iTerm = iTerm;
|
sl@0
|
3065 |
pMatch->iStart = iStart;
|
sl@0
|
3066 |
pMatch->nByte = nByte;
|
sl@0
|
3067 |
}
|
sl@0
|
3068 |
|
sl@0
|
3069 |
/*
|
sl@0
|
3070 |
** Sizing information for the circular buffer used in snippetOffsetsOfColumn()
|
sl@0
|
3071 |
*/
|
sl@0
|
3072 |
#define FTS2_ROTOR_SZ (32)
|
sl@0
|
3073 |
#define FTS2_ROTOR_MASK (FTS2_ROTOR_SZ-1)
|
sl@0
|
3074 |
|
sl@0
|
3075 |
/*
|
sl@0
|
3076 |
** Add entries to pSnippet->aMatch[] for every match that occurs against
|
sl@0
|
3077 |
** document zDoc[0..nDoc-1] which is stored in column iColumn.
|
sl@0
|
3078 |
*/
|
sl@0
|
3079 |
static void snippetOffsetsOfColumn(
|
sl@0
|
3080 |
Query *pQuery,
|
sl@0
|
3081 |
Snippet *pSnippet,
|
sl@0
|
3082 |
int iColumn,
|
sl@0
|
3083 |
const char *zDoc,
|
sl@0
|
3084 |
int nDoc
|
sl@0
|
3085 |
){
|
sl@0
|
3086 |
const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */
|
sl@0
|
3087 |
sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */
|
sl@0
|
3088 |
sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */
|
sl@0
|
3089 |
fulltext_vtab *pVtab; /* The full text index */
|
sl@0
|
3090 |
int nColumn; /* Number of columns in the index */
|
sl@0
|
3091 |
const QueryTerm *aTerm; /* Query string terms */
|
sl@0
|
3092 |
int nTerm; /* Number of query string terms */
|
sl@0
|
3093 |
int i, j; /* Loop counters */
|
sl@0
|
3094 |
int rc; /* Return code */
|
sl@0
|
3095 |
unsigned int match, prevMatch; /* Phrase search bitmasks */
|
sl@0
|
3096 |
const char *zToken; /* Next token from the tokenizer */
|
sl@0
|
3097 |
int nToken; /* Size of zToken */
|
sl@0
|
3098 |
int iBegin, iEnd, iPos; /* Offsets of beginning and end */
|
sl@0
|
3099 |
|
sl@0
|
3100 |
/* The following variables keep a circular buffer of the last
|
sl@0
|
3101 |
** few tokens */
|
sl@0
|
3102 |
unsigned int iRotor = 0; /* Index of current token */
|
sl@0
|
3103 |
int iRotorBegin[FTS2_ROTOR_SZ]; /* Beginning offset of token */
|
sl@0
|
3104 |
int iRotorLen[FTS2_ROTOR_SZ]; /* Length of token */
|
sl@0
|
3105 |
|
sl@0
|
3106 |
pVtab = pQuery->pFts;
|
sl@0
|
3107 |
nColumn = pVtab->nColumn;
|
sl@0
|
3108 |
pTokenizer = pVtab->pTokenizer;
|
sl@0
|
3109 |
pTModule = pTokenizer->pModule;
|
sl@0
|
3110 |
rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor);
|
sl@0
|
3111 |
if( rc ) return;
|
sl@0
|
3112 |
pTCursor->pTokenizer = pTokenizer;
|
sl@0
|
3113 |
aTerm = pQuery->pTerms;
|
sl@0
|
3114 |
nTerm = pQuery->nTerms;
|
sl@0
|
3115 |
if( nTerm>=FTS2_ROTOR_SZ ){
|
sl@0
|
3116 |
nTerm = FTS2_ROTOR_SZ - 1;
|
sl@0
|
3117 |
}
|
sl@0
|
3118 |
prevMatch = 0;
|
sl@0
|
3119 |
while(1){
|
sl@0
|
3120 |
rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
|
sl@0
|
3121 |
if( rc ) break;
|
sl@0
|
3122 |
iRotorBegin[iRotor&FTS2_ROTOR_MASK] = iBegin;
|
sl@0
|
3123 |
iRotorLen[iRotor&FTS2_ROTOR_MASK] = iEnd-iBegin;
|
sl@0
|
3124 |
match = 0;
|
sl@0
|
3125 |
for(i=0; i<nTerm; i++){
|
sl@0
|
3126 |
int iCol;
|
sl@0
|
3127 |
iCol = aTerm[i].iColumn;
|
sl@0
|
3128 |
if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue;
|
sl@0
|
3129 |
if( aTerm[i].nTerm>nToken ) continue;
|
sl@0
|
3130 |
if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue;
|
sl@0
|
3131 |
assert( aTerm[i].nTerm<=nToken );
|
sl@0
|
3132 |
if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue;
|
sl@0
|
3133 |
if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue;
|
sl@0
|
3134 |
match |= 1<<i;
|
sl@0
|
3135 |
if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){
|
sl@0
|
3136 |
for(j=aTerm[i].iPhrase-1; j>=0; j--){
|
sl@0
|
3137 |
int k = (iRotor-j) & FTS2_ROTOR_MASK;
|
sl@0
|
3138 |
snippetAppendMatch(pSnippet, iColumn, i-j,
|
sl@0
|
3139 |
iRotorBegin[k], iRotorLen[k]);
|
sl@0
|
3140 |
}
|
sl@0
|
3141 |
}
|
sl@0
|
3142 |
}
|
sl@0
|
3143 |
prevMatch = match<<1;
|
sl@0
|
3144 |
iRotor++;
|
sl@0
|
3145 |
}
|
sl@0
|
3146 |
pTModule->xClose(pTCursor);
|
sl@0
|
3147 |
}
|
sl@0
|
3148 |
|
sl@0
|
3149 |
|
sl@0
|
3150 |
/*
|
sl@0
|
3151 |
** Compute all offsets for the current row of the query.
|
sl@0
|
3152 |
** If the offsets have already been computed, this routine is a no-op.
|
sl@0
|
3153 |
*/
|
sl@0
|
3154 |
static void snippetAllOffsets(fulltext_cursor *p){
|
sl@0
|
3155 |
int nColumn;
|
sl@0
|
3156 |
int iColumn, i;
|
sl@0
|
3157 |
int iFirst, iLast;
|
sl@0
|
3158 |
fulltext_vtab *pFts;
|
sl@0
|
3159 |
|
sl@0
|
3160 |
if( p->snippet.nMatch ) return;
|
sl@0
|
3161 |
if( p->q.nTerms==0 ) return;
|
sl@0
|
3162 |
pFts = p->q.pFts;
|
sl@0
|
3163 |
nColumn = pFts->nColumn;
|
sl@0
|
3164 |
iColumn = (p->iCursorType - QUERY_FULLTEXT);
|
sl@0
|
3165 |
if( iColumn<0 || iColumn>=nColumn ){
|
sl@0
|
3166 |
iFirst = 0;
|
sl@0
|
3167 |
iLast = nColumn-1;
|
sl@0
|
3168 |
}else{
|
sl@0
|
3169 |
iFirst = iColumn;
|
sl@0
|
3170 |
iLast = iColumn;
|
sl@0
|
3171 |
}
|
sl@0
|
3172 |
for(i=iFirst; i<=iLast; i++){
|
sl@0
|
3173 |
const char *zDoc;
|
sl@0
|
3174 |
int nDoc;
|
sl@0
|
3175 |
zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1);
|
sl@0
|
3176 |
nDoc = sqlite3_column_bytes(p->pStmt, i+1);
|
sl@0
|
3177 |
snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc);
|
sl@0
|
3178 |
}
|
sl@0
|
3179 |
}
|
sl@0
|
3180 |
|
sl@0
|
3181 |
/*
|
sl@0
|
3182 |
** Convert the information in the aMatch[] array of the snippet
|
sl@0
|
3183 |
** into the string zOffset[0..nOffset-1].
|
sl@0
|
3184 |
*/
|
sl@0
|
3185 |
static void snippetOffsetText(Snippet *p){
|
sl@0
|
3186 |
int i;
|
sl@0
|
3187 |
int cnt = 0;
|
sl@0
|
3188 |
StringBuffer sb;
|
sl@0
|
3189 |
char zBuf[200];
|
sl@0
|
3190 |
if( p->zOffset ) return;
|
sl@0
|
3191 |
initStringBuffer(&sb);
|
sl@0
|
3192 |
for(i=0; i<p->nMatch; i++){
|
sl@0
|
3193 |
struct snippetMatch *pMatch = &p->aMatch[i];
|
sl@0
|
3194 |
zBuf[0] = ' ';
|
sl@0
|
3195 |
sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d",
|
sl@0
|
3196 |
pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte);
|
sl@0
|
3197 |
append(&sb, zBuf);
|
sl@0
|
3198 |
cnt++;
|
sl@0
|
3199 |
}
|
sl@0
|
3200 |
p->zOffset = stringBufferData(&sb);
|
sl@0
|
3201 |
p->nOffset = stringBufferLength(&sb);
|
sl@0
|
3202 |
}
|
sl@0
|
3203 |
|
sl@0
|
3204 |
/*
|
sl@0
|
3205 |
** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set
|
sl@0
|
3206 |
** of matching words some of which might be in zDoc. zDoc is column
|
sl@0
|
3207 |
** number iCol.
|
sl@0
|
3208 |
**
|
sl@0
|
3209 |
** iBreak is suggested spot in zDoc where we could begin or end an
|
sl@0
|
3210 |
** excerpt. Return a value similar to iBreak but possibly adjusted
|
sl@0
|
3211 |
** to be a little left or right so that the break point is better.
|
sl@0
|
3212 |
*/
|
sl@0
|
3213 |
static int wordBoundary(
|
sl@0
|
3214 |
int iBreak, /* The suggested break point */
|
sl@0
|
3215 |
const char *zDoc, /* Document text */
|
sl@0
|
3216 |
int nDoc, /* Number of bytes in zDoc[] */
|
sl@0
|
3217 |
struct snippetMatch *aMatch, /* Matching words */
|
sl@0
|
3218 |
int nMatch, /* Number of entries in aMatch[] */
|
sl@0
|
3219 |
int iCol /* The column number for zDoc[] */
|
sl@0
|
3220 |
){
|
sl@0
|
3221 |
int i;
|
sl@0
|
3222 |
if( iBreak<=10 ){
|
sl@0
|
3223 |
return 0;
|
sl@0
|
3224 |
}
|
sl@0
|
3225 |
if( iBreak>=nDoc-10 ){
|
sl@0
|
3226 |
return nDoc;
|
sl@0
|
3227 |
}
|
sl@0
|
3228 |
for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){}
|
sl@0
|
3229 |
while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; }
|
sl@0
|
3230 |
if( i<nMatch ){
|
sl@0
|
3231 |
if( aMatch[i].iStart<iBreak+10 ){
|
sl@0
|
3232 |
return aMatch[i].iStart;
|
sl@0
|
3233 |
}
|
sl@0
|
3234 |
if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){
|
sl@0
|
3235 |
return aMatch[i-1].iStart;
|
sl@0
|
3236 |
}
|
sl@0
|
3237 |
}
|
sl@0
|
3238 |
for(i=1; i<=10; i++){
|
sl@0
|
3239 |
if( safe_isspace(zDoc[iBreak-i]) ){
|
sl@0
|
3240 |
return iBreak - i + 1;
|
sl@0
|
3241 |
}
|
sl@0
|
3242 |
if( safe_isspace(zDoc[iBreak+i]) ){
|
sl@0
|
3243 |
return iBreak + i + 1;
|
sl@0
|
3244 |
}
|
sl@0
|
3245 |
}
|
sl@0
|
3246 |
return iBreak;
|
sl@0
|
3247 |
}
|
sl@0
|
3248 |
|
sl@0
|
3249 |
|
sl@0
|
3250 |
|
sl@0
|
3251 |
/*
|
sl@0
|
3252 |
** Allowed values for Snippet.aMatch[].snStatus
|
sl@0
|
3253 |
*/
|
sl@0
|
3254 |
#define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */
|
sl@0
|
3255 |
#define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */
|
sl@0
|
3256 |
|
sl@0
|
3257 |
/*
|
sl@0
|
3258 |
** Generate the text of a snippet.
|
sl@0
|
3259 |
*/
|
sl@0
|
3260 |
static void snippetText(
|
sl@0
|
3261 |
fulltext_cursor *pCursor, /* The cursor we need the snippet for */
|
sl@0
|
3262 |
const char *zStartMark, /* Markup to appear before each match */
|
sl@0
|
3263 |
const char *zEndMark, /* Markup to appear after each match */
|
sl@0
|
3264 |
const char *zEllipsis /* Ellipsis mark */
|
sl@0
|
3265 |
){
|
sl@0
|
3266 |
int i, j;
|
sl@0
|
3267 |
struct snippetMatch *aMatch;
|
sl@0
|
3268 |
int nMatch;
|
sl@0
|
3269 |
int nDesired;
|
sl@0
|
3270 |
StringBuffer sb;
|
sl@0
|
3271 |
int tailCol;
|
sl@0
|
3272 |
int tailOffset;
|
sl@0
|
3273 |
int iCol;
|
sl@0
|
3274 |
int nDoc;
|
sl@0
|
3275 |
const char *zDoc;
|
sl@0
|
3276 |
int iStart, iEnd;
|
sl@0
|
3277 |
int tailEllipsis = 0;
|
sl@0
|
3278 |
int iMatch;
|
sl@0
|
3279 |
|
sl@0
|
3280 |
|
sl@0
|
3281 |
sqlite3_free(pCursor->snippet.zSnippet);
|
sl@0
|
3282 |
pCursor->snippet.zSnippet = 0;
|
sl@0
|
3283 |
aMatch = pCursor->snippet.aMatch;
|
sl@0
|
3284 |
nMatch = pCursor->snippet.nMatch;
|
sl@0
|
3285 |
initStringBuffer(&sb);
|
sl@0
|
3286 |
|
sl@0
|
3287 |
for(i=0; i<nMatch; i++){
|
sl@0
|
3288 |
aMatch[i].snStatus = SNIPPET_IGNORE;
|
sl@0
|
3289 |
}
|
sl@0
|
3290 |
nDesired = 0;
|
sl@0
|
3291 |
for(i=0; i<pCursor->q.nTerms; i++){
|
sl@0
|
3292 |
for(j=0; j<nMatch; j++){
|
sl@0
|
3293 |
if( aMatch[j].iTerm==i ){
|
sl@0
|
3294 |
aMatch[j].snStatus = SNIPPET_DESIRED;
|
sl@0
|
3295 |
nDesired++;
|
sl@0
|
3296 |
break;
|
sl@0
|
3297 |
}
|
sl@0
|
3298 |
}
|
sl@0
|
3299 |
}
|
sl@0
|
3300 |
|
sl@0
|
3301 |
iMatch = 0;
|
sl@0
|
3302 |
tailCol = -1;
|
sl@0
|
3303 |
tailOffset = 0;
|
sl@0
|
3304 |
for(i=0; i<nMatch && nDesired>0; i++){
|
sl@0
|
3305 |
if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue;
|
sl@0
|
3306 |
nDesired--;
|
sl@0
|
3307 |
iCol = aMatch[i].iCol;
|
sl@0
|
3308 |
zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1);
|
sl@0
|
3309 |
nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1);
|
sl@0
|
3310 |
iStart = aMatch[i].iStart - 40;
|
sl@0
|
3311 |
iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol);
|
sl@0
|
3312 |
if( iStart<=10 ){
|
sl@0
|
3313 |
iStart = 0;
|
sl@0
|
3314 |
}
|
sl@0
|
3315 |
if( iCol==tailCol && iStart<=tailOffset+20 ){
|
sl@0
|
3316 |
iStart = tailOffset;
|
sl@0
|
3317 |
}
|
sl@0
|
3318 |
if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){
|
sl@0
|
3319 |
trimWhiteSpace(&sb);
|
sl@0
|
3320 |
appendWhiteSpace(&sb);
|
sl@0
|
3321 |
append(&sb, zEllipsis);
|
sl@0
|
3322 |
appendWhiteSpace(&sb);
|
sl@0
|
3323 |
}
|
sl@0
|
3324 |
iEnd = aMatch[i].iStart + aMatch[i].nByte + 40;
|
sl@0
|
3325 |
iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol);
|
sl@0
|
3326 |
if( iEnd>=nDoc-10 ){
|
sl@0
|
3327 |
iEnd = nDoc;
|
sl@0
|
3328 |
tailEllipsis = 0;
|
sl@0
|
3329 |
}else{
|
sl@0
|
3330 |
tailEllipsis = 1;
|
sl@0
|
3331 |
}
|
sl@0
|
3332 |
while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; }
|
sl@0
|
3333 |
while( iStart<iEnd ){
|
sl@0
|
3334 |
while( iMatch<nMatch && aMatch[iMatch].iStart<iStart
|
sl@0
|
3335 |
&& aMatch[iMatch].iCol<=iCol ){
|
sl@0
|
3336 |
iMatch++;
|
sl@0
|
3337 |
}
|
sl@0
|
3338 |
if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd
|
sl@0
|
3339 |
&& aMatch[iMatch].iCol==iCol ){
|
sl@0
|
3340 |
nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart);
|
sl@0
|
3341 |
iStart = aMatch[iMatch].iStart;
|
sl@0
|
3342 |
append(&sb, zStartMark);
|
sl@0
|
3343 |
nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte);
|
sl@0
|
3344 |
append(&sb, zEndMark);
|
sl@0
|
3345 |
iStart += aMatch[iMatch].nByte;
|
sl@0
|
3346 |
for(j=iMatch+1; j<nMatch; j++){
|
sl@0
|
3347 |
if( aMatch[j].iTerm==aMatch[iMatch].iTerm
|
sl@0
|
3348 |
&& aMatch[j].snStatus==SNIPPET_DESIRED ){
|
sl@0
|
3349 |
nDesired--;
|
sl@0
|
3350 |
aMatch[j].snStatus = SNIPPET_IGNORE;
|
sl@0
|
3351 |
}
|
sl@0
|
3352 |
}
|
sl@0
|
3353 |
}else{
|
sl@0
|
3354 |
nappend(&sb, &zDoc[iStart], iEnd - iStart);
|
sl@0
|
3355 |
iStart = iEnd;
|
sl@0
|
3356 |
}
|
sl@0
|
3357 |
}
|
sl@0
|
3358 |
tailCol = iCol;
|
sl@0
|
3359 |
tailOffset = iEnd;
|
sl@0
|
3360 |
}
|
sl@0
|
3361 |
trimWhiteSpace(&sb);
|
sl@0
|
3362 |
if( tailEllipsis ){
|
sl@0
|
3363 |
appendWhiteSpace(&sb);
|
sl@0
|
3364 |
append(&sb, zEllipsis);
|
sl@0
|
3365 |
}
|
sl@0
|
3366 |
pCursor->snippet.zSnippet = stringBufferData(&sb);
|
sl@0
|
3367 |
pCursor->snippet.nSnippet = stringBufferLength(&sb);
|
sl@0
|
3368 |
}
|
sl@0
|
3369 |
|
sl@0
|
3370 |
|
sl@0
|
3371 |
/*
|
sl@0
|
3372 |
** Close the cursor. For additional information see the documentation
|
sl@0
|
3373 |
** on the xClose method of the virtual table interface.
|
sl@0
|
3374 |
*/
|
sl@0
|
3375 |
static int fulltextClose(sqlite3_vtab_cursor *pCursor){
|
sl@0
|
3376 |
fulltext_cursor *c = (fulltext_cursor *) pCursor;
|
sl@0
|
3377 |
TRACE(("FTS2 Close %p\n", c));
|
sl@0
|
3378 |
sqlite3_finalize(c->pStmt);
|
sl@0
|
3379 |
queryClear(&c->q);
|
sl@0
|
3380 |
snippetClear(&c->snippet);
|
sl@0
|
3381 |
if( c->result.nData!=0 ) dlrDestroy(&c->reader);
|
sl@0
|
3382 |
dataBufferDestroy(&c->result);
|
sl@0
|
3383 |
sqlite3_free(c);
|
sl@0
|
3384 |
return SQLITE_OK;
|
sl@0
|
3385 |
}
|
sl@0
|
3386 |
|
sl@0
|
3387 |
static int fulltextNext(sqlite3_vtab_cursor *pCursor){
|
sl@0
|
3388 |
fulltext_cursor *c = (fulltext_cursor *) pCursor;
|
sl@0
|
3389 |
int rc;
|
sl@0
|
3390 |
|
sl@0
|
3391 |
TRACE(("FTS2 Next %p\n", pCursor));
|
sl@0
|
3392 |
snippetClear(&c->snippet);
|
sl@0
|
3393 |
if( c->iCursorType < QUERY_FULLTEXT ){
|
sl@0
|
3394 |
/* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
|
sl@0
|
3395 |
rc = sqlite3_step(c->pStmt);
|
sl@0
|
3396 |
switch( rc ){
|
sl@0
|
3397 |
case SQLITE_ROW:
|
sl@0
|
3398 |
c->eof = 0;
|
sl@0
|
3399 |
return SQLITE_OK;
|
sl@0
|
3400 |
case SQLITE_DONE:
|
sl@0
|
3401 |
c->eof = 1;
|
sl@0
|
3402 |
return SQLITE_OK;
|
sl@0
|
3403 |
default:
|
sl@0
|
3404 |
c->eof = 1;
|
sl@0
|
3405 |
return rc;
|
sl@0
|
3406 |
}
|
sl@0
|
3407 |
} else { /* full-text query */
|
sl@0
|
3408 |
rc = sqlite3_reset(c->pStmt);
|
sl@0
|
3409 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
3410 |
|
sl@0
|
3411 |
if( c->result.nData==0 || dlrAtEnd(&c->reader) ){
|
sl@0
|
3412 |
c->eof = 1;
|
sl@0
|
3413 |
return SQLITE_OK;
|
sl@0
|
3414 |
}
|
sl@0
|
3415 |
rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader));
|
sl@0
|
3416 |
dlrStep(&c->reader);
|
sl@0
|
3417 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
3418 |
/* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
|
sl@0
|
3419 |
rc = sqlite3_step(c->pStmt);
|
sl@0
|
3420 |
if( rc==SQLITE_ROW ){ /* the case we expect */
|
sl@0
|
3421 |
c->eof = 0;
|
sl@0
|
3422 |
return SQLITE_OK;
|
sl@0
|
3423 |
}
|
sl@0
|
3424 |
/* an error occurred; abort */
|
sl@0
|
3425 |
return rc==SQLITE_DONE ? SQLITE_ERROR : rc;
|
sl@0
|
3426 |
}
|
sl@0
|
3427 |
}
|
sl@0
|
3428 |
|
sl@0
|
3429 |
|
sl@0
|
3430 |
/* TODO(shess) If we pushed LeafReader to the top of the file, or to
|
sl@0
|
3431 |
** another file, term_select() could be pushed above
|
sl@0
|
3432 |
** docListOfTerm().
|
sl@0
|
3433 |
*/
|
sl@0
|
3434 |
static int termSelect(fulltext_vtab *v, int iColumn,
|
sl@0
|
3435 |
const char *pTerm, int nTerm, int isPrefix,
|
sl@0
|
3436 |
DocListType iType, DataBuffer *out);
|
sl@0
|
3437 |
|
sl@0
|
3438 |
/* Return a DocList corresponding to the query term *pTerm. If *pTerm
|
sl@0
|
3439 |
** is the first term of a phrase query, go ahead and evaluate the phrase
|
sl@0
|
3440 |
** query and return the doclist for the entire phrase query.
|
sl@0
|
3441 |
**
|
sl@0
|
3442 |
** The resulting DL_DOCIDS doclist is stored in pResult, which is
|
sl@0
|
3443 |
** overwritten.
|
sl@0
|
3444 |
*/
|
sl@0
|
3445 |
static int docListOfTerm(
|
sl@0
|
3446 |
fulltext_vtab *v, /* The full text index */
|
sl@0
|
3447 |
int iColumn, /* column to restrict to. No restriction if >=nColumn */
|
sl@0
|
3448 |
QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */
|
sl@0
|
3449 |
DataBuffer *pResult /* Write the result here */
|
sl@0
|
3450 |
){
|
sl@0
|
3451 |
DataBuffer left, right, new;
|
sl@0
|
3452 |
int i, rc;
|
sl@0
|
3453 |
|
sl@0
|
3454 |
/* No phrase search if no position info. */
|
sl@0
|
3455 |
assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS );
|
sl@0
|
3456 |
|
sl@0
|
3457 |
/* This code should never be called with buffered updates. */
|
sl@0
|
3458 |
assert( v->nPendingData<0 );
|
sl@0
|
3459 |
|
sl@0
|
3460 |
dataBufferInit(&left, 0);
|
sl@0
|
3461 |
rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix,
|
sl@0
|
3462 |
0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &left);
|
sl@0
|
3463 |
if( rc ) return rc;
|
sl@0
|
3464 |
for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){
|
sl@0
|
3465 |
dataBufferInit(&right, 0);
|
sl@0
|
3466 |
rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm,
|
sl@0
|
3467 |
pQTerm[i].isPrefix, DL_POSITIONS, &right);
|
sl@0
|
3468 |
if( rc ){
|
sl@0
|
3469 |
dataBufferDestroy(&left);
|
sl@0
|
3470 |
return rc;
|
sl@0
|
3471 |
}
|
sl@0
|
3472 |
dataBufferInit(&new, 0);
|
sl@0
|
3473 |
docListPhraseMerge(left.pData, left.nData, right.pData, right.nData,
|
sl@0
|
3474 |
i<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &new);
|
sl@0
|
3475 |
dataBufferDestroy(&left);
|
sl@0
|
3476 |
dataBufferDestroy(&right);
|
sl@0
|
3477 |
left = new;
|
sl@0
|
3478 |
}
|
sl@0
|
3479 |
*pResult = left;
|
sl@0
|
3480 |
return SQLITE_OK;
|
sl@0
|
3481 |
}
|
sl@0
|
3482 |
|
sl@0
|
3483 |
/* Add a new term pTerm[0..nTerm-1] to the query *q.
|
sl@0
|
3484 |
*/
|
sl@0
|
3485 |
static void queryAdd(Query *q, const char *pTerm, int nTerm){
|
sl@0
|
3486 |
QueryTerm *t;
|
sl@0
|
3487 |
++q->nTerms;
|
sl@0
|
3488 |
q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0]));
|
sl@0
|
3489 |
if( q->pTerms==0 ){
|
sl@0
|
3490 |
q->nTerms = 0;
|
sl@0
|
3491 |
return;
|
sl@0
|
3492 |
}
|
sl@0
|
3493 |
t = &q->pTerms[q->nTerms - 1];
|
sl@0
|
3494 |
CLEAR(t);
|
sl@0
|
3495 |
t->pTerm = sqlite3_malloc(nTerm+1);
|
sl@0
|
3496 |
memcpy(t->pTerm, pTerm, nTerm);
|
sl@0
|
3497 |
t->pTerm[nTerm] = 0;
|
sl@0
|
3498 |
t->nTerm = nTerm;
|
sl@0
|
3499 |
t->isOr = q->nextIsOr;
|
sl@0
|
3500 |
t->isPrefix = 0;
|
sl@0
|
3501 |
q->nextIsOr = 0;
|
sl@0
|
3502 |
t->iColumn = q->nextColumn;
|
sl@0
|
3503 |
q->nextColumn = q->dfltColumn;
|
sl@0
|
3504 |
}
|
sl@0
|
3505 |
|
sl@0
|
3506 |
/*
|
sl@0
|
3507 |
** Check to see if the string zToken[0...nToken-1] matches any
|
sl@0
|
3508 |
** column name in the virtual table. If it does,
|
sl@0
|
3509 |
** return the zero-indexed column number. If not, return -1.
|
sl@0
|
3510 |
*/
|
sl@0
|
3511 |
static int checkColumnSpecifier(
|
sl@0
|
3512 |
fulltext_vtab *pVtab, /* The virtual table */
|
sl@0
|
3513 |
const char *zToken, /* Text of the token */
|
sl@0
|
3514 |
int nToken /* Number of characters in the token */
|
sl@0
|
3515 |
){
|
sl@0
|
3516 |
int i;
|
sl@0
|
3517 |
for(i=0; i<pVtab->nColumn; i++){
|
sl@0
|
3518 |
if( memcmp(pVtab->azColumn[i], zToken, nToken)==0
|
sl@0
|
3519 |
&& pVtab->azColumn[i][nToken]==0 ){
|
sl@0
|
3520 |
return i;
|
sl@0
|
3521 |
}
|
sl@0
|
3522 |
}
|
sl@0
|
3523 |
return -1;
|
sl@0
|
3524 |
}
|
sl@0
|
3525 |
|
sl@0
|
3526 |
/*
|
sl@0
|
3527 |
** Parse the text at pSegment[0..nSegment-1]. Add additional terms
|
sl@0
|
3528 |
** to the query being assemblied in pQuery.
|
sl@0
|
3529 |
**
|
sl@0
|
3530 |
** inPhrase is true if pSegment[0..nSegement-1] is contained within
|
sl@0
|
3531 |
** double-quotes. If inPhrase is true, then the first term
|
sl@0
|
3532 |
** is marked with the number of terms in the phrase less one and
|
sl@0
|
3533 |
** OR and "-" syntax is ignored. If inPhrase is false, then every
|
sl@0
|
3534 |
** term found is marked with nPhrase=0 and OR and "-" syntax is significant.
|
sl@0
|
3535 |
*/
|
sl@0
|
3536 |
static int tokenizeSegment(
|
sl@0
|
3537 |
sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */
|
sl@0
|
3538 |
const char *pSegment, int nSegment, /* Query expression being parsed */
|
sl@0
|
3539 |
int inPhrase, /* True if within "..." */
|
sl@0
|
3540 |
Query *pQuery /* Append results here */
|
sl@0
|
3541 |
){
|
sl@0
|
3542 |
const sqlite3_tokenizer_module *pModule = pTokenizer->pModule;
|
sl@0
|
3543 |
sqlite3_tokenizer_cursor *pCursor;
|
sl@0
|
3544 |
int firstIndex = pQuery->nTerms;
|
sl@0
|
3545 |
int iCol;
|
sl@0
|
3546 |
int nTerm = 1;
|
sl@0
|
3547 |
|
sl@0
|
3548 |
int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor);
|
sl@0
|
3549 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
3550 |
pCursor->pTokenizer = pTokenizer;
|
sl@0
|
3551 |
|
sl@0
|
3552 |
while( 1 ){
|
sl@0
|
3553 |
const char *pToken;
|
sl@0
|
3554 |
int nToken, iBegin, iEnd, iPos;
|
sl@0
|
3555 |
|
sl@0
|
3556 |
rc = pModule->xNext(pCursor,
|
sl@0
|
3557 |
&pToken, &nToken,
|
sl@0
|
3558 |
&iBegin, &iEnd, &iPos);
|
sl@0
|
3559 |
if( rc!=SQLITE_OK ) break;
|
sl@0
|
3560 |
if( !inPhrase &&
|
sl@0
|
3561 |
pSegment[iEnd]==':' &&
|
sl@0
|
3562 |
(iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){
|
sl@0
|
3563 |
pQuery->nextColumn = iCol;
|
sl@0
|
3564 |
continue;
|
sl@0
|
3565 |
}
|
sl@0
|
3566 |
if( !inPhrase && pQuery->nTerms>0 && nToken==2
|
sl@0
|
3567 |
&& pSegment[iBegin]=='O' && pSegment[iBegin+1]=='R' ){
|
sl@0
|
3568 |
pQuery->nextIsOr = 1;
|
sl@0
|
3569 |
continue;
|
sl@0
|
3570 |
}
|
sl@0
|
3571 |
queryAdd(pQuery, pToken, nToken);
|
sl@0
|
3572 |
if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){
|
sl@0
|
3573 |
pQuery->pTerms[pQuery->nTerms-1].isNot = 1;
|
sl@0
|
3574 |
}
|
sl@0
|
3575 |
if( iEnd<nSegment && pSegment[iEnd]=='*' ){
|
sl@0
|
3576 |
pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1;
|
sl@0
|
3577 |
}
|
sl@0
|
3578 |
pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm;
|
sl@0
|
3579 |
if( inPhrase ){
|
sl@0
|
3580 |
nTerm++;
|
sl@0
|
3581 |
}
|
sl@0
|
3582 |
}
|
sl@0
|
3583 |
|
sl@0
|
3584 |
if( inPhrase && pQuery->nTerms>firstIndex ){
|
sl@0
|
3585 |
pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1;
|
sl@0
|
3586 |
}
|
sl@0
|
3587 |
|
sl@0
|
3588 |
return pModule->xClose(pCursor);
|
sl@0
|
3589 |
}
|
sl@0
|
3590 |
|
sl@0
|
3591 |
/* Parse a query string, yielding a Query object pQuery.
|
sl@0
|
3592 |
**
|
sl@0
|
3593 |
** The calling function will need to queryClear() to clean up
|
sl@0
|
3594 |
** the dynamically allocated memory held by pQuery.
|
sl@0
|
3595 |
*/
|
sl@0
|
3596 |
static int parseQuery(
|
sl@0
|
3597 |
fulltext_vtab *v, /* The fulltext index */
|
sl@0
|
3598 |
const char *zInput, /* Input text of the query string */
|
sl@0
|
3599 |
int nInput, /* Size of the input text */
|
sl@0
|
3600 |
int dfltColumn, /* Default column of the index to match against */
|
sl@0
|
3601 |
Query *pQuery /* Write the parse results here. */
|
sl@0
|
3602 |
){
|
sl@0
|
3603 |
int iInput, inPhrase = 0;
|
sl@0
|
3604 |
|
sl@0
|
3605 |
if( zInput==0 ) nInput = 0;
|
sl@0
|
3606 |
if( nInput<0 ) nInput = strlen(zInput);
|
sl@0
|
3607 |
pQuery->nTerms = 0;
|
sl@0
|
3608 |
pQuery->pTerms = NULL;
|
sl@0
|
3609 |
pQuery->nextIsOr = 0;
|
sl@0
|
3610 |
pQuery->nextColumn = dfltColumn;
|
sl@0
|
3611 |
pQuery->dfltColumn = dfltColumn;
|
sl@0
|
3612 |
pQuery->pFts = v;
|
sl@0
|
3613 |
|
sl@0
|
3614 |
for(iInput=0; iInput<nInput; ++iInput){
|
sl@0
|
3615 |
int i;
|
sl@0
|
3616 |
for(i=iInput; i<nInput && zInput[i]!='"'; ++i){}
|
sl@0
|
3617 |
if( i>iInput ){
|
sl@0
|
3618 |
tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase,
|
sl@0
|
3619 |
pQuery);
|
sl@0
|
3620 |
}
|
sl@0
|
3621 |
iInput = i;
|
sl@0
|
3622 |
if( i<nInput ){
|
sl@0
|
3623 |
assert( zInput[i]=='"' );
|
sl@0
|
3624 |
inPhrase = !inPhrase;
|
sl@0
|
3625 |
}
|
sl@0
|
3626 |
}
|
sl@0
|
3627 |
|
sl@0
|
3628 |
if( inPhrase ){
|
sl@0
|
3629 |
/* unmatched quote */
|
sl@0
|
3630 |
queryClear(pQuery);
|
sl@0
|
3631 |
return SQLITE_ERROR;
|
sl@0
|
3632 |
}
|
sl@0
|
3633 |
return SQLITE_OK;
|
sl@0
|
3634 |
}
|
sl@0
|
3635 |
|
sl@0
|
3636 |
/* TODO(shess) Refactor the code to remove this forward decl. */
|
sl@0
|
3637 |
static int flushPendingTerms(fulltext_vtab *v);
|
sl@0
|
3638 |
|
sl@0
|
3639 |
/* Perform a full-text query using the search expression in
|
sl@0
|
3640 |
** zInput[0..nInput-1]. Return a list of matching documents
|
sl@0
|
3641 |
** in pResult.
|
sl@0
|
3642 |
**
|
sl@0
|
3643 |
** Queries must match column iColumn. Or if iColumn>=nColumn
|
sl@0
|
3644 |
** they are allowed to match against any column.
|
sl@0
|
3645 |
*/
|
sl@0
|
3646 |
static int fulltextQuery(
|
sl@0
|
3647 |
fulltext_vtab *v, /* The full text index */
|
sl@0
|
3648 |
int iColumn, /* Match against this column by default */
|
sl@0
|
3649 |
const char *zInput, /* The query string */
|
sl@0
|
3650 |
int nInput, /* Number of bytes in zInput[] */
|
sl@0
|
3651 |
DataBuffer *pResult, /* Write the result doclist here */
|
sl@0
|
3652 |
Query *pQuery /* Put parsed query string here */
|
sl@0
|
3653 |
){
|
sl@0
|
3654 |
int i, iNext, rc;
|
sl@0
|
3655 |
DataBuffer left, right, or, new;
|
sl@0
|
3656 |
int nNot = 0;
|
sl@0
|
3657 |
QueryTerm *aTerm;
|
sl@0
|
3658 |
|
sl@0
|
3659 |
/* TODO(shess) Instead of flushing pendingTerms, we could query for
|
sl@0
|
3660 |
** the relevant term and merge the doclist into what we receive from
|
sl@0
|
3661 |
** the database. Wait and see if this is a common issue, first.
|
sl@0
|
3662 |
**
|
sl@0
|
3663 |
** A good reason not to flush is to not generate update-related
|
sl@0
|
3664 |
** error codes from here.
|
sl@0
|
3665 |
*/
|
sl@0
|
3666 |
|
sl@0
|
3667 |
/* Flush any buffered updates before executing the query. */
|
sl@0
|
3668 |
rc = flushPendingTerms(v);
|
sl@0
|
3669 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
3670 |
|
sl@0
|
3671 |
/* TODO(shess) I think that the queryClear() calls below are not
|
sl@0
|
3672 |
** necessary, because fulltextClose() already clears the query.
|
sl@0
|
3673 |
*/
|
sl@0
|
3674 |
rc = parseQuery(v, zInput, nInput, iColumn, pQuery);
|
sl@0
|
3675 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
3676 |
|
sl@0
|
3677 |
/* Empty or NULL queries return no results. */
|
sl@0
|
3678 |
if( pQuery->nTerms==0 ){
|
sl@0
|
3679 |
dataBufferInit(pResult, 0);
|
sl@0
|
3680 |
return SQLITE_OK;
|
sl@0
|
3681 |
}
|
sl@0
|
3682 |
|
sl@0
|
3683 |
/* Merge AND terms. */
|
sl@0
|
3684 |
/* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */
|
sl@0
|
3685 |
aTerm = pQuery->pTerms;
|
sl@0
|
3686 |
for(i = 0; i<pQuery->nTerms; i=iNext){
|
sl@0
|
3687 |
if( aTerm[i].isNot ){
|
sl@0
|
3688 |
/* Handle all NOT terms in a separate pass */
|
sl@0
|
3689 |
nNot++;
|
sl@0
|
3690 |
iNext = i + aTerm[i].nPhrase+1;
|
sl@0
|
3691 |
continue;
|
sl@0
|
3692 |
}
|
sl@0
|
3693 |
iNext = i + aTerm[i].nPhrase + 1;
|
sl@0
|
3694 |
rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
|
sl@0
|
3695 |
if( rc ){
|
sl@0
|
3696 |
if( i!=nNot ) dataBufferDestroy(&left);
|
sl@0
|
3697 |
queryClear(pQuery);
|
sl@0
|
3698 |
return rc;
|
sl@0
|
3699 |
}
|
sl@0
|
3700 |
while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){
|
sl@0
|
3701 |
rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or);
|
sl@0
|
3702 |
iNext += aTerm[iNext].nPhrase + 1;
|
sl@0
|
3703 |
if( rc ){
|
sl@0
|
3704 |
if( i!=nNot ) dataBufferDestroy(&left);
|
sl@0
|
3705 |
dataBufferDestroy(&right);
|
sl@0
|
3706 |
queryClear(pQuery);
|
sl@0
|
3707 |
return rc;
|
sl@0
|
3708 |
}
|
sl@0
|
3709 |
dataBufferInit(&new, 0);
|
sl@0
|
3710 |
docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new);
|
sl@0
|
3711 |
dataBufferDestroy(&right);
|
sl@0
|
3712 |
dataBufferDestroy(&or);
|
sl@0
|
3713 |
right = new;
|
sl@0
|
3714 |
}
|
sl@0
|
3715 |
if( i==nNot ){ /* first term processed. */
|
sl@0
|
3716 |
left = right;
|
sl@0
|
3717 |
}else{
|
sl@0
|
3718 |
dataBufferInit(&new, 0);
|
sl@0
|
3719 |
docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new);
|
sl@0
|
3720 |
dataBufferDestroy(&right);
|
sl@0
|
3721 |
dataBufferDestroy(&left);
|
sl@0
|
3722 |
left = new;
|
sl@0
|
3723 |
}
|
sl@0
|
3724 |
}
|
sl@0
|
3725 |
|
sl@0
|
3726 |
if( nNot==pQuery->nTerms ){
|
sl@0
|
3727 |
/* We do not yet know how to handle a query of only NOT terms */
|
sl@0
|
3728 |
return SQLITE_ERROR;
|
sl@0
|
3729 |
}
|
sl@0
|
3730 |
|
sl@0
|
3731 |
/* Do the EXCEPT terms */
|
sl@0
|
3732 |
for(i=0; i<pQuery->nTerms; i += aTerm[i].nPhrase + 1){
|
sl@0
|
3733 |
if( !aTerm[i].isNot ) continue;
|
sl@0
|
3734 |
rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
|
sl@0
|
3735 |
if( rc ){
|
sl@0
|
3736 |
queryClear(pQuery);
|
sl@0
|
3737 |
dataBufferDestroy(&left);
|
sl@0
|
3738 |
return rc;
|
sl@0
|
3739 |
}
|
sl@0
|
3740 |
dataBufferInit(&new, 0);
|
sl@0
|
3741 |
docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new);
|
sl@0
|
3742 |
dataBufferDestroy(&right);
|
sl@0
|
3743 |
dataBufferDestroy(&left);
|
sl@0
|
3744 |
left = new;
|
sl@0
|
3745 |
}
|
sl@0
|
3746 |
|
sl@0
|
3747 |
*pResult = left;
|
sl@0
|
3748 |
return rc;
|
sl@0
|
3749 |
}
|
sl@0
|
3750 |
|
sl@0
|
3751 |
/*
|
sl@0
|
3752 |
** This is the xFilter interface for the virtual table. See
|
sl@0
|
3753 |
** the virtual table xFilter method documentation for additional
|
sl@0
|
3754 |
** information.
|
sl@0
|
3755 |
**
|
sl@0
|
3756 |
** If idxNum==QUERY_GENERIC then do a full table scan against
|
sl@0
|
3757 |
** the %_content table.
|
sl@0
|
3758 |
**
|
sl@0
|
3759 |
** If idxNum==QUERY_ROWID then do a rowid lookup for a single entry
|
sl@0
|
3760 |
** in the %_content table.
|
sl@0
|
3761 |
**
|
sl@0
|
3762 |
** If idxNum>=QUERY_FULLTEXT then use the full text index. The
|
sl@0
|
3763 |
** column on the left-hand side of the MATCH operator is column
|
sl@0
|
3764 |
** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand
|
sl@0
|
3765 |
** side of the MATCH operator.
|
sl@0
|
3766 |
*/
|
sl@0
|
3767 |
/* TODO(shess) Upgrade the cursor initialization and destruction to
|
sl@0
|
3768 |
** account for fulltextFilter() being called multiple times on the
|
sl@0
|
3769 |
** same cursor. The current solution is very fragile. Apply fix to
|
sl@0
|
3770 |
** fts2 as appropriate.
|
sl@0
|
3771 |
*/
|
sl@0
|
3772 |
static int fulltextFilter(
|
sl@0
|
3773 |
sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
|
sl@0
|
3774 |
int idxNum, const char *idxStr, /* Which indexing scheme to use */
|
sl@0
|
3775 |
int argc, sqlite3_value **argv /* Arguments for the indexing scheme */
|
sl@0
|
3776 |
){
|
sl@0
|
3777 |
fulltext_cursor *c = (fulltext_cursor *) pCursor;
|
sl@0
|
3778 |
fulltext_vtab *v = cursor_vtab(c);
|
sl@0
|
3779 |
int rc;
|
sl@0
|
3780 |
|
sl@0
|
3781 |
TRACE(("FTS2 Filter %p\n",pCursor));
|
sl@0
|
3782 |
|
sl@0
|
3783 |
/* If the cursor has a statement that was not prepared according to
|
sl@0
|
3784 |
** idxNum, clear it. I believe all calls to fulltextFilter with a
|
sl@0
|
3785 |
** given cursor will have the same idxNum , but in this case it's
|
sl@0
|
3786 |
** easy to be safe.
|
sl@0
|
3787 |
*/
|
sl@0
|
3788 |
if( c->pStmt && c->iCursorType!=idxNum ){
|
sl@0
|
3789 |
sqlite3_finalize(c->pStmt);
|
sl@0
|
3790 |
c->pStmt = NULL;
|
sl@0
|
3791 |
}
|
sl@0
|
3792 |
|
sl@0
|
3793 |
/* Get a fresh statement appropriate to idxNum. */
|
sl@0
|
3794 |
/* TODO(shess): Add a prepared-statement cache in the vt structure.
|
sl@0
|
3795 |
** The cache must handle multiple open cursors. Easier to cache the
|
sl@0
|
3796 |
** statement variants at the vt to reduce malloc/realloc/free here.
|
sl@0
|
3797 |
** Or we could have a StringBuffer variant which allowed stack
|
sl@0
|
3798 |
** construction for small values.
|
sl@0
|
3799 |
*/
|
sl@0
|
3800 |
if( !c->pStmt ){
|
sl@0
|
3801 |
char *zSql = sqlite3_mprintf("select rowid, * from %%_content %s",
|
sl@0
|
3802 |
idxNum==QUERY_GENERIC ? "" : "where rowid=?");
|
sl@0
|
3803 |
rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, zSql);
|
sl@0
|
3804 |
sqlite3_free(zSql);
|
sl@0
|
3805 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
3806 |
c->iCursorType = idxNum;
|
sl@0
|
3807 |
}else{
|
sl@0
|
3808 |
sqlite3_reset(c->pStmt);
|
sl@0
|
3809 |
assert( c->iCursorType==idxNum );
|
sl@0
|
3810 |
}
|
sl@0
|
3811 |
|
sl@0
|
3812 |
switch( idxNum ){
|
sl@0
|
3813 |
case QUERY_GENERIC:
|
sl@0
|
3814 |
break;
|
sl@0
|
3815 |
|
sl@0
|
3816 |
case QUERY_ROWID:
|
sl@0
|
3817 |
rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0]));
|
sl@0
|
3818 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
3819 |
break;
|
sl@0
|
3820 |
|
sl@0
|
3821 |
default: /* full-text search */
|
sl@0
|
3822 |
{
|
sl@0
|
3823 |
const char *zQuery = (const char *)sqlite3_value_text(argv[0]);
|
sl@0
|
3824 |
assert( idxNum<=QUERY_FULLTEXT+v->nColumn);
|
sl@0
|
3825 |
assert( argc==1 );
|
sl@0
|
3826 |
queryClear(&c->q);
|
sl@0
|
3827 |
if( c->result.nData!=0 ){
|
sl@0
|
3828 |
/* This case happens if the same cursor is used repeatedly. */
|
sl@0
|
3829 |
dlrDestroy(&c->reader);
|
sl@0
|
3830 |
dataBufferReset(&c->result);
|
sl@0
|
3831 |
}else{
|
sl@0
|
3832 |
dataBufferInit(&c->result, 0);
|
sl@0
|
3833 |
}
|
sl@0
|
3834 |
rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q);
|
sl@0
|
3835 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
3836 |
if( c->result.nData!=0 ){
|
sl@0
|
3837 |
dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData);
|
sl@0
|
3838 |
}
|
sl@0
|
3839 |
break;
|
sl@0
|
3840 |
}
|
sl@0
|
3841 |
}
|
sl@0
|
3842 |
|
sl@0
|
3843 |
return fulltextNext(pCursor);
|
sl@0
|
3844 |
}
|
sl@0
|
3845 |
|
sl@0
|
3846 |
/* This is the xEof method of the virtual table. The SQLite core
|
sl@0
|
3847 |
** calls this routine to find out if it has reached the end of
|
sl@0
|
3848 |
** a query's results set.
|
sl@0
|
3849 |
*/
|
sl@0
|
3850 |
static int fulltextEof(sqlite3_vtab_cursor *pCursor){
|
sl@0
|
3851 |
fulltext_cursor *c = (fulltext_cursor *) pCursor;
|
sl@0
|
3852 |
return c->eof;
|
sl@0
|
3853 |
}
|
sl@0
|
3854 |
|
sl@0
|
3855 |
/* This is the xColumn method of the virtual table. The SQLite
|
sl@0
|
3856 |
** core calls this method during a query when it needs the value
|
sl@0
|
3857 |
** of a column from the virtual table. This method needs to use
|
sl@0
|
3858 |
** one of the sqlite3_result_*() routines to store the requested
|
sl@0
|
3859 |
** value back in the pContext.
|
sl@0
|
3860 |
*/
|
sl@0
|
3861 |
static int fulltextColumn(sqlite3_vtab_cursor *pCursor,
|
sl@0
|
3862 |
sqlite3_context *pContext, int idxCol){
|
sl@0
|
3863 |
fulltext_cursor *c = (fulltext_cursor *) pCursor;
|
sl@0
|
3864 |
fulltext_vtab *v = cursor_vtab(c);
|
sl@0
|
3865 |
|
sl@0
|
3866 |
if( idxCol<v->nColumn ){
|
sl@0
|
3867 |
sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1);
|
sl@0
|
3868 |
sqlite3_result_value(pContext, pVal);
|
sl@0
|
3869 |
}else if( idxCol==v->nColumn ){
|
sl@0
|
3870 |
/* The extra column whose name is the same as the table.
|
sl@0
|
3871 |
** Return a blob which is a pointer to the cursor
|
sl@0
|
3872 |
*/
|
sl@0
|
3873 |
sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT);
|
sl@0
|
3874 |
}
|
sl@0
|
3875 |
return SQLITE_OK;
|
sl@0
|
3876 |
}
|
sl@0
|
3877 |
|
sl@0
|
3878 |
/* This is the xRowid method. The SQLite core calls this routine to
|
sl@0
|
3879 |
** retrive the rowid for the current row of the result set. The
|
sl@0
|
3880 |
** rowid should be written to *pRowid.
|
sl@0
|
3881 |
*/
|
sl@0
|
3882 |
static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
|
sl@0
|
3883 |
fulltext_cursor *c = (fulltext_cursor *) pCursor;
|
sl@0
|
3884 |
|
sl@0
|
3885 |
*pRowid = sqlite3_column_int64(c->pStmt, 0);
|
sl@0
|
3886 |
return SQLITE_OK;
|
sl@0
|
3887 |
}
|
sl@0
|
3888 |
|
sl@0
|
3889 |
/* Add all terms in [zText] to pendingTerms table. If [iColumn] > 0,
|
sl@0
|
3890 |
** we also store positions and offsets in the hash table using that
|
sl@0
|
3891 |
** column number.
|
sl@0
|
3892 |
*/
|
sl@0
|
3893 |
static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid,
|
sl@0
|
3894 |
const char *zText, int iColumn){
|
sl@0
|
3895 |
sqlite3_tokenizer *pTokenizer = v->pTokenizer;
|
sl@0
|
3896 |
sqlite3_tokenizer_cursor *pCursor;
|
sl@0
|
3897 |
const char *pToken;
|
sl@0
|
3898 |
int nTokenBytes;
|
sl@0
|
3899 |
int iStartOffset, iEndOffset, iPosition;
|
sl@0
|
3900 |
int rc;
|
sl@0
|
3901 |
|
sl@0
|
3902 |
rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor);
|
sl@0
|
3903 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
3904 |
|
sl@0
|
3905 |
pCursor->pTokenizer = pTokenizer;
|
sl@0
|
3906 |
while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor,
|
sl@0
|
3907 |
&pToken, &nTokenBytes,
|
sl@0
|
3908 |
&iStartOffset, &iEndOffset,
|
sl@0
|
3909 |
&iPosition)) ){
|
sl@0
|
3910 |
DLCollector *p;
|
sl@0
|
3911 |
int nData; /* Size of doclist before our update. */
|
sl@0
|
3912 |
|
sl@0
|
3913 |
/* Positions can't be negative; we use -1 as a terminator
|
sl@0
|
3914 |
* internally. Token can't be NULL or empty. */
|
sl@0
|
3915 |
if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){
|
sl@0
|
3916 |
rc = SQLITE_ERROR;
|
sl@0
|
3917 |
break;
|
sl@0
|
3918 |
}
|
sl@0
|
3919 |
|
sl@0
|
3920 |
p = fts2HashFind(&v->pendingTerms, pToken, nTokenBytes);
|
sl@0
|
3921 |
if( p==NULL ){
|
sl@0
|
3922 |
nData = 0;
|
sl@0
|
3923 |
p = dlcNew(iDocid, DL_DEFAULT);
|
sl@0
|
3924 |
fts2HashInsert(&v->pendingTerms, pToken, nTokenBytes, p);
|
sl@0
|
3925 |
|
sl@0
|
3926 |
/* Overhead for our hash table entry, the key, and the value. */
|
sl@0
|
3927 |
v->nPendingData += sizeof(struct fts2HashElem)+sizeof(*p)+nTokenBytes;
|
sl@0
|
3928 |
}else{
|
sl@0
|
3929 |
nData = p->b.nData;
|
sl@0
|
3930 |
if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid);
|
sl@0
|
3931 |
}
|
sl@0
|
3932 |
if( iColumn>=0 ){
|
sl@0
|
3933 |
dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset);
|
sl@0
|
3934 |
}
|
sl@0
|
3935 |
|
sl@0
|
3936 |
/* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */
|
sl@0
|
3937 |
v->nPendingData += p->b.nData-nData;
|
sl@0
|
3938 |
}
|
sl@0
|
3939 |
|
sl@0
|
3940 |
/* TODO(shess) Check return? Should this be able to cause errors at
|
sl@0
|
3941 |
** this point? Actually, same question about sqlite3_finalize(),
|
sl@0
|
3942 |
** though one could argue that failure there means that the data is
|
sl@0
|
3943 |
** not durable. *ponder*
|
sl@0
|
3944 |
*/
|
sl@0
|
3945 |
pTokenizer->pModule->xClose(pCursor);
|
sl@0
|
3946 |
if( SQLITE_DONE == rc ) return SQLITE_OK;
|
sl@0
|
3947 |
return rc;
|
sl@0
|
3948 |
}
|
sl@0
|
3949 |
|
sl@0
|
3950 |
/* Add doclists for all terms in [pValues] to pendingTerms table. */
|
sl@0
|
3951 |
static int insertTerms(fulltext_vtab *v, sqlite_int64 iRowid,
|
sl@0
|
3952 |
sqlite3_value **pValues){
|
sl@0
|
3953 |
int i;
|
sl@0
|
3954 |
for(i = 0; i < v->nColumn ; ++i){
|
sl@0
|
3955 |
char *zText = (char*)sqlite3_value_text(pValues[i]);
|
sl@0
|
3956 |
int rc = buildTerms(v, iRowid, zText, i);
|
sl@0
|
3957 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
3958 |
}
|
sl@0
|
3959 |
return SQLITE_OK;
|
sl@0
|
3960 |
}
|
sl@0
|
3961 |
|
sl@0
|
3962 |
/* Add empty doclists for all terms in the given row's content to
|
sl@0
|
3963 |
** pendingTerms.
|
sl@0
|
3964 |
*/
|
sl@0
|
3965 |
static int deleteTerms(fulltext_vtab *v, sqlite_int64 iRowid){
|
sl@0
|
3966 |
const char **pValues;
|
sl@0
|
3967 |
int i, rc;
|
sl@0
|
3968 |
|
sl@0
|
3969 |
/* TODO(shess) Should we allow such tables at all? */
|
sl@0
|
3970 |
if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR;
|
sl@0
|
3971 |
|
sl@0
|
3972 |
rc = content_select(v, iRowid, &pValues);
|
sl@0
|
3973 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
3974 |
|
sl@0
|
3975 |
for(i = 0 ; i < v->nColumn; ++i) {
|
sl@0
|
3976 |
rc = buildTerms(v, iRowid, pValues[i], -1);
|
sl@0
|
3977 |
if( rc!=SQLITE_OK ) break;
|
sl@0
|
3978 |
}
|
sl@0
|
3979 |
|
sl@0
|
3980 |
freeStringArray(v->nColumn, pValues);
|
sl@0
|
3981 |
return SQLITE_OK;
|
sl@0
|
3982 |
}
|
sl@0
|
3983 |
|
sl@0
|
3984 |
/* TODO(shess) Refactor the code to remove this forward decl. */
|
sl@0
|
3985 |
static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid);
|
sl@0
|
3986 |
|
sl@0
|
3987 |
/* Insert a row into the %_content table; set *piRowid to be the ID of the
|
sl@0
|
3988 |
** new row. Add doclists for terms to pendingTerms.
|
sl@0
|
3989 |
*/
|
sl@0
|
3990 |
static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestRowid,
|
sl@0
|
3991 |
sqlite3_value **pValues, sqlite_int64 *piRowid){
|
sl@0
|
3992 |
int rc;
|
sl@0
|
3993 |
|
sl@0
|
3994 |
rc = content_insert(v, pRequestRowid, pValues); /* execute an SQL INSERT */
|
sl@0
|
3995 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
3996 |
|
sl@0
|
3997 |
*piRowid = sqlite3_last_insert_rowid(v->db);
|
sl@0
|
3998 |
rc = initPendingTerms(v, *piRowid);
|
sl@0
|
3999 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
4000 |
|
sl@0
|
4001 |
return insertTerms(v, *piRowid, pValues);
|
sl@0
|
4002 |
}
|
sl@0
|
4003 |
|
sl@0
|
4004 |
/* Delete a row from the %_content table; add empty doclists for terms
|
sl@0
|
4005 |
** to pendingTerms.
|
sl@0
|
4006 |
*/
|
sl@0
|
4007 |
static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){
|
sl@0
|
4008 |
int rc = initPendingTerms(v, iRow);
|
sl@0
|
4009 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
4010 |
|
sl@0
|
4011 |
rc = deleteTerms(v, iRow);
|
sl@0
|
4012 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
4013 |
|
sl@0
|
4014 |
return content_delete(v, iRow); /* execute an SQL DELETE */
|
sl@0
|
4015 |
}
|
sl@0
|
4016 |
|
sl@0
|
4017 |
/* Update a row in the %_content table; add delete doclists to
|
sl@0
|
4018 |
** pendingTerms for old terms not in the new data, add insert doclists
|
sl@0
|
4019 |
** to pendingTerms for terms in the new data.
|
sl@0
|
4020 |
*/
|
sl@0
|
4021 |
static int index_update(fulltext_vtab *v, sqlite_int64 iRow,
|
sl@0
|
4022 |
sqlite3_value **pValues){
|
sl@0
|
4023 |
int rc = initPendingTerms(v, iRow);
|
sl@0
|
4024 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
4025 |
|
sl@0
|
4026 |
/* Generate an empty doclist for each term that previously appeared in this
|
sl@0
|
4027 |
* row. */
|
sl@0
|
4028 |
rc = deleteTerms(v, iRow);
|
sl@0
|
4029 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
4030 |
|
sl@0
|
4031 |
rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */
|
sl@0
|
4032 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
4033 |
|
sl@0
|
4034 |
/* Now add positions for terms which appear in the updated row. */
|
sl@0
|
4035 |
return insertTerms(v, iRow, pValues);
|
sl@0
|
4036 |
}
|
sl@0
|
4037 |
|
sl@0
|
4038 |
/*******************************************************************/
|
sl@0
|
4039 |
/* InteriorWriter is used to collect terms and block references into
|
sl@0
|
4040 |
** interior nodes in %_segments. See commentary at top of file for
|
sl@0
|
4041 |
** format.
|
sl@0
|
4042 |
*/
|
sl@0
|
4043 |
|
sl@0
|
4044 |
/* How large interior nodes can grow. */
|
sl@0
|
4045 |
#define INTERIOR_MAX 2048
|
sl@0
|
4046 |
|
sl@0
|
4047 |
/* Minimum number of terms per interior node (except the root). This
|
sl@0
|
4048 |
** prevents large terms from making the tree too skinny - must be >0
|
sl@0
|
4049 |
** so that the tree always makes progress. Note that the min tree
|
sl@0
|
4050 |
** fanout will be INTERIOR_MIN_TERMS+1.
|
sl@0
|
4051 |
*/
|
sl@0
|
4052 |
#define INTERIOR_MIN_TERMS 7
|
sl@0
|
4053 |
#if INTERIOR_MIN_TERMS<1
|
sl@0
|
4054 |
# error INTERIOR_MIN_TERMS must be greater than 0.
|
sl@0
|
4055 |
#endif
|
sl@0
|
4056 |
|
sl@0
|
4057 |
/* ROOT_MAX controls how much data is stored inline in the segment
|
sl@0
|
4058 |
** directory.
|
sl@0
|
4059 |
*/
|
sl@0
|
4060 |
/* TODO(shess) Push ROOT_MAX down to whoever is writing things. It's
|
sl@0
|
4061 |
** only here so that interiorWriterRootInfo() and leafWriterRootInfo()
|
sl@0
|
4062 |
** can both see it, but if the caller passed it in, we wouldn't even
|
sl@0
|
4063 |
** need a define.
|
sl@0
|
4064 |
*/
|
sl@0
|
4065 |
#define ROOT_MAX 1024
|
sl@0
|
4066 |
#if ROOT_MAX<VARINT_MAX*2
|
sl@0
|
4067 |
# error ROOT_MAX must have enough space for a header.
|
sl@0
|
4068 |
#endif
|
sl@0
|
4069 |
|
sl@0
|
4070 |
/* InteriorBlock stores a linked-list of interior blocks while a lower
|
sl@0
|
4071 |
** layer is being constructed.
|
sl@0
|
4072 |
*/
|
sl@0
|
4073 |
typedef struct InteriorBlock {
|
sl@0
|
4074 |
DataBuffer term; /* Leftmost term in block's subtree. */
|
sl@0
|
4075 |
DataBuffer data; /* Accumulated data for the block. */
|
sl@0
|
4076 |
struct InteriorBlock *next;
|
sl@0
|
4077 |
} InteriorBlock;
|
sl@0
|
4078 |
|
sl@0
|
4079 |
static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock,
|
sl@0
|
4080 |
const char *pTerm, int nTerm){
|
sl@0
|
4081 |
InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock));
|
sl@0
|
4082 |
char c[VARINT_MAX+VARINT_MAX];
|
sl@0
|
4083 |
int n;
|
sl@0
|
4084 |
|
sl@0
|
4085 |
if( block ){
|
sl@0
|
4086 |
memset(block, 0, sizeof(*block));
|
sl@0
|
4087 |
dataBufferInit(&block->term, 0);
|
sl@0
|
4088 |
dataBufferReplace(&block->term, pTerm, nTerm);
|
sl@0
|
4089 |
|
sl@0
|
4090 |
n = putVarint(c, iHeight);
|
sl@0
|
4091 |
n += putVarint(c+n, iChildBlock);
|
sl@0
|
4092 |
dataBufferInit(&block->data, INTERIOR_MAX);
|
sl@0
|
4093 |
dataBufferReplace(&block->data, c, n);
|
sl@0
|
4094 |
}
|
sl@0
|
4095 |
return block;
|
sl@0
|
4096 |
}
|
sl@0
|
4097 |
|
sl@0
|
4098 |
#ifndef NDEBUG
|
sl@0
|
4099 |
/* Verify that the data is readable as an interior node. */
|
sl@0
|
4100 |
static void interiorBlockValidate(InteriorBlock *pBlock){
|
sl@0
|
4101 |
const char *pData = pBlock->data.pData;
|
sl@0
|
4102 |
int nData = pBlock->data.nData;
|
sl@0
|
4103 |
int n, iDummy;
|
sl@0
|
4104 |
sqlite_int64 iBlockid;
|
sl@0
|
4105 |
|
sl@0
|
4106 |
assert( nData>0 );
|
sl@0
|
4107 |
assert( pData!=0 );
|
sl@0
|
4108 |
assert( pData+nData>pData );
|
sl@0
|
4109 |
|
sl@0
|
4110 |
/* Must lead with height of node as a varint(n), n>0 */
|
sl@0
|
4111 |
n = getVarint32(pData, &iDummy);
|
sl@0
|
4112 |
assert( n>0 );
|
sl@0
|
4113 |
assert( iDummy>0 );
|
sl@0
|
4114 |
assert( n<nData );
|
sl@0
|
4115 |
pData += n;
|
sl@0
|
4116 |
nData -= n;
|
sl@0
|
4117 |
|
sl@0
|
4118 |
/* Must contain iBlockid. */
|
sl@0
|
4119 |
n = getVarint(pData, &iBlockid);
|
sl@0
|
4120 |
assert( n>0 );
|
sl@0
|
4121 |
assert( n<=nData );
|
sl@0
|
4122 |
pData += n;
|
sl@0
|
4123 |
nData -= n;
|
sl@0
|
4124 |
|
sl@0
|
4125 |
/* Zero or more terms of positive length */
|
sl@0
|
4126 |
if( nData!=0 ){
|
sl@0
|
4127 |
/* First term is not delta-encoded. */
|
sl@0
|
4128 |
n = getVarint32(pData, &iDummy);
|
sl@0
|
4129 |
assert( n>0 );
|
sl@0
|
4130 |
assert( iDummy>0 );
|
sl@0
|
4131 |
assert( n+iDummy>0);
|
sl@0
|
4132 |
assert( n+iDummy<=nData );
|
sl@0
|
4133 |
pData += n+iDummy;
|
sl@0
|
4134 |
nData -= n+iDummy;
|
sl@0
|
4135 |
|
sl@0
|
4136 |
/* Following terms delta-encoded. */
|
sl@0
|
4137 |
while( nData!=0 ){
|
sl@0
|
4138 |
/* Length of shared prefix. */
|
sl@0
|
4139 |
n = getVarint32(pData, &iDummy);
|
sl@0
|
4140 |
assert( n>0 );
|
sl@0
|
4141 |
assert( iDummy>=0 );
|
sl@0
|
4142 |
assert( n<nData );
|
sl@0
|
4143 |
pData += n;
|
sl@0
|
4144 |
nData -= n;
|
sl@0
|
4145 |
|
sl@0
|
4146 |
/* Length and data of distinct suffix. */
|
sl@0
|
4147 |
n = getVarint32(pData, &iDummy);
|
sl@0
|
4148 |
assert( n>0 );
|
sl@0
|
4149 |
assert( iDummy>0 );
|
sl@0
|
4150 |
assert( n+iDummy>0);
|
sl@0
|
4151 |
assert( n+iDummy<=nData );
|
sl@0
|
4152 |
pData += n+iDummy;
|
sl@0
|
4153 |
nData -= n+iDummy;
|
sl@0
|
4154 |
}
|
sl@0
|
4155 |
}
|
sl@0
|
4156 |
}
|
sl@0
|
4157 |
#define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x)
|
sl@0
|
4158 |
#else
|
sl@0
|
4159 |
#define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 )
|
sl@0
|
4160 |
#endif
|
sl@0
|
4161 |
|
sl@0
|
4162 |
typedef struct InteriorWriter {
|
sl@0
|
4163 |
int iHeight; /* from 0 at leaves. */
|
sl@0
|
4164 |
InteriorBlock *first, *last;
|
sl@0
|
4165 |
struct InteriorWriter *parentWriter;
|
sl@0
|
4166 |
|
sl@0
|
4167 |
DataBuffer term; /* Last term written to block "last". */
|
sl@0
|
4168 |
sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */
|
sl@0
|
4169 |
#ifndef NDEBUG
|
sl@0
|
4170 |
sqlite_int64 iLastChildBlock; /* for consistency checks. */
|
sl@0
|
4171 |
#endif
|
sl@0
|
4172 |
} InteriorWriter;
|
sl@0
|
4173 |
|
sl@0
|
4174 |
/* Initialize an interior node where pTerm[nTerm] marks the leftmost
|
sl@0
|
4175 |
** term in the tree. iChildBlock is the leftmost child block at the
|
sl@0
|
4176 |
** next level down the tree.
|
sl@0
|
4177 |
*/
|
sl@0
|
4178 |
static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm,
|
sl@0
|
4179 |
sqlite_int64 iChildBlock,
|
sl@0
|
4180 |
InteriorWriter *pWriter){
|
sl@0
|
4181 |
InteriorBlock *block;
|
sl@0
|
4182 |
assert( iHeight>0 );
|
sl@0
|
4183 |
CLEAR(pWriter);
|
sl@0
|
4184 |
|
sl@0
|
4185 |
pWriter->iHeight = iHeight;
|
sl@0
|
4186 |
pWriter->iOpeningChildBlock = iChildBlock;
|
sl@0
|
4187 |
#ifndef NDEBUG
|
sl@0
|
4188 |
pWriter->iLastChildBlock = iChildBlock;
|
sl@0
|
4189 |
#endif
|
sl@0
|
4190 |
block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm);
|
sl@0
|
4191 |
pWriter->last = pWriter->first = block;
|
sl@0
|
4192 |
ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
|
sl@0
|
4193 |
dataBufferInit(&pWriter->term, 0);
|
sl@0
|
4194 |
}
|
sl@0
|
4195 |
|
sl@0
|
4196 |
/* Append the child node rooted at iChildBlock to the interior node,
|
sl@0
|
4197 |
** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree.
|
sl@0
|
4198 |
*/
|
sl@0
|
4199 |
static void interiorWriterAppend(InteriorWriter *pWriter,
|
sl@0
|
4200 |
const char *pTerm, int nTerm,
|
sl@0
|
4201 |
sqlite_int64 iChildBlock){
|
sl@0
|
4202 |
char c[VARINT_MAX+VARINT_MAX];
|
sl@0
|
4203 |
int n, nPrefix = 0;
|
sl@0
|
4204 |
|
sl@0
|
4205 |
ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
|
sl@0
|
4206 |
|
sl@0
|
4207 |
/* The first term written into an interior node is actually
|
sl@0
|
4208 |
** associated with the second child added (the first child was added
|
sl@0
|
4209 |
** in interiorWriterInit, or in the if clause at the bottom of this
|
sl@0
|
4210 |
** function). That term gets encoded straight up, with nPrefix left
|
sl@0
|
4211 |
** at 0.
|
sl@0
|
4212 |
*/
|
sl@0
|
4213 |
if( pWriter->term.nData==0 ){
|
sl@0
|
4214 |
n = putVarint(c, nTerm);
|
sl@0
|
4215 |
}else{
|
sl@0
|
4216 |
while( nPrefix<pWriter->term.nData &&
|
sl@0
|
4217 |
pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
|
sl@0
|
4218 |
nPrefix++;
|
sl@0
|
4219 |
}
|
sl@0
|
4220 |
|
sl@0
|
4221 |
n = putVarint(c, nPrefix);
|
sl@0
|
4222 |
n += putVarint(c+n, nTerm-nPrefix);
|
sl@0
|
4223 |
}
|
sl@0
|
4224 |
|
sl@0
|
4225 |
#ifndef NDEBUG
|
sl@0
|
4226 |
pWriter->iLastChildBlock++;
|
sl@0
|
4227 |
#endif
|
sl@0
|
4228 |
assert( pWriter->iLastChildBlock==iChildBlock );
|
sl@0
|
4229 |
|
sl@0
|
4230 |
/* Overflow to a new block if the new term makes the current block
|
sl@0
|
4231 |
** too big, and the current block already has enough terms.
|
sl@0
|
4232 |
*/
|
sl@0
|
4233 |
if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX &&
|
sl@0
|
4234 |
iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){
|
sl@0
|
4235 |
pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock,
|
sl@0
|
4236 |
pTerm, nTerm);
|
sl@0
|
4237 |
pWriter->last = pWriter->last->next;
|
sl@0
|
4238 |
pWriter->iOpeningChildBlock = iChildBlock;
|
sl@0
|
4239 |
dataBufferReset(&pWriter->term);
|
sl@0
|
4240 |
}else{
|
sl@0
|
4241 |
dataBufferAppend2(&pWriter->last->data, c, n,
|
sl@0
|
4242 |
pTerm+nPrefix, nTerm-nPrefix);
|
sl@0
|
4243 |
dataBufferReplace(&pWriter->term, pTerm, nTerm);
|
sl@0
|
4244 |
}
|
sl@0
|
4245 |
ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
|
sl@0
|
4246 |
}
|
sl@0
|
4247 |
|
sl@0
|
4248 |
/* Free the space used by pWriter, including the linked-list of
|
sl@0
|
4249 |
** InteriorBlocks, and parentWriter, if present.
|
sl@0
|
4250 |
*/
|
sl@0
|
4251 |
static int interiorWriterDestroy(InteriorWriter *pWriter){
|
sl@0
|
4252 |
InteriorBlock *block = pWriter->first;
|
sl@0
|
4253 |
|
sl@0
|
4254 |
while( block!=NULL ){
|
sl@0
|
4255 |
InteriorBlock *b = block;
|
sl@0
|
4256 |
block = block->next;
|
sl@0
|
4257 |
dataBufferDestroy(&b->term);
|
sl@0
|
4258 |
dataBufferDestroy(&b->data);
|
sl@0
|
4259 |
sqlite3_free(b);
|
sl@0
|
4260 |
}
|
sl@0
|
4261 |
if( pWriter->parentWriter!=NULL ){
|
sl@0
|
4262 |
interiorWriterDestroy(pWriter->parentWriter);
|
sl@0
|
4263 |
sqlite3_free(pWriter->parentWriter);
|
sl@0
|
4264 |
}
|
sl@0
|
4265 |
dataBufferDestroy(&pWriter->term);
|
sl@0
|
4266 |
SCRAMBLE(pWriter);
|
sl@0
|
4267 |
return SQLITE_OK;
|
sl@0
|
4268 |
}
|
sl@0
|
4269 |
|
sl@0
|
4270 |
/* If pWriter can fit entirely in ROOT_MAX, return it as the root info
|
sl@0
|
4271 |
** directly, leaving *piEndBlockid unchanged. Otherwise, flush
|
sl@0
|
4272 |
** pWriter to %_segments, building a new layer of interior nodes, and
|
sl@0
|
4273 |
** recursively ask for their root into.
|
sl@0
|
4274 |
*/
|
sl@0
|
4275 |
static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter,
|
sl@0
|
4276 |
char **ppRootInfo, int *pnRootInfo,
|
sl@0
|
4277 |
sqlite_int64 *piEndBlockid){
|
sl@0
|
4278 |
InteriorBlock *block = pWriter->first;
|
sl@0
|
4279 |
sqlite_int64 iBlockid = 0;
|
sl@0
|
4280 |
int rc;
|
sl@0
|
4281 |
|
sl@0
|
4282 |
/* If we can fit the segment inline */
|
sl@0
|
4283 |
if( block==pWriter->last && block->data.nData<ROOT_MAX ){
|
sl@0
|
4284 |
*ppRootInfo = block->data.pData;
|
sl@0
|
4285 |
*pnRootInfo = block->data.nData;
|
sl@0
|
4286 |
return SQLITE_OK;
|
sl@0
|
4287 |
}
|
sl@0
|
4288 |
|
sl@0
|
4289 |
/* Flush the first block to %_segments, and create a new level of
|
sl@0
|
4290 |
** interior node.
|
sl@0
|
4291 |
*/
|
sl@0
|
4292 |
ASSERT_VALID_INTERIOR_BLOCK(block);
|
sl@0
|
4293 |
rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
|
sl@0
|
4294 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
4295 |
*piEndBlockid = iBlockid;
|
sl@0
|
4296 |
|
sl@0
|
4297 |
pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter));
|
sl@0
|
4298 |
interiorWriterInit(pWriter->iHeight+1,
|
sl@0
|
4299 |
block->term.pData, block->term.nData,
|
sl@0
|
4300 |
iBlockid, pWriter->parentWriter);
|
sl@0
|
4301 |
|
sl@0
|
4302 |
/* Flush additional blocks and append to the higher interior
|
sl@0
|
4303 |
** node.
|
sl@0
|
4304 |
*/
|
sl@0
|
4305 |
for(block=block->next; block!=NULL; block=block->next){
|
sl@0
|
4306 |
ASSERT_VALID_INTERIOR_BLOCK(block);
|
sl@0
|
4307 |
rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
|
sl@0
|
4308 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
4309 |
*piEndBlockid = iBlockid;
|
sl@0
|
4310 |
|
sl@0
|
4311 |
interiorWriterAppend(pWriter->parentWriter,
|
sl@0
|
4312 |
block->term.pData, block->term.nData, iBlockid);
|
sl@0
|
4313 |
}
|
sl@0
|
4314 |
|
sl@0
|
4315 |
/* Parent node gets the chance to be the root. */
|
sl@0
|
4316 |
return interiorWriterRootInfo(v, pWriter->parentWriter,
|
sl@0
|
4317 |
ppRootInfo, pnRootInfo, piEndBlockid);
|
sl@0
|
4318 |
}
|
sl@0
|
4319 |
|
sl@0
|
4320 |
/****************************************************************/
|
sl@0
|
4321 |
/* InteriorReader is used to read off the data from an interior node
|
sl@0
|
4322 |
** (see comment at top of file for the format).
|
sl@0
|
4323 |
*/
|
sl@0
|
4324 |
typedef struct InteriorReader {
|
sl@0
|
4325 |
const char *pData;
|
sl@0
|
4326 |
int nData;
|
sl@0
|
4327 |
|
sl@0
|
4328 |
DataBuffer term; /* previous term, for decoding term delta. */
|
sl@0
|
4329 |
|
sl@0
|
4330 |
sqlite_int64 iBlockid;
|
sl@0
|
4331 |
} InteriorReader;
|
sl@0
|
4332 |
|
sl@0
|
4333 |
static void interiorReaderDestroy(InteriorReader *pReader){
|
sl@0
|
4334 |
dataBufferDestroy(&pReader->term);
|
sl@0
|
4335 |
SCRAMBLE(pReader);
|
sl@0
|
4336 |
}
|
sl@0
|
4337 |
|
sl@0
|
4338 |
/* TODO(shess) The assertions are great, but what if we're in NDEBUG
|
sl@0
|
4339 |
** and the blob is empty or otherwise contains suspect data?
|
sl@0
|
4340 |
*/
|
sl@0
|
4341 |
static void interiorReaderInit(const char *pData, int nData,
|
sl@0
|
4342 |
InteriorReader *pReader){
|
sl@0
|
4343 |
int n, nTerm;
|
sl@0
|
4344 |
|
sl@0
|
4345 |
/* Require at least the leading flag byte */
|
sl@0
|
4346 |
assert( nData>0 );
|
sl@0
|
4347 |
assert( pData[0]!='\0' );
|
sl@0
|
4348 |
|
sl@0
|
4349 |
CLEAR(pReader);
|
sl@0
|
4350 |
|
sl@0
|
4351 |
/* Decode the base blockid, and set the cursor to the first term. */
|
sl@0
|
4352 |
n = getVarint(pData+1, &pReader->iBlockid);
|
sl@0
|
4353 |
assert( 1+n<=nData );
|
sl@0
|
4354 |
pReader->pData = pData+1+n;
|
sl@0
|
4355 |
pReader->nData = nData-(1+n);
|
sl@0
|
4356 |
|
sl@0
|
4357 |
/* A single-child interior node (such as when a leaf node was too
|
sl@0
|
4358 |
** large for the segment directory) won't have any terms.
|
sl@0
|
4359 |
** Otherwise, decode the first term.
|
sl@0
|
4360 |
*/
|
sl@0
|
4361 |
if( pReader->nData==0 ){
|
sl@0
|
4362 |
dataBufferInit(&pReader->term, 0);
|
sl@0
|
4363 |
}else{
|
sl@0
|
4364 |
n = getVarint32(pReader->pData, &nTerm);
|
sl@0
|
4365 |
dataBufferInit(&pReader->term, nTerm);
|
sl@0
|
4366 |
dataBufferReplace(&pReader->term, pReader->pData+n, nTerm);
|
sl@0
|
4367 |
assert( n+nTerm<=pReader->nData );
|
sl@0
|
4368 |
pReader->pData += n+nTerm;
|
sl@0
|
4369 |
pReader->nData -= n+nTerm;
|
sl@0
|
4370 |
}
|
sl@0
|
4371 |
}
|
sl@0
|
4372 |
|
sl@0
|
4373 |
static int interiorReaderAtEnd(InteriorReader *pReader){
|
sl@0
|
4374 |
return pReader->term.nData==0;
|
sl@0
|
4375 |
}
|
sl@0
|
4376 |
|
sl@0
|
4377 |
static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){
|
sl@0
|
4378 |
return pReader->iBlockid;
|
sl@0
|
4379 |
}
|
sl@0
|
4380 |
|
sl@0
|
4381 |
static int interiorReaderTermBytes(InteriorReader *pReader){
|
sl@0
|
4382 |
assert( !interiorReaderAtEnd(pReader) );
|
sl@0
|
4383 |
return pReader->term.nData;
|
sl@0
|
4384 |
}
|
sl@0
|
4385 |
static const char *interiorReaderTerm(InteriorReader *pReader){
|
sl@0
|
4386 |
assert( !interiorReaderAtEnd(pReader) );
|
sl@0
|
4387 |
return pReader->term.pData;
|
sl@0
|
4388 |
}
|
sl@0
|
4389 |
|
sl@0
|
4390 |
/* Step forward to the next term in the node. */
|
sl@0
|
4391 |
static void interiorReaderStep(InteriorReader *pReader){
|
sl@0
|
4392 |
assert( !interiorReaderAtEnd(pReader) );
|
sl@0
|
4393 |
|
sl@0
|
4394 |
/* If the last term has been read, signal eof, else construct the
|
sl@0
|
4395 |
** next term.
|
sl@0
|
4396 |
*/
|
sl@0
|
4397 |
if( pReader->nData==0 ){
|
sl@0
|
4398 |
dataBufferReset(&pReader->term);
|
sl@0
|
4399 |
}else{
|
sl@0
|
4400 |
int n, nPrefix, nSuffix;
|
sl@0
|
4401 |
|
sl@0
|
4402 |
n = getVarint32(pReader->pData, &nPrefix);
|
sl@0
|
4403 |
n += getVarint32(pReader->pData+n, &nSuffix);
|
sl@0
|
4404 |
|
sl@0
|
4405 |
/* Truncate the current term and append suffix data. */
|
sl@0
|
4406 |
pReader->term.nData = nPrefix;
|
sl@0
|
4407 |
dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
|
sl@0
|
4408 |
|
sl@0
|
4409 |
assert( n+nSuffix<=pReader->nData );
|
sl@0
|
4410 |
pReader->pData += n+nSuffix;
|
sl@0
|
4411 |
pReader->nData -= n+nSuffix;
|
sl@0
|
4412 |
}
|
sl@0
|
4413 |
pReader->iBlockid++;
|
sl@0
|
4414 |
}
|
sl@0
|
4415 |
|
sl@0
|
4416 |
/* Compare the current term to pTerm[nTerm], returning strcmp-style
|
sl@0
|
4417 |
** results. If isPrefix, equality means equal through nTerm bytes.
|
sl@0
|
4418 |
*/
|
sl@0
|
4419 |
static int interiorReaderTermCmp(InteriorReader *pReader,
|
sl@0
|
4420 |
const char *pTerm, int nTerm, int isPrefix){
|
sl@0
|
4421 |
const char *pReaderTerm = interiorReaderTerm(pReader);
|
sl@0
|
4422 |
int nReaderTerm = interiorReaderTermBytes(pReader);
|
sl@0
|
4423 |
int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm;
|
sl@0
|
4424 |
|
sl@0
|
4425 |
if( n==0 ){
|
sl@0
|
4426 |
if( nReaderTerm>0 ) return -1;
|
sl@0
|
4427 |
if( nTerm>0 ) return 1;
|
sl@0
|
4428 |
return 0;
|
sl@0
|
4429 |
}
|
sl@0
|
4430 |
|
sl@0
|
4431 |
c = memcmp(pReaderTerm, pTerm, n);
|
sl@0
|
4432 |
if( c!=0 ) return c;
|
sl@0
|
4433 |
if( isPrefix && n==nTerm ) return 0;
|
sl@0
|
4434 |
return nReaderTerm - nTerm;
|
sl@0
|
4435 |
}
|
sl@0
|
4436 |
|
sl@0
|
4437 |
/****************************************************************/
|
sl@0
|
4438 |
/* LeafWriter is used to collect terms and associated doclist data
|
sl@0
|
4439 |
** into leaf blocks in %_segments (see top of file for format info).
|
sl@0
|
4440 |
** Expected usage is:
|
sl@0
|
4441 |
**
|
sl@0
|
4442 |
** LeafWriter writer;
|
sl@0
|
4443 |
** leafWriterInit(0, 0, &writer);
|
sl@0
|
4444 |
** while( sorted_terms_left_to_process ){
|
sl@0
|
4445 |
** // data is doclist data for that term.
|
sl@0
|
4446 |
** rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData);
|
sl@0
|
4447 |
** if( rc!=SQLITE_OK ) goto err;
|
sl@0
|
4448 |
** }
|
sl@0
|
4449 |
** rc = leafWriterFinalize(v, &writer);
|
sl@0
|
4450 |
**err:
|
sl@0
|
4451 |
** leafWriterDestroy(&writer);
|
sl@0
|
4452 |
** return rc;
|
sl@0
|
4453 |
**
|
sl@0
|
4454 |
** leafWriterStep() may write a collected leaf out to %_segments.
|
sl@0
|
4455 |
** leafWriterFinalize() finishes writing any buffered data and stores
|
sl@0
|
4456 |
** a root node in %_segdir. leafWriterDestroy() frees all buffers and
|
sl@0
|
4457 |
** InteriorWriters allocated as part of writing this segment.
|
sl@0
|
4458 |
**
|
sl@0
|
4459 |
** TODO(shess) Document leafWriterStepMerge().
|
sl@0
|
4460 |
*/
|
sl@0
|
4461 |
|
sl@0
|
4462 |
/* Put terms with data this big in their own block. */
|
sl@0
|
4463 |
#define STANDALONE_MIN 1024
|
sl@0
|
4464 |
|
sl@0
|
4465 |
/* Keep leaf blocks below this size. */
|
sl@0
|
4466 |
#define LEAF_MAX 2048
|
sl@0
|
4467 |
|
sl@0
|
4468 |
typedef struct LeafWriter {
|
sl@0
|
4469 |
int iLevel;
|
sl@0
|
4470 |
int idx;
|
sl@0
|
4471 |
sqlite_int64 iStartBlockid; /* needed to create the root info */
|
sl@0
|
4472 |
sqlite_int64 iEndBlockid; /* when we're done writing. */
|
sl@0
|
4473 |
|
sl@0
|
4474 |
DataBuffer term; /* previous encoded term */
|
sl@0
|
4475 |
DataBuffer data; /* encoding buffer */
|
sl@0
|
4476 |
|
sl@0
|
4477 |
/* bytes of first term in the current node which distinguishes that
|
sl@0
|
4478 |
** term from the last term of the previous node.
|
sl@0
|
4479 |
*/
|
sl@0
|
4480 |
int nTermDistinct;
|
sl@0
|
4481 |
|
sl@0
|
4482 |
InteriorWriter parentWriter; /* if we overflow */
|
sl@0
|
4483 |
int has_parent;
|
sl@0
|
4484 |
} LeafWriter;
|
sl@0
|
4485 |
|
sl@0
|
4486 |
static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){
|
sl@0
|
4487 |
CLEAR(pWriter);
|
sl@0
|
4488 |
pWriter->iLevel = iLevel;
|
sl@0
|
4489 |
pWriter->idx = idx;
|
sl@0
|
4490 |
|
sl@0
|
4491 |
dataBufferInit(&pWriter->term, 32);
|
sl@0
|
4492 |
|
sl@0
|
4493 |
/* Start out with a reasonably sized block, though it can grow. */
|
sl@0
|
4494 |
dataBufferInit(&pWriter->data, LEAF_MAX);
|
sl@0
|
4495 |
}
|
sl@0
|
4496 |
|
sl@0
|
4497 |
#ifndef NDEBUG
|
sl@0
|
4498 |
/* Verify that the data is readable as a leaf node. */
|
sl@0
|
4499 |
static void leafNodeValidate(const char *pData, int nData){
|
sl@0
|
4500 |
int n, iDummy;
|
sl@0
|
4501 |
|
sl@0
|
4502 |
if( nData==0 ) return;
|
sl@0
|
4503 |
assert( nData>0 );
|
sl@0
|
4504 |
assert( pData!=0 );
|
sl@0
|
4505 |
assert( pData+nData>pData );
|
sl@0
|
4506 |
|
sl@0
|
4507 |
/* Must lead with a varint(0) */
|
sl@0
|
4508 |
n = getVarint32(pData, &iDummy);
|
sl@0
|
4509 |
assert( iDummy==0 );
|
sl@0
|
4510 |
assert( n>0 );
|
sl@0
|
4511 |
assert( n<nData );
|
sl@0
|
4512 |
pData += n;
|
sl@0
|
4513 |
nData -= n;
|
sl@0
|
4514 |
|
sl@0
|
4515 |
/* Leading term length and data must fit in buffer. */
|
sl@0
|
4516 |
n = getVarint32(pData, &iDummy);
|
sl@0
|
4517 |
assert( n>0 );
|
sl@0
|
4518 |
assert( iDummy>0 );
|
sl@0
|
4519 |
assert( n+iDummy>0 );
|
sl@0
|
4520 |
assert( n+iDummy<nData );
|
sl@0
|
4521 |
pData += n+iDummy;
|
sl@0
|
4522 |
nData -= n+iDummy;
|
sl@0
|
4523 |
|
sl@0
|
4524 |
/* Leading term's doclist length and data must fit. */
|
sl@0
|
4525 |
n = getVarint32(pData, &iDummy);
|
sl@0
|
4526 |
assert( n>0 );
|
sl@0
|
4527 |
assert( iDummy>0 );
|
sl@0
|
4528 |
assert( n+iDummy>0 );
|
sl@0
|
4529 |
assert( n+iDummy<=nData );
|
sl@0
|
4530 |
ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
|
sl@0
|
4531 |
pData += n+iDummy;
|
sl@0
|
4532 |
nData -= n+iDummy;
|
sl@0
|
4533 |
|
sl@0
|
4534 |
/* Verify that trailing terms and doclists also are readable. */
|
sl@0
|
4535 |
while( nData!=0 ){
|
sl@0
|
4536 |
n = getVarint32(pData, &iDummy);
|
sl@0
|
4537 |
assert( n>0 );
|
sl@0
|
4538 |
assert( iDummy>=0 );
|
sl@0
|
4539 |
assert( n<nData );
|
sl@0
|
4540 |
pData += n;
|
sl@0
|
4541 |
nData -= n;
|
sl@0
|
4542 |
n = getVarint32(pData, &iDummy);
|
sl@0
|
4543 |
assert( n>0 );
|
sl@0
|
4544 |
assert( iDummy>0 );
|
sl@0
|
4545 |
assert( n+iDummy>0 );
|
sl@0
|
4546 |
assert( n+iDummy<nData );
|
sl@0
|
4547 |
pData += n+iDummy;
|
sl@0
|
4548 |
nData -= n+iDummy;
|
sl@0
|
4549 |
|
sl@0
|
4550 |
n = getVarint32(pData, &iDummy);
|
sl@0
|
4551 |
assert( n>0 );
|
sl@0
|
4552 |
assert( iDummy>0 );
|
sl@0
|
4553 |
assert( n+iDummy>0 );
|
sl@0
|
4554 |
assert( n+iDummy<=nData );
|
sl@0
|
4555 |
ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
|
sl@0
|
4556 |
pData += n+iDummy;
|
sl@0
|
4557 |
nData -= n+iDummy;
|
sl@0
|
4558 |
}
|
sl@0
|
4559 |
}
|
sl@0
|
4560 |
#define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n)
|
sl@0
|
4561 |
#else
|
sl@0
|
4562 |
#define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 )
|
sl@0
|
4563 |
#endif
|
sl@0
|
4564 |
|
sl@0
|
4565 |
/* Flush the current leaf node to %_segments, and adding the resulting
|
sl@0
|
4566 |
** blockid and the starting term to the interior node which will
|
sl@0
|
4567 |
** contain it.
|
sl@0
|
4568 |
*/
|
sl@0
|
4569 |
static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter,
|
sl@0
|
4570 |
int iData, int nData){
|
sl@0
|
4571 |
sqlite_int64 iBlockid = 0;
|
sl@0
|
4572 |
const char *pStartingTerm;
|
sl@0
|
4573 |
int nStartingTerm, rc, n;
|
sl@0
|
4574 |
|
sl@0
|
4575 |
/* Must have the leading varint(0) flag, plus at least some
|
sl@0
|
4576 |
** valid-looking data.
|
sl@0
|
4577 |
*/
|
sl@0
|
4578 |
assert( nData>2 );
|
sl@0
|
4579 |
assert( iData>=0 );
|
sl@0
|
4580 |
assert( iData+nData<=pWriter->data.nData );
|
sl@0
|
4581 |
ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData);
|
sl@0
|
4582 |
|
sl@0
|
4583 |
rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid);
|
sl@0
|
4584 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
4585 |
assert( iBlockid!=0 );
|
sl@0
|
4586 |
|
sl@0
|
4587 |
/* Reconstruct the first term in the leaf for purposes of building
|
sl@0
|
4588 |
** the interior node.
|
sl@0
|
4589 |
*/
|
sl@0
|
4590 |
n = getVarint32(pWriter->data.pData+iData+1, &nStartingTerm);
|
sl@0
|
4591 |
pStartingTerm = pWriter->data.pData+iData+1+n;
|
sl@0
|
4592 |
assert( pWriter->data.nData>iData+1+n+nStartingTerm );
|
sl@0
|
4593 |
assert( pWriter->nTermDistinct>0 );
|
sl@0
|
4594 |
assert( pWriter->nTermDistinct<=nStartingTerm );
|
sl@0
|
4595 |
nStartingTerm = pWriter->nTermDistinct;
|
sl@0
|
4596 |
|
sl@0
|
4597 |
if( pWriter->has_parent ){
|
sl@0
|
4598 |
interiorWriterAppend(&pWriter->parentWriter,
|
sl@0
|
4599 |
pStartingTerm, nStartingTerm, iBlockid);
|
sl@0
|
4600 |
}else{
|
sl@0
|
4601 |
interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid,
|
sl@0
|
4602 |
&pWriter->parentWriter);
|
sl@0
|
4603 |
pWriter->has_parent = 1;
|
sl@0
|
4604 |
}
|
sl@0
|
4605 |
|
sl@0
|
4606 |
/* Track the span of this segment's leaf nodes. */
|
sl@0
|
4607 |
if( pWriter->iEndBlockid==0 ){
|
sl@0
|
4608 |
pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid;
|
sl@0
|
4609 |
}else{
|
sl@0
|
4610 |
pWriter->iEndBlockid++;
|
sl@0
|
4611 |
assert( iBlockid==pWriter->iEndBlockid );
|
sl@0
|
4612 |
}
|
sl@0
|
4613 |
|
sl@0
|
4614 |
return SQLITE_OK;
|
sl@0
|
4615 |
}
|
sl@0
|
4616 |
static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){
|
sl@0
|
4617 |
int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData);
|
sl@0
|
4618 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
4619 |
|
sl@0
|
4620 |
/* Re-initialize the output buffer. */
|
sl@0
|
4621 |
dataBufferReset(&pWriter->data);
|
sl@0
|
4622 |
|
sl@0
|
4623 |
return SQLITE_OK;
|
sl@0
|
4624 |
}
|
sl@0
|
4625 |
|
sl@0
|
4626 |
/* Fetch the root info for the segment. If the entire leaf fits
|
sl@0
|
4627 |
** within ROOT_MAX, then it will be returned directly, otherwise it
|
sl@0
|
4628 |
** will be flushed and the root info will be returned from the
|
sl@0
|
4629 |
** interior node. *piEndBlockid is set to the blockid of the last
|
sl@0
|
4630 |
** interior or leaf node written to disk (0 if none are written at
|
sl@0
|
4631 |
** all).
|
sl@0
|
4632 |
*/
|
sl@0
|
4633 |
static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter,
|
sl@0
|
4634 |
char **ppRootInfo, int *pnRootInfo,
|
sl@0
|
4635 |
sqlite_int64 *piEndBlockid){
|
sl@0
|
4636 |
/* we can fit the segment entirely inline */
|
sl@0
|
4637 |
if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){
|
sl@0
|
4638 |
*ppRootInfo = pWriter->data.pData;
|
sl@0
|
4639 |
*pnRootInfo = pWriter->data.nData;
|
sl@0
|
4640 |
*piEndBlockid = 0;
|
sl@0
|
4641 |
return SQLITE_OK;
|
sl@0
|
4642 |
}
|
sl@0
|
4643 |
|
sl@0
|
4644 |
/* Flush remaining leaf data. */
|
sl@0
|
4645 |
if( pWriter->data.nData>0 ){
|
sl@0
|
4646 |
int rc = leafWriterFlush(v, pWriter);
|
sl@0
|
4647 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
4648 |
}
|
sl@0
|
4649 |
|
sl@0
|
4650 |
/* We must have flushed a leaf at some point. */
|
sl@0
|
4651 |
assert( pWriter->has_parent );
|
sl@0
|
4652 |
|
sl@0
|
4653 |
/* Tenatively set the end leaf blockid as the end blockid. If the
|
sl@0
|
4654 |
** interior node can be returned inline, this will be the final
|
sl@0
|
4655 |
** blockid, otherwise it will be overwritten by
|
sl@0
|
4656 |
** interiorWriterRootInfo().
|
sl@0
|
4657 |
*/
|
sl@0
|
4658 |
*piEndBlockid = pWriter->iEndBlockid;
|
sl@0
|
4659 |
|
sl@0
|
4660 |
return interiorWriterRootInfo(v, &pWriter->parentWriter,
|
sl@0
|
4661 |
ppRootInfo, pnRootInfo, piEndBlockid);
|
sl@0
|
4662 |
}
|
sl@0
|
4663 |
|
sl@0
|
4664 |
/* Collect the rootInfo data and store it into the segment directory.
|
sl@0
|
4665 |
** This has the effect of flushing the segment's leaf data to
|
sl@0
|
4666 |
** %_segments, and also flushing any interior nodes to %_segments.
|
sl@0
|
4667 |
*/
|
sl@0
|
4668 |
static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){
|
sl@0
|
4669 |
sqlite_int64 iEndBlockid;
|
sl@0
|
4670 |
char *pRootInfo;
|
sl@0
|
4671 |
int rc, nRootInfo;
|
sl@0
|
4672 |
|
sl@0
|
4673 |
rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid);
|
sl@0
|
4674 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
4675 |
|
sl@0
|
4676 |
/* Don't bother storing an entirely empty segment. */
|
sl@0
|
4677 |
if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK;
|
sl@0
|
4678 |
|
sl@0
|
4679 |
return segdir_set(v, pWriter->iLevel, pWriter->idx,
|
sl@0
|
4680 |
pWriter->iStartBlockid, pWriter->iEndBlockid,
|
sl@0
|
4681 |
iEndBlockid, pRootInfo, nRootInfo);
|
sl@0
|
4682 |
}
|
sl@0
|
4683 |
|
sl@0
|
4684 |
static void leafWriterDestroy(LeafWriter *pWriter){
|
sl@0
|
4685 |
if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter);
|
sl@0
|
4686 |
dataBufferDestroy(&pWriter->term);
|
sl@0
|
4687 |
dataBufferDestroy(&pWriter->data);
|
sl@0
|
4688 |
}
|
sl@0
|
4689 |
|
sl@0
|
4690 |
/* Encode a term into the leafWriter, delta-encoding as appropriate.
|
sl@0
|
4691 |
** Returns the length of the new term which distinguishes it from the
|
sl@0
|
4692 |
** previous term, which can be used to set nTermDistinct when a node
|
sl@0
|
4693 |
** boundary is crossed.
|
sl@0
|
4694 |
*/
|
sl@0
|
4695 |
static int leafWriterEncodeTerm(LeafWriter *pWriter,
|
sl@0
|
4696 |
const char *pTerm, int nTerm){
|
sl@0
|
4697 |
char c[VARINT_MAX+VARINT_MAX];
|
sl@0
|
4698 |
int n, nPrefix = 0;
|
sl@0
|
4699 |
|
sl@0
|
4700 |
assert( nTerm>0 );
|
sl@0
|
4701 |
while( nPrefix<pWriter->term.nData &&
|
sl@0
|
4702 |
pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
|
sl@0
|
4703 |
nPrefix++;
|
sl@0
|
4704 |
/* Failing this implies that the terms weren't in order. */
|
sl@0
|
4705 |
assert( nPrefix<nTerm );
|
sl@0
|
4706 |
}
|
sl@0
|
4707 |
|
sl@0
|
4708 |
if( pWriter->data.nData==0 ){
|
sl@0
|
4709 |
/* Encode the node header and leading term as:
|
sl@0
|
4710 |
** varint(0)
|
sl@0
|
4711 |
** varint(nTerm)
|
sl@0
|
4712 |
** char pTerm[nTerm]
|
sl@0
|
4713 |
*/
|
sl@0
|
4714 |
n = putVarint(c, '\0');
|
sl@0
|
4715 |
n += putVarint(c+n, nTerm);
|
sl@0
|
4716 |
dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm);
|
sl@0
|
4717 |
}else{
|
sl@0
|
4718 |
/* Delta-encode the term as:
|
sl@0
|
4719 |
** varint(nPrefix)
|
sl@0
|
4720 |
** varint(nSuffix)
|
sl@0
|
4721 |
** char pTermSuffix[nSuffix]
|
sl@0
|
4722 |
*/
|
sl@0
|
4723 |
n = putVarint(c, nPrefix);
|
sl@0
|
4724 |
n += putVarint(c+n, nTerm-nPrefix);
|
sl@0
|
4725 |
dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix);
|
sl@0
|
4726 |
}
|
sl@0
|
4727 |
dataBufferReplace(&pWriter->term, pTerm, nTerm);
|
sl@0
|
4728 |
|
sl@0
|
4729 |
return nPrefix+1;
|
sl@0
|
4730 |
}
|
sl@0
|
4731 |
|
sl@0
|
4732 |
/* Used to avoid a memmove when a large amount of doclist data is in
|
sl@0
|
4733 |
** the buffer. This constructs a node and term header before
|
sl@0
|
4734 |
** iDoclistData and flushes the resulting complete node using
|
sl@0
|
4735 |
** leafWriterInternalFlush().
|
sl@0
|
4736 |
*/
|
sl@0
|
4737 |
static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter,
|
sl@0
|
4738 |
const char *pTerm, int nTerm,
|
sl@0
|
4739 |
int iDoclistData){
|
sl@0
|
4740 |
char c[VARINT_MAX+VARINT_MAX];
|
sl@0
|
4741 |
int iData, n = putVarint(c, 0);
|
sl@0
|
4742 |
n += putVarint(c+n, nTerm);
|
sl@0
|
4743 |
|
sl@0
|
4744 |
/* There should always be room for the header. Even if pTerm shared
|
sl@0
|
4745 |
** a substantial prefix with the previous term, the entire prefix
|
sl@0
|
4746 |
** could be constructed from earlier data in the doclist, so there
|
sl@0
|
4747 |
** should be room.
|
sl@0
|
4748 |
*/
|
sl@0
|
4749 |
assert( iDoclistData>=n+nTerm );
|
sl@0
|
4750 |
|
sl@0
|
4751 |
iData = iDoclistData-(n+nTerm);
|
sl@0
|
4752 |
memcpy(pWriter->data.pData+iData, c, n);
|
sl@0
|
4753 |
memcpy(pWriter->data.pData+iData+n, pTerm, nTerm);
|
sl@0
|
4754 |
|
sl@0
|
4755 |
return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData);
|
sl@0
|
4756 |
}
|
sl@0
|
4757 |
|
sl@0
|
4758 |
/* Push pTerm[nTerm] along with the doclist data to the leaf layer of
|
sl@0
|
4759 |
** %_segments.
|
sl@0
|
4760 |
*/
|
sl@0
|
4761 |
static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter,
|
sl@0
|
4762 |
const char *pTerm, int nTerm,
|
sl@0
|
4763 |
DLReader *pReaders, int nReaders){
|
sl@0
|
4764 |
char c[VARINT_MAX+VARINT_MAX];
|
sl@0
|
4765 |
int iTermData = pWriter->data.nData, iDoclistData;
|
sl@0
|
4766 |
int i, nData, n, nActualData, nActual, rc, nTermDistinct;
|
sl@0
|
4767 |
|
sl@0
|
4768 |
ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
|
sl@0
|
4769 |
nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm);
|
sl@0
|
4770 |
|
sl@0
|
4771 |
/* Remember nTermDistinct if opening a new node. */
|
sl@0
|
4772 |
if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct;
|
sl@0
|
4773 |
|
sl@0
|
4774 |
iDoclistData = pWriter->data.nData;
|
sl@0
|
4775 |
|
sl@0
|
4776 |
/* Estimate the length of the merged doclist so we can leave space
|
sl@0
|
4777 |
** to encode it.
|
sl@0
|
4778 |
*/
|
sl@0
|
4779 |
for(i=0, nData=0; i<nReaders; i++){
|
sl@0
|
4780 |
nData += dlrAllDataBytes(&pReaders[i]);
|
sl@0
|
4781 |
}
|
sl@0
|
4782 |
n = putVarint(c, nData);
|
sl@0
|
4783 |
dataBufferAppend(&pWriter->data, c, n);
|
sl@0
|
4784 |
|
sl@0
|
4785 |
docListMerge(&pWriter->data, pReaders, nReaders);
|
sl@0
|
4786 |
ASSERT_VALID_DOCLIST(DL_DEFAULT,
|
sl@0
|
4787 |
pWriter->data.pData+iDoclistData+n,
|
sl@0
|
4788 |
pWriter->data.nData-iDoclistData-n, NULL);
|
sl@0
|
4789 |
|
sl@0
|
4790 |
/* The actual amount of doclist data at this point could be smaller
|
sl@0
|
4791 |
** than the length we encoded. Additionally, the space required to
|
sl@0
|
4792 |
** encode this length could be smaller. For small doclists, this is
|
sl@0
|
4793 |
** not a big deal, we can just use memmove() to adjust things.
|
sl@0
|
4794 |
*/
|
sl@0
|
4795 |
nActualData = pWriter->data.nData-(iDoclistData+n);
|
sl@0
|
4796 |
nActual = putVarint(c, nActualData);
|
sl@0
|
4797 |
assert( nActualData<=nData );
|
sl@0
|
4798 |
assert( nActual<=n );
|
sl@0
|
4799 |
|
sl@0
|
4800 |
/* If the new doclist is big enough for force a standalone leaf
|
sl@0
|
4801 |
** node, we can immediately flush it inline without doing the
|
sl@0
|
4802 |
** memmove().
|
sl@0
|
4803 |
*/
|
sl@0
|
4804 |
/* TODO(shess) This test matches leafWriterStep(), which does this
|
sl@0
|
4805 |
** test before it knows the cost to varint-encode the term and
|
sl@0
|
4806 |
** doclist lengths. At some point, change to
|
sl@0
|
4807 |
** pWriter->data.nData-iTermData>STANDALONE_MIN.
|
sl@0
|
4808 |
*/
|
sl@0
|
4809 |
if( nTerm+nActualData>STANDALONE_MIN ){
|
sl@0
|
4810 |
/* Push leaf node from before this term. */
|
sl@0
|
4811 |
if( iTermData>0 ){
|
sl@0
|
4812 |
rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
|
sl@0
|
4813 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
4814 |
|
sl@0
|
4815 |
pWriter->nTermDistinct = nTermDistinct;
|
sl@0
|
4816 |
}
|
sl@0
|
4817 |
|
sl@0
|
4818 |
/* Fix the encoded doclist length. */
|
sl@0
|
4819 |
iDoclistData += n - nActual;
|
sl@0
|
4820 |
memcpy(pWriter->data.pData+iDoclistData, c, nActual);
|
sl@0
|
4821 |
|
sl@0
|
4822 |
/* Push the standalone leaf node. */
|
sl@0
|
4823 |
rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData);
|
sl@0
|
4824 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
4825 |
|
sl@0
|
4826 |
/* Leave the node empty. */
|
sl@0
|
4827 |
dataBufferReset(&pWriter->data);
|
sl@0
|
4828 |
|
sl@0
|
4829 |
return rc;
|
sl@0
|
4830 |
}
|
sl@0
|
4831 |
|
sl@0
|
4832 |
/* At this point, we know that the doclist was small, so do the
|
sl@0
|
4833 |
** memmove if indicated.
|
sl@0
|
4834 |
*/
|
sl@0
|
4835 |
if( nActual<n ){
|
sl@0
|
4836 |
memmove(pWriter->data.pData+iDoclistData+nActual,
|
sl@0
|
4837 |
pWriter->data.pData+iDoclistData+n,
|
sl@0
|
4838 |
pWriter->data.nData-(iDoclistData+n));
|
sl@0
|
4839 |
pWriter->data.nData -= n-nActual;
|
sl@0
|
4840 |
}
|
sl@0
|
4841 |
|
sl@0
|
4842 |
/* Replace written length with actual length. */
|
sl@0
|
4843 |
memcpy(pWriter->data.pData+iDoclistData, c, nActual);
|
sl@0
|
4844 |
|
sl@0
|
4845 |
/* If the node is too large, break things up. */
|
sl@0
|
4846 |
/* TODO(shess) This test matches leafWriterStep(), which does this
|
sl@0
|
4847 |
** test before it knows the cost to varint-encode the term and
|
sl@0
|
4848 |
** doclist lengths. At some point, change to
|
sl@0
|
4849 |
** pWriter->data.nData>LEAF_MAX.
|
sl@0
|
4850 |
*/
|
sl@0
|
4851 |
if( iTermData+nTerm+nActualData>LEAF_MAX ){
|
sl@0
|
4852 |
/* Flush out the leading data as a node */
|
sl@0
|
4853 |
rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
|
sl@0
|
4854 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
4855 |
|
sl@0
|
4856 |
pWriter->nTermDistinct = nTermDistinct;
|
sl@0
|
4857 |
|
sl@0
|
4858 |
/* Rebuild header using the current term */
|
sl@0
|
4859 |
n = putVarint(pWriter->data.pData, 0);
|
sl@0
|
4860 |
n += putVarint(pWriter->data.pData+n, nTerm);
|
sl@0
|
4861 |
memcpy(pWriter->data.pData+n, pTerm, nTerm);
|
sl@0
|
4862 |
n += nTerm;
|
sl@0
|
4863 |
|
sl@0
|
4864 |
/* There should always be room, because the previous encoding
|
sl@0
|
4865 |
** included all data necessary to construct the term.
|
sl@0
|
4866 |
*/
|
sl@0
|
4867 |
assert( n<iDoclistData );
|
sl@0
|
4868 |
/* So long as STANDALONE_MIN is half or less of LEAF_MAX, the
|
sl@0
|
4869 |
** following memcpy() is safe (as opposed to needing a memmove).
|
sl@0
|
4870 |
*/
|
sl@0
|
4871 |
assert( 2*STANDALONE_MIN<=LEAF_MAX );
|
sl@0
|
4872 |
assert( n+pWriter->data.nData-iDoclistData<iDoclistData );
|
sl@0
|
4873 |
memcpy(pWriter->data.pData+n,
|
sl@0
|
4874 |
pWriter->data.pData+iDoclistData,
|
sl@0
|
4875 |
pWriter->data.nData-iDoclistData);
|
sl@0
|
4876 |
pWriter->data.nData -= iDoclistData-n;
|
sl@0
|
4877 |
}
|
sl@0
|
4878 |
ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
|
sl@0
|
4879 |
|
sl@0
|
4880 |
return SQLITE_OK;
|
sl@0
|
4881 |
}
|
sl@0
|
4882 |
|
sl@0
|
4883 |
/* Push pTerm[nTerm] along with the doclist data to the leaf layer of
|
sl@0
|
4884 |
** %_segments.
|
sl@0
|
4885 |
*/
|
sl@0
|
4886 |
/* TODO(shess) Revise writeZeroSegment() so that doclists are
|
sl@0
|
4887 |
** constructed directly in pWriter->data.
|
sl@0
|
4888 |
*/
|
sl@0
|
4889 |
static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter,
|
sl@0
|
4890 |
const char *pTerm, int nTerm,
|
sl@0
|
4891 |
const char *pData, int nData){
|
sl@0
|
4892 |
int rc;
|
sl@0
|
4893 |
DLReader reader;
|
sl@0
|
4894 |
|
sl@0
|
4895 |
dlrInit(&reader, DL_DEFAULT, pData, nData);
|
sl@0
|
4896 |
rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1);
|
sl@0
|
4897 |
dlrDestroy(&reader);
|
sl@0
|
4898 |
|
sl@0
|
4899 |
return rc;
|
sl@0
|
4900 |
}
|
sl@0
|
4901 |
|
sl@0
|
4902 |
|
sl@0
|
4903 |
/****************************************************************/
|
sl@0
|
4904 |
/* LeafReader is used to iterate over an individual leaf node. */
|
sl@0
|
4905 |
typedef struct LeafReader {
|
sl@0
|
4906 |
DataBuffer term; /* copy of current term. */
|
sl@0
|
4907 |
|
sl@0
|
4908 |
const char *pData; /* data for current term. */
|
sl@0
|
4909 |
int nData;
|
sl@0
|
4910 |
} LeafReader;
|
sl@0
|
4911 |
|
sl@0
|
4912 |
static void leafReaderDestroy(LeafReader *pReader){
|
sl@0
|
4913 |
dataBufferDestroy(&pReader->term);
|
sl@0
|
4914 |
SCRAMBLE(pReader);
|
sl@0
|
4915 |
}
|
sl@0
|
4916 |
|
sl@0
|
4917 |
static int leafReaderAtEnd(LeafReader *pReader){
|
sl@0
|
4918 |
return pReader->nData<=0;
|
sl@0
|
4919 |
}
|
sl@0
|
4920 |
|
sl@0
|
4921 |
/* Access the current term. */
|
sl@0
|
4922 |
static int leafReaderTermBytes(LeafReader *pReader){
|
sl@0
|
4923 |
return pReader->term.nData;
|
sl@0
|
4924 |
}
|
sl@0
|
4925 |
static const char *leafReaderTerm(LeafReader *pReader){
|
sl@0
|
4926 |
assert( pReader->term.nData>0 );
|
sl@0
|
4927 |
return pReader->term.pData;
|
sl@0
|
4928 |
}
|
sl@0
|
4929 |
|
sl@0
|
4930 |
/* Access the doclist data for the current term. */
|
sl@0
|
4931 |
static int leafReaderDataBytes(LeafReader *pReader){
|
sl@0
|
4932 |
int nData;
|
sl@0
|
4933 |
assert( pReader->term.nData>0 );
|
sl@0
|
4934 |
getVarint32(pReader->pData, &nData);
|
sl@0
|
4935 |
return nData;
|
sl@0
|
4936 |
}
|
sl@0
|
4937 |
static const char *leafReaderData(LeafReader *pReader){
|
sl@0
|
4938 |
int n, nData;
|
sl@0
|
4939 |
assert( pReader->term.nData>0 );
|
sl@0
|
4940 |
n = getVarint32(pReader->pData, &nData);
|
sl@0
|
4941 |
return pReader->pData+n;
|
sl@0
|
4942 |
}
|
sl@0
|
4943 |
|
sl@0
|
4944 |
static void leafReaderInit(const char *pData, int nData,
|
sl@0
|
4945 |
LeafReader *pReader){
|
sl@0
|
4946 |
int nTerm, n;
|
sl@0
|
4947 |
|
sl@0
|
4948 |
assert( nData>0 );
|
sl@0
|
4949 |
assert( pData[0]=='\0' );
|
sl@0
|
4950 |
|
sl@0
|
4951 |
CLEAR(pReader);
|
sl@0
|
4952 |
|
sl@0
|
4953 |
/* Read the first term, skipping the header byte. */
|
sl@0
|
4954 |
n = getVarint32(pData+1, &nTerm);
|
sl@0
|
4955 |
dataBufferInit(&pReader->term, nTerm);
|
sl@0
|
4956 |
dataBufferReplace(&pReader->term, pData+1+n, nTerm);
|
sl@0
|
4957 |
|
sl@0
|
4958 |
/* Position after the first term. */
|
sl@0
|
4959 |
assert( 1+n+nTerm<nData );
|
sl@0
|
4960 |
pReader->pData = pData+1+n+nTerm;
|
sl@0
|
4961 |
pReader->nData = nData-1-n-nTerm;
|
sl@0
|
4962 |
}
|
sl@0
|
4963 |
|
sl@0
|
4964 |
/* Step the reader forward to the next term. */
|
sl@0
|
4965 |
static void leafReaderStep(LeafReader *pReader){
|
sl@0
|
4966 |
int n, nData, nPrefix, nSuffix;
|
sl@0
|
4967 |
assert( !leafReaderAtEnd(pReader) );
|
sl@0
|
4968 |
|
sl@0
|
4969 |
/* Skip previous entry's data block. */
|
sl@0
|
4970 |
n = getVarint32(pReader->pData, &nData);
|
sl@0
|
4971 |
assert( n+nData<=pReader->nData );
|
sl@0
|
4972 |
pReader->pData += n+nData;
|
sl@0
|
4973 |
pReader->nData -= n+nData;
|
sl@0
|
4974 |
|
sl@0
|
4975 |
if( !leafReaderAtEnd(pReader) ){
|
sl@0
|
4976 |
/* Construct the new term using a prefix from the old term plus a
|
sl@0
|
4977 |
** suffix from the leaf data.
|
sl@0
|
4978 |
*/
|
sl@0
|
4979 |
n = getVarint32(pReader->pData, &nPrefix);
|
sl@0
|
4980 |
n += getVarint32(pReader->pData+n, &nSuffix);
|
sl@0
|
4981 |
assert( n+nSuffix<pReader->nData );
|
sl@0
|
4982 |
pReader->term.nData = nPrefix;
|
sl@0
|
4983 |
dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
|
sl@0
|
4984 |
|
sl@0
|
4985 |
pReader->pData += n+nSuffix;
|
sl@0
|
4986 |
pReader->nData -= n+nSuffix;
|
sl@0
|
4987 |
}
|
sl@0
|
4988 |
}
|
sl@0
|
4989 |
|
sl@0
|
4990 |
/* strcmp-style comparison of pReader's current term against pTerm.
|
sl@0
|
4991 |
** If isPrefix, equality means equal through nTerm bytes.
|
sl@0
|
4992 |
*/
|
sl@0
|
4993 |
static int leafReaderTermCmp(LeafReader *pReader,
|
sl@0
|
4994 |
const char *pTerm, int nTerm, int isPrefix){
|
sl@0
|
4995 |
int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm;
|
sl@0
|
4996 |
if( n==0 ){
|
sl@0
|
4997 |
if( pReader->term.nData>0 ) return -1;
|
sl@0
|
4998 |
if(nTerm>0 ) return 1;
|
sl@0
|
4999 |
return 0;
|
sl@0
|
5000 |
}
|
sl@0
|
5001 |
|
sl@0
|
5002 |
c = memcmp(pReader->term.pData, pTerm, n);
|
sl@0
|
5003 |
if( c!=0 ) return c;
|
sl@0
|
5004 |
if( isPrefix && n==nTerm ) return 0;
|
sl@0
|
5005 |
return pReader->term.nData - nTerm;
|
sl@0
|
5006 |
}
|
sl@0
|
5007 |
|
sl@0
|
5008 |
|
sl@0
|
5009 |
/****************************************************************/
|
sl@0
|
5010 |
/* LeavesReader wraps LeafReader to allow iterating over the entire
|
sl@0
|
5011 |
** leaf layer of the tree.
|
sl@0
|
5012 |
*/
|
sl@0
|
5013 |
typedef struct LeavesReader {
|
sl@0
|
5014 |
int idx; /* Index within the segment. */
|
sl@0
|
5015 |
|
sl@0
|
5016 |
sqlite3_stmt *pStmt; /* Statement we're streaming leaves from. */
|
sl@0
|
5017 |
int eof; /* we've seen SQLITE_DONE from pStmt. */
|
sl@0
|
5018 |
|
sl@0
|
5019 |
LeafReader leafReader; /* reader for the current leaf. */
|
sl@0
|
5020 |
DataBuffer rootData; /* root data for inline. */
|
sl@0
|
5021 |
} LeavesReader;
|
sl@0
|
5022 |
|
sl@0
|
5023 |
/* Access the current term. */
|
sl@0
|
5024 |
static int leavesReaderTermBytes(LeavesReader *pReader){
|
sl@0
|
5025 |
assert( !pReader->eof );
|
sl@0
|
5026 |
return leafReaderTermBytes(&pReader->leafReader);
|
sl@0
|
5027 |
}
|
sl@0
|
5028 |
static const char *leavesReaderTerm(LeavesReader *pReader){
|
sl@0
|
5029 |
assert( !pReader->eof );
|
sl@0
|
5030 |
return leafReaderTerm(&pReader->leafReader);
|
sl@0
|
5031 |
}
|
sl@0
|
5032 |
|
sl@0
|
5033 |
/* Access the doclist data for the current term. */
|
sl@0
|
5034 |
static int leavesReaderDataBytes(LeavesReader *pReader){
|
sl@0
|
5035 |
assert( !pReader->eof );
|
sl@0
|
5036 |
return leafReaderDataBytes(&pReader->leafReader);
|
sl@0
|
5037 |
}
|
sl@0
|
5038 |
static const char *leavesReaderData(LeavesReader *pReader){
|
sl@0
|
5039 |
assert( !pReader->eof );
|
sl@0
|
5040 |
return leafReaderData(&pReader->leafReader);
|
sl@0
|
5041 |
}
|
sl@0
|
5042 |
|
sl@0
|
5043 |
static int leavesReaderAtEnd(LeavesReader *pReader){
|
sl@0
|
5044 |
return pReader->eof;
|
sl@0
|
5045 |
}
|
sl@0
|
5046 |
|
sl@0
|
5047 |
/* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus
|
sl@0
|
5048 |
** leaving the statement handle open, which locks the table.
|
sl@0
|
5049 |
*/
|
sl@0
|
5050 |
/* TODO(shess) This "solution" is not satisfactory. Really, there
|
sl@0
|
5051 |
** should be check-in function for all statement handles which
|
sl@0
|
5052 |
** arranges to call sqlite3_reset(). This most likely will require
|
sl@0
|
5053 |
** modification to control flow all over the place, though, so for now
|
sl@0
|
5054 |
** just punt.
|
sl@0
|
5055 |
**
|
sl@0
|
5056 |
** Note the the current system assumes that segment merges will run to
|
sl@0
|
5057 |
** completion, which is why this particular probably hasn't arisen in
|
sl@0
|
5058 |
** this case. Probably a brittle assumption.
|
sl@0
|
5059 |
*/
|
sl@0
|
5060 |
static int leavesReaderReset(LeavesReader *pReader){
|
sl@0
|
5061 |
return sqlite3_reset(pReader->pStmt);
|
sl@0
|
5062 |
}
|
sl@0
|
5063 |
|
sl@0
|
5064 |
static void leavesReaderDestroy(LeavesReader *pReader){
|
sl@0
|
5065 |
/* If idx is -1, that means we're using a non-cached statement
|
sl@0
|
5066 |
** handle in the optimize() case, so we need to release it.
|
sl@0
|
5067 |
*/
|
sl@0
|
5068 |
if( pReader->pStmt!=NULL && pReader->idx==-1 ){
|
sl@0
|
5069 |
sqlite3_finalize(pReader->pStmt);
|
sl@0
|
5070 |
}
|
sl@0
|
5071 |
leafReaderDestroy(&pReader->leafReader);
|
sl@0
|
5072 |
dataBufferDestroy(&pReader->rootData);
|
sl@0
|
5073 |
SCRAMBLE(pReader);
|
sl@0
|
5074 |
}
|
sl@0
|
5075 |
|
sl@0
|
5076 |
/* Initialize pReader with the given root data (if iStartBlockid==0
|
sl@0
|
5077 |
** the leaf data was entirely contained in the root), or from the
|
sl@0
|
5078 |
** stream of blocks between iStartBlockid and iEndBlockid, inclusive.
|
sl@0
|
5079 |
*/
|
sl@0
|
5080 |
static int leavesReaderInit(fulltext_vtab *v,
|
sl@0
|
5081 |
int idx,
|
sl@0
|
5082 |
sqlite_int64 iStartBlockid,
|
sl@0
|
5083 |
sqlite_int64 iEndBlockid,
|
sl@0
|
5084 |
const char *pRootData, int nRootData,
|
sl@0
|
5085 |
LeavesReader *pReader){
|
sl@0
|
5086 |
CLEAR(pReader);
|
sl@0
|
5087 |
pReader->idx = idx;
|
sl@0
|
5088 |
|
sl@0
|
5089 |
dataBufferInit(&pReader->rootData, 0);
|
sl@0
|
5090 |
if( iStartBlockid==0 ){
|
sl@0
|
5091 |
/* Entire leaf level fit in root data. */
|
sl@0
|
5092 |
dataBufferReplace(&pReader->rootData, pRootData, nRootData);
|
sl@0
|
5093 |
leafReaderInit(pReader->rootData.pData, pReader->rootData.nData,
|
sl@0
|
5094 |
&pReader->leafReader);
|
sl@0
|
5095 |
}else{
|
sl@0
|
5096 |
sqlite3_stmt *s;
|
sl@0
|
5097 |
int rc = sql_get_leaf_statement(v, idx, &s);
|
sl@0
|
5098 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
5099 |
|
sl@0
|
5100 |
rc = sqlite3_bind_int64(s, 1, iStartBlockid);
|
sl@0
|
5101 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
5102 |
|
sl@0
|
5103 |
rc = sqlite3_bind_int64(s, 2, iEndBlockid);
|
sl@0
|
5104 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
5105 |
|
sl@0
|
5106 |
rc = sqlite3_step(s);
|
sl@0
|
5107 |
if( rc==SQLITE_DONE ){
|
sl@0
|
5108 |
pReader->eof = 1;
|
sl@0
|
5109 |
return SQLITE_OK;
|
sl@0
|
5110 |
}
|
sl@0
|
5111 |
if( rc!=SQLITE_ROW ) return rc;
|
sl@0
|
5112 |
|
sl@0
|
5113 |
pReader->pStmt = s;
|
sl@0
|
5114 |
leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
|
sl@0
|
5115 |
sqlite3_column_bytes(pReader->pStmt, 0),
|
sl@0
|
5116 |
&pReader->leafReader);
|
sl@0
|
5117 |
}
|
sl@0
|
5118 |
return SQLITE_OK;
|
sl@0
|
5119 |
}
|
sl@0
|
5120 |
|
sl@0
|
5121 |
/* Step the current leaf forward to the next term. If we reach the
|
sl@0
|
5122 |
** end of the current leaf, step forward to the next leaf block.
|
sl@0
|
5123 |
*/
|
sl@0
|
5124 |
static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){
|
sl@0
|
5125 |
assert( !leavesReaderAtEnd(pReader) );
|
sl@0
|
5126 |
leafReaderStep(&pReader->leafReader);
|
sl@0
|
5127 |
|
sl@0
|
5128 |
if( leafReaderAtEnd(&pReader->leafReader) ){
|
sl@0
|
5129 |
int rc;
|
sl@0
|
5130 |
if( pReader->rootData.pData ){
|
sl@0
|
5131 |
pReader->eof = 1;
|
sl@0
|
5132 |
return SQLITE_OK;
|
sl@0
|
5133 |
}
|
sl@0
|
5134 |
rc = sqlite3_step(pReader->pStmt);
|
sl@0
|
5135 |
if( rc!=SQLITE_ROW ){
|
sl@0
|
5136 |
pReader->eof = 1;
|
sl@0
|
5137 |
return rc==SQLITE_DONE ? SQLITE_OK : rc;
|
sl@0
|
5138 |
}
|
sl@0
|
5139 |
leafReaderDestroy(&pReader->leafReader);
|
sl@0
|
5140 |
leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
|
sl@0
|
5141 |
sqlite3_column_bytes(pReader->pStmt, 0),
|
sl@0
|
5142 |
&pReader->leafReader);
|
sl@0
|
5143 |
}
|
sl@0
|
5144 |
return SQLITE_OK;
|
sl@0
|
5145 |
}
|
sl@0
|
5146 |
|
sl@0
|
5147 |
/* Order LeavesReaders by their term, ignoring idx. Readers at eof
|
sl@0
|
5148 |
** always sort to the end.
|
sl@0
|
5149 |
*/
|
sl@0
|
5150 |
static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){
|
sl@0
|
5151 |
if( leavesReaderAtEnd(lr1) ){
|
sl@0
|
5152 |
if( leavesReaderAtEnd(lr2) ) return 0;
|
sl@0
|
5153 |
return 1;
|
sl@0
|
5154 |
}
|
sl@0
|
5155 |
if( leavesReaderAtEnd(lr2) ) return -1;
|
sl@0
|
5156 |
|
sl@0
|
5157 |
return leafReaderTermCmp(&lr1->leafReader,
|
sl@0
|
5158 |
leavesReaderTerm(lr2), leavesReaderTermBytes(lr2),
|
sl@0
|
5159 |
0);
|
sl@0
|
5160 |
}
|
sl@0
|
5161 |
|
sl@0
|
5162 |
/* Similar to leavesReaderTermCmp(), with additional ordering by idx
|
sl@0
|
5163 |
** so that older segments sort before newer segments.
|
sl@0
|
5164 |
*/
|
sl@0
|
5165 |
static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){
|
sl@0
|
5166 |
int c = leavesReaderTermCmp(lr1, lr2);
|
sl@0
|
5167 |
if( c!=0 ) return c;
|
sl@0
|
5168 |
return lr1->idx-lr2->idx;
|
sl@0
|
5169 |
}
|
sl@0
|
5170 |
|
sl@0
|
5171 |
/* Assume that pLr[1]..pLr[nLr] are sorted. Bubble pLr[0] into its
|
sl@0
|
5172 |
** sorted position.
|
sl@0
|
5173 |
*/
|
sl@0
|
5174 |
static void leavesReaderReorder(LeavesReader *pLr, int nLr){
|
sl@0
|
5175 |
while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){
|
sl@0
|
5176 |
LeavesReader tmp = pLr[0];
|
sl@0
|
5177 |
pLr[0] = pLr[1];
|
sl@0
|
5178 |
pLr[1] = tmp;
|
sl@0
|
5179 |
nLr--;
|
sl@0
|
5180 |
pLr++;
|
sl@0
|
5181 |
}
|
sl@0
|
5182 |
}
|
sl@0
|
5183 |
|
sl@0
|
5184 |
/* Initializes pReaders with the segments from level iLevel, returning
|
sl@0
|
5185 |
** the number of segments in *piReaders. Leaves pReaders in sorted
|
sl@0
|
5186 |
** order.
|
sl@0
|
5187 |
*/
|
sl@0
|
5188 |
static int leavesReadersInit(fulltext_vtab *v, int iLevel,
|
sl@0
|
5189 |
LeavesReader *pReaders, int *piReaders){
|
sl@0
|
5190 |
sqlite3_stmt *s;
|
sl@0
|
5191 |
int i, rc = sql_get_statement(v, SEGDIR_SELECT_LEVEL_STMT, &s);
|
sl@0
|
5192 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
5193 |
|
sl@0
|
5194 |
rc = sqlite3_bind_int(s, 1, iLevel);
|
sl@0
|
5195 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
5196 |
|
sl@0
|
5197 |
i = 0;
|
sl@0
|
5198 |
while( (rc = sqlite3_step(s))==SQLITE_ROW ){
|
sl@0
|
5199 |
sqlite_int64 iStart = sqlite3_column_int64(s, 0);
|
sl@0
|
5200 |
sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
|
sl@0
|
5201 |
const char *pRootData = sqlite3_column_blob(s, 2);
|
sl@0
|
5202 |
int nRootData = sqlite3_column_bytes(s, 2);
|
sl@0
|
5203 |
|
sl@0
|
5204 |
assert( i<MERGE_COUNT );
|
sl@0
|
5205 |
rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData,
|
sl@0
|
5206 |
&pReaders[i]);
|
sl@0
|
5207 |
if( rc!=SQLITE_OK ) break;
|
sl@0
|
5208 |
|
sl@0
|
5209 |
i++;
|
sl@0
|
5210 |
}
|
sl@0
|
5211 |
if( rc!=SQLITE_DONE ){
|
sl@0
|
5212 |
while( i-->0 ){
|
sl@0
|
5213 |
leavesReaderDestroy(&pReaders[i]);
|
sl@0
|
5214 |
}
|
sl@0
|
5215 |
return rc;
|
sl@0
|
5216 |
}
|
sl@0
|
5217 |
|
sl@0
|
5218 |
*piReaders = i;
|
sl@0
|
5219 |
|
sl@0
|
5220 |
/* Leave our results sorted by term, then age. */
|
sl@0
|
5221 |
while( i-- ){
|
sl@0
|
5222 |
leavesReaderReorder(pReaders+i, *piReaders-i);
|
sl@0
|
5223 |
}
|
sl@0
|
5224 |
return SQLITE_OK;
|
sl@0
|
5225 |
}
|
sl@0
|
5226 |
|
sl@0
|
5227 |
/* Merge doclists from pReaders[nReaders] into a single doclist, which
|
sl@0
|
5228 |
** is written to pWriter. Assumes pReaders is ordered oldest to
|
sl@0
|
5229 |
** newest.
|
sl@0
|
5230 |
*/
|
sl@0
|
5231 |
/* TODO(shess) Consider putting this inline in segmentMerge(). */
|
sl@0
|
5232 |
static int leavesReadersMerge(fulltext_vtab *v,
|
sl@0
|
5233 |
LeavesReader *pReaders, int nReaders,
|
sl@0
|
5234 |
LeafWriter *pWriter){
|
sl@0
|
5235 |
DLReader dlReaders[MERGE_COUNT];
|
sl@0
|
5236 |
const char *pTerm = leavesReaderTerm(pReaders);
|
sl@0
|
5237 |
int i, nTerm = leavesReaderTermBytes(pReaders);
|
sl@0
|
5238 |
|
sl@0
|
5239 |
assert( nReaders<=MERGE_COUNT );
|
sl@0
|
5240 |
|
sl@0
|
5241 |
for(i=0; i<nReaders; i++){
|
sl@0
|
5242 |
dlrInit(&dlReaders[i], DL_DEFAULT,
|
sl@0
|
5243 |
leavesReaderData(pReaders+i),
|
sl@0
|
5244 |
leavesReaderDataBytes(pReaders+i));
|
sl@0
|
5245 |
}
|
sl@0
|
5246 |
|
sl@0
|
5247 |
return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders);
|
sl@0
|
5248 |
}
|
sl@0
|
5249 |
|
sl@0
|
5250 |
/* Forward ref due to mutual recursion with segdirNextIndex(). */
|
sl@0
|
5251 |
static int segmentMerge(fulltext_vtab *v, int iLevel);
|
sl@0
|
5252 |
|
sl@0
|
5253 |
/* Put the next available index at iLevel into *pidx. If iLevel
|
sl@0
|
5254 |
** already has MERGE_COUNT segments, they are merged to a higher
|
sl@0
|
5255 |
** level to make room.
|
sl@0
|
5256 |
*/
|
sl@0
|
5257 |
static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){
|
sl@0
|
5258 |
int rc = segdir_max_index(v, iLevel, pidx);
|
sl@0
|
5259 |
if( rc==SQLITE_DONE ){ /* No segments at iLevel. */
|
sl@0
|
5260 |
*pidx = 0;
|
sl@0
|
5261 |
}else if( rc==SQLITE_ROW ){
|
sl@0
|
5262 |
if( *pidx==(MERGE_COUNT-1) ){
|
sl@0
|
5263 |
rc = segmentMerge(v, iLevel);
|
sl@0
|
5264 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
5265 |
*pidx = 0;
|
sl@0
|
5266 |
}else{
|
sl@0
|
5267 |
(*pidx)++;
|
sl@0
|
5268 |
}
|
sl@0
|
5269 |
}else{
|
sl@0
|
5270 |
return rc;
|
sl@0
|
5271 |
}
|
sl@0
|
5272 |
return SQLITE_OK;
|
sl@0
|
5273 |
}
|
sl@0
|
5274 |
|
sl@0
|
5275 |
/* Merge MERGE_COUNT segments at iLevel into a new segment at
|
sl@0
|
5276 |
** iLevel+1. If iLevel+1 is already full of segments, those will be
|
sl@0
|
5277 |
** merged to make room.
|
sl@0
|
5278 |
*/
|
sl@0
|
5279 |
static int segmentMerge(fulltext_vtab *v, int iLevel){
|
sl@0
|
5280 |
LeafWriter writer;
|
sl@0
|
5281 |
LeavesReader lrs[MERGE_COUNT];
|
sl@0
|
5282 |
int i, rc, idx = 0;
|
sl@0
|
5283 |
|
sl@0
|
5284 |
/* Determine the next available segment index at the next level,
|
sl@0
|
5285 |
** merging as necessary.
|
sl@0
|
5286 |
*/
|
sl@0
|
5287 |
rc = segdirNextIndex(v, iLevel+1, &idx);
|
sl@0
|
5288 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
5289 |
|
sl@0
|
5290 |
/* TODO(shess) This assumes that we'll always see exactly
|
sl@0
|
5291 |
** MERGE_COUNT segments to merge at a given level. That will be
|
sl@0
|
5292 |
** broken if we allow the developer to request preemptive or
|
sl@0
|
5293 |
** deferred merging.
|
sl@0
|
5294 |
*/
|
sl@0
|
5295 |
memset(&lrs, '\0', sizeof(lrs));
|
sl@0
|
5296 |
rc = leavesReadersInit(v, iLevel, lrs, &i);
|
sl@0
|
5297 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
5298 |
assert( i==MERGE_COUNT );
|
sl@0
|
5299 |
|
sl@0
|
5300 |
leafWriterInit(iLevel+1, idx, &writer);
|
sl@0
|
5301 |
|
sl@0
|
5302 |
/* Since leavesReaderReorder() pushes readers at eof to the end,
|
sl@0
|
5303 |
** when the first reader is empty, all will be empty.
|
sl@0
|
5304 |
*/
|
sl@0
|
5305 |
while( !leavesReaderAtEnd(lrs) ){
|
sl@0
|
5306 |
/* Figure out how many readers share their next term. */
|
sl@0
|
5307 |
for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){
|
sl@0
|
5308 |
if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break;
|
sl@0
|
5309 |
}
|
sl@0
|
5310 |
|
sl@0
|
5311 |
rc = leavesReadersMerge(v, lrs, i, &writer);
|
sl@0
|
5312 |
if( rc!=SQLITE_OK ) goto err;
|
sl@0
|
5313 |
|
sl@0
|
5314 |
/* Step forward those that were merged. */
|
sl@0
|
5315 |
while( i-->0 ){
|
sl@0
|
5316 |
rc = leavesReaderStep(v, lrs+i);
|
sl@0
|
5317 |
if( rc!=SQLITE_OK ) goto err;
|
sl@0
|
5318 |
|
sl@0
|
5319 |
/* Reorder by term, then by age. */
|
sl@0
|
5320 |
leavesReaderReorder(lrs+i, MERGE_COUNT-i);
|
sl@0
|
5321 |
}
|
sl@0
|
5322 |
}
|
sl@0
|
5323 |
|
sl@0
|
5324 |
for(i=0; i<MERGE_COUNT; i++){
|
sl@0
|
5325 |
leavesReaderDestroy(&lrs[i]);
|
sl@0
|
5326 |
}
|
sl@0
|
5327 |
|
sl@0
|
5328 |
rc = leafWriterFinalize(v, &writer);
|
sl@0
|
5329 |
leafWriterDestroy(&writer);
|
sl@0
|
5330 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
5331 |
|
sl@0
|
5332 |
/* Delete the merged segment data. */
|
sl@0
|
5333 |
return segdir_delete(v, iLevel);
|
sl@0
|
5334 |
|
sl@0
|
5335 |
err:
|
sl@0
|
5336 |
for(i=0; i<MERGE_COUNT; i++){
|
sl@0
|
5337 |
leavesReaderDestroy(&lrs[i]);
|
sl@0
|
5338 |
}
|
sl@0
|
5339 |
leafWriterDestroy(&writer);
|
sl@0
|
5340 |
return rc;
|
sl@0
|
5341 |
}
|
sl@0
|
5342 |
|
sl@0
|
5343 |
/* Accumulate the union of *acc and *pData into *acc. */
|
sl@0
|
5344 |
static void docListAccumulateUnion(DataBuffer *acc,
|
sl@0
|
5345 |
const char *pData, int nData) {
|
sl@0
|
5346 |
DataBuffer tmp = *acc;
|
sl@0
|
5347 |
dataBufferInit(acc, tmp.nData+nData);
|
sl@0
|
5348 |
docListUnion(tmp.pData, tmp.nData, pData, nData, acc);
|
sl@0
|
5349 |
dataBufferDestroy(&tmp);
|
sl@0
|
5350 |
}
|
sl@0
|
5351 |
|
sl@0
|
5352 |
/* TODO(shess) It might be interesting to explore different merge
|
sl@0
|
5353 |
** strategies, here. For instance, since this is a sorted merge, we
|
sl@0
|
5354 |
** could easily merge many doclists in parallel. With some
|
sl@0
|
5355 |
** comprehension of the storage format, we could merge all of the
|
sl@0
|
5356 |
** doclists within a leaf node directly from the leaf node's storage.
|
sl@0
|
5357 |
** It may be worthwhile to merge smaller doclists before larger
|
sl@0
|
5358 |
** doclists, since they can be traversed more quickly - but the
|
sl@0
|
5359 |
** results may have less overlap, making them more expensive in a
|
sl@0
|
5360 |
** different way.
|
sl@0
|
5361 |
*/
|
sl@0
|
5362 |
|
sl@0
|
5363 |
/* Scan pReader for pTerm/nTerm, and merge the term's doclist over
|
sl@0
|
5364 |
** *out (any doclists with duplicate docids overwrite those in *out).
|
sl@0
|
5365 |
** Internal function for loadSegmentLeaf().
|
sl@0
|
5366 |
*/
|
sl@0
|
5367 |
static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader,
|
sl@0
|
5368 |
const char *pTerm, int nTerm, int isPrefix,
|
sl@0
|
5369 |
DataBuffer *out){
|
sl@0
|
5370 |
/* doclist data is accumulated into pBuffers similar to how one does
|
sl@0
|
5371 |
** increment in binary arithmetic. If index 0 is empty, the data is
|
sl@0
|
5372 |
** stored there. If there is data there, it is merged and the
|
sl@0
|
5373 |
** results carried into position 1, with further merge-and-carry
|
sl@0
|
5374 |
** until an empty position is found.
|
sl@0
|
5375 |
*/
|
sl@0
|
5376 |
DataBuffer *pBuffers = NULL;
|
sl@0
|
5377 |
int nBuffers = 0, nMaxBuffers = 0, rc;
|
sl@0
|
5378 |
|
sl@0
|
5379 |
assert( nTerm>0 );
|
sl@0
|
5380 |
|
sl@0
|
5381 |
for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader);
|
sl@0
|
5382 |
rc=leavesReaderStep(v, pReader)){
|
sl@0
|
5383 |
/* TODO(shess) Really want leavesReaderTermCmp(), but that name is
|
sl@0
|
5384 |
** already taken to compare the terms of two LeavesReaders. Think
|
sl@0
|
5385 |
** on a better name. [Meanwhile, break encapsulation rather than
|
sl@0
|
5386 |
** use a confusing name.]
|
sl@0
|
5387 |
*/
|
sl@0
|
5388 |
int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix);
|
sl@0
|
5389 |
if( c>0 ) break; /* Past any possible matches. */
|
sl@0
|
5390 |
if( c==0 ){
|
sl@0
|
5391 |
const char *pData = leavesReaderData(pReader);
|
sl@0
|
5392 |
int iBuffer, nData = leavesReaderDataBytes(pReader);
|
sl@0
|
5393 |
|
sl@0
|
5394 |
/* Find the first empty buffer. */
|
sl@0
|
5395 |
for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
|
sl@0
|
5396 |
if( 0==pBuffers[iBuffer].nData ) break;
|
sl@0
|
5397 |
}
|
sl@0
|
5398 |
|
sl@0
|
5399 |
/* Out of buffers, add an empty one. */
|
sl@0
|
5400 |
if( iBuffer==nBuffers ){
|
sl@0
|
5401 |
if( nBuffers==nMaxBuffers ){
|
sl@0
|
5402 |
DataBuffer *p;
|
sl@0
|
5403 |
nMaxBuffers += 20;
|
sl@0
|
5404 |
|
sl@0
|
5405 |
/* Manual realloc so we can handle NULL appropriately. */
|
sl@0
|
5406 |
p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers));
|
sl@0
|
5407 |
if( p==NULL ){
|
sl@0
|
5408 |
rc = SQLITE_NOMEM;
|
sl@0
|
5409 |
break;
|
sl@0
|
5410 |
}
|
sl@0
|
5411 |
|
sl@0
|
5412 |
if( nBuffers>0 ){
|
sl@0
|
5413 |
assert(pBuffers!=NULL);
|
sl@0
|
5414 |
memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers));
|
sl@0
|
5415 |
sqlite3_free(pBuffers);
|
sl@0
|
5416 |
}
|
sl@0
|
5417 |
pBuffers = p;
|
sl@0
|
5418 |
}
|
sl@0
|
5419 |
dataBufferInit(&(pBuffers[nBuffers]), 0);
|
sl@0
|
5420 |
nBuffers++;
|
sl@0
|
5421 |
}
|
sl@0
|
5422 |
|
sl@0
|
5423 |
/* At this point, must have an empty at iBuffer. */
|
sl@0
|
5424 |
assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0);
|
sl@0
|
5425 |
|
sl@0
|
5426 |
/* If empty was first buffer, no need for merge logic. */
|
sl@0
|
5427 |
if( iBuffer==0 ){
|
sl@0
|
5428 |
dataBufferReplace(&(pBuffers[0]), pData, nData);
|
sl@0
|
5429 |
}else{
|
sl@0
|
5430 |
/* pAcc is the empty buffer the merged data will end up in. */
|
sl@0
|
5431 |
DataBuffer *pAcc = &(pBuffers[iBuffer]);
|
sl@0
|
5432 |
DataBuffer *p = &(pBuffers[0]);
|
sl@0
|
5433 |
|
sl@0
|
5434 |
/* Handle position 0 specially to avoid need to prime pAcc
|
sl@0
|
5435 |
** with pData/nData.
|
sl@0
|
5436 |
*/
|
sl@0
|
5437 |
dataBufferSwap(p, pAcc);
|
sl@0
|
5438 |
docListAccumulateUnion(pAcc, pData, nData);
|
sl@0
|
5439 |
|
sl@0
|
5440 |
/* Accumulate remaining doclists into pAcc. */
|
sl@0
|
5441 |
for(++p; p<pAcc; ++p){
|
sl@0
|
5442 |
docListAccumulateUnion(pAcc, p->pData, p->nData);
|
sl@0
|
5443 |
|
sl@0
|
5444 |
/* dataBufferReset() could allow a large doclist to blow up
|
sl@0
|
5445 |
** our memory requirements.
|
sl@0
|
5446 |
*/
|
sl@0
|
5447 |
if( p->nCapacity<1024 ){
|
sl@0
|
5448 |
dataBufferReset(p);
|
sl@0
|
5449 |
}else{
|
sl@0
|
5450 |
dataBufferDestroy(p);
|
sl@0
|
5451 |
dataBufferInit(p, 0);
|
sl@0
|
5452 |
}
|
sl@0
|
5453 |
}
|
sl@0
|
5454 |
}
|
sl@0
|
5455 |
}
|
sl@0
|
5456 |
}
|
sl@0
|
5457 |
|
sl@0
|
5458 |
/* Union all the doclists together into *out. */
|
sl@0
|
5459 |
/* TODO(shess) What if *out is big? Sigh. */
|
sl@0
|
5460 |
if( rc==SQLITE_OK && nBuffers>0 ){
|
sl@0
|
5461 |
int iBuffer;
|
sl@0
|
5462 |
for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
|
sl@0
|
5463 |
if( pBuffers[iBuffer].nData>0 ){
|
sl@0
|
5464 |
if( out->nData==0 ){
|
sl@0
|
5465 |
dataBufferSwap(out, &(pBuffers[iBuffer]));
|
sl@0
|
5466 |
}else{
|
sl@0
|
5467 |
docListAccumulateUnion(out, pBuffers[iBuffer].pData,
|
sl@0
|
5468 |
pBuffers[iBuffer].nData);
|
sl@0
|
5469 |
}
|
sl@0
|
5470 |
}
|
sl@0
|
5471 |
}
|
sl@0
|
5472 |
}
|
sl@0
|
5473 |
|
sl@0
|
5474 |
while( nBuffers-- ){
|
sl@0
|
5475 |
dataBufferDestroy(&(pBuffers[nBuffers]));
|
sl@0
|
5476 |
}
|
sl@0
|
5477 |
if( pBuffers!=NULL ) sqlite3_free(pBuffers);
|
sl@0
|
5478 |
|
sl@0
|
5479 |
return rc;
|
sl@0
|
5480 |
}
|
sl@0
|
5481 |
|
sl@0
|
5482 |
/* Call loadSegmentLeavesInt() with pData/nData as input. */
|
sl@0
|
5483 |
static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData,
|
sl@0
|
5484 |
const char *pTerm, int nTerm, int isPrefix,
|
sl@0
|
5485 |
DataBuffer *out){
|
sl@0
|
5486 |
LeavesReader reader;
|
sl@0
|
5487 |
int rc;
|
sl@0
|
5488 |
|
sl@0
|
5489 |
assert( nData>1 );
|
sl@0
|
5490 |
assert( *pData=='\0' );
|
sl@0
|
5491 |
rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader);
|
sl@0
|
5492 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
5493 |
|
sl@0
|
5494 |
rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
|
sl@0
|
5495 |
leavesReaderReset(&reader);
|
sl@0
|
5496 |
leavesReaderDestroy(&reader);
|
sl@0
|
5497 |
return rc;
|
sl@0
|
5498 |
}
|
sl@0
|
5499 |
|
sl@0
|
5500 |
/* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to
|
sl@0
|
5501 |
** iEndLeaf (inclusive) as input, and merge the resulting doclist into
|
sl@0
|
5502 |
** out.
|
sl@0
|
5503 |
*/
|
sl@0
|
5504 |
static int loadSegmentLeaves(fulltext_vtab *v,
|
sl@0
|
5505 |
sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf,
|
sl@0
|
5506 |
const char *pTerm, int nTerm, int isPrefix,
|
sl@0
|
5507 |
DataBuffer *out){
|
sl@0
|
5508 |
int rc;
|
sl@0
|
5509 |
LeavesReader reader;
|
sl@0
|
5510 |
|
sl@0
|
5511 |
assert( iStartLeaf<=iEndLeaf );
|
sl@0
|
5512 |
rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader);
|
sl@0
|
5513 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
5514 |
|
sl@0
|
5515 |
rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
|
sl@0
|
5516 |
leavesReaderReset(&reader);
|
sl@0
|
5517 |
leavesReaderDestroy(&reader);
|
sl@0
|
5518 |
return rc;
|
sl@0
|
5519 |
}
|
sl@0
|
5520 |
|
sl@0
|
5521 |
/* Taking pData/nData as an interior node, find the sequence of child
|
sl@0
|
5522 |
** nodes which could include pTerm/nTerm/isPrefix. Note that the
|
sl@0
|
5523 |
** interior node terms logically come between the blocks, so there is
|
sl@0
|
5524 |
** one more blockid than there are terms (that block contains terms >=
|
sl@0
|
5525 |
** the last interior-node term).
|
sl@0
|
5526 |
*/
|
sl@0
|
5527 |
/* TODO(shess) The calling code may already know that the end child is
|
sl@0
|
5528 |
** not worth calculating, because the end may be in a later sibling
|
sl@0
|
5529 |
** node. Consider whether breaking symmetry is worthwhile. I suspect
|
sl@0
|
5530 |
** it is not worthwhile.
|
sl@0
|
5531 |
*/
|
sl@0
|
5532 |
static void getChildrenContaining(const char *pData, int nData,
|
sl@0
|
5533 |
const char *pTerm, int nTerm, int isPrefix,
|
sl@0
|
5534 |
sqlite_int64 *piStartChild,
|
sl@0
|
5535 |
sqlite_int64 *piEndChild){
|
sl@0
|
5536 |
InteriorReader reader;
|
sl@0
|
5537 |
|
sl@0
|
5538 |
assert( nData>1 );
|
sl@0
|
5539 |
assert( *pData!='\0' );
|
sl@0
|
5540 |
interiorReaderInit(pData, nData, &reader);
|
sl@0
|
5541 |
|
sl@0
|
5542 |
/* Scan for the first child which could contain pTerm/nTerm. */
|
sl@0
|
5543 |
while( !interiorReaderAtEnd(&reader) ){
|
sl@0
|
5544 |
if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break;
|
sl@0
|
5545 |
interiorReaderStep(&reader);
|
sl@0
|
5546 |
}
|
sl@0
|
5547 |
*piStartChild = interiorReaderCurrentBlockid(&reader);
|
sl@0
|
5548 |
|
sl@0
|
5549 |
/* Keep scanning to find a term greater than our term, using prefix
|
sl@0
|
5550 |
** comparison if indicated. If isPrefix is false, this will be the
|
sl@0
|
5551 |
** same blockid as the starting block.
|
sl@0
|
5552 |
*/
|
sl@0
|
5553 |
while( !interiorReaderAtEnd(&reader) ){
|
sl@0
|
5554 |
if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break;
|
sl@0
|
5555 |
interiorReaderStep(&reader);
|
sl@0
|
5556 |
}
|
sl@0
|
5557 |
*piEndChild = interiorReaderCurrentBlockid(&reader);
|
sl@0
|
5558 |
|
sl@0
|
5559 |
interiorReaderDestroy(&reader);
|
sl@0
|
5560 |
|
sl@0
|
5561 |
/* Children must ascend, and if !prefix, both must be the same. */
|
sl@0
|
5562 |
assert( *piEndChild>=*piStartChild );
|
sl@0
|
5563 |
assert( isPrefix || *piStartChild==*piEndChild );
|
sl@0
|
5564 |
}
|
sl@0
|
5565 |
|
sl@0
|
5566 |
/* Read block at iBlockid and pass it with other params to
|
sl@0
|
5567 |
** getChildrenContaining().
|
sl@0
|
5568 |
*/
|
sl@0
|
5569 |
static int loadAndGetChildrenContaining(
|
sl@0
|
5570 |
fulltext_vtab *v,
|
sl@0
|
5571 |
sqlite_int64 iBlockid,
|
sl@0
|
5572 |
const char *pTerm, int nTerm, int isPrefix,
|
sl@0
|
5573 |
sqlite_int64 *piStartChild, sqlite_int64 *piEndChild
|
sl@0
|
5574 |
){
|
sl@0
|
5575 |
sqlite3_stmt *s = NULL;
|
sl@0
|
5576 |
int rc;
|
sl@0
|
5577 |
|
sl@0
|
5578 |
assert( iBlockid!=0 );
|
sl@0
|
5579 |
assert( pTerm!=NULL );
|
sl@0
|
5580 |
assert( nTerm!=0 ); /* TODO(shess) Why not allow this? */
|
sl@0
|
5581 |
assert( piStartChild!=NULL );
|
sl@0
|
5582 |
assert( piEndChild!=NULL );
|
sl@0
|
5583 |
|
sl@0
|
5584 |
rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s);
|
sl@0
|
5585 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
5586 |
|
sl@0
|
5587 |
rc = sqlite3_bind_int64(s, 1, iBlockid);
|
sl@0
|
5588 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
5589 |
|
sl@0
|
5590 |
rc = sqlite3_step(s);
|
sl@0
|
5591 |
if( rc==SQLITE_DONE ) return SQLITE_ERROR;
|
sl@0
|
5592 |
if( rc!=SQLITE_ROW ) return rc;
|
sl@0
|
5593 |
|
sl@0
|
5594 |
getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0),
|
sl@0
|
5595 |
pTerm, nTerm, isPrefix, piStartChild, piEndChild);
|
sl@0
|
5596 |
|
sl@0
|
5597 |
/* We expect only one row. We must execute another sqlite3_step()
|
sl@0
|
5598 |
* to complete the iteration; otherwise the table will remain
|
sl@0
|
5599 |
* locked. */
|
sl@0
|
5600 |
rc = sqlite3_step(s);
|
sl@0
|
5601 |
if( rc==SQLITE_ROW ) return SQLITE_ERROR;
|
sl@0
|
5602 |
if( rc!=SQLITE_DONE ) return rc;
|
sl@0
|
5603 |
|
sl@0
|
5604 |
return SQLITE_OK;
|
sl@0
|
5605 |
}
|
sl@0
|
5606 |
|
sl@0
|
5607 |
/* Traverse the tree represented by pData[nData] looking for
|
sl@0
|
5608 |
** pTerm[nTerm], placing its doclist into *out. This is internal to
|
sl@0
|
5609 |
** loadSegment() to make error-handling cleaner.
|
sl@0
|
5610 |
*/
|
sl@0
|
5611 |
static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData,
|
sl@0
|
5612 |
sqlite_int64 iLeavesEnd,
|
sl@0
|
5613 |
const char *pTerm, int nTerm, int isPrefix,
|
sl@0
|
5614 |
DataBuffer *out){
|
sl@0
|
5615 |
/* Special case where root is a leaf. */
|
sl@0
|
5616 |
if( *pData=='\0' ){
|
sl@0
|
5617 |
return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out);
|
sl@0
|
5618 |
}else{
|
sl@0
|
5619 |
int rc;
|
sl@0
|
5620 |
sqlite_int64 iStartChild, iEndChild;
|
sl@0
|
5621 |
|
sl@0
|
5622 |
/* Process pData as an interior node, then loop down the tree
|
sl@0
|
5623 |
** until we find the set of leaf nodes to scan for the term.
|
sl@0
|
5624 |
*/
|
sl@0
|
5625 |
getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix,
|
sl@0
|
5626 |
&iStartChild, &iEndChild);
|
sl@0
|
5627 |
while( iStartChild>iLeavesEnd ){
|
sl@0
|
5628 |
sqlite_int64 iNextStart, iNextEnd;
|
sl@0
|
5629 |
rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix,
|
sl@0
|
5630 |
&iNextStart, &iNextEnd);
|
sl@0
|
5631 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
5632 |
|
sl@0
|
5633 |
/* If we've branched, follow the end branch, too. */
|
sl@0
|
5634 |
if( iStartChild!=iEndChild ){
|
sl@0
|
5635 |
sqlite_int64 iDummy;
|
sl@0
|
5636 |
rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix,
|
sl@0
|
5637 |
&iDummy, &iNextEnd);
|
sl@0
|
5638 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
5639 |
}
|
sl@0
|
5640 |
|
sl@0
|
5641 |
assert( iNextStart<=iNextEnd );
|
sl@0
|
5642 |
iStartChild = iNextStart;
|
sl@0
|
5643 |
iEndChild = iNextEnd;
|
sl@0
|
5644 |
}
|
sl@0
|
5645 |
assert( iStartChild<=iLeavesEnd );
|
sl@0
|
5646 |
assert( iEndChild<=iLeavesEnd );
|
sl@0
|
5647 |
|
sl@0
|
5648 |
/* Scan through the leaf segments for doclists. */
|
sl@0
|
5649 |
return loadSegmentLeaves(v, iStartChild, iEndChild,
|
sl@0
|
5650 |
pTerm, nTerm, isPrefix, out);
|
sl@0
|
5651 |
}
|
sl@0
|
5652 |
}
|
sl@0
|
5653 |
|
sl@0
|
5654 |
/* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then
|
sl@0
|
5655 |
** merge its doclist over *out (any duplicate doclists read from the
|
sl@0
|
5656 |
** segment rooted at pData will overwrite those in *out).
|
sl@0
|
5657 |
*/
|
sl@0
|
5658 |
/* TODO(shess) Consider changing this to determine the depth of the
|
sl@0
|
5659 |
** leaves using either the first characters of interior nodes (when
|
sl@0
|
5660 |
** ==1, we're one level above the leaves), or the first character of
|
sl@0
|
5661 |
** the root (which will describe the height of the tree directly).
|
sl@0
|
5662 |
** Either feels somewhat tricky to me.
|
sl@0
|
5663 |
*/
|
sl@0
|
5664 |
/* TODO(shess) The current merge is likely to be slow for large
|
sl@0
|
5665 |
** doclists (though it should process from newest/smallest to
|
sl@0
|
5666 |
** oldest/largest, so it may not be that bad). It might be useful to
|
sl@0
|
5667 |
** modify things to allow for N-way merging. This could either be
|
sl@0
|
5668 |
** within a segment, with pairwise merges across segments, or across
|
sl@0
|
5669 |
** all segments at once.
|
sl@0
|
5670 |
*/
|
sl@0
|
5671 |
static int loadSegment(fulltext_vtab *v, const char *pData, int nData,
|
sl@0
|
5672 |
sqlite_int64 iLeavesEnd,
|
sl@0
|
5673 |
const char *pTerm, int nTerm, int isPrefix,
|
sl@0
|
5674 |
DataBuffer *out){
|
sl@0
|
5675 |
DataBuffer result;
|
sl@0
|
5676 |
int rc;
|
sl@0
|
5677 |
|
sl@0
|
5678 |
assert( nData>1 );
|
sl@0
|
5679 |
|
sl@0
|
5680 |
/* This code should never be called with buffered updates. */
|
sl@0
|
5681 |
assert( v->nPendingData<0 );
|
sl@0
|
5682 |
|
sl@0
|
5683 |
dataBufferInit(&result, 0);
|
sl@0
|
5684 |
rc = loadSegmentInt(v, pData, nData, iLeavesEnd,
|
sl@0
|
5685 |
pTerm, nTerm, isPrefix, &result);
|
sl@0
|
5686 |
if( rc==SQLITE_OK && result.nData>0 ){
|
sl@0
|
5687 |
if( out->nData==0 ){
|
sl@0
|
5688 |
DataBuffer tmp = *out;
|
sl@0
|
5689 |
*out = result;
|
sl@0
|
5690 |
result = tmp;
|
sl@0
|
5691 |
}else{
|
sl@0
|
5692 |
DataBuffer merged;
|
sl@0
|
5693 |
DLReader readers[2];
|
sl@0
|
5694 |
|
sl@0
|
5695 |
dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData);
|
sl@0
|
5696 |
dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData);
|
sl@0
|
5697 |
dataBufferInit(&merged, out->nData+result.nData);
|
sl@0
|
5698 |
docListMerge(&merged, readers, 2);
|
sl@0
|
5699 |
dataBufferDestroy(out);
|
sl@0
|
5700 |
*out = merged;
|
sl@0
|
5701 |
dlrDestroy(&readers[0]);
|
sl@0
|
5702 |
dlrDestroy(&readers[1]);
|
sl@0
|
5703 |
}
|
sl@0
|
5704 |
}
|
sl@0
|
5705 |
dataBufferDestroy(&result);
|
sl@0
|
5706 |
return rc;
|
sl@0
|
5707 |
}
|
sl@0
|
5708 |
|
sl@0
|
5709 |
/* Scan the database and merge together the posting lists for the term
|
sl@0
|
5710 |
** into *out.
|
sl@0
|
5711 |
*/
|
sl@0
|
5712 |
static int termSelect(fulltext_vtab *v, int iColumn,
|
sl@0
|
5713 |
const char *pTerm, int nTerm, int isPrefix,
|
sl@0
|
5714 |
DocListType iType, DataBuffer *out){
|
sl@0
|
5715 |
DataBuffer doclist;
|
sl@0
|
5716 |
sqlite3_stmt *s;
|
sl@0
|
5717 |
int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
|
sl@0
|
5718 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
5719 |
|
sl@0
|
5720 |
/* This code should never be called with buffered updates. */
|
sl@0
|
5721 |
assert( v->nPendingData<0 );
|
sl@0
|
5722 |
|
sl@0
|
5723 |
dataBufferInit(&doclist, 0);
|
sl@0
|
5724 |
|
sl@0
|
5725 |
/* Traverse the segments from oldest to newest so that newer doclist
|
sl@0
|
5726 |
** elements for given docids overwrite older elements.
|
sl@0
|
5727 |
*/
|
sl@0
|
5728 |
while( (rc = sqlite3_step(s))==SQLITE_ROW ){
|
sl@0
|
5729 |
const char *pData = sqlite3_column_blob(s, 2);
|
sl@0
|
5730 |
const int nData = sqlite3_column_bytes(s, 2);
|
sl@0
|
5731 |
const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
|
sl@0
|
5732 |
rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix,
|
sl@0
|
5733 |
&doclist);
|
sl@0
|
5734 |
if( rc!=SQLITE_OK ) goto err;
|
sl@0
|
5735 |
}
|
sl@0
|
5736 |
if( rc==SQLITE_DONE ){
|
sl@0
|
5737 |
if( doclist.nData!=0 ){
|
sl@0
|
5738 |
/* TODO(shess) The old term_select_all() code applied the column
|
sl@0
|
5739 |
** restrict as we merged segments, leading to smaller buffers.
|
sl@0
|
5740 |
** This is probably worthwhile to bring back, once the new storage
|
sl@0
|
5741 |
** system is checked in.
|
sl@0
|
5742 |
*/
|
sl@0
|
5743 |
if( iColumn==v->nColumn) iColumn = -1;
|
sl@0
|
5744 |
docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
|
sl@0
|
5745 |
iColumn, iType, out);
|
sl@0
|
5746 |
}
|
sl@0
|
5747 |
rc = SQLITE_OK;
|
sl@0
|
5748 |
}
|
sl@0
|
5749 |
|
sl@0
|
5750 |
err:
|
sl@0
|
5751 |
dataBufferDestroy(&doclist);
|
sl@0
|
5752 |
return rc;
|
sl@0
|
5753 |
}
|
sl@0
|
5754 |
|
sl@0
|
5755 |
/****************************************************************/
|
sl@0
|
5756 |
/* Used to hold hashtable data for sorting. */
|
sl@0
|
5757 |
typedef struct TermData {
|
sl@0
|
5758 |
const char *pTerm;
|
sl@0
|
5759 |
int nTerm;
|
sl@0
|
5760 |
DLCollector *pCollector;
|
sl@0
|
5761 |
} TermData;
|
sl@0
|
5762 |
|
sl@0
|
5763 |
/* Orders TermData elements in strcmp fashion ( <0 for less-than, 0
|
sl@0
|
5764 |
** for equal, >0 for greater-than).
|
sl@0
|
5765 |
*/
|
sl@0
|
5766 |
static int termDataCmp(const void *av, const void *bv){
|
sl@0
|
5767 |
const TermData *a = (const TermData *)av;
|
sl@0
|
5768 |
const TermData *b = (const TermData *)bv;
|
sl@0
|
5769 |
int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm;
|
sl@0
|
5770 |
int c = memcmp(a->pTerm, b->pTerm, n);
|
sl@0
|
5771 |
if( c!=0 ) return c;
|
sl@0
|
5772 |
return a->nTerm-b->nTerm;
|
sl@0
|
5773 |
}
|
sl@0
|
5774 |
|
sl@0
|
5775 |
/* Order pTerms data by term, then write a new level 0 segment using
|
sl@0
|
5776 |
** LeafWriter.
|
sl@0
|
5777 |
*/
|
sl@0
|
5778 |
static int writeZeroSegment(fulltext_vtab *v, fts2Hash *pTerms){
|
sl@0
|
5779 |
fts2HashElem *e;
|
sl@0
|
5780 |
int idx, rc, i, n;
|
sl@0
|
5781 |
TermData *pData;
|
sl@0
|
5782 |
LeafWriter writer;
|
sl@0
|
5783 |
DataBuffer dl;
|
sl@0
|
5784 |
|
sl@0
|
5785 |
/* Determine the next index at level 0, merging as necessary. */
|
sl@0
|
5786 |
rc = segdirNextIndex(v, 0, &idx);
|
sl@0
|
5787 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
5788 |
|
sl@0
|
5789 |
n = fts2HashCount(pTerms);
|
sl@0
|
5790 |
pData = sqlite3_malloc(n*sizeof(TermData));
|
sl@0
|
5791 |
|
sl@0
|
5792 |
for(i = 0, e = fts2HashFirst(pTerms); e; i++, e = fts2HashNext(e)){
|
sl@0
|
5793 |
assert( i<n );
|
sl@0
|
5794 |
pData[i].pTerm = fts2HashKey(e);
|
sl@0
|
5795 |
pData[i].nTerm = fts2HashKeysize(e);
|
sl@0
|
5796 |
pData[i].pCollector = fts2HashData(e);
|
sl@0
|
5797 |
}
|
sl@0
|
5798 |
assert( i==n );
|
sl@0
|
5799 |
|
sl@0
|
5800 |
/* TODO(shess) Should we allow user-defined collation sequences,
|
sl@0
|
5801 |
** here? I think we only need that once we support prefix searches.
|
sl@0
|
5802 |
*/
|
sl@0
|
5803 |
if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp);
|
sl@0
|
5804 |
|
sl@0
|
5805 |
/* TODO(shess) Refactor so that we can write directly to the segment
|
sl@0
|
5806 |
** DataBuffer, as happens for segment merges.
|
sl@0
|
5807 |
*/
|
sl@0
|
5808 |
leafWriterInit(0, idx, &writer);
|
sl@0
|
5809 |
dataBufferInit(&dl, 0);
|
sl@0
|
5810 |
for(i=0; i<n; i++){
|
sl@0
|
5811 |
dataBufferReset(&dl);
|
sl@0
|
5812 |
dlcAddDoclist(pData[i].pCollector, &dl);
|
sl@0
|
5813 |
rc = leafWriterStep(v, &writer,
|
sl@0
|
5814 |
pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData);
|
sl@0
|
5815 |
if( rc!=SQLITE_OK ) goto err;
|
sl@0
|
5816 |
}
|
sl@0
|
5817 |
rc = leafWriterFinalize(v, &writer);
|
sl@0
|
5818 |
|
sl@0
|
5819 |
err:
|
sl@0
|
5820 |
dataBufferDestroy(&dl);
|
sl@0
|
5821 |
sqlite3_free(pData);
|
sl@0
|
5822 |
leafWriterDestroy(&writer);
|
sl@0
|
5823 |
return rc;
|
sl@0
|
5824 |
}
|
sl@0
|
5825 |
|
sl@0
|
5826 |
/* If pendingTerms has data, free it. */
|
sl@0
|
5827 |
static int clearPendingTerms(fulltext_vtab *v){
|
sl@0
|
5828 |
if( v->nPendingData>=0 ){
|
sl@0
|
5829 |
fts2HashElem *e;
|
sl@0
|
5830 |
for(e=fts2HashFirst(&v->pendingTerms); e; e=fts2HashNext(e)){
|
sl@0
|
5831 |
dlcDelete(fts2HashData(e));
|
sl@0
|
5832 |
}
|
sl@0
|
5833 |
fts2HashClear(&v->pendingTerms);
|
sl@0
|
5834 |
v->nPendingData = -1;
|
sl@0
|
5835 |
}
|
sl@0
|
5836 |
return SQLITE_OK;
|
sl@0
|
5837 |
}
|
sl@0
|
5838 |
|
sl@0
|
5839 |
/* If pendingTerms has data, flush it to a level-zero segment, and
|
sl@0
|
5840 |
** free it.
|
sl@0
|
5841 |
*/
|
sl@0
|
5842 |
static int flushPendingTerms(fulltext_vtab *v){
|
sl@0
|
5843 |
if( v->nPendingData>=0 ){
|
sl@0
|
5844 |
int rc = writeZeroSegment(v, &v->pendingTerms);
|
sl@0
|
5845 |
if( rc==SQLITE_OK ) clearPendingTerms(v);
|
sl@0
|
5846 |
return rc;
|
sl@0
|
5847 |
}
|
sl@0
|
5848 |
return SQLITE_OK;
|
sl@0
|
5849 |
}
|
sl@0
|
5850 |
|
sl@0
|
5851 |
/* If pendingTerms is "too big", or docid is out of order, flush it.
|
sl@0
|
5852 |
** Regardless, be certain that pendingTerms is initialized for use.
|
sl@0
|
5853 |
*/
|
sl@0
|
5854 |
static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){
|
sl@0
|
5855 |
/* TODO(shess) Explore whether partially flushing the buffer on
|
sl@0
|
5856 |
** forced-flush would provide better performance. I suspect that if
|
sl@0
|
5857 |
** we ordered the doclists by size and flushed the largest until the
|
sl@0
|
5858 |
** buffer was half empty, that would let the less frequent terms
|
sl@0
|
5859 |
** generate longer doclists.
|
sl@0
|
5860 |
*/
|
sl@0
|
5861 |
if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){
|
sl@0
|
5862 |
int rc = flushPendingTerms(v);
|
sl@0
|
5863 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
5864 |
}
|
sl@0
|
5865 |
if( v->nPendingData<0 ){
|
sl@0
|
5866 |
fts2HashInit(&v->pendingTerms, FTS2_HASH_STRING, 1);
|
sl@0
|
5867 |
v->nPendingData = 0;
|
sl@0
|
5868 |
}
|
sl@0
|
5869 |
v->iPrevDocid = iDocid;
|
sl@0
|
5870 |
return SQLITE_OK;
|
sl@0
|
5871 |
}
|
sl@0
|
5872 |
|
sl@0
|
5873 |
/* This function implements the xUpdate callback; it is the top-level entry
|
sl@0
|
5874 |
* point for inserting, deleting or updating a row in a full-text table. */
|
sl@0
|
5875 |
static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg,
|
sl@0
|
5876 |
sqlite_int64 *pRowid){
|
sl@0
|
5877 |
fulltext_vtab *v = (fulltext_vtab *) pVtab;
|
sl@0
|
5878 |
int rc;
|
sl@0
|
5879 |
|
sl@0
|
5880 |
TRACE(("FTS2 Update %p\n", pVtab));
|
sl@0
|
5881 |
|
sl@0
|
5882 |
if( nArg<2 ){
|
sl@0
|
5883 |
rc = index_delete(v, sqlite3_value_int64(ppArg[0]));
|
sl@0
|
5884 |
if( rc==SQLITE_OK ){
|
sl@0
|
5885 |
/* If we just deleted the last row in the table, clear out the
|
sl@0
|
5886 |
** index data.
|
sl@0
|
5887 |
*/
|
sl@0
|
5888 |
rc = content_exists(v);
|
sl@0
|
5889 |
if( rc==SQLITE_ROW ){
|
sl@0
|
5890 |
rc = SQLITE_OK;
|
sl@0
|
5891 |
}else if( rc==SQLITE_DONE ){
|
sl@0
|
5892 |
/* Clear the pending terms so we don't flush a useless level-0
|
sl@0
|
5893 |
** segment when the transaction closes.
|
sl@0
|
5894 |
*/
|
sl@0
|
5895 |
rc = clearPendingTerms(v);
|
sl@0
|
5896 |
if( rc==SQLITE_OK ){
|
sl@0
|
5897 |
rc = segdir_delete_all(v);
|
sl@0
|
5898 |
}
|
sl@0
|
5899 |
}
|
sl@0
|
5900 |
}
|
sl@0
|
5901 |
} else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){
|
sl@0
|
5902 |
/* An update:
|
sl@0
|
5903 |
* ppArg[0] = old rowid
|
sl@0
|
5904 |
* ppArg[1] = new rowid
|
sl@0
|
5905 |
* ppArg[2..2+v->nColumn-1] = values
|
sl@0
|
5906 |
* ppArg[2+v->nColumn] = value for magic column (we ignore this)
|
sl@0
|
5907 |
*/
|
sl@0
|
5908 |
sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]);
|
sl@0
|
5909 |
if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER ||
|
sl@0
|
5910 |
sqlite3_value_int64(ppArg[1]) != rowid ){
|
sl@0
|
5911 |
rc = SQLITE_ERROR; /* we don't allow changing the rowid */
|
sl@0
|
5912 |
} else {
|
sl@0
|
5913 |
assert( nArg==2+v->nColumn+1);
|
sl@0
|
5914 |
rc = index_update(v, rowid, &ppArg[2]);
|
sl@0
|
5915 |
}
|
sl@0
|
5916 |
} else {
|
sl@0
|
5917 |
/* An insert:
|
sl@0
|
5918 |
* ppArg[1] = requested rowid
|
sl@0
|
5919 |
* ppArg[2..2+v->nColumn-1] = values
|
sl@0
|
5920 |
* ppArg[2+v->nColumn] = value for magic column (we ignore this)
|
sl@0
|
5921 |
*/
|
sl@0
|
5922 |
assert( nArg==2+v->nColumn+1);
|
sl@0
|
5923 |
rc = index_insert(v, ppArg[1], &ppArg[2], pRowid);
|
sl@0
|
5924 |
}
|
sl@0
|
5925 |
|
sl@0
|
5926 |
return rc;
|
sl@0
|
5927 |
}
|
sl@0
|
5928 |
|
sl@0
|
5929 |
static int fulltextSync(sqlite3_vtab *pVtab){
|
sl@0
|
5930 |
TRACE(("FTS2 xSync()\n"));
|
sl@0
|
5931 |
return flushPendingTerms((fulltext_vtab *)pVtab);
|
sl@0
|
5932 |
}
|
sl@0
|
5933 |
|
sl@0
|
5934 |
static int fulltextBegin(sqlite3_vtab *pVtab){
|
sl@0
|
5935 |
fulltext_vtab *v = (fulltext_vtab *) pVtab;
|
sl@0
|
5936 |
TRACE(("FTS2 xBegin()\n"));
|
sl@0
|
5937 |
|
sl@0
|
5938 |
/* Any buffered updates should have been cleared by the previous
|
sl@0
|
5939 |
** transaction.
|
sl@0
|
5940 |
*/
|
sl@0
|
5941 |
assert( v->nPendingData<0 );
|
sl@0
|
5942 |
return clearPendingTerms(v);
|
sl@0
|
5943 |
}
|
sl@0
|
5944 |
|
sl@0
|
5945 |
static int fulltextCommit(sqlite3_vtab *pVtab){
|
sl@0
|
5946 |
fulltext_vtab *v = (fulltext_vtab *) pVtab;
|
sl@0
|
5947 |
TRACE(("FTS2 xCommit()\n"));
|
sl@0
|
5948 |
|
sl@0
|
5949 |
/* Buffered updates should have been cleared by fulltextSync(). */
|
sl@0
|
5950 |
assert( v->nPendingData<0 );
|
sl@0
|
5951 |
return clearPendingTerms(v);
|
sl@0
|
5952 |
}
|
sl@0
|
5953 |
|
sl@0
|
5954 |
static int fulltextRollback(sqlite3_vtab *pVtab){
|
sl@0
|
5955 |
TRACE(("FTS2 xRollback()\n"));
|
sl@0
|
5956 |
return clearPendingTerms((fulltext_vtab *)pVtab);
|
sl@0
|
5957 |
}
|
sl@0
|
5958 |
|
sl@0
|
5959 |
/*
|
sl@0
|
5960 |
** Implementation of the snippet() function for FTS2
|
sl@0
|
5961 |
*/
|
sl@0
|
5962 |
static void snippetFunc(
|
sl@0
|
5963 |
sqlite3_context *pContext,
|
sl@0
|
5964 |
int argc,
|
sl@0
|
5965 |
sqlite3_value **argv
|
sl@0
|
5966 |
){
|
sl@0
|
5967 |
fulltext_cursor *pCursor;
|
sl@0
|
5968 |
if( argc<1 ) return;
|
sl@0
|
5969 |
if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
|
sl@0
|
5970 |
sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
|
sl@0
|
5971 |
sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1);
|
sl@0
|
5972 |
}else{
|
sl@0
|
5973 |
const char *zStart = "<b>";
|
sl@0
|
5974 |
const char *zEnd = "</b>";
|
sl@0
|
5975 |
const char *zEllipsis = "<b>...</b>";
|
sl@0
|
5976 |
memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
|
sl@0
|
5977 |
if( argc>=2 ){
|
sl@0
|
5978 |
zStart = (const char*)sqlite3_value_text(argv[1]);
|
sl@0
|
5979 |
if( argc>=3 ){
|
sl@0
|
5980 |
zEnd = (const char*)sqlite3_value_text(argv[2]);
|
sl@0
|
5981 |
if( argc>=4 ){
|
sl@0
|
5982 |
zEllipsis = (const char*)sqlite3_value_text(argv[3]);
|
sl@0
|
5983 |
}
|
sl@0
|
5984 |
}
|
sl@0
|
5985 |
}
|
sl@0
|
5986 |
snippetAllOffsets(pCursor);
|
sl@0
|
5987 |
snippetText(pCursor, zStart, zEnd, zEllipsis);
|
sl@0
|
5988 |
sqlite3_result_text(pContext, pCursor->snippet.zSnippet,
|
sl@0
|
5989 |
pCursor->snippet.nSnippet, SQLITE_STATIC);
|
sl@0
|
5990 |
}
|
sl@0
|
5991 |
}
|
sl@0
|
5992 |
|
sl@0
|
5993 |
/*
|
sl@0
|
5994 |
** Implementation of the offsets() function for FTS2
|
sl@0
|
5995 |
*/
|
sl@0
|
5996 |
static void snippetOffsetsFunc(
|
sl@0
|
5997 |
sqlite3_context *pContext,
|
sl@0
|
5998 |
int argc,
|
sl@0
|
5999 |
sqlite3_value **argv
|
sl@0
|
6000 |
){
|
sl@0
|
6001 |
fulltext_cursor *pCursor;
|
sl@0
|
6002 |
if( argc<1 ) return;
|
sl@0
|
6003 |
if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
|
sl@0
|
6004 |
sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
|
sl@0
|
6005 |
sqlite3_result_error(pContext, "illegal first argument to offsets",-1);
|
sl@0
|
6006 |
}else{
|
sl@0
|
6007 |
memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
|
sl@0
|
6008 |
snippetAllOffsets(pCursor);
|
sl@0
|
6009 |
snippetOffsetText(&pCursor->snippet);
|
sl@0
|
6010 |
sqlite3_result_text(pContext,
|
sl@0
|
6011 |
pCursor->snippet.zOffset, pCursor->snippet.nOffset,
|
sl@0
|
6012 |
SQLITE_STATIC);
|
sl@0
|
6013 |
}
|
sl@0
|
6014 |
}
|
sl@0
|
6015 |
|
sl@0
|
6016 |
/* OptLeavesReader is nearly identical to LeavesReader, except that
|
sl@0
|
6017 |
** where LeavesReader is geared towards the merging of complete
|
sl@0
|
6018 |
** segment levels (with exactly MERGE_COUNT segments), OptLeavesReader
|
sl@0
|
6019 |
** is geared towards implementation of the optimize() function, and
|
sl@0
|
6020 |
** can merge all segments simultaneously. This version may be
|
sl@0
|
6021 |
** somewhat less efficient than LeavesReader because it merges into an
|
sl@0
|
6022 |
** accumulator rather than doing an N-way merge, but since segment
|
sl@0
|
6023 |
** size grows exponentially (so segment count logrithmically) this is
|
sl@0
|
6024 |
** probably not an immediate problem.
|
sl@0
|
6025 |
*/
|
sl@0
|
6026 |
/* TODO(shess): Prove that assertion, or extend the merge code to
|
sl@0
|
6027 |
** merge tree fashion (like the prefix-searching code does).
|
sl@0
|
6028 |
*/
|
sl@0
|
6029 |
/* TODO(shess): OptLeavesReader and LeavesReader could probably be
|
sl@0
|
6030 |
** merged with little or no loss of performance for LeavesReader. The
|
sl@0
|
6031 |
** merged code would need to handle >MERGE_COUNT segments, and would
|
sl@0
|
6032 |
** also need to be able to optionally optimize away deletes.
|
sl@0
|
6033 |
*/
|
sl@0
|
6034 |
typedef struct OptLeavesReader {
|
sl@0
|
6035 |
/* Segment number, to order readers by age. */
|
sl@0
|
6036 |
int segment;
|
sl@0
|
6037 |
LeavesReader reader;
|
sl@0
|
6038 |
} OptLeavesReader;
|
sl@0
|
6039 |
|
sl@0
|
6040 |
static int optLeavesReaderAtEnd(OptLeavesReader *pReader){
|
sl@0
|
6041 |
return leavesReaderAtEnd(&pReader->reader);
|
sl@0
|
6042 |
}
|
sl@0
|
6043 |
static int optLeavesReaderTermBytes(OptLeavesReader *pReader){
|
sl@0
|
6044 |
return leavesReaderTermBytes(&pReader->reader);
|
sl@0
|
6045 |
}
|
sl@0
|
6046 |
static const char *optLeavesReaderData(OptLeavesReader *pReader){
|
sl@0
|
6047 |
return leavesReaderData(&pReader->reader);
|
sl@0
|
6048 |
}
|
sl@0
|
6049 |
static int optLeavesReaderDataBytes(OptLeavesReader *pReader){
|
sl@0
|
6050 |
return leavesReaderDataBytes(&pReader->reader);
|
sl@0
|
6051 |
}
|
sl@0
|
6052 |
static const char *optLeavesReaderTerm(OptLeavesReader *pReader){
|
sl@0
|
6053 |
return leavesReaderTerm(&pReader->reader);
|
sl@0
|
6054 |
}
|
sl@0
|
6055 |
static int optLeavesReaderStep(fulltext_vtab *v, OptLeavesReader *pReader){
|
sl@0
|
6056 |
return leavesReaderStep(v, &pReader->reader);
|
sl@0
|
6057 |
}
|
sl@0
|
6058 |
static int optLeavesReaderTermCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
|
sl@0
|
6059 |
return leavesReaderTermCmp(&lr1->reader, &lr2->reader);
|
sl@0
|
6060 |
}
|
sl@0
|
6061 |
/* Order by term ascending, segment ascending (oldest to newest), with
|
sl@0
|
6062 |
** exhausted readers to the end.
|
sl@0
|
6063 |
*/
|
sl@0
|
6064 |
static int optLeavesReaderCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
|
sl@0
|
6065 |
int c = optLeavesReaderTermCmp(lr1, lr2);
|
sl@0
|
6066 |
if( c!=0 ) return c;
|
sl@0
|
6067 |
return lr1->segment-lr2->segment;
|
sl@0
|
6068 |
}
|
sl@0
|
6069 |
/* Bubble pLr[0] to appropriate place in pLr[1..nLr-1]. Assumes that
|
sl@0
|
6070 |
** pLr[1..nLr-1] is already sorted.
|
sl@0
|
6071 |
*/
|
sl@0
|
6072 |
static void optLeavesReaderReorder(OptLeavesReader *pLr, int nLr){
|
sl@0
|
6073 |
while( nLr>1 && optLeavesReaderCmp(pLr, pLr+1)>0 ){
|
sl@0
|
6074 |
OptLeavesReader tmp = pLr[0];
|
sl@0
|
6075 |
pLr[0] = pLr[1];
|
sl@0
|
6076 |
pLr[1] = tmp;
|
sl@0
|
6077 |
nLr--;
|
sl@0
|
6078 |
pLr++;
|
sl@0
|
6079 |
}
|
sl@0
|
6080 |
}
|
sl@0
|
6081 |
|
sl@0
|
6082 |
/* optimize() helper function. Put the readers in order and iterate
|
sl@0
|
6083 |
** through them, merging doclists for matching terms into pWriter.
|
sl@0
|
6084 |
** Returns SQLITE_OK on success, or the SQLite error code which
|
sl@0
|
6085 |
** prevented success.
|
sl@0
|
6086 |
*/
|
sl@0
|
6087 |
static int optimizeInternal(fulltext_vtab *v,
|
sl@0
|
6088 |
OptLeavesReader *readers, int nReaders,
|
sl@0
|
6089 |
LeafWriter *pWriter){
|
sl@0
|
6090 |
int i, rc = SQLITE_OK;
|
sl@0
|
6091 |
DataBuffer doclist, merged, tmp;
|
sl@0
|
6092 |
|
sl@0
|
6093 |
/* Order the readers. */
|
sl@0
|
6094 |
i = nReaders;
|
sl@0
|
6095 |
while( i-- > 0 ){
|
sl@0
|
6096 |
optLeavesReaderReorder(&readers[i], nReaders-i);
|
sl@0
|
6097 |
}
|
sl@0
|
6098 |
|
sl@0
|
6099 |
dataBufferInit(&doclist, LEAF_MAX);
|
sl@0
|
6100 |
dataBufferInit(&merged, LEAF_MAX);
|
sl@0
|
6101 |
|
sl@0
|
6102 |
/* Exhausted readers bubble to the end, so when the first reader is
|
sl@0
|
6103 |
** at eof, all are at eof.
|
sl@0
|
6104 |
*/
|
sl@0
|
6105 |
while( !optLeavesReaderAtEnd(&readers[0]) ){
|
sl@0
|
6106 |
|
sl@0
|
6107 |
/* Figure out how many readers share the next term. */
|
sl@0
|
6108 |
for(i=1; i<nReaders && !optLeavesReaderAtEnd(&readers[i]); i++){
|
sl@0
|
6109 |
if( 0!=optLeavesReaderTermCmp(&readers[0], &readers[i]) ) break;
|
sl@0
|
6110 |
}
|
sl@0
|
6111 |
|
sl@0
|
6112 |
/* Special-case for no merge. */
|
sl@0
|
6113 |
if( i==1 ){
|
sl@0
|
6114 |
/* Trim deletions from the doclist. */
|
sl@0
|
6115 |
dataBufferReset(&merged);
|
sl@0
|
6116 |
docListTrim(DL_DEFAULT,
|
sl@0
|
6117 |
optLeavesReaderData(&readers[0]),
|
sl@0
|
6118 |
optLeavesReaderDataBytes(&readers[0]),
|
sl@0
|
6119 |
-1, DL_DEFAULT, &merged);
|
sl@0
|
6120 |
}else{
|
sl@0
|
6121 |
DLReader dlReaders[MERGE_COUNT];
|
sl@0
|
6122 |
int iReader, nReaders;
|
sl@0
|
6123 |
|
sl@0
|
6124 |
/* Prime the pipeline with the first reader's doclist. After
|
sl@0
|
6125 |
** one pass index 0 will reference the accumulated doclist.
|
sl@0
|
6126 |
*/
|
sl@0
|
6127 |
dlrInit(&dlReaders[0], DL_DEFAULT,
|
sl@0
|
6128 |
optLeavesReaderData(&readers[0]),
|
sl@0
|
6129 |
optLeavesReaderDataBytes(&readers[0]));
|
sl@0
|
6130 |
iReader = 1;
|
sl@0
|
6131 |
|
sl@0
|
6132 |
assert( iReader<i ); /* Must execute the loop at least once. */
|
sl@0
|
6133 |
while( iReader<i ){
|
sl@0
|
6134 |
/* Merge 16 inputs per pass. */
|
sl@0
|
6135 |
for( nReaders=1; iReader<i && nReaders<MERGE_COUNT;
|
sl@0
|
6136 |
iReader++, nReaders++ ){
|
sl@0
|
6137 |
dlrInit(&dlReaders[nReaders], DL_DEFAULT,
|
sl@0
|
6138 |
optLeavesReaderData(&readers[iReader]),
|
sl@0
|
6139 |
optLeavesReaderDataBytes(&readers[iReader]));
|
sl@0
|
6140 |
}
|
sl@0
|
6141 |
|
sl@0
|
6142 |
/* Merge doclists and swap result into accumulator. */
|
sl@0
|
6143 |
dataBufferReset(&merged);
|
sl@0
|
6144 |
docListMerge(&merged, dlReaders, nReaders);
|
sl@0
|
6145 |
tmp = merged;
|
sl@0
|
6146 |
merged = doclist;
|
sl@0
|
6147 |
doclist = tmp;
|
sl@0
|
6148 |
|
sl@0
|
6149 |
while( nReaders-- > 0 ){
|
sl@0
|
6150 |
dlrDestroy(&dlReaders[nReaders]);
|
sl@0
|
6151 |
}
|
sl@0
|
6152 |
|
sl@0
|
6153 |
/* Accumulated doclist to reader 0 for next pass. */
|
sl@0
|
6154 |
dlrInit(&dlReaders[0], DL_DEFAULT, doclist.pData, doclist.nData);
|
sl@0
|
6155 |
}
|
sl@0
|
6156 |
|
sl@0
|
6157 |
/* Destroy reader that was left in the pipeline. */
|
sl@0
|
6158 |
dlrDestroy(&dlReaders[0]);
|
sl@0
|
6159 |
|
sl@0
|
6160 |
/* Trim deletions from the doclist. */
|
sl@0
|
6161 |
dataBufferReset(&merged);
|
sl@0
|
6162 |
docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
|
sl@0
|
6163 |
-1, DL_DEFAULT, &merged);
|
sl@0
|
6164 |
}
|
sl@0
|
6165 |
|
sl@0
|
6166 |
/* Only pass doclists with hits (skip if all hits deleted). */
|
sl@0
|
6167 |
if( merged.nData>0 ){
|
sl@0
|
6168 |
rc = leafWriterStep(v, pWriter,
|
sl@0
|
6169 |
optLeavesReaderTerm(&readers[0]),
|
sl@0
|
6170 |
optLeavesReaderTermBytes(&readers[0]),
|
sl@0
|
6171 |
merged.pData, merged.nData);
|
sl@0
|
6172 |
if( rc!=SQLITE_OK ) goto err;
|
sl@0
|
6173 |
}
|
sl@0
|
6174 |
|
sl@0
|
6175 |
/* Step merged readers to next term and reorder. */
|
sl@0
|
6176 |
while( i-- > 0 ){
|
sl@0
|
6177 |
rc = optLeavesReaderStep(v, &readers[i]);
|
sl@0
|
6178 |
if( rc!=SQLITE_OK ) goto err;
|
sl@0
|
6179 |
|
sl@0
|
6180 |
optLeavesReaderReorder(&readers[i], nReaders-i);
|
sl@0
|
6181 |
}
|
sl@0
|
6182 |
}
|
sl@0
|
6183 |
|
sl@0
|
6184 |
err:
|
sl@0
|
6185 |
dataBufferDestroy(&doclist);
|
sl@0
|
6186 |
dataBufferDestroy(&merged);
|
sl@0
|
6187 |
return rc;
|
sl@0
|
6188 |
}
|
sl@0
|
6189 |
|
sl@0
|
6190 |
/* Implement optimize() function for FTS3. optimize(t) merges all
|
sl@0
|
6191 |
** segments in the fts index into a single segment. 't' is the magic
|
sl@0
|
6192 |
** table-named column.
|
sl@0
|
6193 |
*/
|
sl@0
|
6194 |
static void optimizeFunc(sqlite3_context *pContext,
|
sl@0
|
6195 |
int argc, sqlite3_value **argv){
|
sl@0
|
6196 |
fulltext_cursor *pCursor;
|
sl@0
|
6197 |
if( argc>1 ){
|
sl@0
|
6198 |
sqlite3_result_error(pContext, "excess arguments to optimize()",-1);
|
sl@0
|
6199 |
}else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
|
sl@0
|
6200 |
sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
|
sl@0
|
6201 |
sqlite3_result_error(pContext, "illegal first argument to optimize",-1);
|
sl@0
|
6202 |
}else{
|
sl@0
|
6203 |
fulltext_vtab *v;
|
sl@0
|
6204 |
int i, rc, iMaxLevel;
|
sl@0
|
6205 |
OptLeavesReader *readers;
|
sl@0
|
6206 |
int nReaders;
|
sl@0
|
6207 |
LeafWriter writer;
|
sl@0
|
6208 |
sqlite3_stmt *s;
|
sl@0
|
6209 |
|
sl@0
|
6210 |
memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
|
sl@0
|
6211 |
v = cursor_vtab(pCursor);
|
sl@0
|
6212 |
|
sl@0
|
6213 |
/* Flush any buffered updates before optimizing. */
|
sl@0
|
6214 |
rc = flushPendingTerms(v);
|
sl@0
|
6215 |
if( rc!=SQLITE_OK ) goto err;
|
sl@0
|
6216 |
|
sl@0
|
6217 |
rc = segdir_count(v, &nReaders, &iMaxLevel);
|
sl@0
|
6218 |
if( rc!=SQLITE_OK ) goto err;
|
sl@0
|
6219 |
if( nReaders==0 || nReaders==1 ){
|
sl@0
|
6220 |
sqlite3_result_text(pContext, "Index already optimal", -1,
|
sl@0
|
6221 |
SQLITE_STATIC);
|
sl@0
|
6222 |
return;
|
sl@0
|
6223 |
}
|
sl@0
|
6224 |
|
sl@0
|
6225 |
rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
|
sl@0
|
6226 |
if( rc!=SQLITE_OK ) goto err;
|
sl@0
|
6227 |
|
sl@0
|
6228 |
readers = sqlite3_malloc(nReaders*sizeof(readers[0]));
|
sl@0
|
6229 |
if( readers==NULL ) goto err;
|
sl@0
|
6230 |
|
sl@0
|
6231 |
/* Note that there will already be a segment at this position
|
sl@0
|
6232 |
** until we call segdir_delete() on iMaxLevel.
|
sl@0
|
6233 |
*/
|
sl@0
|
6234 |
leafWriterInit(iMaxLevel, 0, &writer);
|
sl@0
|
6235 |
|
sl@0
|
6236 |
i = 0;
|
sl@0
|
6237 |
while( (rc = sqlite3_step(s))==SQLITE_ROW ){
|
sl@0
|
6238 |
sqlite_int64 iStart = sqlite3_column_int64(s, 0);
|
sl@0
|
6239 |
sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
|
sl@0
|
6240 |
const char *pRootData = sqlite3_column_blob(s, 2);
|
sl@0
|
6241 |
int nRootData = sqlite3_column_bytes(s, 2);
|
sl@0
|
6242 |
|
sl@0
|
6243 |
assert( i<nReaders );
|
sl@0
|
6244 |
rc = leavesReaderInit(v, -1, iStart, iEnd, pRootData, nRootData,
|
sl@0
|
6245 |
&readers[i].reader);
|
sl@0
|
6246 |
if( rc!=SQLITE_OK ) break;
|
sl@0
|
6247 |
|
sl@0
|
6248 |
readers[i].segment = i;
|
sl@0
|
6249 |
i++;
|
sl@0
|
6250 |
}
|
sl@0
|
6251 |
|
sl@0
|
6252 |
/* If we managed to succesfully read them all, optimize them. */
|
sl@0
|
6253 |
if( rc==SQLITE_DONE ){
|
sl@0
|
6254 |
assert( i==nReaders );
|
sl@0
|
6255 |
rc = optimizeInternal(v, readers, nReaders, &writer);
|
sl@0
|
6256 |
}
|
sl@0
|
6257 |
|
sl@0
|
6258 |
while( i-- > 0 ){
|
sl@0
|
6259 |
leavesReaderDestroy(&readers[i].reader);
|
sl@0
|
6260 |
}
|
sl@0
|
6261 |
sqlite3_free(readers);
|
sl@0
|
6262 |
|
sl@0
|
6263 |
/* If we've successfully gotten to here, delete the old segments
|
sl@0
|
6264 |
** and flush the interior structure of the new segment.
|
sl@0
|
6265 |
*/
|
sl@0
|
6266 |
if( rc==SQLITE_OK ){
|
sl@0
|
6267 |
for( i=0; i<=iMaxLevel; i++ ){
|
sl@0
|
6268 |
rc = segdir_delete(v, i);
|
sl@0
|
6269 |
if( rc!=SQLITE_OK ) break;
|
sl@0
|
6270 |
}
|
sl@0
|
6271 |
|
sl@0
|
6272 |
if( rc==SQLITE_OK ) rc = leafWriterFinalize(v, &writer);
|
sl@0
|
6273 |
}
|
sl@0
|
6274 |
|
sl@0
|
6275 |
leafWriterDestroy(&writer);
|
sl@0
|
6276 |
|
sl@0
|
6277 |
if( rc!=SQLITE_OK ) goto err;
|
sl@0
|
6278 |
|
sl@0
|
6279 |
sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
|
sl@0
|
6280 |
return;
|
sl@0
|
6281 |
|
sl@0
|
6282 |
/* TODO(shess): Error-handling needs to be improved along the
|
sl@0
|
6283 |
** lines of the dump_ functions.
|
sl@0
|
6284 |
*/
|
sl@0
|
6285 |
err:
|
sl@0
|
6286 |
{
|
sl@0
|
6287 |
char buf[512];
|
sl@0
|
6288 |
sqlite3_snprintf(sizeof(buf), buf, "Error in optimize: %s",
|
sl@0
|
6289 |
sqlite3_errmsg(sqlite3_context_db_handle(pContext)));
|
sl@0
|
6290 |
sqlite3_result_error(pContext, buf, -1);
|
sl@0
|
6291 |
}
|
sl@0
|
6292 |
}
|
sl@0
|
6293 |
}
|
sl@0
|
6294 |
|
sl@0
|
6295 |
#ifdef SQLITE_TEST
|
sl@0
|
6296 |
/* Generate an error of the form "<prefix>: <msg>". If msg is NULL,
|
sl@0
|
6297 |
** pull the error from the context's db handle.
|
sl@0
|
6298 |
*/
|
sl@0
|
6299 |
static void generateError(sqlite3_context *pContext,
|
sl@0
|
6300 |
const char *prefix, const char *msg){
|
sl@0
|
6301 |
char buf[512];
|
sl@0
|
6302 |
if( msg==NULL ) msg = sqlite3_errmsg(sqlite3_context_db_handle(pContext));
|
sl@0
|
6303 |
sqlite3_snprintf(sizeof(buf), buf, "%s: %s", prefix, msg);
|
sl@0
|
6304 |
sqlite3_result_error(pContext, buf, -1);
|
sl@0
|
6305 |
}
|
sl@0
|
6306 |
|
sl@0
|
6307 |
/* Helper function to collect the set of terms in the segment into
|
sl@0
|
6308 |
** pTerms. The segment is defined by the leaf nodes between
|
sl@0
|
6309 |
** iStartBlockid and iEndBlockid, inclusive, or by the contents of
|
sl@0
|
6310 |
** pRootData if iStartBlockid is 0 (in which case the entire segment
|
sl@0
|
6311 |
** fit in a leaf).
|
sl@0
|
6312 |
*/
|
sl@0
|
6313 |
static int collectSegmentTerms(fulltext_vtab *v, sqlite3_stmt *s,
|
sl@0
|
6314 |
fts2Hash *pTerms){
|
sl@0
|
6315 |
const sqlite_int64 iStartBlockid = sqlite3_column_int64(s, 0);
|
sl@0
|
6316 |
const sqlite_int64 iEndBlockid = sqlite3_column_int64(s, 1);
|
sl@0
|
6317 |
const char *pRootData = sqlite3_column_blob(s, 2);
|
sl@0
|
6318 |
const int nRootData = sqlite3_column_bytes(s, 2);
|
sl@0
|
6319 |
LeavesReader reader;
|
sl@0
|
6320 |
int rc = leavesReaderInit(v, 0, iStartBlockid, iEndBlockid,
|
sl@0
|
6321 |
pRootData, nRootData, &reader);
|
sl@0
|
6322 |
if( rc!=SQLITE_OK ) return rc;
|
sl@0
|
6323 |
|
sl@0
|
6324 |
while( rc==SQLITE_OK && !leavesReaderAtEnd(&reader) ){
|
sl@0
|
6325 |
const char *pTerm = leavesReaderTerm(&reader);
|
sl@0
|
6326 |
const int nTerm = leavesReaderTermBytes(&reader);
|
sl@0
|
6327 |
void *oldValue = sqlite3Fts2HashFind(pTerms, pTerm, nTerm);
|
sl@0
|
6328 |
void *newValue = (void *)((char *)oldValue+1);
|
sl@0
|
6329 |
|
sl@0
|
6330 |
/* From the comment before sqlite3Fts2HashInsert in fts2_hash.c,
|
sl@0
|
6331 |
** the data value passed is returned in case of malloc failure.
|
sl@0
|
6332 |
*/
|
sl@0
|
6333 |
if( newValue==sqlite3Fts2HashInsert(pTerms, pTerm, nTerm, newValue) ){
|
sl@0
|
6334 |
rc = SQLITE_NOMEM;
|
sl@0
|
6335 |
}else{
|
sl@0
|
6336 |
rc = leavesReaderStep(v, &reader);
|
sl@0
|
6337 |
}
|
sl@0
|
6338 |
}
|
sl@0
|
6339 |
|
sl@0
|
6340 |
leavesReaderDestroy(&reader);
|
sl@0
|
6341 |
return rc;
|
sl@0
|
6342 |
}
|
sl@0
|
6343 |
|
sl@0
|
6344 |
/* Helper function to build the result string for dump_terms(). */
|
sl@0
|
6345 |
static int generateTermsResult(sqlite3_context *pContext, fts2Hash *pTerms){
|
sl@0
|
6346 |
int iTerm, nTerms, nResultBytes, iByte;
|
sl@0
|
6347 |
char *result;
|
sl@0
|
6348 |
TermData *pData;
|
sl@0
|
6349 |
fts2HashElem *e;
|
sl@0
|
6350 |
|
sl@0
|
6351 |
/* Iterate pTerms to generate an array of terms in pData for
|
sl@0
|
6352 |
** sorting.
|
sl@0
|
6353 |
*/
|
sl@0
|
6354 |
nTerms = fts2HashCount(pTerms);
|
sl@0
|
6355 |
assert( nTerms>0 );
|
sl@0
|
6356 |
pData = sqlite3_malloc(nTerms*sizeof(TermData));
|
sl@0
|
6357 |
if( pData==NULL ) return SQLITE_NOMEM;
|
sl@0
|
6358 |
|
sl@0
|
6359 |
nResultBytes = 0;
|
sl@0
|
6360 |
for(iTerm = 0, e = fts2HashFirst(pTerms); e; iTerm++, e = fts2HashNext(e)){
|
sl@0
|
6361 |
nResultBytes += fts2HashKeysize(e)+1; /* Term plus trailing space */
|
sl@0
|
6362 |
assert( iTerm<nTerms );
|
sl@0
|
6363 |
pData[iTerm].pTerm = fts2HashKey(e);
|
sl@0
|
6364 |
pData[iTerm].nTerm = fts2HashKeysize(e);
|
sl@0
|
6365 |
pData[iTerm].pCollector = fts2HashData(e); /* unused */
|
sl@0
|
6366 |
}
|
sl@0
|
6367 |
assert( iTerm==nTerms );
|
sl@0
|
6368 |
|
sl@0
|
6369 |
assert( nResultBytes>0 ); /* nTerms>0, nResultsBytes must be, too. */
|
sl@0
|
6370 |
result = sqlite3_malloc(nResultBytes);
|
sl@0
|
6371 |
if( result==NULL ){
|
sl@0
|
6372 |
sqlite3_free(pData);
|
sl@0
|
6373 |
return SQLITE_NOMEM;
|
sl@0
|
6374 |
}
|
sl@0
|
6375 |
|
sl@0
|
6376 |
if( nTerms>1 ) qsort(pData, nTerms, sizeof(*pData), termDataCmp);
|
sl@0
|
6377 |
|
sl@0
|
6378 |
/* Read the terms in order to build the result. */
|
sl@0
|
6379 |
iByte = 0;
|
sl@0
|
6380 |
for(iTerm=0; iTerm<nTerms; ++iTerm){
|
sl@0
|
6381 |
memcpy(result+iByte, pData[iTerm].pTerm, pData[iTerm].nTerm);
|
sl@0
|
6382 |
iByte += pData[iTerm].nTerm;
|
sl@0
|
6383 |
result[iByte++] = ' ';
|
sl@0
|
6384 |
}
|
sl@0
|
6385 |
assert( iByte==nResultBytes );
|
sl@0
|
6386 |
assert( result[nResultBytes-1]==' ' );
|
sl@0
|
6387 |
result[nResultBytes-1] = '\0';
|
sl@0
|
6388 |
|
sl@0
|
6389 |
/* Passes away ownership of result. */
|
sl@0
|
6390 |
sqlite3_result_text(pContext, result, nResultBytes-1, sqlite3_free);
|
sl@0
|
6391 |
sqlite3_free(pData);
|
sl@0
|
6392 |
return SQLITE_OK;
|
sl@0
|
6393 |
}
|
sl@0
|
6394 |
|
sl@0
|
6395 |
/* Implements dump_terms() for use in inspecting the fts2 index from
|
sl@0
|
6396 |
** tests. TEXT result containing the ordered list of terms joined by
|
sl@0
|
6397 |
** spaces. dump_terms(t, level, idx) dumps the terms for the segment
|
sl@0
|
6398 |
** specified by level, idx (in %_segdir), while dump_terms(t) dumps
|
sl@0
|
6399 |
** all terms in the index. In both cases t is the fts table's magic
|
sl@0
|
6400 |
** table-named column.
|
sl@0
|
6401 |
*/
|
sl@0
|
6402 |
static void dumpTermsFunc(
|
sl@0
|
6403 |
sqlite3_context *pContext,
|
sl@0
|
6404 |
int argc, sqlite3_value **argv
|
sl@0
|
6405 |
){
|
sl@0
|
6406 |
fulltext_cursor *pCursor;
|
sl@0
|
6407 |
if( argc!=3 && argc!=1 ){
|
sl@0
|
6408 |
generateError(pContext, "dump_terms", "incorrect arguments");
|
sl@0
|
6409 |
}else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
|
sl@0
|
6410 |
sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
|
sl@0
|
6411 |
generateError(pContext, "dump_terms", "illegal first argument");
|
sl@0
|
6412 |
}else{
|
sl@0
|
6413 |
fulltext_vtab *v;
|
sl@0
|
6414 |
fts2Hash terms;
|
sl@0
|
6415 |
sqlite3_stmt *s = NULL;
|
sl@0
|
6416 |
int rc;
|
sl@0
|
6417 |
|
sl@0
|
6418 |
memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
|
sl@0
|
6419 |
v = cursor_vtab(pCursor);
|
sl@0
|
6420 |
|
sl@0
|
6421 |
/* If passed only the cursor column, get all segments. Otherwise
|
sl@0
|
6422 |
** get the segment described by the following two arguments.
|
sl@0
|
6423 |
*/
|
sl@0
|
6424 |
if( argc==1 ){
|
sl@0
|
6425 |
rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
|
sl@0
|
6426 |
}else{
|
sl@0
|
6427 |
rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
|
sl@0
|
6428 |
if( rc==SQLITE_OK ){
|
sl@0
|
6429 |
rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[1]));
|
sl@0
|
6430 |
if( rc==SQLITE_OK ){
|
sl@0
|
6431 |
rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[2]));
|
sl@0
|
6432 |
}
|
sl@0
|
6433 |
}
|
sl@0
|
6434 |
}
|
sl@0
|
6435 |
|
sl@0
|
6436 |
if( rc!=SQLITE_OK ){
|
sl@0
|
6437 |
generateError(pContext, "dump_terms", NULL);
|
sl@0
|
6438 |
return;
|
sl@0
|
6439 |
}
|
sl@0
|
6440 |
|
sl@0
|
6441 |
/* Collect the terms for each segment. */
|
sl@0
|
6442 |
sqlite3Fts2HashInit(&terms, FTS2_HASH_STRING, 1);
|
sl@0
|
6443 |
while( (rc = sqlite3_step(s))==SQLITE_ROW ){
|
sl@0
|
6444 |
rc = collectSegmentTerms(v, s, &terms);
|
sl@0
|
6445 |
if( rc!=SQLITE_OK ) break;
|
sl@0
|
6446 |
}
|
sl@0
|
6447 |
|
sl@0
|
6448 |
if( rc!=SQLITE_DONE ){
|
sl@0
|
6449 |
sqlite3_reset(s);
|
sl@0
|
6450 |
generateError(pContext, "dump_terms", NULL);
|
sl@0
|
6451 |
}else{
|
sl@0
|
6452 |
const int nTerms = fts2HashCount(&terms);
|
sl@0
|
6453 |
if( nTerms>0 ){
|
sl@0
|
6454 |
rc = generateTermsResult(pContext, &terms);
|
sl@0
|
6455 |
if( rc==SQLITE_NOMEM ){
|
sl@0
|
6456 |
generateError(pContext, "dump_terms", "out of memory");
|
sl@0
|
6457 |
}else{
|
sl@0
|
6458 |
assert( rc==SQLITE_OK );
|
sl@0
|
6459 |
}
|
sl@0
|
6460 |
}else if( argc==3 ){
|
sl@0
|
6461 |
/* The specific segment asked for could not be found. */
|
sl@0
|
6462 |
generateError(pContext, "dump_terms", "segment not found");
|
sl@0
|
6463 |
}else{
|
sl@0
|
6464 |
/* No segments found. */
|
sl@0
|
6465 |
/* TODO(shess): It should be impossible to reach this. This
|
sl@0
|
6466 |
** case can only happen for an empty table, in which case
|
sl@0
|
6467 |
** SQLite has no rows to call this function on.
|
sl@0
|
6468 |
*/
|
sl@0
|
6469 |
sqlite3_result_null(pContext);
|
sl@0
|
6470 |
}
|
sl@0
|
6471 |
}
|
sl@0
|
6472 |
sqlite3Fts2HashClear(&terms);
|
sl@0
|
6473 |
}
|
sl@0
|
6474 |
}
|
sl@0
|
6475 |
|
sl@0
|
6476 |
/* Expand the DL_DEFAULT doclist in pData into a text result in
|
sl@0
|
6477 |
** pContext.
|
sl@0
|
6478 |
*/
|
sl@0
|
6479 |
static void createDoclistResult(sqlite3_context *pContext,
|
sl@0
|
6480 |
const char *pData, int nData){
|
sl@0
|
6481 |
DataBuffer dump;
|
sl@0
|
6482 |
DLReader dlReader;
|
sl@0
|
6483 |
|
sl@0
|
6484 |
assert( pData!=NULL && nData>0 );
|
sl@0
|
6485 |
|
sl@0
|
6486 |
dataBufferInit(&dump, 0);
|
sl@0
|
6487 |
dlrInit(&dlReader, DL_DEFAULT, pData, nData);
|
sl@0
|
6488 |
for( ; !dlrAtEnd(&dlReader); dlrStep(&dlReader) ){
|
sl@0
|
6489 |
char buf[256];
|
sl@0
|
6490 |
PLReader plReader;
|
sl@0
|
6491 |
|
sl@0
|
6492 |
plrInit(&plReader, &dlReader);
|
sl@0
|
6493 |
if( DL_DEFAULT==DL_DOCIDS || plrAtEnd(&plReader) ){
|
sl@0
|
6494 |
sqlite3_snprintf(sizeof(buf), buf, "[%lld] ", dlrDocid(&dlReader));
|
sl@0
|
6495 |
dataBufferAppend(&dump, buf, strlen(buf));
|
sl@0
|
6496 |
}else{
|
sl@0
|
6497 |
int iColumn = plrColumn(&plReader);
|
sl@0
|
6498 |
|
sl@0
|
6499 |
sqlite3_snprintf(sizeof(buf), buf, "[%lld %d[",
|
sl@0
|
6500 |
dlrDocid(&dlReader), iColumn);
|
sl@0
|
6501 |
dataBufferAppend(&dump, buf, strlen(buf));
|
sl@0
|
6502 |
|
sl@0
|
6503 |
for( ; !plrAtEnd(&plReader); plrStep(&plReader) ){
|
sl@0
|
6504 |
if( plrColumn(&plReader)!=iColumn ){
|
sl@0
|
6505 |
iColumn = plrColumn(&plReader);
|
sl@0
|
6506 |
sqlite3_snprintf(sizeof(buf), buf, "] %d[", iColumn);
|
sl@0
|
6507 |
assert( dump.nData>0 );
|
sl@0
|
6508 |
dump.nData--; /* Overwrite trailing space. */
|
sl@0
|
6509 |
assert( dump.pData[dump.nData]==' ');
|
sl@0
|
6510 |
dataBufferAppend(&dump, buf, strlen(buf));
|
sl@0
|
6511 |
}
|
sl@0
|
6512 |
if( DL_DEFAULT==DL_POSITIONS_OFFSETS ){
|
sl@0
|
6513 |
sqlite3_snprintf(sizeof(buf), buf, "%d,%d,%d ",
|
sl@0
|
6514 |
plrPosition(&plReader),
|
sl@0
|
6515 |
plrStartOffset(&plReader), plrEndOffset(&plReader));
|
sl@0
|
6516 |
}else if( DL_DEFAULT==DL_POSITIONS ){
|
sl@0
|
6517 |
sqlite3_snprintf(sizeof(buf), buf, "%d ", plrPosition(&plReader));
|
sl@0
|
6518 |
}else{
|
sl@0
|
6519 |
assert( NULL=="Unhandled DL_DEFAULT value");
|
sl@0
|
6520 |
}
|
sl@0
|
6521 |
dataBufferAppend(&dump, buf, strlen(buf));
|
sl@0
|
6522 |
}
|
sl@0
|
6523 |
plrDestroy(&plReader);
|
sl@0
|
6524 |
|
sl@0
|
6525 |
assert( dump.nData>0 );
|
sl@0
|
6526 |
dump.nData--; /* Overwrite trailing space. */
|
sl@0
|
6527 |
assert( dump.pData[dump.nData]==' ');
|
sl@0
|
6528 |
dataBufferAppend(&dump, "]] ", 3);
|
sl@0
|
6529 |
}
|
sl@0
|
6530 |
}
|
sl@0
|
6531 |
dlrDestroy(&dlReader);
|
sl@0
|
6532 |
|
sl@0
|
6533 |
assert( dump.nData>0 );
|
sl@0
|
6534 |
dump.nData--; /* Overwrite trailing space. */
|
sl@0
|
6535 |
assert( dump.pData[dump.nData]==' ');
|
sl@0
|
6536 |
dump.pData[dump.nData] = '\0';
|
sl@0
|
6537 |
assert( dump.nData>0 );
|
sl@0
|
6538 |
|
sl@0
|
6539 |
/* Passes ownership of dump's buffer to pContext. */
|
sl@0
|
6540 |
sqlite3_result_text(pContext, dump.pData, dump.nData, sqlite3_free);
|
sl@0
|
6541 |
dump.pData = NULL;
|
sl@0
|
6542 |
dump.nData = dump.nCapacity = 0;
|
sl@0
|
6543 |
}
|
sl@0
|
6544 |
|
sl@0
|
6545 |
/* Implements dump_doclist() for use in inspecting the fts2 index from
|
sl@0
|
6546 |
** tests. TEXT result containing a string representation of the
|
sl@0
|
6547 |
** doclist for the indicated term. dump_doclist(t, term, level, idx)
|
sl@0
|
6548 |
** dumps the doclist for term from the segment specified by level, idx
|
sl@0
|
6549 |
** (in %_segdir), while dump_doclist(t, term) dumps the logical
|
sl@0
|
6550 |
** doclist for the term across all segments. The per-segment doclist
|
sl@0
|
6551 |
** can contain deletions, while the full-index doclist will not
|
sl@0
|
6552 |
** (deletions are omitted).
|
sl@0
|
6553 |
**
|
sl@0
|
6554 |
** Result formats differ with the setting of DL_DEFAULTS. Examples:
|
sl@0
|
6555 |
**
|
sl@0
|
6556 |
** DL_DOCIDS: [1] [3] [7]
|
sl@0
|
6557 |
** DL_POSITIONS: [1 0[0 4] 1[17]] [3 1[5]]
|
sl@0
|
6558 |
** DL_POSITIONS_OFFSETS: [1 0[0,0,3 4,23,26] 1[17,102,105]] [3 1[5,20,23]]
|
sl@0
|
6559 |
**
|
sl@0
|
6560 |
** In each case the number after the outer '[' is the docid. In the
|
sl@0
|
6561 |
** latter two cases, the number before the inner '[' is the column
|
sl@0
|
6562 |
** associated with the values within. For DL_POSITIONS the numbers
|
sl@0
|
6563 |
** within are the positions, for DL_POSITIONS_OFFSETS they are the
|
sl@0
|
6564 |
** position, the start offset, and the end offset.
|
sl@0
|
6565 |
*/
|
sl@0
|
6566 |
static void dumpDoclistFunc(
|
sl@0
|
6567 |
sqlite3_context *pContext,
|
sl@0
|
6568 |
int argc, sqlite3_value **argv
|
sl@0
|
6569 |
){
|
sl@0
|
6570 |
fulltext_cursor *pCursor;
|
sl@0
|
6571 |
if( argc!=2 && argc!=4 ){
|
sl@0
|
6572 |
generateError(pContext, "dump_doclist", "incorrect arguments");
|
sl@0
|
6573 |
}else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
|
sl@0
|
6574 |
sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
|
sl@0
|
6575 |
generateError(pContext, "dump_doclist", "illegal first argument");
|
sl@0
|
6576 |
}else if( sqlite3_value_text(argv[1])==NULL ||
|
sl@0
|
6577 |
sqlite3_value_text(argv[1])[0]=='\0' ){
|
sl@0
|
6578 |
generateError(pContext, "dump_doclist", "empty second argument");
|
sl@0
|
6579 |
}else{
|
sl@0
|
6580 |
const char *pTerm = (const char *)sqlite3_value_text(argv[1]);
|
sl@0
|
6581 |
const int nTerm = strlen(pTerm);
|
sl@0
|
6582 |
fulltext_vtab *v;
|
sl@0
|
6583 |
int rc;
|
sl@0
|
6584 |
DataBuffer doclist;
|
sl@0
|
6585 |
|
sl@0
|
6586 |
memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
|
sl@0
|
6587 |
v = cursor_vtab(pCursor);
|
sl@0
|
6588 |
|
sl@0
|
6589 |
dataBufferInit(&doclist, 0);
|
sl@0
|
6590 |
|
sl@0
|
6591 |
/* termSelect() yields the same logical doclist that queries are
|
sl@0
|
6592 |
** run against.
|
sl@0
|
6593 |
*/
|
sl@0
|
6594 |
if( argc==2 ){
|
sl@0
|
6595 |
rc = termSelect(v, v->nColumn, pTerm, nTerm, 0, DL_DEFAULT, &doclist);
|
sl@0
|
6596 |
}else{
|
sl@0
|
6597 |
sqlite3_stmt *s = NULL;
|
sl@0
|
6598 |
|
sl@0
|
6599 |
/* Get our specific segment's information. */
|
sl@0
|
6600 |
rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
|
sl@0
|
6601 |
if( rc==SQLITE_OK ){
|
sl@0
|
6602 |
rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[2]));
|
sl@0
|
6603 |
if( rc==SQLITE_OK ){
|
sl@0
|
6604 |
rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[3]));
|
sl@0
|
6605 |
}
|
sl@0
|
6606 |
}
|
sl@0
|
6607 |
|
sl@0
|
6608 |
if( rc==SQLITE_OK ){
|
sl@0
|
6609 |
rc = sqlite3_step(s);
|
sl@0
|
6610 |
|
sl@0
|
6611 |
if( rc==SQLITE_DONE ){
|
sl@0
|
6612 |
dataBufferDestroy(&doclist);
|
sl@0
|
6613 |
generateError(pContext, "dump_doclist", "segment not found");
|
sl@0
|
6614 |
return;
|
sl@0
|
6615 |
}
|
sl@0
|
6616 |
|
sl@0
|
6617 |
/* Found a segment, load it into doclist. */
|
sl@0
|
6618 |
if( rc==SQLITE_ROW ){
|
sl@0
|
6619 |
const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
|
sl@0
|
6620 |
const char *pData = sqlite3_column_blob(s, 2);
|
sl@0
|
6621 |
const int nData = sqlite3_column_bytes(s, 2);
|
sl@0
|
6622 |
|
sl@0
|
6623 |
/* loadSegment() is used by termSelect() to load each
|
sl@0
|
6624 |
** segment's data.
|
sl@0
|
6625 |
*/
|
sl@0
|
6626 |
rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, 0,
|
sl@0
|
6627 |
&doclist);
|
sl@0
|
6628 |
if( rc==SQLITE_OK ){
|
sl@0
|
6629 |
rc = sqlite3_step(s);
|
sl@0
|
6630 |
|
sl@0
|
6631 |
/* Should not have more than one matching segment. */
|
sl@0
|
6632 |
if( rc!=SQLITE_DONE ){
|
sl@0
|
6633 |
sqlite3_reset(s);
|
sl@0
|
6634 |
dataBufferDestroy(&doclist);
|
sl@0
|
6635 |
generateError(pContext, "dump_doclist", "invalid segdir");
|
sl@0
|
6636 |
return;
|
sl@0
|
6637 |
}
|
sl@0
|
6638 |
rc = SQLITE_OK;
|
sl@0
|
6639 |
}
|
sl@0
|
6640 |
}
|
sl@0
|
6641 |
}
|
sl@0
|
6642 |
|
sl@0
|
6643 |
sqlite3_reset(s);
|
sl@0
|
6644 |
}
|
sl@0
|
6645 |
|
sl@0
|
6646 |
if( rc==SQLITE_OK ){
|
sl@0
|
6647 |
if( doclist.nData>0 ){
|
sl@0
|
6648 |
createDoclistResult(pContext, doclist.pData, doclist.nData);
|
sl@0
|
6649 |
}else{
|
sl@0
|
6650 |
/* TODO(shess): This can happen if the term is not present, or
|
sl@0
|
6651 |
** if all instances of the term have been deleted and this is
|
sl@0
|
6652 |
** an all-index dump. It may be interesting to distinguish
|
sl@0
|
6653 |
** these cases.
|
sl@0
|
6654 |
*/
|
sl@0
|
6655 |
sqlite3_result_text(pContext, "", 0, SQLITE_STATIC);
|
sl@0
|
6656 |
}
|
sl@0
|
6657 |
}else if( rc==SQLITE_NOMEM ){
|
sl@0
|
6658 |
/* Handle out-of-memory cases specially because if they are
|
sl@0
|
6659 |
** generated in fts2 code they may not be reflected in the db
|
sl@0
|
6660 |
** handle.
|
sl@0
|
6661 |
*/
|
sl@0
|
6662 |
/* TODO(shess): Handle this more comprehensively.
|
sl@0
|
6663 |
** sqlite3ErrStr() has what I need, but is internal.
|
sl@0
|
6664 |
*/
|
sl@0
|
6665 |
generateError(pContext, "dump_doclist", "out of memory");
|
sl@0
|
6666 |
}else{
|
sl@0
|
6667 |
generateError(pContext, "dump_doclist", NULL);
|
sl@0
|
6668 |
}
|
sl@0
|
6669 |
|
sl@0
|
6670 |
dataBufferDestroy(&doclist);
|
sl@0
|
6671 |
}
|
sl@0
|
6672 |
}
|
sl@0
|
6673 |
#endif
|
sl@0
|
6674 |
|
sl@0
|
6675 |
/*
|
sl@0
|
6676 |
** This routine implements the xFindFunction method for the FTS2
|
sl@0
|
6677 |
** virtual table.
|
sl@0
|
6678 |
*/
|
sl@0
|
6679 |
static int fulltextFindFunction(
|
sl@0
|
6680 |
sqlite3_vtab *pVtab,
|
sl@0
|
6681 |
int nArg,
|
sl@0
|
6682 |
const char *zName,
|
sl@0
|
6683 |
void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
|
sl@0
|
6684 |
void **ppArg
|
sl@0
|
6685 |
){
|
sl@0
|
6686 |
if( strcmp(zName,"snippet")==0 ){
|
sl@0
|
6687 |
*pxFunc = snippetFunc;
|
sl@0
|
6688 |
return 1;
|
sl@0
|
6689 |
}else if( strcmp(zName,"offsets")==0 ){
|
sl@0
|
6690 |
*pxFunc = snippetOffsetsFunc;
|
sl@0
|
6691 |
return 1;
|
sl@0
|
6692 |
}else if( strcmp(zName,"optimize")==0 ){
|
sl@0
|
6693 |
*pxFunc = optimizeFunc;
|
sl@0
|
6694 |
return 1;
|
sl@0
|
6695 |
#ifdef SQLITE_TEST
|
sl@0
|
6696 |
/* NOTE(shess): These functions are present only for testing
|
sl@0
|
6697 |
** purposes. No particular effort is made to optimize their
|
sl@0
|
6698 |
** execution or how they build their results.
|
sl@0
|
6699 |
*/
|
sl@0
|
6700 |
}else if( strcmp(zName,"dump_terms")==0 ){
|
sl@0
|
6701 |
/* fprintf(stderr, "Found dump_terms\n"); */
|
sl@0
|
6702 |
*pxFunc = dumpTermsFunc;
|
sl@0
|
6703 |
return 1;
|
sl@0
|
6704 |
}else if( strcmp(zName,"dump_doclist")==0 ){
|
sl@0
|
6705 |
/* fprintf(stderr, "Found dump_doclist\n"); */
|
sl@0
|
6706 |
*pxFunc = dumpDoclistFunc;
|
sl@0
|
6707 |
return 1;
|
sl@0
|
6708 |
#endif
|
sl@0
|
6709 |
}
|
sl@0
|
6710 |
return 0;
|
sl@0
|
6711 |
}
|
sl@0
|
6712 |
|
sl@0
|
6713 |
/*
|
sl@0
|
6714 |
** Rename an fts2 table.
|
sl@0
|
6715 |
*/
|
sl@0
|
6716 |
static int fulltextRename(
|
sl@0
|
6717 |
sqlite3_vtab *pVtab,
|
sl@0
|
6718 |
const char *zName
|
sl@0
|
6719 |
){
|
sl@0
|
6720 |
fulltext_vtab *p = (fulltext_vtab *)pVtab;
|
sl@0
|
6721 |
int rc = SQLITE_NOMEM;
|
sl@0
|
6722 |
char *zSql = sqlite3_mprintf(
|
sl@0
|
6723 |
"ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';"
|
sl@0
|
6724 |
"ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';"
|
sl@0
|
6725 |
"ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';"
|
sl@0
|
6726 |
, p->zDb, p->zName, zName
|
sl@0
|
6727 |
, p->zDb, p->zName, zName
|
sl@0
|
6728 |
, p->zDb, p->zName, zName
|
sl@0
|
6729 |
);
|
sl@0
|
6730 |
if( zSql ){
|
sl@0
|
6731 |
rc = sqlite3_exec(p->db, zSql, 0, 0, 0);
|
sl@0
|
6732 |
sqlite3_free(zSql);
|
sl@0
|
6733 |
}
|
sl@0
|
6734 |
return rc;
|
sl@0
|
6735 |
}
|
sl@0
|
6736 |
|
sl@0
|
6737 |
static const sqlite3_module fts2Module = {
|
sl@0
|
6738 |
/* iVersion */ 0,
|
sl@0
|
6739 |
/* xCreate */ fulltextCreate,
|
sl@0
|
6740 |
/* xConnect */ fulltextConnect,
|
sl@0
|
6741 |
/* xBestIndex */ fulltextBestIndex,
|
sl@0
|
6742 |
/* xDisconnect */ fulltextDisconnect,
|
sl@0
|
6743 |
/* xDestroy */ fulltextDestroy,
|
sl@0
|
6744 |
/* xOpen */ fulltextOpen,
|
sl@0
|
6745 |
/* xClose */ fulltextClose,
|
sl@0
|
6746 |
/* xFilter */ fulltextFilter,
|
sl@0
|
6747 |
/* xNext */ fulltextNext,
|
sl@0
|
6748 |
/* xEof */ fulltextEof,
|
sl@0
|
6749 |
/* xColumn */ fulltextColumn,
|
sl@0
|
6750 |
/* xRowid */ fulltextRowid,
|
sl@0
|
6751 |
/* xUpdate */ fulltextUpdate,
|
sl@0
|
6752 |
/* xBegin */ fulltextBegin,
|
sl@0
|
6753 |
/* xSync */ fulltextSync,
|
sl@0
|
6754 |
/* xCommit */ fulltextCommit,
|
sl@0
|
6755 |
/* xRollback */ fulltextRollback,
|
sl@0
|
6756 |
/* xFindFunction */ fulltextFindFunction,
|
sl@0
|
6757 |
/* xRename */ fulltextRename,
|
sl@0
|
6758 |
};
|
sl@0
|
6759 |
|
sl@0
|
6760 |
static void hashDestroy(void *p){
|
sl@0
|
6761 |
fts2Hash *pHash = (fts2Hash *)p;
|
sl@0
|
6762 |
sqlite3Fts2HashClear(pHash);
|
sl@0
|
6763 |
sqlite3_free(pHash);
|
sl@0
|
6764 |
}
|
sl@0
|
6765 |
|
sl@0
|
6766 |
/*
|
sl@0
|
6767 |
** The fts2 built-in tokenizers - "simple" and "porter" - are implemented
|
sl@0
|
6768 |
** in files fts2_tokenizer1.c and fts2_porter.c respectively. The following
|
sl@0
|
6769 |
** two forward declarations are for functions declared in these files
|
sl@0
|
6770 |
** used to retrieve the respective implementations.
|
sl@0
|
6771 |
**
|
sl@0
|
6772 |
** Calling sqlite3Fts2SimpleTokenizerModule() sets the value pointed
|
sl@0
|
6773 |
** to by the argument to point a the "simple" tokenizer implementation.
|
sl@0
|
6774 |
** Function ...PorterTokenizerModule() sets *pModule to point to the
|
sl@0
|
6775 |
** porter tokenizer/stemmer implementation.
|
sl@0
|
6776 |
*/
|
sl@0
|
6777 |
void sqlite3Fts2SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
|
sl@0
|
6778 |
void sqlite3Fts2PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
|
sl@0
|
6779 |
void sqlite3Fts2IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
|
sl@0
|
6780 |
|
sl@0
|
6781 |
int sqlite3Fts2InitHashTable(sqlite3 *, fts2Hash *, const char *);
|
sl@0
|
6782 |
|
sl@0
|
6783 |
/*
|
sl@0
|
6784 |
** Initialise the fts2 extension. If this extension is built as part
|
sl@0
|
6785 |
** of the sqlite library, then this function is called directly by
|
sl@0
|
6786 |
** SQLite. If fts2 is built as a dynamically loadable extension, this
|
sl@0
|
6787 |
** function is called by the sqlite3_extension_init() entry point.
|
sl@0
|
6788 |
*/
|
sl@0
|
6789 |
int sqlite3Fts2Init(sqlite3 *db){
|
sl@0
|
6790 |
int rc = SQLITE_OK;
|
sl@0
|
6791 |
fts2Hash *pHash = 0;
|
sl@0
|
6792 |
const sqlite3_tokenizer_module *pSimple = 0;
|
sl@0
|
6793 |
const sqlite3_tokenizer_module *pPorter = 0;
|
sl@0
|
6794 |
const sqlite3_tokenizer_module *pIcu = 0;
|
sl@0
|
6795 |
|
sl@0
|
6796 |
sqlite3Fts2SimpleTokenizerModule(&pSimple);
|
sl@0
|
6797 |
sqlite3Fts2PorterTokenizerModule(&pPorter);
|
sl@0
|
6798 |
#ifdef SQLITE_ENABLE_ICU
|
sl@0
|
6799 |
sqlite3Fts2IcuTokenizerModule(&pIcu);
|
sl@0
|
6800 |
#endif
|
sl@0
|
6801 |
|
sl@0
|
6802 |
/* Allocate and initialise the hash-table used to store tokenizers. */
|
sl@0
|
6803 |
pHash = sqlite3_malloc(sizeof(fts2Hash));
|
sl@0
|
6804 |
if( !pHash ){
|
sl@0
|
6805 |
rc = SQLITE_NOMEM;
|
sl@0
|
6806 |
}else{
|
sl@0
|
6807 |
sqlite3Fts2HashInit(pHash, FTS2_HASH_STRING, 1);
|
sl@0
|
6808 |
}
|
sl@0
|
6809 |
|
sl@0
|
6810 |
/* Load the built-in tokenizers into the hash table */
|
sl@0
|
6811 |
if( rc==SQLITE_OK ){
|
sl@0
|
6812 |
if( sqlite3Fts2HashInsert(pHash, "simple", 7, (void *)pSimple)
|
sl@0
|
6813 |
|| sqlite3Fts2HashInsert(pHash, "porter", 7, (void *)pPorter)
|
sl@0
|
6814 |
|| (pIcu && sqlite3Fts2HashInsert(pHash, "icu", 4, (void *)pIcu))
|
sl@0
|
6815 |
){
|
sl@0
|
6816 |
rc = SQLITE_NOMEM;
|
sl@0
|
6817 |
}
|
sl@0
|
6818 |
}
|
sl@0
|
6819 |
|
sl@0
|
6820 |
/* Create the virtual table wrapper around the hash-table and overload
|
sl@0
|
6821 |
** the two scalar functions. If this is successful, register the
|
sl@0
|
6822 |
** module with sqlite.
|
sl@0
|
6823 |
*/
|
sl@0
|
6824 |
if( SQLITE_OK==rc
|
sl@0
|
6825 |
&& SQLITE_OK==(rc = sqlite3Fts2InitHashTable(db, pHash, "fts2_tokenizer"))
|
sl@0
|
6826 |
&& SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
|
sl@0
|
6827 |
&& SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1))
|
sl@0
|
6828 |
&& SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", -1))
|
sl@0
|
6829 |
#ifdef SQLITE_TEST
|
sl@0
|
6830 |
&& SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_terms", -1))
|
sl@0
|
6831 |
&& SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_doclist", -1))
|
sl@0
|
6832 |
#endif
|
sl@0
|
6833 |
){
|
sl@0
|
6834 |
return sqlite3_create_module_v2(
|
sl@0
|
6835 |
db, "fts2", &fts2Module, (void *)pHash, hashDestroy
|
sl@0
|
6836 |
);
|
sl@0
|
6837 |
}
|
sl@0
|
6838 |
|
sl@0
|
6839 |
/* An error has occured. Delete the hash table and return the error code. */
|
sl@0
|
6840 |
assert( rc!=SQLITE_OK );
|
sl@0
|
6841 |
if( pHash ){
|
sl@0
|
6842 |
sqlite3Fts2HashClear(pHash);
|
sl@0
|
6843 |
sqlite3_free(pHash);
|
sl@0
|
6844 |
}
|
sl@0
|
6845 |
return rc;
|
sl@0
|
6846 |
}
|
sl@0
|
6847 |
|
sl@0
|
6848 |
#if !SQLITE_CORE
|
sl@0
|
6849 |
int sqlite3_extension_init(
|
sl@0
|
6850 |
sqlite3 *db,
|
sl@0
|
6851 |
char **pzErrMsg,
|
sl@0
|
6852 |
const sqlite3_api_routines *pApi
|
sl@0
|
6853 |
){
|
sl@0
|
6854 |
SQLITE_EXTENSION_INIT2(pApi)
|
sl@0
|
6855 |
return sqlite3Fts2Init(db);
|
sl@0
|
6856 |
}
|
sl@0
|
6857 |
#endif
|
sl@0
|
6858 |
|
sl@0
|
6859 |
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */
|