sl@0: /* fts2 has a design flaw which can lead to database corruption (see sl@0: ** below). It is recommended not to use it any longer, instead use sl@0: ** fts3 (or higher). If you believe that your use of fts2 is safe, sl@0: ** add -DSQLITE_ENABLE_BROKEN_FTS2=1 to your CFLAGS. sl@0: */ sl@0: #if (!defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)) \ sl@0: && !defined(SQLITE_ENABLE_BROKEN_FTS2) sl@0: #error fts2 has a design flaw and has been deprecated. sl@0: #endif sl@0: /* The flaw is that fts2 uses the content table's unaliased rowid as sl@0: ** the unique docid. fts2 embeds the rowid in the index it builds, sl@0: ** and expects the rowid to not change. The SQLite VACUUM operation sl@0: ** will renumber such rowids, thereby breaking fts2. If you are using sl@0: ** fts2 in a system which has disabled VACUUM, then you can continue sl@0: ** to use it safely. Note that PRAGMA auto_vacuum does NOT disable sl@0: ** VACUUM, though systems using auto_vacuum are unlikely to invoke sl@0: ** VACUUM. sl@0: ** sl@0: ** Unlike fts1, which is safe across VACUUM if you never delete sl@0: ** documents, fts2 has a second exposure to this flaw, in the segments sl@0: ** table. So fts2 should be considered unsafe across VACUUM in all sl@0: ** cases. sl@0: */ sl@0: sl@0: /* sl@0: ** 2006 Oct 10 sl@0: ** sl@0: ** The author disclaims copyright to this source code. In place of sl@0: ** a legal notice, here is a blessing: sl@0: ** sl@0: ** May you do good and not evil. sl@0: ** May you find forgiveness for yourself and forgive others. sl@0: ** May you share freely, never taking more than you give. sl@0: ** sl@0: ****************************************************************************** sl@0: ** sl@0: ** This is an SQLite module implementing full-text search. sl@0: */ sl@0: sl@0: /* sl@0: ** The code in this file is only compiled if: sl@0: ** sl@0: ** * The FTS2 module is being built as an extension sl@0: ** (in which case SQLITE_CORE is not defined), or sl@0: ** sl@0: ** * The FTS2 module is being built into the core of sl@0: ** SQLite (in which case SQLITE_ENABLE_FTS2 is defined). sl@0: */ sl@0: sl@0: /* TODO(shess) Consider exporting this comment to an HTML file or the sl@0: ** wiki. sl@0: */ sl@0: /* The full-text index is stored in a series of b+tree (-like) sl@0: ** structures called segments which map terms to doclists. The sl@0: ** structures are like b+trees in layout, but are constructed from the sl@0: ** bottom up in optimal fashion and are not updatable. Since trees sl@0: ** are built from the bottom up, things will be described from the sl@0: ** bottom up. sl@0: ** sl@0: ** sl@0: **** Varints **** sl@0: ** The basic unit of encoding is a variable-length integer called a sl@0: ** varint. We encode variable-length integers in little-endian order sl@0: ** using seven bits * per byte as follows: sl@0: ** sl@0: ** KEY: sl@0: ** A = 0xxxxxxx 7 bits of data and one flag bit sl@0: ** B = 1xxxxxxx 7 bits of data and one flag bit sl@0: ** sl@0: ** 7 bits - A sl@0: ** 14 bits - BA sl@0: ** 21 bits - BBA sl@0: ** and so on. sl@0: ** sl@0: ** This is identical to how sqlite encodes varints (see util.c). sl@0: ** sl@0: ** sl@0: **** Document lists **** sl@0: ** A doclist (document list) holds a docid-sorted list of hits for a sl@0: ** given term. Doclists hold docids, and can optionally associate sl@0: ** token positions and offsets with docids. sl@0: ** sl@0: ** A DL_POSITIONS_OFFSETS doclist is stored like this: sl@0: ** sl@0: ** array { sl@0: ** varint docid; sl@0: ** array { (position list for column 0) sl@0: ** varint position; (delta from previous position plus POS_BASE) sl@0: ** varint startOffset; (delta from previous startOffset) sl@0: ** varint endOffset; (delta from startOffset) sl@0: ** } sl@0: ** array { sl@0: ** varint POS_COLUMN; (marks start of position list for new column) sl@0: ** varint column; (index of new column) sl@0: ** array { sl@0: ** varint position; (delta from previous position plus POS_BASE) sl@0: ** varint startOffset;(delta from previous startOffset) sl@0: ** varint endOffset; (delta from startOffset) sl@0: ** } sl@0: ** } sl@0: ** varint POS_END; (marks end of positions for this document. sl@0: ** } sl@0: ** sl@0: ** Here, array { X } means zero or more occurrences of X, adjacent in sl@0: ** memory. A "position" is an index of a token in the token stream sl@0: ** generated by the tokenizer, while an "offset" is a byte offset, sl@0: ** both based at 0. Note that POS_END and POS_COLUMN occur in the sl@0: ** same logical place as the position element, and act as sentinals sl@0: ** ending a position list array. sl@0: ** sl@0: ** A DL_POSITIONS doclist omits the startOffset and endOffset sl@0: ** information. A DL_DOCIDS doclist omits both the position and sl@0: ** offset information, becoming an array of varint-encoded docids. sl@0: ** sl@0: ** On-disk data is stored as type DL_DEFAULT, so we don't serialize sl@0: ** the type. Due to how deletion is implemented in the segmentation sl@0: ** system, on-disk doclists MUST store at least positions. sl@0: ** sl@0: ** sl@0: **** Segment leaf nodes **** sl@0: ** Segment leaf nodes store terms and doclists, ordered by term. Leaf sl@0: ** nodes are written using LeafWriter, and read using LeafReader (to sl@0: ** iterate through a single leaf node's data) and LeavesReader (to sl@0: ** iterate through a segment's entire leaf layer). Leaf nodes have sl@0: ** the format: sl@0: ** sl@0: ** varint iHeight; (height from leaf level, always 0) sl@0: ** varint nTerm; (length of first term) sl@0: ** char pTerm[nTerm]; (content of first term) sl@0: ** varint nDoclist; (length of term's associated doclist) sl@0: ** char pDoclist[nDoclist]; (content of doclist) sl@0: ** array { sl@0: ** (further terms are delta-encoded) sl@0: ** varint nPrefix; (length of prefix shared with previous term) sl@0: ** varint nSuffix; (length of unshared suffix) sl@0: ** char pTermSuffix[nSuffix];(unshared suffix of next term) sl@0: ** varint nDoclist; (length of term's associated doclist) sl@0: ** char pDoclist[nDoclist]; (content of doclist) sl@0: ** } sl@0: ** sl@0: ** Here, array { X } means zero or more occurrences of X, adjacent in sl@0: ** memory. sl@0: ** sl@0: ** Leaf nodes are broken into blocks which are stored contiguously in sl@0: ** the %_segments table in sorted order. This means that when the end sl@0: ** of a node is reached, the next term is in the node with the next sl@0: ** greater node id. sl@0: ** sl@0: ** New data is spilled to a new leaf node when the current node sl@0: ** exceeds LEAF_MAX bytes (default 2048). New data which itself is sl@0: ** larger than STANDALONE_MIN (default 1024) is placed in a standalone sl@0: ** node (a leaf node with a single term and doclist). The goal of sl@0: ** these settings is to pack together groups of small doclists while sl@0: ** making it efficient to directly access large doclists. The sl@0: ** assumption is that large doclists represent terms which are more sl@0: ** likely to be query targets. sl@0: ** sl@0: ** TODO(shess) It may be useful for blocking decisions to be more sl@0: ** dynamic. For instance, it may make more sense to have a 2.5k leaf sl@0: ** node rather than splitting into 2k and .5k nodes. My intuition is sl@0: ** that this might extend through 2x or 4x the pagesize. sl@0: ** sl@0: ** sl@0: **** Segment interior nodes **** sl@0: ** Segment interior nodes store blockids for subtree nodes and terms sl@0: ** to describe what data is stored by the each subtree. Interior sl@0: ** nodes are written using InteriorWriter, and read using sl@0: ** InteriorReader. InteriorWriters are created as needed when sl@0: ** SegmentWriter creates new leaf nodes, or when an interior node sl@0: ** itself grows too big and must be split. The format of interior sl@0: ** nodes: sl@0: ** sl@0: ** varint iHeight; (height from leaf level, always >0) sl@0: ** varint iBlockid; (block id of node's leftmost subtree) sl@0: ** optional { sl@0: ** varint nTerm; (length of first term) sl@0: ** char pTerm[nTerm]; (content of first term) sl@0: ** array { sl@0: ** (further terms are delta-encoded) sl@0: ** varint nPrefix; (length of shared prefix with previous term) sl@0: ** varint nSuffix; (length of unshared suffix) sl@0: ** char pTermSuffix[nSuffix]; (unshared suffix of next term) sl@0: ** } sl@0: ** } sl@0: ** sl@0: ** Here, optional { X } means an optional element, while array { X } sl@0: ** means zero or more occurrences of X, adjacent in memory. sl@0: ** sl@0: ** An interior node encodes n terms separating n+1 subtrees. The sl@0: ** subtree blocks are contiguous, so only the first subtree's blockid sl@0: ** is encoded. The subtree at iBlockid will contain all terms less sl@0: ** than the first term encoded (or all terms if no term is encoded). sl@0: ** Otherwise, for terms greater than or equal to pTerm[i] but less sl@0: ** than pTerm[i+1], the subtree for that term will be rooted at sl@0: ** iBlockid+i. Interior nodes only store enough term data to sl@0: ** distinguish adjacent children (if the rightmost term of the left sl@0: ** child is "something", and the leftmost term of the right child is sl@0: ** "wicked", only "w" is stored). sl@0: ** sl@0: ** New data is spilled to a new interior node at the same height when sl@0: ** the current node exceeds INTERIOR_MAX bytes (default 2048). sl@0: ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing sl@0: ** interior nodes and making the tree too skinny. The interior nodes sl@0: ** at a given height are naturally tracked by interior nodes at sl@0: ** height+1, and so on. sl@0: ** sl@0: ** sl@0: **** Segment directory **** sl@0: ** The segment directory in table %_segdir stores meta-information for sl@0: ** merging and deleting segments, and also the root node of the sl@0: ** segment's tree. sl@0: ** sl@0: ** The root node is the top node of the segment's tree after encoding sl@0: ** the entire segment, restricted to ROOT_MAX bytes (default 1024). sl@0: ** This could be either a leaf node or an interior node. If the top sl@0: ** node requires more than ROOT_MAX bytes, it is flushed to %_segments sl@0: ** and a new root interior node is generated (which should always fit sl@0: ** within ROOT_MAX because it only needs space for 2 varints, the sl@0: ** height and the blockid of the previous root). sl@0: ** sl@0: ** The meta-information in the segment directory is: sl@0: ** level - segment level (see below) sl@0: ** idx - index within level sl@0: ** - (level,idx uniquely identify a segment) sl@0: ** start_block - first leaf node sl@0: ** leaves_end_block - last leaf node sl@0: ** end_block - last block (including interior nodes) sl@0: ** root - contents of root node sl@0: ** sl@0: ** If the root node is a leaf node, then start_block, sl@0: ** leaves_end_block, and end_block are all 0. sl@0: ** sl@0: ** sl@0: **** Segment merging **** sl@0: ** To amortize update costs, segments are groups into levels and sl@0: ** merged in matches. Each increase in level represents exponentially sl@0: ** more documents. sl@0: ** sl@0: ** New documents (actually, document updates) are tokenized and sl@0: ** written individually (using LeafWriter) to a level 0 segment, with sl@0: ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all sl@0: ** level 0 segments are merged into a single level 1 segment. Level 1 sl@0: ** is populated like level 0, and eventually MERGE_COUNT level 1 sl@0: ** segments are merged to a single level 2 segment (representing sl@0: ** MERGE_COUNT^2 updates), and so on. sl@0: ** sl@0: ** A segment merge traverses all segments at a given level in sl@0: ** parallel, performing a straightforward sorted merge. Since segment sl@0: ** leaf nodes are written in to the %_segments table in order, this sl@0: ** merge traverses the underlying sqlite disk structures efficiently. sl@0: ** After the merge, all segment blocks from the merged level are sl@0: ** deleted. sl@0: ** sl@0: ** MERGE_COUNT controls how often we merge segments. 16 seems to be sl@0: ** somewhat of a sweet spot for insertion performance. 32 and 64 show sl@0: ** very similar performance numbers to 16 on insertion, though they're sl@0: ** a tiny bit slower (perhaps due to more overhead in merge-time sl@0: ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than sl@0: ** 16, 2 about 66% slower than 16. sl@0: ** sl@0: ** At query time, high MERGE_COUNT increases the number of segments sl@0: ** which need to be scanned and merged. For instance, with 100k docs sl@0: ** inserted: sl@0: ** sl@0: ** MERGE_COUNT segments sl@0: ** 16 25 sl@0: ** 8 12 sl@0: ** 4 10 sl@0: ** 2 6 sl@0: ** sl@0: ** This appears to have only a moderate impact on queries for very sl@0: ** frequent terms (which are somewhat dominated by segment merge sl@0: ** costs), and infrequent and non-existent terms still seem to be fast sl@0: ** even with many segments. sl@0: ** sl@0: ** TODO(shess) That said, it would be nice to have a better query-side sl@0: ** argument for MERGE_COUNT of 16. Also, it is possible/likely that sl@0: ** optimizations to things like doclist merging will swing the sweet sl@0: ** spot around. sl@0: ** sl@0: ** sl@0: ** sl@0: **** Handling of deletions and updates **** sl@0: ** Since we're using a segmented structure, with no docid-oriented sl@0: ** index into the term index, we clearly cannot simply update the term sl@0: ** index when a document is deleted or updated. For deletions, we sl@0: ** write an empty doclist (varint(docid) varint(POS_END)), for updates sl@0: ** we simply write the new doclist. Segment merges overwrite older sl@0: ** data for a particular docid with newer data, so deletes or updates sl@0: ** will eventually overtake the earlier data and knock it out. The sl@0: ** query logic likewise merges doclists so that newer data knocks out sl@0: ** older data. sl@0: ** sl@0: ** TODO(shess) Provide a VACUUM type operation to clear out all sl@0: ** deletions and duplications. This would basically be a forced merge sl@0: ** into a single segment. sl@0: */ sl@0: sl@0: #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) sl@0: sl@0: #if defined(SQLITE_ENABLE_FTS2) && !defined(SQLITE_CORE) sl@0: # define SQLITE_CORE 1 sl@0: #endif sl@0: sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: sl@0: #include "fts2.h" sl@0: #include "fts2_hash.h" sl@0: #include "fts2_tokenizer.h" sl@0: #include "sqlite3.h" sl@0: #include "sqlite3ext.h" sl@0: SQLITE_EXTENSION_INIT1 sl@0: sl@0: sl@0: /* TODO(shess) MAN, this thing needs some refactoring. At minimum, it sl@0: ** would be nice to order the file better, perhaps something along the sl@0: ** lines of: sl@0: ** sl@0: ** - utility functions sl@0: ** - table setup functions sl@0: ** - table update functions sl@0: ** - table query functions sl@0: ** sl@0: ** Put the query functions last because they're likely to reference sl@0: ** typedefs or functions from the table update section. sl@0: */ sl@0: sl@0: #if 0 sl@0: # define TRACE(A) printf A; fflush(stdout) sl@0: #else sl@0: # define TRACE(A) sl@0: #endif sl@0: sl@0: /* It is not safe to call isspace(), tolower(), or isalnum() on sl@0: ** hi-bit-set characters. This is the same solution used in the sl@0: ** tokenizer. sl@0: */ sl@0: /* TODO(shess) The snippet-generation code should be using the sl@0: ** tokenizer-generated tokens rather than doing its own local sl@0: ** tokenization. sl@0: */ sl@0: /* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */ sl@0: static int safe_isspace(char c){ sl@0: return (c&0x80)==0 ? isspace(c) : 0; sl@0: } sl@0: static int safe_tolower(char c){ sl@0: return (c&0x80)==0 ? tolower(c) : c; sl@0: } sl@0: static int safe_isalnum(char c){ sl@0: return (c&0x80)==0 ? isalnum(c) : 0; sl@0: } sl@0: sl@0: typedef enum DocListType { sl@0: DL_DOCIDS, /* docids only */ sl@0: DL_POSITIONS, /* docids + positions */ sl@0: DL_POSITIONS_OFFSETS /* docids + positions + offsets */ sl@0: } DocListType; sl@0: sl@0: /* sl@0: ** By default, only positions and not offsets are stored in the doclists. sl@0: ** To change this so that offsets are stored too, compile with sl@0: ** sl@0: ** -DDL_DEFAULT=DL_POSITIONS_OFFSETS sl@0: ** sl@0: ** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted sl@0: ** into (no deletes or updates). sl@0: */ sl@0: #ifndef DL_DEFAULT sl@0: # define DL_DEFAULT DL_POSITIONS sl@0: #endif sl@0: sl@0: enum { sl@0: POS_END = 0, /* end of this position list */ sl@0: POS_COLUMN, /* followed by new column number */ sl@0: POS_BASE sl@0: }; sl@0: sl@0: /* MERGE_COUNT controls how often we merge segments (see comment at sl@0: ** top of file). sl@0: */ sl@0: #define MERGE_COUNT 16 sl@0: sl@0: /* utility functions */ sl@0: sl@0: /* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single sl@0: ** record to prevent errors of the form: sl@0: ** sl@0: ** my_function(SomeType *b){ sl@0: ** memset(b, '\0', sizeof(b)); // sizeof(b)!=sizeof(*b) sl@0: ** } sl@0: */ sl@0: /* TODO(shess) Obvious candidates for a header file. */ sl@0: #define CLEAR(b) memset(b, '\0', sizeof(*(b))) sl@0: sl@0: #ifndef NDEBUG sl@0: # define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b))) sl@0: #else sl@0: # define SCRAMBLE(b) sl@0: #endif sl@0: sl@0: /* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */ sl@0: #define VARINT_MAX 10 sl@0: sl@0: /* Write a 64-bit variable-length integer to memory starting at p[0]. sl@0: * The length of data written will be between 1 and VARINT_MAX bytes. sl@0: * The number of bytes written is returned. */ sl@0: static int putVarint(char *p, sqlite_int64 v){ sl@0: unsigned char *q = (unsigned char *) p; sl@0: sqlite_uint64 vu = v; sl@0: do{ sl@0: *q++ = (unsigned char) ((vu & 0x7f) | 0x80); sl@0: vu >>= 7; sl@0: }while( vu!=0 ); sl@0: q[-1] &= 0x7f; /* turn off high bit in final byte */ sl@0: assert( q - (unsigned char *)p <= VARINT_MAX ); sl@0: return (int) (q - (unsigned char *)p); sl@0: } sl@0: sl@0: /* Read a 64-bit variable-length integer from memory starting at p[0]. sl@0: * Return the number of bytes read, or 0 on error. sl@0: * The value is stored in *v. */ sl@0: static int getVarint(const char *p, sqlite_int64 *v){ sl@0: const unsigned char *q = (const unsigned char *) p; sl@0: sqlite_uint64 x = 0, y = 1; sl@0: while( (*q & 0x80) == 0x80 ){ sl@0: x += y * (*q++ & 0x7f); sl@0: y <<= 7; sl@0: if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */ sl@0: assert( 0 ); sl@0: return 0; sl@0: } sl@0: } sl@0: x += y * (*q++); sl@0: *v = (sqlite_int64) x; sl@0: return (int) (q - (unsigned char *)p); sl@0: } sl@0: sl@0: static int getVarint32(const char *p, int *pi){ sl@0: sqlite_int64 i; sl@0: int ret = getVarint(p, &i); sl@0: *pi = (int) i; sl@0: assert( *pi==i ); sl@0: return ret; sl@0: } sl@0: sl@0: /*******************************************************************/ sl@0: /* DataBuffer is used to collect data into a buffer in piecemeal sl@0: ** fashion. It implements the usual distinction between amount of sl@0: ** data currently stored (nData) and buffer capacity (nCapacity). sl@0: ** sl@0: ** dataBufferInit - create a buffer with given initial capacity. sl@0: ** dataBufferReset - forget buffer's data, retaining capacity. sl@0: ** dataBufferDestroy - free buffer's data. sl@0: ** dataBufferSwap - swap contents of two buffers. sl@0: ** dataBufferExpand - expand capacity without adding data. sl@0: ** dataBufferAppend - append data. sl@0: ** dataBufferAppend2 - append two pieces of data at once. sl@0: ** dataBufferReplace - replace buffer's data. sl@0: */ sl@0: typedef struct DataBuffer { sl@0: char *pData; /* Pointer to malloc'ed buffer. */ sl@0: int nCapacity; /* Size of pData buffer. */ sl@0: int nData; /* End of data loaded into pData. */ sl@0: } DataBuffer; sl@0: sl@0: static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){ sl@0: assert( nCapacity>=0 ); sl@0: pBuffer->nData = 0; sl@0: pBuffer->nCapacity = nCapacity; sl@0: pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity); sl@0: } sl@0: static void dataBufferReset(DataBuffer *pBuffer){ sl@0: pBuffer->nData = 0; sl@0: } sl@0: static void dataBufferDestroy(DataBuffer *pBuffer){ sl@0: if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData); sl@0: SCRAMBLE(pBuffer); sl@0: } sl@0: static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){ sl@0: DataBuffer tmp = *pBuffer1; sl@0: *pBuffer1 = *pBuffer2; sl@0: *pBuffer2 = tmp; sl@0: } sl@0: static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){ sl@0: assert( nAddCapacity>0 ); sl@0: /* TODO(shess) Consider expanding more aggressively. Note that the sl@0: ** underlying malloc implementation may take care of such things for sl@0: ** us already. sl@0: */ sl@0: if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){ sl@0: pBuffer->nCapacity = pBuffer->nData+nAddCapacity; sl@0: pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity); sl@0: } sl@0: } sl@0: static void dataBufferAppend(DataBuffer *pBuffer, sl@0: const char *pSource, int nSource){ sl@0: assert( nSource>0 && pSource!=NULL ); sl@0: dataBufferExpand(pBuffer, nSource); sl@0: memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource); sl@0: pBuffer->nData += nSource; sl@0: } sl@0: static void dataBufferAppend2(DataBuffer *pBuffer, sl@0: const char *pSource1, int nSource1, sl@0: const char *pSource2, int nSource2){ sl@0: assert( nSource1>0 && pSource1!=NULL ); sl@0: assert( nSource2>0 && pSource2!=NULL ); sl@0: dataBufferExpand(pBuffer, nSource1+nSource2); sl@0: memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1); sl@0: memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2); sl@0: pBuffer->nData += nSource1+nSource2; sl@0: } sl@0: static void dataBufferReplace(DataBuffer *pBuffer, sl@0: const char *pSource, int nSource){ sl@0: dataBufferReset(pBuffer); sl@0: dataBufferAppend(pBuffer, pSource, nSource); sl@0: } sl@0: sl@0: /* StringBuffer is a null-terminated version of DataBuffer. */ sl@0: typedef struct StringBuffer { sl@0: DataBuffer b; /* Includes null terminator. */ sl@0: } StringBuffer; sl@0: sl@0: static void initStringBuffer(StringBuffer *sb){ sl@0: dataBufferInit(&sb->b, 100); sl@0: dataBufferReplace(&sb->b, "", 1); sl@0: } sl@0: static int stringBufferLength(StringBuffer *sb){ sl@0: return sb->b.nData-1; sl@0: } sl@0: static char *stringBufferData(StringBuffer *sb){ sl@0: return sb->b.pData; sl@0: } sl@0: static void stringBufferDestroy(StringBuffer *sb){ sl@0: dataBufferDestroy(&sb->b); sl@0: } sl@0: sl@0: static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){ sl@0: assert( sb->b.nData>0 ); sl@0: if( nFrom>0 ){ sl@0: sb->b.nData--; sl@0: dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1); sl@0: } sl@0: } sl@0: static void append(StringBuffer *sb, const char *zFrom){ sl@0: nappend(sb, zFrom, strlen(zFrom)); sl@0: } sl@0: sl@0: /* Append a list of strings separated by commas. */ sl@0: static void appendList(StringBuffer *sb, int nString, char **azString){ sl@0: int i; sl@0: for(i=0; i0 ) append(sb, ", "); sl@0: append(sb, azString[i]); sl@0: } sl@0: } sl@0: sl@0: static int endsInWhiteSpace(StringBuffer *p){ sl@0: return stringBufferLength(p)>0 && sl@0: safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]); sl@0: } sl@0: sl@0: /* If the StringBuffer ends in something other than white space, add a sl@0: ** single space character to the end. sl@0: */ sl@0: static void appendWhiteSpace(StringBuffer *p){ sl@0: if( stringBufferLength(p)==0 ) return; sl@0: if( !endsInWhiteSpace(p) ) append(p, " "); sl@0: } sl@0: sl@0: /* Remove white space from the end of the StringBuffer */ sl@0: static void trimWhiteSpace(StringBuffer *p){ sl@0: while( endsInWhiteSpace(p) ){ sl@0: p->b.pData[--p->b.nData-1] = '\0'; sl@0: } sl@0: } sl@0: sl@0: /*******************************************************************/ sl@0: /* DLReader is used to read document elements from a doclist. The sl@0: ** current docid is cached, so dlrDocid() is fast. DLReader does not sl@0: ** own the doclist buffer. sl@0: ** sl@0: ** dlrAtEnd - true if there's no more data to read. sl@0: ** dlrDocid - docid of current document. sl@0: ** dlrDocData - doclist data for current document (including docid). sl@0: ** dlrDocDataBytes - length of same. sl@0: ** dlrAllDataBytes - length of all remaining data. sl@0: ** dlrPosData - position data for current document. sl@0: ** dlrPosDataLen - length of pos data for current document (incl POS_END). sl@0: ** dlrStep - step to current document. sl@0: ** dlrInit - initial for doclist of given type against given data. sl@0: ** dlrDestroy - clean up. sl@0: ** sl@0: ** Expected usage is something like: sl@0: ** sl@0: ** DLReader reader; sl@0: ** dlrInit(&reader, pData, nData); sl@0: ** while( !dlrAtEnd(&reader) ){ sl@0: ** // calls to dlrDocid() and kin. sl@0: ** dlrStep(&reader); sl@0: ** } sl@0: ** dlrDestroy(&reader); sl@0: */ sl@0: typedef struct DLReader { sl@0: DocListType iType; sl@0: const char *pData; sl@0: int nData; sl@0: sl@0: sqlite_int64 iDocid; sl@0: int nElement; sl@0: } DLReader; sl@0: sl@0: static int dlrAtEnd(DLReader *pReader){ sl@0: assert( pReader->nData>=0 ); sl@0: return pReader->nData==0; sl@0: } sl@0: static sqlite_int64 dlrDocid(DLReader *pReader){ sl@0: assert( !dlrAtEnd(pReader) ); sl@0: return pReader->iDocid; sl@0: } sl@0: static const char *dlrDocData(DLReader *pReader){ sl@0: assert( !dlrAtEnd(pReader) ); sl@0: return pReader->pData; sl@0: } sl@0: static int dlrDocDataBytes(DLReader *pReader){ sl@0: assert( !dlrAtEnd(pReader) ); sl@0: return pReader->nElement; sl@0: } sl@0: static int dlrAllDataBytes(DLReader *pReader){ sl@0: assert( !dlrAtEnd(pReader) ); sl@0: return pReader->nData; sl@0: } sl@0: /* TODO(shess) Consider adding a field to track iDocid varint length sl@0: ** to make these two functions faster. This might matter (a tiny bit) sl@0: ** for queries. sl@0: */ sl@0: static const char *dlrPosData(DLReader *pReader){ sl@0: sqlite_int64 iDummy; sl@0: int n = getVarint(pReader->pData, &iDummy); sl@0: assert( !dlrAtEnd(pReader) ); sl@0: return pReader->pData+n; sl@0: } sl@0: static int dlrPosDataLen(DLReader *pReader){ sl@0: sqlite_int64 iDummy; sl@0: int n = getVarint(pReader->pData, &iDummy); sl@0: assert( !dlrAtEnd(pReader) ); sl@0: return pReader->nElement-n; sl@0: } sl@0: static void dlrStep(DLReader *pReader){ sl@0: assert( !dlrAtEnd(pReader) ); sl@0: sl@0: /* Skip past current doclist element. */ sl@0: assert( pReader->nElement<=pReader->nData ); sl@0: pReader->pData += pReader->nElement; sl@0: pReader->nData -= pReader->nElement; sl@0: sl@0: /* If there is more data, read the next doclist element. */ sl@0: if( pReader->nData!=0 ){ sl@0: sqlite_int64 iDocidDelta; sl@0: int iDummy, n = getVarint(pReader->pData, &iDocidDelta); sl@0: pReader->iDocid += iDocidDelta; sl@0: if( pReader->iType>=DL_POSITIONS ){ sl@0: assert( nnData ); sl@0: while( 1 ){ sl@0: n += getVarint32(pReader->pData+n, &iDummy); sl@0: assert( n<=pReader->nData ); sl@0: if( iDummy==POS_END ) break; sl@0: if( iDummy==POS_COLUMN ){ sl@0: n += getVarint32(pReader->pData+n, &iDummy); sl@0: assert( nnData ); sl@0: }else if( pReader->iType==DL_POSITIONS_OFFSETS ){ sl@0: n += getVarint32(pReader->pData+n, &iDummy); sl@0: n += getVarint32(pReader->pData+n, &iDummy); sl@0: assert( nnData ); sl@0: } sl@0: } sl@0: } sl@0: pReader->nElement = n; sl@0: assert( pReader->nElement<=pReader->nData ); sl@0: } sl@0: } sl@0: static void dlrInit(DLReader *pReader, DocListType iType, sl@0: const char *pData, int nData){ sl@0: assert( pData!=NULL && nData!=0 ); sl@0: pReader->iType = iType; sl@0: pReader->pData = pData; sl@0: pReader->nData = nData; sl@0: pReader->nElement = 0; sl@0: pReader->iDocid = 0; sl@0: sl@0: /* Load the first element's data. There must be a first element. */ sl@0: dlrStep(pReader); sl@0: } sl@0: static void dlrDestroy(DLReader *pReader){ sl@0: SCRAMBLE(pReader); sl@0: } sl@0: sl@0: #ifndef NDEBUG sl@0: /* Verify that the doclist can be validly decoded. Also returns the sl@0: ** last docid found because it is convenient in other assertions for sl@0: ** DLWriter. sl@0: */ sl@0: static void docListValidate(DocListType iType, const char *pData, int nData, sl@0: sqlite_int64 *pLastDocid){ sl@0: sqlite_int64 iPrevDocid = 0; sl@0: assert( nData>0 ); sl@0: assert( pData!=0 ); sl@0: assert( pData+nData>pData ); sl@0: while( nData!=0 ){ sl@0: sqlite_int64 iDocidDelta; sl@0: int n = getVarint(pData, &iDocidDelta); sl@0: iPrevDocid += iDocidDelta; sl@0: if( iType>DL_DOCIDS ){ sl@0: int iDummy; sl@0: while( 1 ){ sl@0: n += getVarint32(pData+n, &iDummy); sl@0: if( iDummy==POS_END ) break; sl@0: if( iDummy==POS_COLUMN ){ sl@0: n += getVarint32(pData+n, &iDummy); sl@0: }else if( iType>DL_POSITIONS ){ sl@0: n += getVarint32(pData+n, &iDummy); sl@0: n += getVarint32(pData+n, &iDummy); sl@0: } sl@0: assert( n<=nData ); sl@0: } sl@0: } sl@0: assert( n<=nData ); sl@0: pData += n; sl@0: nData -= n; sl@0: } sl@0: if( pLastDocid ) *pLastDocid = iPrevDocid; sl@0: } sl@0: #define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o) sl@0: #else sl@0: #define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 ) sl@0: #endif sl@0: sl@0: /*******************************************************************/ sl@0: /* DLWriter is used to write doclist data to a DataBuffer. DLWriter sl@0: ** always appends to the buffer and does not own it. sl@0: ** sl@0: ** dlwInit - initialize to write a given type doclistto a buffer. sl@0: ** dlwDestroy - clear the writer's memory. Does not free buffer. sl@0: ** dlwAppend - append raw doclist data to buffer. sl@0: ** dlwCopy - copy next doclist from reader to writer. sl@0: ** dlwAdd - construct doclist element and append to buffer. sl@0: ** Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter). sl@0: */ sl@0: typedef struct DLWriter { sl@0: DocListType iType; sl@0: DataBuffer *b; sl@0: sqlite_int64 iPrevDocid; sl@0: #ifndef NDEBUG sl@0: int has_iPrevDocid; sl@0: #endif sl@0: } DLWriter; sl@0: sl@0: static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){ sl@0: pWriter->b = b; sl@0: pWriter->iType = iType; sl@0: pWriter->iPrevDocid = 0; sl@0: #ifndef NDEBUG sl@0: pWriter->has_iPrevDocid = 0; sl@0: #endif sl@0: } sl@0: static void dlwDestroy(DLWriter *pWriter){ sl@0: SCRAMBLE(pWriter); sl@0: } sl@0: /* iFirstDocid is the first docid in the doclist in pData. It is sl@0: ** needed because pData may point within a larger doclist, in which sl@0: ** case the first item would be delta-encoded. sl@0: ** sl@0: ** iLastDocid is the final docid in the doclist in pData. It is sl@0: ** needed to create the new iPrevDocid for future delta-encoding. The sl@0: ** code could decode the passed doclist to recreate iLastDocid, but sl@0: ** the only current user (docListMerge) already has decoded this sl@0: ** information. sl@0: */ sl@0: /* TODO(shess) This has become just a helper for docListMerge. sl@0: ** Consider a refactor to make this cleaner. sl@0: */ sl@0: static void dlwAppend(DLWriter *pWriter, sl@0: const char *pData, int nData, sl@0: sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){ sl@0: sqlite_int64 iDocid = 0; sl@0: char c[VARINT_MAX]; sl@0: int nFirstOld, nFirstNew; /* Old and new varint len of first docid. */ sl@0: #ifndef NDEBUG sl@0: sqlite_int64 iLastDocidDelta; sl@0: #endif sl@0: sl@0: /* Recode the initial docid as delta from iPrevDocid. */ sl@0: nFirstOld = getVarint(pData, &iDocid); sl@0: assert( nFirstOldiType==DL_DOCIDS) ); sl@0: nFirstNew = putVarint(c, iFirstDocid-pWriter->iPrevDocid); sl@0: sl@0: /* Verify that the incoming doclist is valid AND that it ends with sl@0: ** the expected docid. This is essential because we'll trust this sl@0: ** docid in future delta-encoding. sl@0: */ sl@0: ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta); sl@0: assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta ); sl@0: sl@0: /* Append recoded initial docid and everything else. Rest of docids sl@0: ** should have been delta-encoded from previous initial docid. sl@0: */ sl@0: if( nFirstOldb, c, nFirstNew, sl@0: pData+nFirstOld, nData-nFirstOld); sl@0: }else{ sl@0: dataBufferAppend(pWriter->b, c, nFirstNew); sl@0: } sl@0: pWriter->iPrevDocid = iLastDocid; sl@0: } sl@0: static void dlwCopy(DLWriter *pWriter, DLReader *pReader){ sl@0: dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader), sl@0: dlrDocid(pReader), dlrDocid(pReader)); sl@0: } sl@0: static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){ sl@0: char c[VARINT_MAX]; sl@0: int n = putVarint(c, iDocid-pWriter->iPrevDocid); sl@0: sl@0: /* Docids must ascend. */ sl@0: assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid ); sl@0: assert( pWriter->iType==DL_DOCIDS ); sl@0: sl@0: dataBufferAppend(pWriter->b, c, n); sl@0: pWriter->iPrevDocid = iDocid; sl@0: #ifndef NDEBUG sl@0: pWriter->has_iPrevDocid = 1; sl@0: #endif sl@0: } sl@0: sl@0: /*******************************************************************/ sl@0: /* PLReader is used to read data from a document's position list. As sl@0: ** the caller steps through the list, data is cached so that varints sl@0: ** only need to be decoded once. sl@0: ** sl@0: ** plrInit, plrDestroy - create/destroy a reader. sl@0: ** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors sl@0: ** plrAtEnd - at end of stream, only call plrDestroy once true. sl@0: ** plrStep - step to the next element. sl@0: */ sl@0: typedef struct PLReader { sl@0: /* These refer to the next position's data. nData will reach 0 when sl@0: ** reading the last position, so plrStep() signals EOF by setting sl@0: ** pData to NULL. sl@0: */ sl@0: const char *pData; sl@0: int nData; sl@0: sl@0: DocListType iType; sl@0: int iColumn; /* the last column read */ sl@0: int iPosition; /* the last position read */ sl@0: int iStartOffset; /* the last start offset read */ sl@0: int iEndOffset; /* the last end offset read */ sl@0: } PLReader; sl@0: sl@0: static int plrAtEnd(PLReader *pReader){ sl@0: return pReader->pData==NULL; sl@0: } sl@0: static int plrColumn(PLReader *pReader){ sl@0: assert( !plrAtEnd(pReader) ); sl@0: return pReader->iColumn; sl@0: } sl@0: static int plrPosition(PLReader *pReader){ sl@0: assert( !plrAtEnd(pReader) ); sl@0: return pReader->iPosition; sl@0: } sl@0: static int plrStartOffset(PLReader *pReader){ sl@0: assert( !plrAtEnd(pReader) ); sl@0: return pReader->iStartOffset; sl@0: } sl@0: static int plrEndOffset(PLReader *pReader){ sl@0: assert( !plrAtEnd(pReader) ); sl@0: return pReader->iEndOffset; sl@0: } sl@0: static void plrStep(PLReader *pReader){ sl@0: int i, n; sl@0: sl@0: assert( !plrAtEnd(pReader) ); sl@0: sl@0: if( pReader->nData==0 ){ sl@0: pReader->pData = NULL; sl@0: return; sl@0: } sl@0: sl@0: n = getVarint32(pReader->pData, &i); sl@0: if( i==POS_COLUMN ){ sl@0: n += getVarint32(pReader->pData+n, &pReader->iColumn); sl@0: pReader->iPosition = 0; sl@0: pReader->iStartOffset = 0; sl@0: n += getVarint32(pReader->pData+n, &i); sl@0: } sl@0: /* Should never see adjacent column changes. */ sl@0: assert( i!=POS_COLUMN ); sl@0: sl@0: if( i==POS_END ){ sl@0: pReader->nData = 0; sl@0: pReader->pData = NULL; sl@0: return; sl@0: } sl@0: sl@0: pReader->iPosition += i-POS_BASE; sl@0: if( pReader->iType==DL_POSITIONS_OFFSETS ){ sl@0: n += getVarint32(pReader->pData+n, &i); sl@0: pReader->iStartOffset += i; sl@0: n += getVarint32(pReader->pData+n, &i); sl@0: pReader->iEndOffset = pReader->iStartOffset+i; sl@0: } sl@0: assert( n<=pReader->nData ); sl@0: pReader->pData += n; sl@0: pReader->nData -= n; sl@0: } sl@0: sl@0: static void plrInit(PLReader *pReader, DLReader *pDLReader){ sl@0: pReader->pData = dlrPosData(pDLReader); sl@0: pReader->nData = dlrPosDataLen(pDLReader); sl@0: pReader->iType = pDLReader->iType; sl@0: pReader->iColumn = 0; sl@0: pReader->iPosition = 0; sl@0: pReader->iStartOffset = 0; sl@0: pReader->iEndOffset = 0; sl@0: plrStep(pReader); sl@0: } sl@0: static void plrDestroy(PLReader *pReader){ sl@0: SCRAMBLE(pReader); sl@0: } sl@0: sl@0: /*******************************************************************/ sl@0: /* PLWriter is used in constructing a document's position list. As a sl@0: ** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op. sl@0: ** PLWriter writes to the associated DLWriter's buffer. sl@0: ** sl@0: ** plwInit - init for writing a document's poslist. sl@0: ** plwDestroy - clear a writer. sl@0: ** plwAdd - append position and offset information. sl@0: ** plwCopy - copy next position's data from reader to writer. sl@0: ** plwTerminate - add any necessary doclist terminator. sl@0: ** sl@0: ** Calling plwAdd() after plwTerminate() may result in a corrupt sl@0: ** doclist. sl@0: */ sl@0: /* TODO(shess) Until we've written the second item, we can cache the sl@0: ** first item's information. Then we'd have three states: sl@0: ** sl@0: ** - initialized with docid, no positions. sl@0: ** - docid and one position. sl@0: ** - docid and multiple positions. sl@0: ** sl@0: ** Only the last state needs to actually write to dlw->b, which would sl@0: ** be an improvement in the DLCollector case. sl@0: */ sl@0: typedef struct PLWriter { sl@0: DLWriter *dlw; sl@0: sl@0: int iColumn; /* the last column written */ sl@0: int iPos; /* the last position written */ sl@0: int iOffset; /* the last start offset written */ sl@0: } PLWriter; sl@0: sl@0: /* TODO(shess) In the case where the parent is reading these values sl@0: ** from a PLReader, we could optimize to a copy if that PLReader has sl@0: ** the same type as pWriter. sl@0: */ sl@0: static void plwAdd(PLWriter *pWriter, int iColumn, int iPos, sl@0: int iStartOffset, int iEndOffset){ sl@0: /* Worst-case space for POS_COLUMN, iColumn, iPosDelta, sl@0: ** iStartOffsetDelta, and iEndOffsetDelta. sl@0: */ sl@0: char c[5*VARINT_MAX]; sl@0: int n = 0; sl@0: sl@0: /* Ban plwAdd() after plwTerminate(). */ sl@0: assert( pWriter->iPos!=-1 ); sl@0: sl@0: if( pWriter->dlw->iType==DL_DOCIDS ) return; sl@0: sl@0: if( iColumn!=pWriter->iColumn ){ sl@0: n += putVarint(c+n, POS_COLUMN); sl@0: n += putVarint(c+n, iColumn); sl@0: pWriter->iColumn = iColumn; sl@0: pWriter->iPos = 0; sl@0: pWriter->iOffset = 0; sl@0: } sl@0: assert( iPos>=pWriter->iPos ); sl@0: n += putVarint(c+n, POS_BASE+(iPos-pWriter->iPos)); sl@0: pWriter->iPos = iPos; sl@0: if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){ sl@0: assert( iStartOffset>=pWriter->iOffset ); sl@0: n += putVarint(c+n, iStartOffset-pWriter->iOffset); sl@0: pWriter->iOffset = iStartOffset; sl@0: assert( iEndOffset>=iStartOffset ); sl@0: n += putVarint(c+n, iEndOffset-iStartOffset); sl@0: } sl@0: dataBufferAppend(pWriter->dlw->b, c, n); sl@0: } sl@0: static void plwCopy(PLWriter *pWriter, PLReader *pReader){ sl@0: plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader), sl@0: plrStartOffset(pReader), plrEndOffset(pReader)); sl@0: } sl@0: static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){ sl@0: char c[VARINT_MAX]; sl@0: int n; sl@0: sl@0: pWriter->dlw = dlw; sl@0: sl@0: /* Docids must ascend. */ sl@0: assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid ); sl@0: n = putVarint(c, iDocid-pWriter->dlw->iPrevDocid); sl@0: dataBufferAppend(pWriter->dlw->b, c, n); sl@0: pWriter->dlw->iPrevDocid = iDocid; sl@0: #ifndef NDEBUG sl@0: pWriter->dlw->has_iPrevDocid = 1; sl@0: #endif sl@0: sl@0: pWriter->iColumn = 0; sl@0: pWriter->iPos = 0; sl@0: pWriter->iOffset = 0; sl@0: } sl@0: /* TODO(shess) Should plwDestroy() also terminate the doclist? But sl@0: ** then plwDestroy() would no longer be just a destructor, it would sl@0: ** also be doing work, which isn't consistent with the overall idiom. sl@0: ** Another option would be for plwAdd() to always append any necessary sl@0: ** terminator, so that the output is always correct. But that would sl@0: ** add incremental work to the common case with the only benefit being sl@0: ** API elegance. Punt for now. sl@0: */ sl@0: static void plwTerminate(PLWriter *pWriter){ sl@0: if( pWriter->dlw->iType>DL_DOCIDS ){ sl@0: char c[VARINT_MAX]; sl@0: int n = putVarint(c, POS_END); sl@0: dataBufferAppend(pWriter->dlw->b, c, n); sl@0: } sl@0: #ifndef NDEBUG sl@0: /* Mark as terminated for assert in plwAdd(). */ sl@0: pWriter->iPos = -1; sl@0: #endif sl@0: } sl@0: static void plwDestroy(PLWriter *pWriter){ sl@0: SCRAMBLE(pWriter); sl@0: } sl@0: sl@0: /*******************************************************************/ sl@0: /* DLCollector wraps PLWriter and DLWriter to provide a sl@0: ** dynamically-allocated doclist area to use during tokenization. sl@0: ** sl@0: ** dlcNew - malloc up and initialize a collector. sl@0: ** dlcDelete - destroy a collector and all contained items. sl@0: ** dlcAddPos - append position and offset information. sl@0: ** dlcAddDoclist - add the collected doclist to the given buffer. sl@0: ** dlcNext - terminate the current document and open another. sl@0: */ sl@0: typedef struct DLCollector { sl@0: DataBuffer b; sl@0: DLWriter dlw; sl@0: PLWriter plw; sl@0: } DLCollector; sl@0: sl@0: /* TODO(shess) This could also be done by calling plwTerminate() and sl@0: ** dataBufferAppend(). I tried that, expecting nominal performance sl@0: ** differences, but it seemed to pretty reliably be worth 1% to code sl@0: ** it this way. I suspect it is the incremental malloc overhead (some sl@0: ** percentage of the plwTerminate() calls will cause a realloc), so sl@0: ** this might be worth revisiting if the DataBuffer implementation sl@0: ** changes. sl@0: */ sl@0: static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){ sl@0: if( pCollector->dlw.iType>DL_DOCIDS ){ sl@0: char c[VARINT_MAX]; sl@0: int n = putVarint(c, POS_END); sl@0: dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n); sl@0: }else{ sl@0: dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData); sl@0: } sl@0: } sl@0: static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){ sl@0: plwTerminate(&pCollector->plw); sl@0: plwDestroy(&pCollector->plw); sl@0: plwInit(&pCollector->plw, &pCollector->dlw, iDocid); sl@0: } sl@0: static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos, sl@0: int iStartOffset, int iEndOffset){ sl@0: plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset); sl@0: } sl@0: sl@0: static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){ sl@0: DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector)); sl@0: dataBufferInit(&pCollector->b, 0); sl@0: dlwInit(&pCollector->dlw, iType, &pCollector->b); sl@0: plwInit(&pCollector->plw, &pCollector->dlw, iDocid); sl@0: return pCollector; sl@0: } sl@0: static void dlcDelete(DLCollector *pCollector){ sl@0: plwDestroy(&pCollector->plw); sl@0: dlwDestroy(&pCollector->dlw); sl@0: dataBufferDestroy(&pCollector->b); sl@0: SCRAMBLE(pCollector); sl@0: sqlite3_free(pCollector); sl@0: } sl@0: sl@0: sl@0: /* Copy the doclist data of iType in pData/nData into *out, trimming sl@0: ** unnecessary data as we go. Only columns matching iColumn are sl@0: ** copied, all columns copied if iColumn is -1. Elements with no sl@0: ** matching columns are dropped. The output is an iOutType doclist. sl@0: */ sl@0: /* NOTE(shess) This code is only valid after all doclists are merged. sl@0: ** If this is run before merges, then doclist items which represent sl@0: ** deletion will be trimmed, and will thus not effect a deletion sl@0: ** during the merge. sl@0: */ sl@0: static void docListTrim(DocListType iType, const char *pData, int nData, sl@0: int iColumn, DocListType iOutType, DataBuffer *out){ sl@0: DLReader dlReader; sl@0: DLWriter dlWriter; sl@0: sl@0: assert( iOutType<=iType ); sl@0: sl@0: dlrInit(&dlReader, iType, pData, nData); sl@0: dlwInit(&dlWriter, iOutType, out); sl@0: sl@0: while( !dlrAtEnd(&dlReader) ){ sl@0: PLReader plReader; sl@0: PLWriter plWriter; sl@0: int match = 0; sl@0: sl@0: plrInit(&plReader, &dlReader); sl@0: sl@0: while( !plrAtEnd(&plReader) ){ sl@0: if( iColumn==-1 || plrColumn(&plReader)==iColumn ){ sl@0: if( !match ){ sl@0: plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader)); sl@0: match = 1; sl@0: } sl@0: plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader), sl@0: plrStartOffset(&plReader), plrEndOffset(&plReader)); sl@0: } sl@0: plrStep(&plReader); sl@0: } sl@0: if( match ){ sl@0: plwTerminate(&plWriter); sl@0: plwDestroy(&plWriter); sl@0: } sl@0: sl@0: plrDestroy(&plReader); sl@0: dlrStep(&dlReader); sl@0: } sl@0: dlwDestroy(&dlWriter); sl@0: dlrDestroy(&dlReader); sl@0: } sl@0: sl@0: /* Used by docListMerge() to keep doclists in the ascending order by sl@0: ** docid, then ascending order by age (so the newest comes first). sl@0: */ sl@0: typedef struct OrderedDLReader { sl@0: DLReader *pReader; sl@0: sl@0: /* TODO(shess) If we assume that docListMerge pReaders is ordered by sl@0: ** age (which we do), then we could use pReader comparisons to break sl@0: ** ties. sl@0: */ sl@0: int idx; sl@0: } OrderedDLReader; sl@0: sl@0: /* Order eof to end, then by docid asc, idx desc. */ sl@0: static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){ sl@0: if( dlrAtEnd(r1->pReader) ){ sl@0: if( dlrAtEnd(r2->pReader) ) return 0; /* Both atEnd(). */ sl@0: return 1; /* Only r1 atEnd(). */ sl@0: } sl@0: if( dlrAtEnd(r2->pReader) ) return -1; /* Only r2 atEnd(). */ sl@0: sl@0: if( dlrDocid(r1->pReader)pReader) ) return -1; sl@0: if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1; sl@0: sl@0: /* Descending on idx. */ sl@0: return r2->idx-r1->idx; sl@0: } sl@0: sl@0: /* Bubble p[0] to appropriate place in p[1..n-1]. Assumes that sl@0: ** p[1..n-1] is already sorted. sl@0: */ sl@0: /* TODO(shess) Is this frequent enough to warrant a binary search? sl@0: ** Before implementing that, instrument the code to check. In most sl@0: ** current usage, I expect that p[0] will be less than p[1] a very sl@0: ** high proportion of the time. sl@0: */ sl@0: static void orderedDLReaderReorder(OrderedDLReader *p, int n){ sl@0: while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){ sl@0: OrderedDLReader tmp = p[0]; sl@0: p[0] = p[1]; sl@0: p[1] = tmp; sl@0: n--; sl@0: p++; sl@0: } sl@0: } sl@0: sl@0: /* Given an array of doclist readers, merge their doclist elements sl@0: ** into out in sorted order (by docid), dropping elements from older sl@0: ** readers when there is a duplicate docid. pReaders is assumed to be sl@0: ** ordered by age, oldest first. sl@0: */ sl@0: /* TODO(shess) nReaders must be <= MERGE_COUNT. This should probably sl@0: ** be fixed. sl@0: */ sl@0: static void docListMerge(DataBuffer *out, sl@0: DLReader *pReaders, int nReaders){ sl@0: OrderedDLReader readers[MERGE_COUNT]; sl@0: DLWriter writer; sl@0: int i, n; sl@0: const char *pStart = 0; sl@0: int nStart = 0; sl@0: sqlite_int64 iFirstDocid = 0, iLastDocid = 0; sl@0: sl@0: assert( nReaders>0 ); sl@0: if( nReaders==1 ){ sl@0: dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders)); sl@0: return; sl@0: } sl@0: sl@0: assert( nReaders<=MERGE_COUNT ); sl@0: n = 0; sl@0: for(i=0; i0 ){ sl@0: orderedDLReaderReorder(readers+i, nReaders-i); sl@0: } sl@0: sl@0: dlwInit(&writer, pReaders[0].iType, out); sl@0: while( !dlrAtEnd(readers[0].pReader) ){ sl@0: sqlite_int64 iDocid = dlrDocid(readers[0].pReader); sl@0: sl@0: /* If this is a continuation of the current buffer to copy, extend sl@0: ** that buffer. memcpy() seems to be more efficient if it has a sl@0: ** lots of data to copy. sl@0: */ sl@0: if( dlrDocData(readers[0].pReader)==pStart+nStart ){ sl@0: nStart += dlrDocDataBytes(readers[0].pReader); sl@0: }else{ sl@0: if( pStart!=0 ){ sl@0: dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); sl@0: } sl@0: pStart = dlrDocData(readers[0].pReader); sl@0: nStart = dlrDocDataBytes(readers[0].pReader); sl@0: iFirstDocid = iDocid; sl@0: } sl@0: iLastDocid = iDocid; sl@0: dlrStep(readers[0].pReader); sl@0: sl@0: /* Drop all of the older elements with the same docid. */ sl@0: for(i=1; i0 ){ sl@0: orderedDLReaderReorder(readers+i, nReaders-i); sl@0: } sl@0: } sl@0: sl@0: /* Copy over any remaining elements. */ sl@0: if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); sl@0: dlwDestroy(&writer); sl@0: } sl@0: sl@0: /* Helper function for posListUnion(). Compares the current position sl@0: ** between left and right, returning as standard C idiom of <0 if sl@0: ** left0 if left>right, and 0 if left==right. "End" always sl@0: ** compares greater. sl@0: */ sl@0: static int posListCmp(PLReader *pLeft, PLReader *pRight){ sl@0: assert( pLeft->iType==pRight->iType ); sl@0: if( pLeft->iType==DL_DOCIDS ) return 0; sl@0: sl@0: if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1; sl@0: if( plrAtEnd(pRight) ) return -1; sl@0: sl@0: if( plrColumn(pLeft)plrColumn(pRight) ) return 1; sl@0: sl@0: if( plrPosition(pLeft)plrPosition(pRight) ) return 1; sl@0: if( pLeft->iType==DL_POSITIONS ) return 0; sl@0: sl@0: if( plrStartOffset(pLeft)plrStartOffset(pRight) ) return 1; sl@0: sl@0: if( plrEndOffset(pLeft)plrEndOffset(pRight) ) return 1; sl@0: sl@0: return 0; sl@0: } sl@0: sl@0: /* Write the union of position lists in pLeft and pRight to pOut. sl@0: ** "Union" in this case meaning "All unique position tuples". Should sl@0: ** work with any doclist type, though both inputs and the output sl@0: ** should be the same type. sl@0: */ sl@0: static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){ sl@0: PLReader left, right; sl@0: PLWriter writer; sl@0: sl@0: assert( dlrDocid(pLeft)==dlrDocid(pRight) ); sl@0: assert( pLeft->iType==pRight->iType ); sl@0: assert( pLeft->iType==pOut->iType ); sl@0: sl@0: plrInit(&left, pLeft); sl@0: plrInit(&right, pRight); sl@0: plwInit(&writer, pOut, dlrDocid(pLeft)); sl@0: sl@0: while( !plrAtEnd(&left) || !plrAtEnd(&right) ){ sl@0: int c = posListCmp(&left, &right); sl@0: if( c<0 ){ sl@0: plwCopy(&writer, &left); sl@0: plrStep(&left); sl@0: }else if( c>0 ){ sl@0: plwCopy(&writer, &right); sl@0: plrStep(&right); sl@0: }else{ sl@0: plwCopy(&writer, &left); sl@0: plrStep(&left); sl@0: plrStep(&right); sl@0: } sl@0: } sl@0: sl@0: plwTerminate(&writer); sl@0: plwDestroy(&writer); sl@0: plrDestroy(&left); sl@0: plrDestroy(&right); sl@0: } sl@0: sl@0: /* Write the union of doclists in pLeft and pRight to pOut. For sl@0: ** docids in common between the inputs, the union of the position sl@0: ** lists is written. Inputs and outputs are always type DL_DEFAULT. sl@0: */ sl@0: static void docListUnion( sl@0: const char *pLeft, int nLeft, sl@0: const char *pRight, int nRight, sl@0: DataBuffer *pOut /* Write the combined doclist here */ sl@0: ){ sl@0: DLReader left, right; sl@0: DLWriter writer; sl@0: sl@0: if( nLeft==0 ){ sl@0: if( nRight!=0) dataBufferAppend(pOut, pRight, nRight); sl@0: return; sl@0: } sl@0: if( nRight==0 ){ sl@0: dataBufferAppend(pOut, pLeft, nLeft); sl@0: return; sl@0: } sl@0: sl@0: dlrInit(&left, DL_DEFAULT, pLeft, nLeft); sl@0: dlrInit(&right, DL_DEFAULT, pRight, nRight); sl@0: dlwInit(&writer, DL_DEFAULT, pOut); sl@0: sl@0: while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){ sl@0: if( dlrAtEnd(&right) ){ sl@0: dlwCopy(&writer, &left); sl@0: dlrStep(&left); sl@0: }else if( dlrAtEnd(&left) ){ sl@0: dlwCopy(&writer, &right); sl@0: dlrStep(&right); sl@0: }else if( dlrDocid(&left)dlrDocid(&right) ){ sl@0: dlwCopy(&writer, &right); sl@0: dlrStep(&right); sl@0: }else{ sl@0: posListUnion(&left, &right, &writer); sl@0: dlrStep(&left); sl@0: dlrStep(&right); sl@0: } sl@0: } sl@0: sl@0: dlrDestroy(&left); sl@0: dlrDestroy(&right); sl@0: dlwDestroy(&writer); sl@0: } sl@0: sl@0: /* pLeft and pRight are DLReaders positioned to the same docid. sl@0: ** sl@0: ** If there are no instances in pLeft or pRight where the position sl@0: ** of pLeft is one less than the position of pRight, then this sl@0: ** routine adds nothing to pOut. sl@0: ** sl@0: ** If there are one or more instances where positions from pLeft sl@0: ** are exactly one less than positions from pRight, then add a new sl@0: ** document record to pOut. If pOut wants to hold positions, then sl@0: ** include the positions from pRight that are one more than a sl@0: ** position in pLeft. In other words: pRight.iPos==pLeft.iPos+1. sl@0: */ sl@0: static void posListPhraseMerge(DLReader *pLeft, DLReader *pRight, sl@0: DLWriter *pOut){ sl@0: PLReader left, right; sl@0: PLWriter writer; sl@0: int match = 0; sl@0: sl@0: assert( dlrDocid(pLeft)==dlrDocid(pRight) ); sl@0: assert( pOut->iType!=DL_POSITIONS_OFFSETS ); sl@0: sl@0: plrInit(&left, pLeft); sl@0: plrInit(&right, pRight); sl@0: sl@0: while( !plrAtEnd(&left) && !plrAtEnd(&right) ){ sl@0: if( plrColumn(&left)plrColumn(&right) ){ sl@0: plrStep(&right); sl@0: }else if( plrPosition(&left)+1plrPosition(&right) ){ sl@0: plrStep(&right); sl@0: }else{ sl@0: if( !match ){ sl@0: plwInit(&writer, pOut, dlrDocid(pLeft)); sl@0: match = 1; sl@0: } sl@0: plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0); sl@0: plrStep(&left); sl@0: plrStep(&right); sl@0: } sl@0: } sl@0: sl@0: if( match ){ sl@0: plwTerminate(&writer); sl@0: plwDestroy(&writer); sl@0: } sl@0: sl@0: plrDestroy(&left); sl@0: plrDestroy(&right); sl@0: } sl@0: sl@0: /* We have two doclists with positions: pLeft and pRight. sl@0: ** Write the phrase intersection of these two doclists into pOut. sl@0: ** sl@0: ** A phrase intersection means that two documents only match sl@0: ** if pLeft.iPos+1==pRight.iPos. sl@0: ** sl@0: ** iType controls the type of data written to pOut. If iType is sl@0: ** DL_POSITIONS, the positions are those from pRight. sl@0: */ sl@0: static void docListPhraseMerge( sl@0: const char *pLeft, int nLeft, sl@0: const char *pRight, int nRight, sl@0: DocListType iType, sl@0: DataBuffer *pOut /* Write the combined doclist here */ sl@0: ){ sl@0: DLReader left, right; sl@0: DLWriter writer; sl@0: sl@0: if( nLeft==0 || nRight==0 ) return; sl@0: sl@0: assert( iType!=DL_POSITIONS_OFFSETS ); sl@0: sl@0: dlrInit(&left, DL_POSITIONS, pLeft, nLeft); sl@0: dlrInit(&right, DL_POSITIONS, pRight, nRight); sl@0: dlwInit(&writer, iType, pOut); sl@0: sl@0: while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){ sl@0: if( dlrDocid(&left) one AND (two OR three) sl@0: * [one OR two three] ==> (one OR two) AND three sl@0: * sl@0: * A "-" before a term matches all entries that lack that term. sl@0: * The "-" must occur immediately before the term with in intervening sl@0: * space. This is how the search engines do it. sl@0: * sl@0: * A NOT term cannot be the right-hand operand of an OR. If this sl@0: * occurs in the query string, the NOT is ignored: sl@0: * sl@0: * [one OR -two] ==> one OR two sl@0: * sl@0: */ sl@0: typedef struct Query { sl@0: fulltext_vtab *pFts; /* The full text index */ sl@0: int nTerms; /* Number of terms in the query */ sl@0: QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */ sl@0: int nextIsOr; /* Set the isOr flag on the next inserted term */ sl@0: int nextColumn; /* Next word parsed must be in this column */ sl@0: int dfltColumn; /* The default column */ sl@0: } Query; sl@0: sl@0: sl@0: /* sl@0: ** An instance of the following structure keeps track of generated sl@0: ** matching-word offset information and snippets. sl@0: */ sl@0: typedef struct Snippet { sl@0: int nMatch; /* Total number of matches */ sl@0: int nAlloc; /* Space allocated for aMatch[] */ sl@0: struct snippetMatch { /* One entry for each matching term */ sl@0: char snStatus; /* Status flag for use while constructing snippets */ sl@0: short int iCol; /* The column that contains the match */ sl@0: short int iTerm; /* The index in Query.pTerms[] of the matching term */ sl@0: short int nByte; /* Number of bytes in the term */ sl@0: int iStart; /* The offset to the first character of the term */ sl@0: } *aMatch; /* Points to space obtained from malloc */ sl@0: char *zOffset; /* Text rendering of aMatch[] */ sl@0: int nOffset; /* strlen(zOffset) */ sl@0: char *zSnippet; /* Snippet text */ sl@0: int nSnippet; /* strlen(zSnippet) */ sl@0: } Snippet; sl@0: sl@0: sl@0: typedef enum QueryType { sl@0: QUERY_GENERIC, /* table scan */ sl@0: QUERY_ROWID, /* lookup by rowid */ sl@0: QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/ sl@0: } QueryType; sl@0: sl@0: typedef enum fulltext_statement { sl@0: CONTENT_INSERT_STMT, sl@0: CONTENT_SELECT_STMT, sl@0: CONTENT_UPDATE_STMT, sl@0: CONTENT_DELETE_STMT, sl@0: CONTENT_EXISTS_STMT, sl@0: sl@0: BLOCK_INSERT_STMT, sl@0: BLOCK_SELECT_STMT, sl@0: BLOCK_DELETE_STMT, sl@0: BLOCK_DELETE_ALL_STMT, sl@0: sl@0: SEGDIR_MAX_INDEX_STMT, sl@0: SEGDIR_SET_STMT, sl@0: SEGDIR_SELECT_LEVEL_STMT, sl@0: SEGDIR_SPAN_STMT, sl@0: SEGDIR_DELETE_STMT, sl@0: SEGDIR_SELECT_SEGMENT_STMT, sl@0: SEGDIR_SELECT_ALL_STMT, sl@0: SEGDIR_DELETE_ALL_STMT, sl@0: SEGDIR_COUNT_STMT, sl@0: sl@0: MAX_STMT /* Always at end! */ sl@0: } fulltext_statement; sl@0: sl@0: /* These must exactly match the enum above. */ sl@0: /* TODO(shess): Is there some risk that a statement will be used in two sl@0: ** cursors at once, e.g. if a query joins a virtual table to itself? sl@0: ** If so perhaps we should move some of these to the cursor object. sl@0: */ sl@0: static const char *const fulltext_zStatement[MAX_STMT] = { sl@0: /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */ sl@0: /* CONTENT_SELECT */ "select * from %_content where rowid = ?", sl@0: /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */ sl@0: /* CONTENT_DELETE */ "delete from %_content where rowid = ?", sl@0: /* CONTENT_EXISTS */ "select rowid from %_content limit 1", sl@0: sl@0: /* BLOCK_INSERT */ "insert into %_segments values (?)", sl@0: /* BLOCK_SELECT */ "select block from %_segments where rowid = ?", sl@0: /* BLOCK_DELETE */ "delete from %_segments where rowid between ? and ?", sl@0: /* BLOCK_DELETE_ALL */ "delete from %_segments", sl@0: sl@0: /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?", sl@0: /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)", sl@0: /* SEGDIR_SELECT_LEVEL */ sl@0: "select start_block, leaves_end_block, root from %_segdir " sl@0: " where level = ? order by idx", sl@0: /* SEGDIR_SPAN */ sl@0: "select min(start_block), max(end_block) from %_segdir " sl@0: " where level = ? and start_block <> 0", sl@0: /* SEGDIR_DELETE */ "delete from %_segdir where level = ?", sl@0: sl@0: /* NOTE(shess): The first three results of the following two sl@0: ** statements must match. sl@0: */ sl@0: /* SEGDIR_SELECT_SEGMENT */ sl@0: "select start_block, leaves_end_block, root from %_segdir " sl@0: " where level = ? and idx = ?", sl@0: /* SEGDIR_SELECT_ALL */ sl@0: "select start_block, leaves_end_block, root from %_segdir " sl@0: " order by level desc, idx asc", sl@0: /* SEGDIR_DELETE_ALL */ "delete from %_segdir", sl@0: /* SEGDIR_COUNT */ "select count(*), ifnull(max(level),0) from %_segdir", sl@0: }; sl@0: sl@0: /* sl@0: ** A connection to a fulltext index is an instance of the following sl@0: ** structure. The xCreate and xConnect methods create an instance sl@0: ** of this structure and xDestroy and xDisconnect free that instance. sl@0: ** All other methods receive a pointer to the structure as one of their sl@0: ** arguments. sl@0: */ sl@0: struct fulltext_vtab { sl@0: sqlite3_vtab base; /* Base class used by SQLite core */ sl@0: sqlite3 *db; /* The database connection */ sl@0: const char *zDb; /* logical database name */ sl@0: const char *zName; /* virtual table name */ sl@0: int nColumn; /* number of columns in virtual table */ sl@0: char **azColumn; /* column names. malloced */ sl@0: char **azContentColumn; /* column names in content table; malloced */ sl@0: sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ sl@0: sl@0: /* Precompiled statements which we keep as long as the table is sl@0: ** open. sl@0: */ sl@0: sqlite3_stmt *pFulltextStatements[MAX_STMT]; sl@0: sl@0: /* Precompiled statements used for segment merges. We run a sl@0: ** separate select across the leaf level of each tree being merged. sl@0: */ sl@0: sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT]; sl@0: /* The statement used to prepare pLeafSelectStmts. */ sl@0: #define LEAF_SELECT \ sl@0: "select block from %_segments where rowid between ? and ? order by rowid" sl@0: sl@0: /* These buffer pending index updates during transactions. sl@0: ** nPendingData estimates the memory size of the pending data. It sl@0: ** doesn't include the hash-bucket overhead, nor any malloc sl@0: ** overhead. When nPendingData exceeds kPendingThreshold, the sl@0: ** buffer is flushed even before the transaction closes. sl@0: ** pendingTerms stores the data, and is only valid when nPendingData sl@0: ** is >=0 (nPendingData<0 means pendingTerms has not been sl@0: ** initialized). iPrevDocid is the last docid written, used to make sl@0: ** certain we're inserting in sorted order. sl@0: */ sl@0: int nPendingData; sl@0: #define kPendingThreshold (1*1024*1024) sl@0: sqlite_int64 iPrevDocid; sl@0: fts2Hash pendingTerms; sl@0: }; sl@0: sl@0: /* sl@0: ** When the core wants to do a query, it create a cursor using a sl@0: ** call to xOpen. This structure is an instance of a cursor. It sl@0: ** is destroyed by xClose. sl@0: */ sl@0: typedef struct fulltext_cursor { sl@0: sqlite3_vtab_cursor base; /* Base class used by SQLite core */ sl@0: QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */ sl@0: sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ sl@0: int eof; /* True if at End Of Results */ sl@0: Query q; /* Parsed query string */ sl@0: Snippet snippet; /* Cached snippet for the current row */ sl@0: int iColumn; /* Column being searched */ sl@0: DataBuffer result; /* Doclist results from fulltextQuery */ sl@0: DLReader reader; /* Result reader if result not empty */ sl@0: } fulltext_cursor; sl@0: sl@0: static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){ sl@0: return (fulltext_vtab *) c->base.pVtab; sl@0: } sl@0: sl@0: static const sqlite3_module fts2Module; /* forward declaration */ sl@0: sl@0: /* Return a dynamically generated statement of the form sl@0: * insert into %_content (rowid, ...) values (?, ...) sl@0: */ sl@0: static const char *contentInsertStatement(fulltext_vtab *v){ sl@0: StringBuffer sb; sl@0: int i; sl@0: sl@0: initStringBuffer(&sb); sl@0: append(&sb, "insert into %_content (rowid, "); sl@0: appendList(&sb, v->nColumn, v->azContentColumn); sl@0: append(&sb, ") values (?"); sl@0: for(i=0; inColumn; ++i) sl@0: append(&sb, ", ?"); sl@0: append(&sb, ")"); sl@0: return stringBufferData(&sb); sl@0: } sl@0: sl@0: /* Return a dynamically generated statement of the form sl@0: * update %_content set [col_0] = ?, [col_1] = ?, ... sl@0: * where rowid = ? sl@0: */ sl@0: static const char *contentUpdateStatement(fulltext_vtab *v){ sl@0: StringBuffer sb; sl@0: int i; sl@0: sl@0: initStringBuffer(&sb); sl@0: append(&sb, "update %_content set "); sl@0: for(i=0; inColumn; ++i) { sl@0: if( i>0 ){ sl@0: append(&sb, ", "); sl@0: } sl@0: append(&sb, v->azContentColumn[i]); sl@0: append(&sb, " = ?"); sl@0: } sl@0: append(&sb, " where rowid = ?"); sl@0: return stringBufferData(&sb); sl@0: } sl@0: sl@0: /* Puts a freshly-prepared statement determined by iStmt in *ppStmt. sl@0: ** If the indicated statement has never been prepared, it is prepared sl@0: ** and cached, otherwise the cached version is reset. sl@0: */ sl@0: static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt, sl@0: sqlite3_stmt **ppStmt){ sl@0: assert( iStmtpFulltextStatements[iStmt]==NULL ){ sl@0: const char *zStmt; sl@0: int rc; sl@0: switch( iStmt ){ sl@0: case CONTENT_INSERT_STMT: sl@0: zStmt = contentInsertStatement(v); break; sl@0: case CONTENT_UPDATE_STMT: sl@0: zStmt = contentUpdateStatement(v); break; sl@0: default: sl@0: zStmt = fulltext_zStatement[iStmt]; sl@0: } sl@0: rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt], sl@0: zStmt); sl@0: if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: } else { sl@0: int rc = sqlite3_reset(v->pFulltextStatements[iStmt]); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: } sl@0: sl@0: *ppStmt = v->pFulltextStatements[iStmt]; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and sl@0: ** SQLITE_ROW to SQLITE_ERROR. Useful for statements like UPDATE, sl@0: ** where we expect no results. sl@0: */ sl@0: static int sql_single_step(sqlite3_stmt *s){ sl@0: int rc = sqlite3_step(s); sl@0: return (rc==SQLITE_DONE) ? SQLITE_OK : rc; sl@0: } sl@0: sl@0: /* Like sql_get_statement(), but for special replicated LEAF_SELECT sl@0: ** statements. idx -1 is a special case for an uncached version of sl@0: ** the statement (used in the optimize implementation). sl@0: */ sl@0: /* TODO(shess) Write version for generic statements and then share sl@0: ** that between the cached-statement functions. sl@0: */ sl@0: static int sql_get_leaf_statement(fulltext_vtab *v, int idx, sl@0: sqlite3_stmt **ppStmt){ sl@0: assert( idx>=-1 && idxdb, v->zDb, v->zName, ppStmt, LEAF_SELECT); sl@0: }else if( v->pLeafSelectStmts[idx]==NULL ){ sl@0: int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx], sl@0: LEAF_SELECT); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: }else{ sl@0: int rc = sqlite3_reset(v->pLeafSelectStmts[idx]); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: } sl@0: sl@0: *ppStmt = v->pLeafSelectStmts[idx]; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* insert into %_content (rowid, ...) values ([rowid], [pValues]) */ sl@0: static int content_insert(fulltext_vtab *v, sqlite3_value *rowid, sl@0: sqlite3_value **pValues){ sl@0: sqlite3_stmt *s; sl@0: int i; sl@0: int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_value(s, 1, rowid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: for(i=0; inColumn; ++i){ sl@0: rc = sqlite3_bind_value(s, 2+i, pValues[i]); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: } sl@0: sl@0: return sql_single_step(s); sl@0: } sl@0: sl@0: /* update %_content set col0 = pValues[0], col1 = pValues[1], ... sl@0: * where rowid = [iRowid] */ sl@0: static int content_update(fulltext_vtab *v, sqlite3_value **pValues, sl@0: sqlite_int64 iRowid){ sl@0: sqlite3_stmt *s; sl@0: int i; sl@0: int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: for(i=0; inColumn; ++i){ sl@0: rc = sqlite3_bind_value(s, 1+i, pValues[i]); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: } sl@0: sl@0: rc = sqlite3_bind_int64(s, 1+v->nColumn, iRowid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: return sql_single_step(s); sl@0: } sl@0: sl@0: static void freeStringArray(int nString, const char **pString){ sl@0: int i; sl@0: sl@0: for (i=0 ; i < nString ; ++i) { sl@0: if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]); sl@0: } sl@0: sqlite3_free((void *) pString); sl@0: } sl@0: sl@0: /* select * from %_content where rowid = [iRow] sl@0: * The caller must delete the returned array and all strings in it. sl@0: * null fields will be NULL in the returned array. sl@0: * sl@0: * TODO: Perhaps we should return pointer/length strings here for consistency sl@0: * with other code which uses pointer/length. */ sl@0: static int content_select(fulltext_vtab *v, sqlite_int64 iRow, sl@0: const char ***pValues){ sl@0: sqlite3_stmt *s; sl@0: const char **values; sl@0: int i; sl@0: int rc; sl@0: sl@0: *pValues = NULL; sl@0: sl@0: rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int64(s, 1, iRow); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_step(s); sl@0: if( rc!=SQLITE_ROW ) return rc; sl@0: sl@0: values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *)); sl@0: for(i=0; inColumn; ++i){ sl@0: if( sqlite3_column_type(s, i)==SQLITE_NULL ){ sl@0: values[i] = NULL; sl@0: }else{ sl@0: values[i] = string_dup((char*)sqlite3_column_text(s, i)); sl@0: } sl@0: } sl@0: sl@0: /* We expect only one row. We must execute another sqlite3_step() sl@0: * to complete the iteration; otherwise the table will remain locked. */ sl@0: rc = sqlite3_step(s); sl@0: if( rc==SQLITE_DONE ){ sl@0: *pValues = values; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: freeStringArray(v->nColumn, values); sl@0: return rc; sl@0: } sl@0: sl@0: /* delete from %_content where rowid = [iRow ] */ sl@0: static int content_delete(fulltext_vtab *v, sqlite_int64 iRow){ sl@0: sqlite3_stmt *s; sl@0: int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int64(s, 1, iRow); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: return sql_single_step(s); sl@0: } sl@0: sl@0: /* Returns SQLITE_ROW if any rows exist in %_content, SQLITE_DONE if sl@0: ** no rows exist, and any error in case of failure. sl@0: */ sl@0: static int content_exists(fulltext_vtab *v){ sl@0: sqlite3_stmt *s; sl@0: int rc = sql_get_statement(v, CONTENT_EXISTS_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_step(s); sl@0: if( rc!=SQLITE_ROW ) return rc; sl@0: sl@0: /* We expect only one row. We must execute another sqlite3_step() sl@0: * to complete the iteration; otherwise the table will remain locked. */ sl@0: rc = sqlite3_step(s); sl@0: if( rc==SQLITE_DONE ) return SQLITE_ROW; sl@0: if( rc==SQLITE_ROW ) return SQLITE_ERROR; sl@0: return rc; sl@0: } sl@0: sl@0: /* insert into %_segments values ([pData]) sl@0: ** returns assigned rowid in *piBlockid sl@0: */ sl@0: static int block_insert(fulltext_vtab *v, const char *pData, int nData, sl@0: sqlite_int64 *piBlockid){ sl@0: sqlite3_stmt *s; sl@0: int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_step(s); sl@0: if( rc==SQLITE_ROW ) return SQLITE_ERROR; sl@0: if( rc!=SQLITE_DONE ) return rc; sl@0: sl@0: *piBlockid = sqlite3_last_insert_rowid(v->db); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* delete from %_segments sl@0: ** where rowid between [iStartBlockid] and [iEndBlockid] sl@0: ** sl@0: ** Deletes the range of blocks, inclusive, used to delete the blocks sl@0: ** which form a segment. sl@0: */ sl@0: static int block_delete(fulltext_vtab *v, sl@0: sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){ sl@0: sqlite3_stmt *s; sl@0: int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int64(s, 1, iStartBlockid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int64(s, 2, iEndBlockid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: return sql_single_step(s); sl@0: } sl@0: sl@0: /* Returns SQLITE_ROW with *pidx set to the maximum segment idx found sl@0: ** at iLevel. Returns SQLITE_DONE if there are no segments at sl@0: ** iLevel. Otherwise returns an error. sl@0: */ sl@0: static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){ sl@0: sqlite3_stmt *s; sl@0: int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int(s, 1, iLevel); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_step(s); sl@0: /* Should always get at least one row due to how max() works. */ sl@0: if( rc==SQLITE_DONE ) return SQLITE_DONE; sl@0: if( rc!=SQLITE_ROW ) return rc; sl@0: sl@0: /* NULL means that there were no inputs to max(). */ sl@0: if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ sl@0: rc = sqlite3_step(s); sl@0: if( rc==SQLITE_ROW ) return SQLITE_ERROR; sl@0: return rc; sl@0: } sl@0: sl@0: *pidx = sqlite3_column_int(s, 0); sl@0: sl@0: /* We expect only one row. We must execute another sqlite3_step() sl@0: * to complete the iteration; otherwise the table will remain locked. */ sl@0: rc = sqlite3_step(s); sl@0: if( rc==SQLITE_ROW ) return SQLITE_ERROR; sl@0: if( rc!=SQLITE_DONE ) return rc; sl@0: return SQLITE_ROW; sl@0: } sl@0: sl@0: /* insert into %_segdir values ( sl@0: ** [iLevel], [idx], sl@0: ** [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid], sl@0: ** [pRootData] sl@0: ** ) sl@0: */ sl@0: static int segdir_set(fulltext_vtab *v, int iLevel, int idx, sl@0: sqlite_int64 iStartBlockid, sl@0: sqlite_int64 iLeavesEndBlockid, sl@0: sqlite_int64 iEndBlockid, sl@0: const char *pRootData, int nRootData){ sl@0: sqlite3_stmt *s; sl@0: int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int(s, 1, iLevel); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int(s, 2, idx); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int64(s, 3, iStartBlockid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int64(s, 5, iEndBlockid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: return sql_single_step(s); sl@0: } sl@0: sl@0: /* Queries %_segdir for the block span of the segments in level sl@0: ** iLevel. Returns SQLITE_DONE if there are no blocks for iLevel, sl@0: ** SQLITE_ROW if there are blocks, else an error. sl@0: */ sl@0: static int segdir_span(fulltext_vtab *v, int iLevel, sl@0: sqlite_int64 *piStartBlockid, sl@0: sqlite_int64 *piEndBlockid){ sl@0: sqlite3_stmt *s; sl@0: int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int(s, 1, iLevel); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_step(s); sl@0: if( rc==SQLITE_DONE ) return SQLITE_DONE; /* Should never happen */ sl@0: if( rc!=SQLITE_ROW ) return rc; sl@0: sl@0: /* This happens if all segments at this level are entirely inline. */ sl@0: if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ sl@0: /* We expect only one row. We must execute another sqlite3_step() sl@0: * to complete the iteration; otherwise the table will remain locked. */ sl@0: int rc2 = sqlite3_step(s); sl@0: if( rc2==SQLITE_ROW ) return SQLITE_ERROR; sl@0: return rc2; sl@0: } sl@0: sl@0: *piStartBlockid = sqlite3_column_int64(s, 0); sl@0: *piEndBlockid = sqlite3_column_int64(s, 1); sl@0: sl@0: /* We expect only one row. We must execute another sqlite3_step() sl@0: * to complete the iteration; otherwise the table will remain locked. */ sl@0: rc = sqlite3_step(s); sl@0: if( rc==SQLITE_ROW ) return SQLITE_ERROR; sl@0: if( rc!=SQLITE_DONE ) return rc; sl@0: return SQLITE_ROW; sl@0: } sl@0: sl@0: /* Delete the segment blocks and segment directory records for all sl@0: ** segments at iLevel. sl@0: */ sl@0: static int segdir_delete(fulltext_vtab *v, int iLevel){ sl@0: sqlite3_stmt *s; sl@0: sqlite_int64 iStartBlockid, iEndBlockid; sl@0: int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid); sl@0: if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc; sl@0: sl@0: if( rc==SQLITE_ROW ){ sl@0: rc = block_delete(v, iStartBlockid, iEndBlockid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: } sl@0: sl@0: /* Delete the segment directory itself. */ sl@0: rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int64(s, 1, iLevel); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: return sql_single_step(s); sl@0: } sl@0: sl@0: /* Delete entire fts index, SQLITE_OK on success, relevant error on sl@0: ** failure. sl@0: */ sl@0: static int segdir_delete_all(fulltext_vtab *v){ sl@0: sqlite3_stmt *s; sl@0: int rc = sql_get_statement(v, SEGDIR_DELETE_ALL_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sql_single_step(s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sql_get_statement(v, BLOCK_DELETE_ALL_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: return sql_single_step(s); sl@0: } sl@0: sl@0: /* Returns SQLITE_OK with *pnSegments set to the number of entries in sl@0: ** %_segdir and *piMaxLevel set to the highest level which has a sl@0: ** segment. Otherwise returns the SQLite error which caused failure. sl@0: */ sl@0: static int segdir_count(fulltext_vtab *v, int *pnSegments, int *piMaxLevel){ sl@0: sqlite3_stmt *s; sl@0: int rc = sql_get_statement(v, SEGDIR_COUNT_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_step(s); sl@0: /* TODO(shess): This case should not be possible? Should stronger sl@0: ** measures be taken if it happens? sl@0: */ sl@0: if( rc==SQLITE_DONE ){ sl@0: *pnSegments = 0; sl@0: *piMaxLevel = 0; sl@0: return SQLITE_OK; sl@0: } sl@0: if( rc!=SQLITE_ROW ) return rc; sl@0: sl@0: *pnSegments = sqlite3_column_int(s, 0); sl@0: *piMaxLevel = sqlite3_column_int(s, 1); sl@0: sl@0: /* We expect only one row. We must execute another sqlite3_step() sl@0: * to complete the iteration; otherwise the table will remain locked. */ sl@0: rc = sqlite3_step(s); sl@0: if( rc==SQLITE_DONE ) return SQLITE_OK; sl@0: if( rc==SQLITE_ROW ) return SQLITE_ERROR; sl@0: return rc; sl@0: } sl@0: sl@0: /* TODO(shess) clearPendingTerms() is far down the file because sl@0: ** writeZeroSegment() is far down the file because LeafWriter is far sl@0: ** down the file. Consider refactoring the code to move the non-vtab sl@0: ** code above the vtab code so that we don't need this forward sl@0: ** reference. sl@0: */ sl@0: static int clearPendingTerms(fulltext_vtab *v); sl@0: sl@0: /* sl@0: ** Free the memory used to contain a fulltext_vtab structure. sl@0: */ sl@0: static void fulltext_vtab_destroy(fulltext_vtab *v){ sl@0: int iStmt, i; sl@0: sl@0: TRACE(("FTS2 Destroy %p\n", v)); sl@0: for( iStmt=0; iStmtpFulltextStatements[iStmt]!=NULL ){ sl@0: sqlite3_finalize(v->pFulltextStatements[iStmt]); sl@0: v->pFulltextStatements[iStmt] = NULL; sl@0: } sl@0: } sl@0: sl@0: for( i=0; ipLeafSelectStmts[i]!=NULL ){ sl@0: sqlite3_finalize(v->pLeafSelectStmts[i]); sl@0: v->pLeafSelectStmts[i] = NULL; sl@0: } sl@0: } sl@0: sl@0: if( v->pTokenizer!=NULL ){ sl@0: v->pTokenizer->pModule->xDestroy(v->pTokenizer); sl@0: v->pTokenizer = NULL; sl@0: } sl@0: sl@0: clearPendingTerms(v); sl@0: sl@0: sqlite3_free(v->azColumn); sl@0: for(i = 0; i < v->nColumn; ++i) { sl@0: sqlite3_free(v->azContentColumn[i]); sl@0: } sl@0: sqlite3_free(v->azContentColumn); sl@0: sqlite3_free(v); sl@0: } sl@0: sl@0: /* sl@0: ** Token types for parsing the arguments to xConnect or xCreate. sl@0: */ sl@0: #define TOKEN_EOF 0 /* End of file */ sl@0: #define TOKEN_SPACE 1 /* Any kind of whitespace */ sl@0: #define TOKEN_ID 2 /* An identifier */ sl@0: #define TOKEN_STRING 3 /* A string literal */ sl@0: #define TOKEN_PUNCT 4 /* A single punctuation character */ sl@0: sl@0: /* sl@0: ** If X is a character that can be used in an identifier then sl@0: ** IdChar(X) will be true. Otherwise it is false. sl@0: ** sl@0: ** For ASCII, any character with the high-order bit set is sl@0: ** allowed in an identifier. For 7-bit characters, sl@0: ** sqlite3IsIdChar[X] must be 1. sl@0: ** sl@0: ** Ticket #1066. the SQL standard does not allow '$' in the sl@0: ** middle of identfiers. But many SQL implementations do. sl@0: ** SQLite will allow '$' in identifiers for compatibility. sl@0: ** But the feature is undocumented. sl@0: */ sl@0: static const char isIdChar[] = { sl@0: /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ sl@0: 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ sl@0: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ sl@0: 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ sl@0: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ sl@0: 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ sl@0: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ sl@0: }; sl@0: #define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isIdChar[c-0x20])) sl@0: sl@0: sl@0: /* sl@0: ** Return the length of the token that begins at z[0]. sl@0: ** Store the token type in *tokenType before returning. sl@0: */ sl@0: static int getToken(const char *z, int *tokenType){ sl@0: int i, c; sl@0: switch( *z ){ sl@0: case 0: { sl@0: *tokenType = TOKEN_EOF; sl@0: return 0; sl@0: } sl@0: case ' ': case '\t': case '\n': case '\f': case '\r': { sl@0: for(i=1; safe_isspace(z[i]); i++){} sl@0: *tokenType = TOKEN_SPACE; sl@0: return i; sl@0: } sl@0: case '`': sl@0: case '\'': sl@0: case '"': { sl@0: int delim = z[0]; sl@0: for(i=1; (c=z[i])!=0; i++){ sl@0: if( c==delim ){ sl@0: if( z[i+1]==delim ){ sl@0: i++; sl@0: }else{ sl@0: break; sl@0: } sl@0: } sl@0: } sl@0: *tokenType = TOKEN_STRING; sl@0: return i + (c!=0); sl@0: } sl@0: case '[': { sl@0: for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} sl@0: *tokenType = TOKEN_ID; sl@0: return i; sl@0: } sl@0: default: { sl@0: if( !IdChar(*z) ){ sl@0: break; sl@0: } sl@0: for(i=1; IdChar(z[i]); i++){} sl@0: *tokenType = TOKEN_ID; sl@0: return i; sl@0: } sl@0: } sl@0: *tokenType = TOKEN_PUNCT; sl@0: return 1; sl@0: } sl@0: sl@0: /* sl@0: ** A token extracted from a string is an instance of the following sl@0: ** structure. sl@0: */ sl@0: typedef struct Token { sl@0: const char *z; /* Pointer to token text. Not '\000' terminated */ sl@0: short int n; /* Length of the token text in bytes. */ sl@0: } Token; sl@0: sl@0: /* sl@0: ** Given a input string (which is really one of the argv[] parameters sl@0: ** passed into xConnect or xCreate) split the string up into tokens. sl@0: ** Return an array of pointers to '\000' terminated strings, one string sl@0: ** for each non-whitespace token. sl@0: ** sl@0: ** The returned array is terminated by a single NULL pointer. sl@0: ** sl@0: ** Space to hold the returned array is obtained from a single sl@0: ** malloc and should be freed by passing the return value to free(). sl@0: ** The individual strings within the token list are all a part of sl@0: ** the single memory allocation and will all be freed at once. sl@0: */ sl@0: static char **tokenizeString(const char *z, int *pnToken){ sl@0: int nToken = 0; sl@0: Token *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) ); sl@0: int n = 1; sl@0: int e, i; sl@0: int totalSize = 0; sl@0: char **azToken; sl@0: char *zCopy; sl@0: while( n>0 ){ sl@0: n = getToken(z, &e); sl@0: if( e!=TOKEN_SPACE ){ sl@0: aToken[nToken].z = z; sl@0: aToken[nToken].n = n; sl@0: nToken++; sl@0: totalSize += n+1; sl@0: } sl@0: z += n; sl@0: } sl@0: azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize ); sl@0: zCopy = (char*)&azToken[nToken]; sl@0: nToken--; sl@0: for(i=0; i=0 ){ sl@0: azIn[j] = azIn[i]; sl@0: } sl@0: j++; sl@0: } sl@0: } sl@0: azIn[j] = 0; sl@0: } sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Find the first alphanumeric token in the string zIn. Null-terminate sl@0: ** this token. Remove any quotation marks. And return a pointer to sl@0: ** the result. sl@0: */ sl@0: static char *firstToken(char *zIn, char **pzTail){ sl@0: int n, ttype; sl@0: while(1){ sl@0: n = getToken(zIn, &ttype); sl@0: if( ttype==TOKEN_SPACE ){ sl@0: zIn += n; sl@0: }else if( ttype==TOKEN_EOF ){ sl@0: *pzTail = zIn; sl@0: return 0; sl@0: }else{ sl@0: zIn[n] = 0; sl@0: *pzTail = &zIn[1]; sl@0: dequoteString(zIn); sl@0: return zIn; sl@0: } sl@0: } sl@0: /*NOTREACHED*/ sl@0: } sl@0: sl@0: /* Return true if... sl@0: ** sl@0: ** * s begins with the string t, ignoring case sl@0: ** * s is longer than t sl@0: ** * The first character of s beyond t is not a alphanumeric sl@0: ** sl@0: ** Ignore leading space in *s. sl@0: ** sl@0: ** To put it another way, return true if the first token of sl@0: ** s[] is t[]. sl@0: */ sl@0: static int startsWith(const char *s, const char *t){ sl@0: while( safe_isspace(*s) ){ s++; } sl@0: while( *t ){ sl@0: if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0; sl@0: } sl@0: return *s!='_' && !safe_isalnum(*s); sl@0: } sl@0: sl@0: /* sl@0: ** An instance of this structure defines the "spec" of a sl@0: ** full text index. This structure is populated by parseSpec sl@0: ** and use by fulltextConnect and fulltextCreate. sl@0: */ sl@0: typedef struct TableSpec { sl@0: const char *zDb; /* Logical database name */ sl@0: const char *zName; /* Name of the full-text index */ sl@0: int nColumn; /* Number of columns to be indexed */ sl@0: char **azColumn; /* Original names of columns to be indexed */ sl@0: char **azContentColumn; /* Column names for %_content */ sl@0: char **azTokenizer; /* Name of tokenizer and its arguments */ sl@0: } TableSpec; sl@0: sl@0: /* sl@0: ** Reclaim all of the memory used by a TableSpec sl@0: */ sl@0: static void clearTableSpec(TableSpec *p) { sl@0: sqlite3_free(p->azColumn); sl@0: sqlite3_free(p->azContentColumn); sl@0: sqlite3_free(p->azTokenizer); sl@0: } sl@0: sl@0: /* Parse a CREATE VIRTUAL TABLE statement, which looks like this: sl@0: * sl@0: * CREATE VIRTUAL TABLE email sl@0: * USING fts2(subject, body, tokenize mytokenizer(myarg)) sl@0: * sl@0: * We return parsed information in a TableSpec structure. sl@0: * sl@0: */ sl@0: static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv, sl@0: char**pzErr){ sl@0: int i, n; sl@0: char *z, *zDummy; sl@0: char **azArg; sl@0: const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */ sl@0: sl@0: assert( argc>=3 ); sl@0: /* Current interface: sl@0: ** argv[0] - module name sl@0: ** argv[1] - database name sl@0: ** argv[2] - table name sl@0: ** argv[3..] - columns, optionally followed by tokenizer specification sl@0: ** and snippet delimiters specification. sl@0: */ sl@0: sl@0: /* Make a copy of the complete argv[][] array in a single allocation. sl@0: ** The argv[][] array is read-only and transient. We can write to the sl@0: ** copy in order to modify things and the copy is persistent. sl@0: */ sl@0: CLEAR(pSpec); sl@0: for(i=n=0; izDb = azArg[1]; sl@0: pSpec->zName = azArg[2]; sl@0: pSpec->nColumn = 0; sl@0: pSpec->azColumn = azArg; sl@0: zTokenizer = "tokenize simple"; sl@0: for(i=3; inColumn] = firstToken(azArg[i], &zDummy); sl@0: pSpec->nColumn++; sl@0: } sl@0: } sl@0: if( pSpec->nColumn==0 ){ sl@0: azArg[0] = "content"; sl@0: pSpec->nColumn = 1; sl@0: } sl@0: sl@0: /* sl@0: ** Construct the list of content column names. sl@0: ** sl@0: ** Each content column name will be of the form cNNAAAA sl@0: ** where NN is the column number and AAAA is the sanitized sl@0: ** column name. "sanitized" means that special characters are sl@0: ** converted to "_". The cNN prefix guarantees that all column sl@0: ** names are unique. sl@0: ** sl@0: ** The AAAA suffix is not strictly necessary. It is included sl@0: ** for the convenience of people who might examine the generated sl@0: ** %_content table and wonder what the columns are used for. sl@0: */ sl@0: pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) ); sl@0: if( pSpec->azContentColumn==0 ){ sl@0: clearTableSpec(pSpec); sl@0: return SQLITE_NOMEM; sl@0: } sl@0: for(i=0; inColumn; i++){ sl@0: char *p; sl@0: pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]); sl@0: for (p = pSpec->azContentColumn[i]; *p ; ++p) { sl@0: if( !safe_isalnum(*p) ) *p = '_'; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Parse the tokenizer specification string. sl@0: */ sl@0: pSpec->azTokenizer = tokenizeString(zTokenizer, &n); sl@0: tokenListToIdList(pSpec->azTokenizer); sl@0: sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Generate a CREATE TABLE statement that describes the schema of sl@0: ** the virtual table. Return a pointer to this schema string. sl@0: ** sl@0: ** Space is obtained from sqlite3_mprintf() and should be freed sl@0: ** using sqlite3_free(). sl@0: */ sl@0: static char *fulltextSchema( sl@0: int nColumn, /* Number of columns */ sl@0: const char *const* azColumn, /* List of columns */ sl@0: const char *zTableName /* Name of the table */ sl@0: ){ sl@0: int i; sl@0: char *zSchema, *zNext; sl@0: const char *zSep = "("; sl@0: zSchema = sqlite3_mprintf("CREATE TABLE x"); sl@0: for(i=0; ibase */ sl@0: v->db = db; sl@0: v->zDb = spec->zDb; /* Freed when azColumn is freed */ sl@0: v->zName = spec->zName; /* Freed when azColumn is freed */ sl@0: v->nColumn = spec->nColumn; sl@0: v->azContentColumn = spec->azContentColumn; sl@0: spec->azContentColumn = 0; sl@0: v->azColumn = spec->azColumn; sl@0: spec->azColumn = 0; sl@0: sl@0: if( spec->azTokenizer==0 ){ sl@0: return SQLITE_NOMEM; sl@0: } sl@0: sl@0: zTok = spec->azTokenizer[0]; sl@0: if( !zTok ){ sl@0: zTok = "simple"; sl@0: } sl@0: nTok = strlen(zTok)+1; sl@0: sl@0: m = (sqlite3_tokenizer_module *)sqlite3Fts2HashFind(pHash, zTok, nTok); sl@0: if( !m ){ sl@0: *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]); sl@0: rc = SQLITE_ERROR; sl@0: goto err; sl@0: } sl@0: sl@0: for(n=0; spec->azTokenizer[n]; n++){} sl@0: if( n ){ sl@0: rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1], sl@0: &v->pTokenizer); sl@0: }else{ sl@0: rc = m->xCreate(0, 0, &v->pTokenizer); sl@0: } sl@0: if( rc!=SQLITE_OK ) goto err; sl@0: v->pTokenizer->pModule = m; sl@0: sl@0: /* TODO: verify the existence of backing tables foo_content, foo_term */ sl@0: sl@0: schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn, sl@0: spec->zName); sl@0: rc = sqlite3_declare_vtab(db, schema); sl@0: sqlite3_free(schema); sl@0: if( rc!=SQLITE_OK ) goto err; sl@0: sl@0: memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements)); sl@0: sl@0: /* Indicate that the buffer is not live. */ sl@0: v->nPendingData = -1; sl@0: sl@0: *ppVTab = &v->base; sl@0: TRACE(("FTS2 Connect %p\n", v)); sl@0: sl@0: return rc; sl@0: sl@0: err: sl@0: fulltext_vtab_destroy(v); sl@0: return rc; sl@0: } sl@0: sl@0: static int fulltextConnect( sl@0: sqlite3 *db, sl@0: void *pAux, sl@0: int argc, const char *const*argv, sl@0: sqlite3_vtab **ppVTab, sl@0: char **pzErr sl@0: ){ sl@0: TableSpec spec; sl@0: int rc = parseSpec(&spec, argc, argv, pzErr); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr); sl@0: clearTableSpec(&spec); sl@0: return rc; sl@0: } sl@0: sl@0: /* The %_content table holds the text of each document, with sl@0: ** the rowid used as the docid. sl@0: */ sl@0: /* TODO(shess) This comment needs elaboration to match the updated sl@0: ** code. Work it into the top-of-file comment at that time. sl@0: */ sl@0: static int fulltextCreate(sqlite3 *db, void *pAux, sl@0: int argc, const char * const *argv, sl@0: sqlite3_vtab **ppVTab, char **pzErr){ sl@0: int rc; sl@0: TableSpec spec; sl@0: StringBuffer schema; sl@0: TRACE(("FTS2 Create\n")); sl@0: sl@0: rc = parseSpec(&spec, argc, argv, pzErr); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: initStringBuffer(&schema); sl@0: append(&schema, "CREATE TABLE %_content("); sl@0: appendList(&schema, spec.nColumn, spec.azContentColumn); sl@0: append(&schema, ")"); sl@0: rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema)); sl@0: stringBufferDestroy(&schema); sl@0: if( rc!=SQLITE_OK ) goto out; sl@0: sl@0: rc = sql_exec(db, spec.zDb, spec.zName, sl@0: "create table %_segments(block blob);"); sl@0: if( rc!=SQLITE_OK ) goto out; sl@0: sl@0: rc = sql_exec(db, spec.zDb, spec.zName, sl@0: "create table %_segdir(" sl@0: " level integer," sl@0: " idx integer," sl@0: " start_block integer," sl@0: " leaves_end_block integer," sl@0: " end_block integer," sl@0: " root blob," sl@0: " primary key(level, idx)" sl@0: ");"); sl@0: if( rc!=SQLITE_OK ) goto out; sl@0: sl@0: rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr); sl@0: sl@0: out: sl@0: clearTableSpec(&spec); sl@0: return rc; sl@0: } sl@0: sl@0: /* Decide how to handle an SQL query. */ sl@0: static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ sl@0: int i; sl@0: TRACE(("FTS2 BestIndex\n")); sl@0: sl@0: for(i=0; inConstraint; ++i){ sl@0: const struct sqlite3_index_constraint *pConstraint; sl@0: pConstraint = &pInfo->aConstraint[i]; sl@0: if( pConstraint->usable ) { sl@0: if( pConstraint->iColumn==-1 && sl@0: pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ sl@0: pInfo->idxNum = QUERY_ROWID; /* lookup by rowid */ sl@0: TRACE(("FTS2 QUERY_ROWID\n")); sl@0: } else if( pConstraint->iColumn>=0 && sl@0: pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ sl@0: /* full-text search */ sl@0: pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn; sl@0: TRACE(("FTS2 QUERY_FULLTEXT %d\n", pConstraint->iColumn)); sl@0: } else continue; sl@0: sl@0: pInfo->aConstraintUsage[i].argvIndex = 1; sl@0: pInfo->aConstraintUsage[i].omit = 1; sl@0: sl@0: /* An arbitrary value for now. sl@0: * TODO: Perhaps rowid matches should be considered cheaper than sl@0: * full-text searches. */ sl@0: pInfo->estimatedCost = 1.0; sl@0: sl@0: return SQLITE_OK; sl@0: } sl@0: } sl@0: pInfo->idxNum = QUERY_GENERIC; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: static int fulltextDisconnect(sqlite3_vtab *pVTab){ sl@0: TRACE(("FTS2 Disconnect %p\n", pVTab)); sl@0: fulltext_vtab_destroy((fulltext_vtab *)pVTab); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: static int fulltextDestroy(sqlite3_vtab *pVTab){ sl@0: fulltext_vtab *v = (fulltext_vtab *)pVTab; sl@0: int rc; sl@0: sl@0: TRACE(("FTS2 Destroy %p\n", pVTab)); sl@0: rc = sql_exec(v->db, v->zDb, v->zName, sl@0: "drop table if exists %_content;" sl@0: "drop table if exists %_segments;" sl@0: "drop table if exists %_segdir;" sl@0: ); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: fulltext_vtab_destroy((fulltext_vtab *)pVTab); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ sl@0: fulltext_cursor *c; sl@0: sl@0: c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor)); sl@0: if( c ){ sl@0: memset(c, 0, sizeof(fulltext_cursor)); sl@0: /* sqlite will initialize c->base */ sl@0: *ppCursor = &c->base; sl@0: TRACE(("FTS2 Open %p: %p\n", pVTab, c)); sl@0: return SQLITE_OK; sl@0: }else{ sl@0: return SQLITE_NOMEM; sl@0: } sl@0: } sl@0: sl@0: sl@0: /* Free all of the dynamically allocated memory held by *q sl@0: */ sl@0: static void queryClear(Query *q){ sl@0: int i; sl@0: for(i = 0; i < q->nTerms; ++i){ sl@0: sqlite3_free(q->pTerms[i].pTerm); sl@0: } sl@0: sqlite3_free(q->pTerms); sl@0: CLEAR(q); sl@0: } sl@0: sl@0: /* Free all of the dynamically allocated memory held by the sl@0: ** Snippet sl@0: */ sl@0: static void snippetClear(Snippet *p){ sl@0: sqlite3_free(p->aMatch); sl@0: sqlite3_free(p->zOffset); sl@0: sqlite3_free(p->zSnippet); sl@0: CLEAR(p); sl@0: } sl@0: /* sl@0: ** Append a single entry to the p->aMatch[] log. sl@0: */ sl@0: static void snippetAppendMatch( sl@0: Snippet *p, /* Append the entry to this snippet */ sl@0: int iCol, int iTerm, /* The column and query term */ sl@0: int iStart, int nByte /* Offset and size of the match */ sl@0: ){ sl@0: int i; sl@0: struct snippetMatch *pMatch; sl@0: if( p->nMatch+1>=p->nAlloc ){ sl@0: p->nAlloc = p->nAlloc*2 + 10; sl@0: p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) ); sl@0: if( p->aMatch==0 ){ sl@0: p->nMatch = 0; sl@0: p->nAlloc = 0; sl@0: return; sl@0: } sl@0: } sl@0: i = p->nMatch++; sl@0: pMatch = &p->aMatch[i]; sl@0: pMatch->iCol = iCol; sl@0: pMatch->iTerm = iTerm; sl@0: pMatch->iStart = iStart; sl@0: pMatch->nByte = nByte; sl@0: } sl@0: sl@0: /* sl@0: ** Sizing information for the circular buffer used in snippetOffsetsOfColumn() sl@0: */ sl@0: #define FTS2_ROTOR_SZ (32) sl@0: #define FTS2_ROTOR_MASK (FTS2_ROTOR_SZ-1) sl@0: sl@0: /* sl@0: ** Add entries to pSnippet->aMatch[] for every match that occurs against sl@0: ** document zDoc[0..nDoc-1] which is stored in column iColumn. sl@0: */ sl@0: static void snippetOffsetsOfColumn( sl@0: Query *pQuery, sl@0: Snippet *pSnippet, sl@0: int iColumn, sl@0: const char *zDoc, sl@0: int nDoc sl@0: ){ sl@0: const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */ sl@0: sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */ sl@0: sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */ sl@0: fulltext_vtab *pVtab; /* The full text index */ sl@0: int nColumn; /* Number of columns in the index */ sl@0: const QueryTerm *aTerm; /* Query string terms */ sl@0: int nTerm; /* Number of query string terms */ sl@0: int i, j; /* Loop counters */ sl@0: int rc; /* Return code */ sl@0: unsigned int match, prevMatch; /* Phrase search bitmasks */ sl@0: const char *zToken; /* Next token from the tokenizer */ sl@0: int nToken; /* Size of zToken */ sl@0: int iBegin, iEnd, iPos; /* Offsets of beginning and end */ sl@0: sl@0: /* The following variables keep a circular buffer of the last sl@0: ** few tokens */ sl@0: unsigned int iRotor = 0; /* Index of current token */ sl@0: int iRotorBegin[FTS2_ROTOR_SZ]; /* Beginning offset of token */ sl@0: int iRotorLen[FTS2_ROTOR_SZ]; /* Length of token */ sl@0: sl@0: pVtab = pQuery->pFts; sl@0: nColumn = pVtab->nColumn; sl@0: pTokenizer = pVtab->pTokenizer; sl@0: pTModule = pTokenizer->pModule; sl@0: rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor); sl@0: if( rc ) return; sl@0: pTCursor->pTokenizer = pTokenizer; sl@0: aTerm = pQuery->pTerms; sl@0: nTerm = pQuery->nTerms; sl@0: if( nTerm>=FTS2_ROTOR_SZ ){ sl@0: nTerm = FTS2_ROTOR_SZ - 1; sl@0: } sl@0: prevMatch = 0; sl@0: while(1){ sl@0: rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos); sl@0: if( rc ) break; sl@0: iRotorBegin[iRotor&FTS2_ROTOR_MASK] = iBegin; sl@0: iRotorLen[iRotor&FTS2_ROTOR_MASK] = iEnd-iBegin; sl@0: match = 0; sl@0: for(i=0; i=0 && iColnToken ) continue; sl@0: if( !aTerm[i].isPrefix && aTerm[i].nTerm1 && (prevMatch & (1<=0; j--){ sl@0: int k = (iRotor-j) & FTS2_ROTOR_MASK; sl@0: snippetAppendMatch(pSnippet, iColumn, i-j, sl@0: iRotorBegin[k], iRotorLen[k]); sl@0: } sl@0: } sl@0: } sl@0: prevMatch = match<<1; sl@0: iRotor++; sl@0: } sl@0: pTModule->xClose(pTCursor); sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Compute all offsets for the current row of the query. sl@0: ** If the offsets have already been computed, this routine is a no-op. sl@0: */ sl@0: static void snippetAllOffsets(fulltext_cursor *p){ sl@0: int nColumn; sl@0: int iColumn, i; sl@0: int iFirst, iLast; sl@0: fulltext_vtab *pFts; sl@0: sl@0: if( p->snippet.nMatch ) return; sl@0: if( p->q.nTerms==0 ) return; sl@0: pFts = p->q.pFts; sl@0: nColumn = pFts->nColumn; sl@0: iColumn = (p->iCursorType - QUERY_FULLTEXT); sl@0: if( iColumn<0 || iColumn>=nColumn ){ sl@0: iFirst = 0; sl@0: iLast = nColumn-1; sl@0: }else{ sl@0: iFirst = iColumn; sl@0: iLast = iColumn; sl@0: } sl@0: for(i=iFirst; i<=iLast; i++){ sl@0: const char *zDoc; sl@0: int nDoc; sl@0: zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1); sl@0: nDoc = sqlite3_column_bytes(p->pStmt, i+1); sl@0: snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Convert the information in the aMatch[] array of the snippet sl@0: ** into the string zOffset[0..nOffset-1]. sl@0: */ sl@0: static void snippetOffsetText(Snippet *p){ sl@0: int i; sl@0: int cnt = 0; sl@0: StringBuffer sb; sl@0: char zBuf[200]; sl@0: if( p->zOffset ) return; sl@0: initStringBuffer(&sb); sl@0: for(i=0; inMatch; i++){ sl@0: struct snippetMatch *pMatch = &p->aMatch[i]; sl@0: zBuf[0] = ' '; sl@0: sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d", sl@0: pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte); sl@0: append(&sb, zBuf); sl@0: cnt++; sl@0: } sl@0: p->zOffset = stringBufferData(&sb); sl@0: p->nOffset = stringBufferLength(&sb); sl@0: } sl@0: sl@0: /* sl@0: ** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set sl@0: ** of matching words some of which might be in zDoc. zDoc is column sl@0: ** number iCol. sl@0: ** sl@0: ** iBreak is suggested spot in zDoc where we could begin or end an sl@0: ** excerpt. Return a value similar to iBreak but possibly adjusted sl@0: ** to be a little left or right so that the break point is better. sl@0: */ sl@0: static int wordBoundary( sl@0: int iBreak, /* The suggested break point */ sl@0: const char *zDoc, /* Document text */ sl@0: int nDoc, /* Number of bytes in zDoc[] */ sl@0: struct snippetMatch *aMatch, /* Matching words */ sl@0: int nMatch, /* Number of entries in aMatch[] */ sl@0: int iCol /* The column number for zDoc[] */ sl@0: ){ sl@0: int i; sl@0: if( iBreak<=10 ){ sl@0: return 0; sl@0: } sl@0: if( iBreak>=nDoc-10 ){ sl@0: return nDoc; sl@0: } sl@0: for(i=0; i0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){ sl@0: return aMatch[i-1].iStart; sl@0: } sl@0: } sl@0: for(i=1; i<=10; i++){ sl@0: if( safe_isspace(zDoc[iBreak-i]) ){ sl@0: return iBreak - i + 1; sl@0: } sl@0: if( safe_isspace(zDoc[iBreak+i]) ){ sl@0: return iBreak + i + 1; sl@0: } sl@0: } sl@0: return iBreak; sl@0: } sl@0: sl@0: sl@0: sl@0: /* sl@0: ** Allowed values for Snippet.aMatch[].snStatus sl@0: */ sl@0: #define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */ sl@0: #define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */ sl@0: sl@0: /* sl@0: ** Generate the text of a snippet. sl@0: */ sl@0: static void snippetText( sl@0: fulltext_cursor *pCursor, /* The cursor we need the snippet for */ sl@0: const char *zStartMark, /* Markup to appear before each match */ sl@0: const char *zEndMark, /* Markup to appear after each match */ sl@0: const char *zEllipsis /* Ellipsis mark */ sl@0: ){ sl@0: int i, j; sl@0: struct snippetMatch *aMatch; sl@0: int nMatch; sl@0: int nDesired; sl@0: StringBuffer sb; sl@0: int tailCol; sl@0: int tailOffset; sl@0: int iCol; sl@0: int nDoc; sl@0: const char *zDoc; sl@0: int iStart, iEnd; sl@0: int tailEllipsis = 0; sl@0: int iMatch; sl@0: sl@0: sl@0: sqlite3_free(pCursor->snippet.zSnippet); sl@0: pCursor->snippet.zSnippet = 0; sl@0: aMatch = pCursor->snippet.aMatch; sl@0: nMatch = pCursor->snippet.nMatch; sl@0: initStringBuffer(&sb); sl@0: sl@0: for(i=0; iq.nTerms; i++){ sl@0: for(j=0; j0; i++){ sl@0: if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue; sl@0: nDesired--; sl@0: iCol = aMatch[i].iCol; sl@0: zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1); sl@0: nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1); sl@0: iStart = aMatch[i].iStart - 40; sl@0: iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol); sl@0: if( iStart<=10 ){ sl@0: iStart = 0; sl@0: } sl@0: if( iCol==tailCol && iStart<=tailOffset+20 ){ sl@0: iStart = tailOffset; sl@0: } sl@0: if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){ sl@0: trimWhiteSpace(&sb); sl@0: appendWhiteSpace(&sb); sl@0: append(&sb, zEllipsis); sl@0: appendWhiteSpace(&sb); sl@0: } sl@0: iEnd = aMatch[i].iStart + aMatch[i].nByte + 40; sl@0: iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol); sl@0: if( iEnd>=nDoc-10 ){ sl@0: iEnd = nDoc; sl@0: tailEllipsis = 0; sl@0: }else{ sl@0: tailEllipsis = 1; sl@0: } sl@0: while( iMatchsnippet.zSnippet = stringBufferData(&sb); sl@0: pCursor->snippet.nSnippet = stringBufferLength(&sb); sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Close the cursor. For additional information see the documentation sl@0: ** on the xClose method of the virtual table interface. sl@0: */ sl@0: static int fulltextClose(sqlite3_vtab_cursor *pCursor){ sl@0: fulltext_cursor *c = (fulltext_cursor *) pCursor; sl@0: TRACE(("FTS2 Close %p\n", c)); sl@0: sqlite3_finalize(c->pStmt); sl@0: queryClear(&c->q); sl@0: snippetClear(&c->snippet); sl@0: if( c->result.nData!=0 ) dlrDestroy(&c->reader); sl@0: dataBufferDestroy(&c->result); sl@0: sqlite3_free(c); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: static int fulltextNext(sqlite3_vtab_cursor *pCursor){ sl@0: fulltext_cursor *c = (fulltext_cursor *) pCursor; sl@0: int rc; sl@0: sl@0: TRACE(("FTS2 Next %p\n", pCursor)); sl@0: snippetClear(&c->snippet); sl@0: if( c->iCursorType < QUERY_FULLTEXT ){ sl@0: /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ sl@0: rc = sqlite3_step(c->pStmt); sl@0: switch( rc ){ sl@0: case SQLITE_ROW: sl@0: c->eof = 0; sl@0: return SQLITE_OK; sl@0: case SQLITE_DONE: sl@0: c->eof = 1; sl@0: return SQLITE_OK; sl@0: default: sl@0: c->eof = 1; sl@0: return rc; sl@0: } sl@0: } else { /* full-text query */ sl@0: rc = sqlite3_reset(c->pStmt); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: if( c->result.nData==0 || dlrAtEnd(&c->reader) ){ sl@0: c->eof = 1; sl@0: return SQLITE_OK; sl@0: } sl@0: rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader)); sl@0: dlrStep(&c->reader); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ sl@0: rc = sqlite3_step(c->pStmt); sl@0: if( rc==SQLITE_ROW ){ /* the case we expect */ sl@0: c->eof = 0; sl@0: return SQLITE_OK; sl@0: } sl@0: /* an error occurred; abort */ sl@0: return rc==SQLITE_DONE ? SQLITE_ERROR : rc; sl@0: } sl@0: } sl@0: sl@0: sl@0: /* TODO(shess) If we pushed LeafReader to the top of the file, or to sl@0: ** another file, term_select() could be pushed above sl@0: ** docListOfTerm(). sl@0: */ sl@0: static int termSelect(fulltext_vtab *v, int iColumn, sl@0: const char *pTerm, int nTerm, int isPrefix, sl@0: DocListType iType, DataBuffer *out); sl@0: sl@0: /* Return a DocList corresponding to the query term *pTerm. If *pTerm sl@0: ** is the first term of a phrase query, go ahead and evaluate the phrase sl@0: ** query and return the doclist for the entire phrase query. sl@0: ** sl@0: ** The resulting DL_DOCIDS doclist is stored in pResult, which is sl@0: ** overwritten. sl@0: */ sl@0: static int docListOfTerm( sl@0: fulltext_vtab *v, /* The full text index */ sl@0: int iColumn, /* column to restrict to. No restriction if >=nColumn */ sl@0: QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */ sl@0: DataBuffer *pResult /* Write the result here */ sl@0: ){ sl@0: DataBuffer left, right, new; sl@0: int i, rc; sl@0: sl@0: /* No phrase search if no position info. */ sl@0: assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS ); sl@0: sl@0: /* This code should never be called with buffered updates. */ sl@0: assert( v->nPendingData<0 ); sl@0: sl@0: dataBufferInit(&left, 0); sl@0: rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix, sl@0: 0nPhrase ? DL_POSITIONS : DL_DOCIDS, &left); sl@0: if( rc ) return rc; sl@0: for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){ sl@0: dataBufferInit(&right, 0); sl@0: rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm, sl@0: pQTerm[i].isPrefix, DL_POSITIONS, &right); sl@0: if( rc ){ sl@0: dataBufferDestroy(&left); sl@0: return rc; sl@0: } sl@0: dataBufferInit(&new, 0); sl@0: docListPhraseMerge(left.pData, left.nData, right.pData, right.nData, sl@0: inPhrase ? DL_POSITIONS : DL_DOCIDS, &new); sl@0: dataBufferDestroy(&left); sl@0: dataBufferDestroy(&right); sl@0: left = new; sl@0: } sl@0: *pResult = left; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Add a new term pTerm[0..nTerm-1] to the query *q. sl@0: */ sl@0: static void queryAdd(Query *q, const char *pTerm, int nTerm){ sl@0: QueryTerm *t; sl@0: ++q->nTerms; sl@0: q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0])); sl@0: if( q->pTerms==0 ){ sl@0: q->nTerms = 0; sl@0: return; sl@0: } sl@0: t = &q->pTerms[q->nTerms - 1]; sl@0: CLEAR(t); sl@0: t->pTerm = sqlite3_malloc(nTerm+1); sl@0: memcpy(t->pTerm, pTerm, nTerm); sl@0: t->pTerm[nTerm] = 0; sl@0: t->nTerm = nTerm; sl@0: t->isOr = q->nextIsOr; sl@0: t->isPrefix = 0; sl@0: q->nextIsOr = 0; sl@0: t->iColumn = q->nextColumn; sl@0: q->nextColumn = q->dfltColumn; sl@0: } sl@0: sl@0: /* sl@0: ** Check to see if the string zToken[0...nToken-1] matches any sl@0: ** column name in the virtual table. If it does, sl@0: ** return the zero-indexed column number. If not, return -1. sl@0: */ sl@0: static int checkColumnSpecifier( sl@0: fulltext_vtab *pVtab, /* The virtual table */ sl@0: const char *zToken, /* Text of the token */ sl@0: int nToken /* Number of characters in the token */ sl@0: ){ sl@0: int i; sl@0: for(i=0; inColumn; i++){ sl@0: if( memcmp(pVtab->azColumn[i], zToken, nToken)==0 sl@0: && pVtab->azColumn[i][nToken]==0 ){ sl@0: return i; sl@0: } sl@0: } sl@0: return -1; sl@0: } sl@0: sl@0: /* sl@0: ** Parse the text at pSegment[0..nSegment-1]. Add additional terms sl@0: ** to the query being assemblied in pQuery. sl@0: ** sl@0: ** inPhrase is true if pSegment[0..nSegement-1] is contained within sl@0: ** double-quotes. If inPhrase is true, then the first term sl@0: ** is marked with the number of terms in the phrase less one and sl@0: ** OR and "-" syntax is ignored. If inPhrase is false, then every sl@0: ** term found is marked with nPhrase=0 and OR and "-" syntax is significant. sl@0: */ sl@0: static int tokenizeSegment( sl@0: sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */ sl@0: const char *pSegment, int nSegment, /* Query expression being parsed */ sl@0: int inPhrase, /* True if within "..." */ sl@0: Query *pQuery /* Append results here */ sl@0: ){ sl@0: const sqlite3_tokenizer_module *pModule = pTokenizer->pModule; sl@0: sqlite3_tokenizer_cursor *pCursor; sl@0: int firstIndex = pQuery->nTerms; sl@0: int iCol; sl@0: int nTerm = 1; sl@0: sl@0: int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: pCursor->pTokenizer = pTokenizer; sl@0: sl@0: while( 1 ){ sl@0: const char *pToken; sl@0: int nToken, iBegin, iEnd, iPos; sl@0: sl@0: rc = pModule->xNext(pCursor, sl@0: &pToken, &nToken, sl@0: &iBegin, &iEnd, &iPos); sl@0: if( rc!=SQLITE_OK ) break; sl@0: if( !inPhrase && sl@0: pSegment[iEnd]==':' && sl@0: (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){ sl@0: pQuery->nextColumn = iCol; sl@0: continue; sl@0: } sl@0: if( !inPhrase && pQuery->nTerms>0 && nToken==2 sl@0: && pSegment[iBegin]=='O' && pSegment[iBegin+1]=='R' ){ sl@0: pQuery->nextIsOr = 1; sl@0: continue; sl@0: } sl@0: queryAdd(pQuery, pToken, nToken); sl@0: if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){ sl@0: pQuery->pTerms[pQuery->nTerms-1].isNot = 1; sl@0: } sl@0: if( iEndpTerms[pQuery->nTerms-1].isPrefix = 1; sl@0: } sl@0: pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm; sl@0: if( inPhrase ){ sl@0: nTerm++; sl@0: } sl@0: } sl@0: sl@0: if( inPhrase && pQuery->nTerms>firstIndex ){ sl@0: pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1; sl@0: } sl@0: sl@0: return pModule->xClose(pCursor); sl@0: } sl@0: sl@0: /* Parse a query string, yielding a Query object pQuery. sl@0: ** sl@0: ** The calling function will need to queryClear() to clean up sl@0: ** the dynamically allocated memory held by pQuery. sl@0: */ sl@0: static int parseQuery( sl@0: fulltext_vtab *v, /* The fulltext index */ sl@0: const char *zInput, /* Input text of the query string */ sl@0: int nInput, /* Size of the input text */ sl@0: int dfltColumn, /* Default column of the index to match against */ sl@0: Query *pQuery /* Write the parse results here. */ sl@0: ){ sl@0: int iInput, inPhrase = 0; sl@0: sl@0: if( zInput==0 ) nInput = 0; sl@0: if( nInput<0 ) nInput = strlen(zInput); sl@0: pQuery->nTerms = 0; sl@0: pQuery->pTerms = NULL; sl@0: pQuery->nextIsOr = 0; sl@0: pQuery->nextColumn = dfltColumn; sl@0: pQuery->dfltColumn = dfltColumn; sl@0: pQuery->pFts = v; sl@0: sl@0: for(iInput=0; iInputiInput ){ sl@0: tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase, sl@0: pQuery); sl@0: } sl@0: iInput = i; sl@0: if( i=nColumn sl@0: ** they are allowed to match against any column. sl@0: */ sl@0: static int fulltextQuery( sl@0: fulltext_vtab *v, /* The full text index */ sl@0: int iColumn, /* Match against this column by default */ sl@0: const char *zInput, /* The query string */ sl@0: int nInput, /* Number of bytes in zInput[] */ sl@0: DataBuffer *pResult, /* Write the result doclist here */ sl@0: Query *pQuery /* Put parsed query string here */ sl@0: ){ sl@0: int i, iNext, rc; sl@0: DataBuffer left, right, or, new; sl@0: int nNot = 0; sl@0: QueryTerm *aTerm; sl@0: sl@0: /* TODO(shess) Instead of flushing pendingTerms, we could query for sl@0: ** the relevant term and merge the doclist into what we receive from sl@0: ** the database. Wait and see if this is a common issue, first. sl@0: ** sl@0: ** A good reason not to flush is to not generate update-related sl@0: ** error codes from here. sl@0: */ sl@0: sl@0: /* Flush any buffered updates before executing the query. */ sl@0: rc = flushPendingTerms(v); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: /* TODO(shess) I think that the queryClear() calls below are not sl@0: ** necessary, because fulltextClose() already clears the query. sl@0: */ sl@0: rc = parseQuery(v, zInput, nInput, iColumn, pQuery); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: /* Empty or NULL queries return no results. */ sl@0: if( pQuery->nTerms==0 ){ sl@0: dataBufferInit(pResult, 0); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Merge AND terms. */ sl@0: /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */ sl@0: aTerm = pQuery->pTerms; sl@0: for(i = 0; inTerms; i=iNext){ sl@0: if( aTerm[i].isNot ){ sl@0: /* Handle all NOT terms in a separate pass */ sl@0: nNot++; sl@0: iNext = i + aTerm[i].nPhrase+1; sl@0: continue; sl@0: } sl@0: iNext = i + aTerm[i].nPhrase + 1; sl@0: rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); sl@0: if( rc ){ sl@0: if( i!=nNot ) dataBufferDestroy(&left); sl@0: queryClear(pQuery); sl@0: return rc; sl@0: } sl@0: while( iNextnTerms && aTerm[iNext].isOr ){ sl@0: rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or); sl@0: iNext += aTerm[iNext].nPhrase + 1; sl@0: if( rc ){ sl@0: if( i!=nNot ) dataBufferDestroy(&left); sl@0: dataBufferDestroy(&right); sl@0: queryClear(pQuery); sl@0: return rc; sl@0: } sl@0: dataBufferInit(&new, 0); sl@0: docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new); sl@0: dataBufferDestroy(&right); sl@0: dataBufferDestroy(&or); sl@0: right = new; sl@0: } sl@0: if( i==nNot ){ /* first term processed. */ sl@0: left = right; sl@0: }else{ sl@0: dataBufferInit(&new, 0); sl@0: docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new); sl@0: dataBufferDestroy(&right); sl@0: dataBufferDestroy(&left); sl@0: left = new; sl@0: } sl@0: } sl@0: sl@0: if( nNot==pQuery->nTerms ){ sl@0: /* We do not yet know how to handle a query of only NOT terms */ sl@0: return SQLITE_ERROR; sl@0: } sl@0: sl@0: /* Do the EXCEPT terms */ sl@0: for(i=0; inTerms; i += aTerm[i].nPhrase + 1){ sl@0: if( !aTerm[i].isNot ) continue; sl@0: rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); sl@0: if( rc ){ sl@0: queryClear(pQuery); sl@0: dataBufferDestroy(&left); sl@0: return rc; sl@0: } sl@0: dataBufferInit(&new, 0); sl@0: docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new); sl@0: dataBufferDestroy(&right); sl@0: dataBufferDestroy(&left); sl@0: left = new; sl@0: } sl@0: sl@0: *pResult = left; sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** This is the xFilter interface for the virtual table. See sl@0: ** the virtual table xFilter method documentation for additional sl@0: ** information. sl@0: ** sl@0: ** If idxNum==QUERY_GENERIC then do a full table scan against sl@0: ** the %_content table. sl@0: ** sl@0: ** If idxNum==QUERY_ROWID then do a rowid lookup for a single entry sl@0: ** in the %_content table. sl@0: ** sl@0: ** If idxNum>=QUERY_FULLTEXT then use the full text index. The sl@0: ** column on the left-hand side of the MATCH operator is column sl@0: ** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand sl@0: ** side of the MATCH operator. sl@0: */ sl@0: /* TODO(shess) Upgrade the cursor initialization and destruction to sl@0: ** account for fulltextFilter() being called multiple times on the sl@0: ** same cursor. The current solution is very fragile. Apply fix to sl@0: ** fts2 as appropriate. sl@0: */ sl@0: static int fulltextFilter( sl@0: sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ sl@0: int idxNum, const char *idxStr, /* Which indexing scheme to use */ sl@0: int argc, sqlite3_value **argv /* Arguments for the indexing scheme */ sl@0: ){ sl@0: fulltext_cursor *c = (fulltext_cursor *) pCursor; sl@0: fulltext_vtab *v = cursor_vtab(c); sl@0: int rc; sl@0: sl@0: TRACE(("FTS2 Filter %p\n",pCursor)); sl@0: sl@0: /* If the cursor has a statement that was not prepared according to sl@0: ** idxNum, clear it. I believe all calls to fulltextFilter with a sl@0: ** given cursor will have the same idxNum , but in this case it's sl@0: ** easy to be safe. sl@0: */ sl@0: if( c->pStmt && c->iCursorType!=idxNum ){ sl@0: sqlite3_finalize(c->pStmt); sl@0: c->pStmt = NULL; sl@0: } sl@0: sl@0: /* Get a fresh statement appropriate to idxNum. */ sl@0: /* TODO(shess): Add a prepared-statement cache in the vt structure. sl@0: ** The cache must handle multiple open cursors. Easier to cache the sl@0: ** statement variants at the vt to reduce malloc/realloc/free here. sl@0: ** Or we could have a StringBuffer variant which allowed stack sl@0: ** construction for small values. sl@0: */ sl@0: if( !c->pStmt ){ sl@0: char *zSql = sqlite3_mprintf("select rowid, * from %%_content %s", sl@0: idxNum==QUERY_GENERIC ? "" : "where rowid=?"); sl@0: rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, zSql); sl@0: sqlite3_free(zSql); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: c->iCursorType = idxNum; sl@0: }else{ sl@0: sqlite3_reset(c->pStmt); sl@0: assert( c->iCursorType==idxNum ); sl@0: } sl@0: sl@0: switch( idxNum ){ sl@0: case QUERY_GENERIC: sl@0: break; sl@0: sl@0: case QUERY_ROWID: sl@0: rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0])); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: break; sl@0: sl@0: default: /* full-text search */ sl@0: { sl@0: const char *zQuery = (const char *)sqlite3_value_text(argv[0]); sl@0: assert( idxNum<=QUERY_FULLTEXT+v->nColumn); sl@0: assert( argc==1 ); sl@0: queryClear(&c->q); sl@0: if( c->result.nData!=0 ){ sl@0: /* This case happens if the same cursor is used repeatedly. */ sl@0: dlrDestroy(&c->reader); sl@0: dataBufferReset(&c->result); sl@0: }else{ sl@0: dataBufferInit(&c->result, 0); sl@0: } sl@0: rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: if( c->result.nData!=0 ){ sl@0: dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData); sl@0: } sl@0: break; sl@0: } sl@0: } sl@0: sl@0: return fulltextNext(pCursor); sl@0: } sl@0: sl@0: /* This is the xEof method of the virtual table. The SQLite core sl@0: ** calls this routine to find out if it has reached the end of sl@0: ** a query's results set. sl@0: */ sl@0: static int fulltextEof(sqlite3_vtab_cursor *pCursor){ sl@0: fulltext_cursor *c = (fulltext_cursor *) pCursor; sl@0: return c->eof; sl@0: } sl@0: sl@0: /* This is the xColumn method of the virtual table. The SQLite sl@0: ** core calls this method during a query when it needs the value sl@0: ** of a column from the virtual table. This method needs to use sl@0: ** one of the sqlite3_result_*() routines to store the requested sl@0: ** value back in the pContext. sl@0: */ sl@0: static int fulltextColumn(sqlite3_vtab_cursor *pCursor, sl@0: sqlite3_context *pContext, int idxCol){ sl@0: fulltext_cursor *c = (fulltext_cursor *) pCursor; sl@0: fulltext_vtab *v = cursor_vtab(c); sl@0: sl@0: if( idxColnColumn ){ sl@0: sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1); sl@0: sqlite3_result_value(pContext, pVal); sl@0: }else if( idxCol==v->nColumn ){ sl@0: /* The extra column whose name is the same as the table. sl@0: ** Return a blob which is a pointer to the cursor sl@0: */ sl@0: sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT); sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* This is the xRowid method. The SQLite core calls this routine to sl@0: ** retrive the rowid for the current row of the result set. The sl@0: ** rowid should be written to *pRowid. sl@0: */ sl@0: static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ sl@0: fulltext_cursor *c = (fulltext_cursor *) pCursor; sl@0: sl@0: *pRowid = sqlite3_column_int64(c->pStmt, 0); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Add all terms in [zText] to pendingTerms table. If [iColumn] > 0, sl@0: ** we also store positions and offsets in the hash table using that sl@0: ** column number. sl@0: */ sl@0: static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid, sl@0: const char *zText, int iColumn){ sl@0: sqlite3_tokenizer *pTokenizer = v->pTokenizer; sl@0: sqlite3_tokenizer_cursor *pCursor; sl@0: const char *pToken; sl@0: int nTokenBytes; sl@0: int iStartOffset, iEndOffset, iPosition; sl@0: int rc; sl@0: sl@0: rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: pCursor->pTokenizer = pTokenizer; sl@0: while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor, sl@0: &pToken, &nTokenBytes, sl@0: &iStartOffset, &iEndOffset, sl@0: &iPosition)) ){ sl@0: DLCollector *p; sl@0: int nData; /* Size of doclist before our update. */ sl@0: sl@0: /* Positions can't be negative; we use -1 as a terminator sl@0: * internally. Token can't be NULL or empty. */ sl@0: if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){ sl@0: rc = SQLITE_ERROR; sl@0: break; sl@0: } sl@0: sl@0: p = fts2HashFind(&v->pendingTerms, pToken, nTokenBytes); sl@0: if( p==NULL ){ sl@0: nData = 0; sl@0: p = dlcNew(iDocid, DL_DEFAULT); sl@0: fts2HashInsert(&v->pendingTerms, pToken, nTokenBytes, p); sl@0: sl@0: /* Overhead for our hash table entry, the key, and the value. */ sl@0: v->nPendingData += sizeof(struct fts2HashElem)+sizeof(*p)+nTokenBytes; sl@0: }else{ sl@0: nData = p->b.nData; sl@0: if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid); sl@0: } sl@0: if( iColumn>=0 ){ sl@0: dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset); sl@0: } sl@0: sl@0: /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */ sl@0: v->nPendingData += p->b.nData-nData; sl@0: } sl@0: sl@0: /* TODO(shess) Check return? Should this be able to cause errors at sl@0: ** this point? Actually, same question about sqlite3_finalize(), sl@0: ** though one could argue that failure there means that the data is sl@0: ** not durable. *ponder* sl@0: */ sl@0: pTokenizer->pModule->xClose(pCursor); sl@0: if( SQLITE_DONE == rc ) return SQLITE_OK; sl@0: return rc; sl@0: } sl@0: sl@0: /* Add doclists for all terms in [pValues] to pendingTerms table. */ sl@0: static int insertTerms(fulltext_vtab *v, sqlite_int64 iRowid, sl@0: sqlite3_value **pValues){ sl@0: int i; sl@0: for(i = 0; i < v->nColumn ; ++i){ sl@0: char *zText = (char*)sqlite3_value_text(pValues[i]); sl@0: int rc = buildTerms(v, iRowid, zText, i); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Add empty doclists for all terms in the given row's content to sl@0: ** pendingTerms. sl@0: */ sl@0: static int deleteTerms(fulltext_vtab *v, sqlite_int64 iRowid){ sl@0: const char **pValues; sl@0: int i, rc; sl@0: sl@0: /* TODO(shess) Should we allow such tables at all? */ sl@0: if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR; sl@0: sl@0: rc = content_select(v, iRowid, &pValues); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: for(i = 0 ; i < v->nColumn; ++i) { sl@0: rc = buildTerms(v, iRowid, pValues[i], -1); sl@0: if( rc!=SQLITE_OK ) break; sl@0: } sl@0: sl@0: freeStringArray(v->nColumn, pValues); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* TODO(shess) Refactor the code to remove this forward decl. */ sl@0: static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid); sl@0: sl@0: /* Insert a row into the %_content table; set *piRowid to be the ID of the sl@0: ** new row. Add doclists for terms to pendingTerms. sl@0: */ sl@0: static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestRowid, sl@0: sqlite3_value **pValues, sqlite_int64 *piRowid){ sl@0: int rc; sl@0: sl@0: rc = content_insert(v, pRequestRowid, pValues); /* execute an SQL INSERT */ sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: *piRowid = sqlite3_last_insert_rowid(v->db); sl@0: rc = initPendingTerms(v, *piRowid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: return insertTerms(v, *piRowid, pValues); sl@0: } sl@0: sl@0: /* Delete a row from the %_content table; add empty doclists for terms sl@0: ** to pendingTerms. sl@0: */ sl@0: static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){ sl@0: int rc = initPendingTerms(v, iRow); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = deleteTerms(v, iRow); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: return content_delete(v, iRow); /* execute an SQL DELETE */ sl@0: } sl@0: sl@0: /* Update a row in the %_content table; add delete doclists to sl@0: ** pendingTerms for old terms not in the new data, add insert doclists sl@0: ** to pendingTerms for terms in the new data. sl@0: */ sl@0: static int index_update(fulltext_vtab *v, sqlite_int64 iRow, sl@0: sqlite3_value **pValues){ sl@0: int rc = initPendingTerms(v, iRow); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: /* Generate an empty doclist for each term that previously appeared in this sl@0: * row. */ sl@0: rc = deleteTerms(v, iRow); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */ sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: /* Now add positions for terms which appear in the updated row. */ sl@0: return insertTerms(v, iRow, pValues); sl@0: } sl@0: sl@0: /*******************************************************************/ sl@0: /* InteriorWriter is used to collect terms and block references into sl@0: ** interior nodes in %_segments. See commentary at top of file for sl@0: ** format. sl@0: */ sl@0: sl@0: /* How large interior nodes can grow. */ sl@0: #define INTERIOR_MAX 2048 sl@0: sl@0: /* Minimum number of terms per interior node (except the root). This sl@0: ** prevents large terms from making the tree too skinny - must be >0 sl@0: ** so that the tree always makes progress. Note that the min tree sl@0: ** fanout will be INTERIOR_MIN_TERMS+1. sl@0: */ sl@0: #define INTERIOR_MIN_TERMS 7 sl@0: #if INTERIOR_MIN_TERMS<1 sl@0: # error INTERIOR_MIN_TERMS must be greater than 0. sl@0: #endif sl@0: sl@0: /* ROOT_MAX controls how much data is stored inline in the segment sl@0: ** directory. sl@0: */ sl@0: /* TODO(shess) Push ROOT_MAX down to whoever is writing things. It's sl@0: ** only here so that interiorWriterRootInfo() and leafWriterRootInfo() sl@0: ** can both see it, but if the caller passed it in, we wouldn't even sl@0: ** need a define. sl@0: */ sl@0: #define ROOT_MAX 1024 sl@0: #if ROOT_MAXterm, 0); sl@0: dataBufferReplace(&block->term, pTerm, nTerm); sl@0: sl@0: n = putVarint(c, iHeight); sl@0: n += putVarint(c+n, iChildBlock); sl@0: dataBufferInit(&block->data, INTERIOR_MAX); sl@0: dataBufferReplace(&block->data, c, n); sl@0: } sl@0: return block; sl@0: } sl@0: sl@0: #ifndef NDEBUG sl@0: /* Verify that the data is readable as an interior node. */ sl@0: static void interiorBlockValidate(InteriorBlock *pBlock){ sl@0: const char *pData = pBlock->data.pData; sl@0: int nData = pBlock->data.nData; sl@0: int n, iDummy; sl@0: sqlite_int64 iBlockid; sl@0: sl@0: assert( nData>0 ); sl@0: assert( pData!=0 ); sl@0: assert( pData+nData>pData ); sl@0: sl@0: /* Must lead with height of node as a varint(n), n>0 */ sl@0: n = getVarint32(pData, &iDummy); sl@0: assert( n>0 ); sl@0: assert( iDummy>0 ); sl@0: assert( n0 ); sl@0: assert( n<=nData ); sl@0: pData += n; sl@0: nData -= n; sl@0: sl@0: /* Zero or more terms of positive length */ sl@0: if( nData!=0 ){ sl@0: /* First term is not delta-encoded. */ sl@0: n = getVarint32(pData, &iDummy); sl@0: assert( n>0 ); sl@0: assert( iDummy>0 ); sl@0: assert( n+iDummy>0); sl@0: assert( n+iDummy<=nData ); sl@0: pData += n+iDummy; sl@0: nData -= n+iDummy; sl@0: sl@0: /* Following terms delta-encoded. */ sl@0: while( nData!=0 ){ sl@0: /* Length of shared prefix. */ sl@0: n = getVarint32(pData, &iDummy); sl@0: assert( n>0 ); sl@0: assert( iDummy>=0 ); sl@0: assert( n0 ); sl@0: assert( iDummy>0 ); sl@0: assert( n+iDummy>0); sl@0: assert( n+iDummy<=nData ); sl@0: pData += n+iDummy; sl@0: nData -= n+iDummy; sl@0: } sl@0: } sl@0: } sl@0: #define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x) sl@0: #else sl@0: #define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 ) sl@0: #endif sl@0: sl@0: typedef struct InteriorWriter { sl@0: int iHeight; /* from 0 at leaves. */ sl@0: InteriorBlock *first, *last; sl@0: struct InteriorWriter *parentWriter; sl@0: sl@0: DataBuffer term; /* Last term written to block "last". */ sl@0: sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */ sl@0: #ifndef NDEBUG sl@0: sqlite_int64 iLastChildBlock; /* for consistency checks. */ sl@0: #endif sl@0: } InteriorWriter; sl@0: sl@0: /* Initialize an interior node where pTerm[nTerm] marks the leftmost sl@0: ** term in the tree. iChildBlock is the leftmost child block at the sl@0: ** next level down the tree. sl@0: */ sl@0: static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm, sl@0: sqlite_int64 iChildBlock, sl@0: InteriorWriter *pWriter){ sl@0: InteriorBlock *block; sl@0: assert( iHeight>0 ); sl@0: CLEAR(pWriter); sl@0: sl@0: pWriter->iHeight = iHeight; sl@0: pWriter->iOpeningChildBlock = iChildBlock; sl@0: #ifndef NDEBUG sl@0: pWriter->iLastChildBlock = iChildBlock; sl@0: #endif sl@0: block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm); sl@0: pWriter->last = pWriter->first = block; sl@0: ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); sl@0: dataBufferInit(&pWriter->term, 0); sl@0: } sl@0: sl@0: /* Append the child node rooted at iChildBlock to the interior node, sl@0: ** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree. sl@0: */ sl@0: static void interiorWriterAppend(InteriorWriter *pWriter, sl@0: const char *pTerm, int nTerm, sl@0: sqlite_int64 iChildBlock){ sl@0: char c[VARINT_MAX+VARINT_MAX]; sl@0: int n, nPrefix = 0; sl@0: sl@0: ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); sl@0: sl@0: /* The first term written into an interior node is actually sl@0: ** associated with the second child added (the first child was added sl@0: ** in interiorWriterInit, or in the if clause at the bottom of this sl@0: ** function). That term gets encoded straight up, with nPrefix left sl@0: ** at 0. sl@0: */ sl@0: if( pWriter->term.nData==0 ){ sl@0: n = putVarint(c, nTerm); sl@0: }else{ sl@0: while( nPrefixterm.nData && sl@0: pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ sl@0: nPrefix++; sl@0: } sl@0: sl@0: n = putVarint(c, nPrefix); sl@0: n += putVarint(c+n, nTerm-nPrefix); sl@0: } sl@0: sl@0: #ifndef NDEBUG sl@0: pWriter->iLastChildBlock++; sl@0: #endif sl@0: assert( pWriter->iLastChildBlock==iChildBlock ); sl@0: sl@0: /* Overflow to a new block if the new term makes the current block sl@0: ** too big, and the current block already has enough terms. sl@0: */ sl@0: if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX && sl@0: iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){ sl@0: pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock, sl@0: pTerm, nTerm); sl@0: pWriter->last = pWriter->last->next; sl@0: pWriter->iOpeningChildBlock = iChildBlock; sl@0: dataBufferReset(&pWriter->term); sl@0: }else{ sl@0: dataBufferAppend2(&pWriter->last->data, c, n, sl@0: pTerm+nPrefix, nTerm-nPrefix); sl@0: dataBufferReplace(&pWriter->term, pTerm, nTerm); sl@0: } sl@0: ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); sl@0: } sl@0: sl@0: /* Free the space used by pWriter, including the linked-list of sl@0: ** InteriorBlocks, and parentWriter, if present. sl@0: */ sl@0: static int interiorWriterDestroy(InteriorWriter *pWriter){ sl@0: InteriorBlock *block = pWriter->first; sl@0: sl@0: while( block!=NULL ){ sl@0: InteriorBlock *b = block; sl@0: block = block->next; sl@0: dataBufferDestroy(&b->term); sl@0: dataBufferDestroy(&b->data); sl@0: sqlite3_free(b); sl@0: } sl@0: if( pWriter->parentWriter!=NULL ){ sl@0: interiorWriterDestroy(pWriter->parentWriter); sl@0: sqlite3_free(pWriter->parentWriter); sl@0: } sl@0: dataBufferDestroy(&pWriter->term); sl@0: SCRAMBLE(pWriter); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* If pWriter can fit entirely in ROOT_MAX, return it as the root info sl@0: ** directly, leaving *piEndBlockid unchanged. Otherwise, flush sl@0: ** pWriter to %_segments, building a new layer of interior nodes, and sl@0: ** recursively ask for their root into. sl@0: */ sl@0: static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter, sl@0: char **ppRootInfo, int *pnRootInfo, sl@0: sqlite_int64 *piEndBlockid){ sl@0: InteriorBlock *block = pWriter->first; sl@0: sqlite_int64 iBlockid = 0; sl@0: int rc; sl@0: sl@0: /* If we can fit the segment inline */ sl@0: if( block==pWriter->last && block->data.nDatadata.pData; sl@0: *pnRootInfo = block->data.nData; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Flush the first block to %_segments, and create a new level of sl@0: ** interior node. sl@0: */ sl@0: ASSERT_VALID_INTERIOR_BLOCK(block); sl@0: rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: *piEndBlockid = iBlockid; sl@0: sl@0: pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter)); sl@0: interiorWriterInit(pWriter->iHeight+1, sl@0: block->term.pData, block->term.nData, sl@0: iBlockid, pWriter->parentWriter); sl@0: sl@0: /* Flush additional blocks and append to the higher interior sl@0: ** node. sl@0: */ sl@0: for(block=block->next; block!=NULL; block=block->next){ sl@0: ASSERT_VALID_INTERIOR_BLOCK(block); sl@0: rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: *piEndBlockid = iBlockid; sl@0: sl@0: interiorWriterAppend(pWriter->parentWriter, sl@0: block->term.pData, block->term.nData, iBlockid); sl@0: } sl@0: sl@0: /* Parent node gets the chance to be the root. */ sl@0: return interiorWriterRootInfo(v, pWriter->parentWriter, sl@0: ppRootInfo, pnRootInfo, piEndBlockid); sl@0: } sl@0: sl@0: /****************************************************************/ sl@0: /* InteriorReader is used to read off the data from an interior node sl@0: ** (see comment at top of file for the format). sl@0: */ sl@0: typedef struct InteriorReader { sl@0: const char *pData; sl@0: int nData; sl@0: sl@0: DataBuffer term; /* previous term, for decoding term delta. */ sl@0: sl@0: sqlite_int64 iBlockid; sl@0: } InteriorReader; sl@0: sl@0: static void interiorReaderDestroy(InteriorReader *pReader){ sl@0: dataBufferDestroy(&pReader->term); sl@0: SCRAMBLE(pReader); sl@0: } sl@0: sl@0: /* TODO(shess) The assertions are great, but what if we're in NDEBUG sl@0: ** and the blob is empty or otherwise contains suspect data? sl@0: */ sl@0: static void interiorReaderInit(const char *pData, int nData, sl@0: InteriorReader *pReader){ sl@0: int n, nTerm; sl@0: sl@0: /* Require at least the leading flag byte */ sl@0: assert( nData>0 ); sl@0: assert( pData[0]!='\0' ); sl@0: sl@0: CLEAR(pReader); sl@0: sl@0: /* Decode the base blockid, and set the cursor to the first term. */ sl@0: n = getVarint(pData+1, &pReader->iBlockid); sl@0: assert( 1+n<=nData ); sl@0: pReader->pData = pData+1+n; sl@0: pReader->nData = nData-(1+n); sl@0: sl@0: /* A single-child interior node (such as when a leaf node was too sl@0: ** large for the segment directory) won't have any terms. sl@0: ** Otherwise, decode the first term. sl@0: */ sl@0: if( pReader->nData==0 ){ sl@0: dataBufferInit(&pReader->term, 0); sl@0: }else{ sl@0: n = getVarint32(pReader->pData, &nTerm); sl@0: dataBufferInit(&pReader->term, nTerm); sl@0: dataBufferReplace(&pReader->term, pReader->pData+n, nTerm); sl@0: assert( n+nTerm<=pReader->nData ); sl@0: pReader->pData += n+nTerm; sl@0: pReader->nData -= n+nTerm; sl@0: } sl@0: } sl@0: sl@0: static int interiorReaderAtEnd(InteriorReader *pReader){ sl@0: return pReader->term.nData==0; sl@0: } sl@0: sl@0: static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){ sl@0: return pReader->iBlockid; sl@0: } sl@0: sl@0: static int interiorReaderTermBytes(InteriorReader *pReader){ sl@0: assert( !interiorReaderAtEnd(pReader) ); sl@0: return pReader->term.nData; sl@0: } sl@0: static const char *interiorReaderTerm(InteriorReader *pReader){ sl@0: assert( !interiorReaderAtEnd(pReader) ); sl@0: return pReader->term.pData; sl@0: } sl@0: sl@0: /* Step forward to the next term in the node. */ sl@0: static void interiorReaderStep(InteriorReader *pReader){ sl@0: assert( !interiorReaderAtEnd(pReader) ); sl@0: sl@0: /* If the last term has been read, signal eof, else construct the sl@0: ** next term. sl@0: */ sl@0: if( pReader->nData==0 ){ sl@0: dataBufferReset(&pReader->term); sl@0: }else{ sl@0: int n, nPrefix, nSuffix; sl@0: sl@0: n = getVarint32(pReader->pData, &nPrefix); sl@0: n += getVarint32(pReader->pData+n, &nSuffix); sl@0: sl@0: /* Truncate the current term and append suffix data. */ sl@0: pReader->term.nData = nPrefix; sl@0: dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix); sl@0: sl@0: assert( n+nSuffix<=pReader->nData ); sl@0: pReader->pData += n+nSuffix; sl@0: pReader->nData -= n+nSuffix; sl@0: } sl@0: pReader->iBlockid++; sl@0: } sl@0: sl@0: /* Compare the current term to pTerm[nTerm], returning strcmp-style sl@0: ** results. If isPrefix, equality means equal through nTerm bytes. sl@0: */ sl@0: static int interiorReaderTermCmp(InteriorReader *pReader, sl@0: const char *pTerm, int nTerm, int isPrefix){ sl@0: const char *pReaderTerm = interiorReaderTerm(pReader); sl@0: int nReaderTerm = interiorReaderTermBytes(pReader); sl@0: int c, n = nReaderTerm0 ) return -1; sl@0: if( nTerm>0 ) return 1; sl@0: return 0; sl@0: } sl@0: sl@0: c = memcmp(pReaderTerm, pTerm, n); sl@0: if( c!=0 ) return c; sl@0: if( isPrefix && n==nTerm ) return 0; sl@0: return nReaderTerm - nTerm; sl@0: } sl@0: sl@0: /****************************************************************/ sl@0: /* LeafWriter is used to collect terms and associated doclist data sl@0: ** into leaf blocks in %_segments (see top of file for format info). sl@0: ** Expected usage is: sl@0: ** sl@0: ** LeafWriter writer; sl@0: ** leafWriterInit(0, 0, &writer); sl@0: ** while( sorted_terms_left_to_process ){ sl@0: ** // data is doclist data for that term. sl@0: ** rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData); sl@0: ** if( rc!=SQLITE_OK ) goto err; sl@0: ** } sl@0: ** rc = leafWriterFinalize(v, &writer); sl@0: **err: sl@0: ** leafWriterDestroy(&writer); sl@0: ** return rc; sl@0: ** sl@0: ** leafWriterStep() may write a collected leaf out to %_segments. sl@0: ** leafWriterFinalize() finishes writing any buffered data and stores sl@0: ** a root node in %_segdir. leafWriterDestroy() frees all buffers and sl@0: ** InteriorWriters allocated as part of writing this segment. sl@0: ** sl@0: ** TODO(shess) Document leafWriterStepMerge(). sl@0: */ sl@0: sl@0: /* Put terms with data this big in their own block. */ sl@0: #define STANDALONE_MIN 1024 sl@0: sl@0: /* Keep leaf blocks below this size. */ sl@0: #define LEAF_MAX 2048 sl@0: sl@0: typedef struct LeafWriter { sl@0: int iLevel; sl@0: int idx; sl@0: sqlite_int64 iStartBlockid; /* needed to create the root info */ sl@0: sqlite_int64 iEndBlockid; /* when we're done writing. */ sl@0: sl@0: DataBuffer term; /* previous encoded term */ sl@0: DataBuffer data; /* encoding buffer */ sl@0: sl@0: /* bytes of first term in the current node which distinguishes that sl@0: ** term from the last term of the previous node. sl@0: */ sl@0: int nTermDistinct; sl@0: sl@0: InteriorWriter parentWriter; /* if we overflow */ sl@0: int has_parent; sl@0: } LeafWriter; sl@0: sl@0: static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){ sl@0: CLEAR(pWriter); sl@0: pWriter->iLevel = iLevel; sl@0: pWriter->idx = idx; sl@0: sl@0: dataBufferInit(&pWriter->term, 32); sl@0: sl@0: /* Start out with a reasonably sized block, though it can grow. */ sl@0: dataBufferInit(&pWriter->data, LEAF_MAX); sl@0: } sl@0: sl@0: #ifndef NDEBUG sl@0: /* Verify that the data is readable as a leaf node. */ sl@0: static void leafNodeValidate(const char *pData, int nData){ sl@0: int n, iDummy; sl@0: sl@0: if( nData==0 ) return; sl@0: assert( nData>0 ); sl@0: assert( pData!=0 ); sl@0: assert( pData+nData>pData ); sl@0: sl@0: /* Must lead with a varint(0) */ sl@0: n = getVarint32(pData, &iDummy); sl@0: assert( iDummy==0 ); sl@0: assert( n>0 ); sl@0: assert( n0 ); sl@0: assert( iDummy>0 ); sl@0: assert( n+iDummy>0 ); sl@0: assert( n+iDummy0 ); sl@0: assert( iDummy>0 ); sl@0: assert( n+iDummy>0 ); sl@0: assert( n+iDummy<=nData ); sl@0: ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); sl@0: pData += n+iDummy; sl@0: nData -= n+iDummy; sl@0: sl@0: /* Verify that trailing terms and doclists also are readable. */ sl@0: while( nData!=0 ){ sl@0: n = getVarint32(pData, &iDummy); sl@0: assert( n>0 ); sl@0: assert( iDummy>=0 ); sl@0: assert( n0 ); sl@0: assert( iDummy>0 ); sl@0: assert( n+iDummy>0 ); sl@0: assert( n+iDummy0 ); sl@0: assert( iDummy>0 ); sl@0: assert( n+iDummy>0 ); sl@0: assert( n+iDummy<=nData ); sl@0: ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); sl@0: pData += n+iDummy; sl@0: nData -= n+iDummy; sl@0: } sl@0: } sl@0: #define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n) sl@0: #else sl@0: #define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 ) sl@0: #endif sl@0: sl@0: /* Flush the current leaf node to %_segments, and adding the resulting sl@0: ** blockid and the starting term to the interior node which will sl@0: ** contain it. sl@0: */ sl@0: static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter, sl@0: int iData, int nData){ sl@0: sqlite_int64 iBlockid = 0; sl@0: const char *pStartingTerm; sl@0: int nStartingTerm, rc, n; sl@0: sl@0: /* Must have the leading varint(0) flag, plus at least some sl@0: ** valid-looking data. sl@0: */ sl@0: assert( nData>2 ); sl@0: assert( iData>=0 ); sl@0: assert( iData+nData<=pWriter->data.nData ); sl@0: ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData); sl@0: sl@0: rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: assert( iBlockid!=0 ); sl@0: sl@0: /* Reconstruct the first term in the leaf for purposes of building sl@0: ** the interior node. sl@0: */ sl@0: n = getVarint32(pWriter->data.pData+iData+1, &nStartingTerm); sl@0: pStartingTerm = pWriter->data.pData+iData+1+n; sl@0: assert( pWriter->data.nData>iData+1+n+nStartingTerm ); sl@0: assert( pWriter->nTermDistinct>0 ); sl@0: assert( pWriter->nTermDistinct<=nStartingTerm ); sl@0: nStartingTerm = pWriter->nTermDistinct; sl@0: sl@0: if( pWriter->has_parent ){ sl@0: interiorWriterAppend(&pWriter->parentWriter, sl@0: pStartingTerm, nStartingTerm, iBlockid); sl@0: }else{ sl@0: interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid, sl@0: &pWriter->parentWriter); sl@0: pWriter->has_parent = 1; sl@0: } sl@0: sl@0: /* Track the span of this segment's leaf nodes. */ sl@0: if( pWriter->iEndBlockid==0 ){ sl@0: pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid; sl@0: }else{ sl@0: pWriter->iEndBlockid++; sl@0: assert( iBlockid==pWriter->iEndBlockid ); sl@0: } sl@0: sl@0: return SQLITE_OK; sl@0: } sl@0: static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){ sl@0: int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: /* Re-initialize the output buffer. */ sl@0: dataBufferReset(&pWriter->data); sl@0: sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Fetch the root info for the segment. If the entire leaf fits sl@0: ** within ROOT_MAX, then it will be returned directly, otherwise it sl@0: ** will be flushed and the root info will be returned from the sl@0: ** interior node. *piEndBlockid is set to the blockid of the last sl@0: ** interior or leaf node written to disk (0 if none are written at sl@0: ** all). sl@0: */ sl@0: static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter, sl@0: char **ppRootInfo, int *pnRootInfo, sl@0: sqlite_int64 *piEndBlockid){ sl@0: /* we can fit the segment entirely inline */ sl@0: if( !pWriter->has_parent && pWriter->data.nDatadata.pData; sl@0: *pnRootInfo = pWriter->data.nData; sl@0: *piEndBlockid = 0; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Flush remaining leaf data. */ sl@0: if( pWriter->data.nData>0 ){ sl@0: int rc = leafWriterFlush(v, pWriter); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: } sl@0: sl@0: /* We must have flushed a leaf at some point. */ sl@0: assert( pWriter->has_parent ); sl@0: sl@0: /* Tenatively set the end leaf blockid as the end blockid. If the sl@0: ** interior node can be returned inline, this will be the final sl@0: ** blockid, otherwise it will be overwritten by sl@0: ** interiorWriterRootInfo(). sl@0: */ sl@0: *piEndBlockid = pWriter->iEndBlockid; sl@0: sl@0: return interiorWriterRootInfo(v, &pWriter->parentWriter, sl@0: ppRootInfo, pnRootInfo, piEndBlockid); sl@0: } sl@0: sl@0: /* Collect the rootInfo data and store it into the segment directory. sl@0: ** This has the effect of flushing the segment's leaf data to sl@0: ** %_segments, and also flushing any interior nodes to %_segments. sl@0: */ sl@0: static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){ sl@0: sqlite_int64 iEndBlockid; sl@0: char *pRootInfo; sl@0: int rc, nRootInfo; sl@0: sl@0: rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: /* Don't bother storing an entirely empty segment. */ sl@0: if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK; sl@0: sl@0: return segdir_set(v, pWriter->iLevel, pWriter->idx, sl@0: pWriter->iStartBlockid, pWriter->iEndBlockid, sl@0: iEndBlockid, pRootInfo, nRootInfo); sl@0: } sl@0: sl@0: static void leafWriterDestroy(LeafWriter *pWriter){ sl@0: if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter); sl@0: dataBufferDestroy(&pWriter->term); sl@0: dataBufferDestroy(&pWriter->data); sl@0: } sl@0: sl@0: /* Encode a term into the leafWriter, delta-encoding as appropriate. sl@0: ** Returns the length of the new term which distinguishes it from the sl@0: ** previous term, which can be used to set nTermDistinct when a node sl@0: ** boundary is crossed. sl@0: */ sl@0: static int leafWriterEncodeTerm(LeafWriter *pWriter, sl@0: const char *pTerm, int nTerm){ sl@0: char c[VARINT_MAX+VARINT_MAX]; sl@0: int n, nPrefix = 0; sl@0: sl@0: assert( nTerm>0 ); sl@0: while( nPrefixterm.nData && sl@0: pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ sl@0: nPrefix++; sl@0: /* Failing this implies that the terms weren't in order. */ sl@0: assert( nPrefixdata.nData==0 ){ sl@0: /* Encode the node header and leading term as: sl@0: ** varint(0) sl@0: ** varint(nTerm) sl@0: ** char pTerm[nTerm] sl@0: */ sl@0: n = putVarint(c, '\0'); sl@0: n += putVarint(c+n, nTerm); sl@0: dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm); sl@0: }else{ sl@0: /* Delta-encode the term as: sl@0: ** varint(nPrefix) sl@0: ** varint(nSuffix) sl@0: ** char pTermSuffix[nSuffix] sl@0: */ sl@0: n = putVarint(c, nPrefix); sl@0: n += putVarint(c+n, nTerm-nPrefix); sl@0: dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix); sl@0: } sl@0: dataBufferReplace(&pWriter->term, pTerm, nTerm); sl@0: sl@0: return nPrefix+1; sl@0: } sl@0: sl@0: /* Used to avoid a memmove when a large amount of doclist data is in sl@0: ** the buffer. This constructs a node and term header before sl@0: ** iDoclistData and flushes the resulting complete node using sl@0: ** leafWriterInternalFlush(). sl@0: */ sl@0: static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter, sl@0: const char *pTerm, int nTerm, sl@0: int iDoclistData){ sl@0: char c[VARINT_MAX+VARINT_MAX]; sl@0: int iData, n = putVarint(c, 0); sl@0: n += putVarint(c+n, nTerm); sl@0: sl@0: /* There should always be room for the header. Even if pTerm shared sl@0: ** a substantial prefix with the previous term, the entire prefix sl@0: ** could be constructed from earlier data in the doclist, so there sl@0: ** should be room. sl@0: */ sl@0: assert( iDoclistData>=n+nTerm ); sl@0: sl@0: iData = iDoclistData-(n+nTerm); sl@0: memcpy(pWriter->data.pData+iData, c, n); sl@0: memcpy(pWriter->data.pData+iData+n, pTerm, nTerm); sl@0: sl@0: return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData); sl@0: } sl@0: sl@0: /* Push pTerm[nTerm] along with the doclist data to the leaf layer of sl@0: ** %_segments. sl@0: */ sl@0: static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter, sl@0: const char *pTerm, int nTerm, sl@0: DLReader *pReaders, int nReaders){ sl@0: char c[VARINT_MAX+VARINT_MAX]; sl@0: int iTermData = pWriter->data.nData, iDoclistData; sl@0: int i, nData, n, nActualData, nActual, rc, nTermDistinct; sl@0: sl@0: ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); sl@0: nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm); sl@0: sl@0: /* Remember nTermDistinct if opening a new node. */ sl@0: if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct; sl@0: sl@0: iDoclistData = pWriter->data.nData; sl@0: sl@0: /* Estimate the length of the merged doclist so we can leave space sl@0: ** to encode it. sl@0: */ sl@0: for(i=0, nData=0; idata, c, n); sl@0: sl@0: docListMerge(&pWriter->data, pReaders, nReaders); sl@0: ASSERT_VALID_DOCLIST(DL_DEFAULT, sl@0: pWriter->data.pData+iDoclistData+n, sl@0: pWriter->data.nData-iDoclistData-n, NULL); sl@0: sl@0: /* The actual amount of doclist data at this point could be smaller sl@0: ** than the length we encoded. Additionally, the space required to sl@0: ** encode this length could be smaller. For small doclists, this is sl@0: ** not a big deal, we can just use memmove() to adjust things. sl@0: */ sl@0: nActualData = pWriter->data.nData-(iDoclistData+n); sl@0: nActual = putVarint(c, nActualData); sl@0: assert( nActualData<=nData ); sl@0: assert( nActual<=n ); sl@0: sl@0: /* If the new doclist is big enough for force a standalone leaf sl@0: ** node, we can immediately flush it inline without doing the sl@0: ** memmove(). sl@0: */ sl@0: /* TODO(shess) This test matches leafWriterStep(), which does this sl@0: ** test before it knows the cost to varint-encode the term and sl@0: ** doclist lengths. At some point, change to sl@0: ** pWriter->data.nData-iTermData>STANDALONE_MIN. sl@0: */ sl@0: if( nTerm+nActualData>STANDALONE_MIN ){ sl@0: /* Push leaf node from before this term. */ sl@0: if( iTermData>0 ){ sl@0: rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: pWriter->nTermDistinct = nTermDistinct; sl@0: } sl@0: sl@0: /* Fix the encoded doclist length. */ sl@0: iDoclistData += n - nActual; sl@0: memcpy(pWriter->data.pData+iDoclistData, c, nActual); sl@0: sl@0: /* Push the standalone leaf node. */ sl@0: rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: /* Leave the node empty. */ sl@0: dataBufferReset(&pWriter->data); sl@0: sl@0: return rc; sl@0: } sl@0: sl@0: /* At this point, we know that the doclist was small, so do the sl@0: ** memmove if indicated. sl@0: */ sl@0: if( nActualdata.pData+iDoclistData+nActual, sl@0: pWriter->data.pData+iDoclistData+n, sl@0: pWriter->data.nData-(iDoclistData+n)); sl@0: pWriter->data.nData -= n-nActual; sl@0: } sl@0: sl@0: /* Replace written length with actual length. */ sl@0: memcpy(pWriter->data.pData+iDoclistData, c, nActual); sl@0: sl@0: /* If the node is too large, break things up. */ sl@0: /* TODO(shess) This test matches leafWriterStep(), which does this sl@0: ** test before it knows the cost to varint-encode the term and sl@0: ** doclist lengths. At some point, change to sl@0: ** pWriter->data.nData>LEAF_MAX. sl@0: */ sl@0: if( iTermData+nTerm+nActualData>LEAF_MAX ){ sl@0: /* Flush out the leading data as a node */ sl@0: rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: pWriter->nTermDistinct = nTermDistinct; sl@0: sl@0: /* Rebuild header using the current term */ sl@0: n = putVarint(pWriter->data.pData, 0); sl@0: n += putVarint(pWriter->data.pData+n, nTerm); sl@0: memcpy(pWriter->data.pData+n, pTerm, nTerm); sl@0: n += nTerm; sl@0: sl@0: /* There should always be room, because the previous encoding sl@0: ** included all data necessary to construct the term. sl@0: */ sl@0: assert( ndata.nData-iDoclistDatadata.pData+n, sl@0: pWriter->data.pData+iDoclistData, sl@0: pWriter->data.nData-iDoclistData); sl@0: pWriter->data.nData -= iDoclistData-n; sl@0: } sl@0: ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); sl@0: sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Push pTerm[nTerm] along with the doclist data to the leaf layer of sl@0: ** %_segments. sl@0: */ sl@0: /* TODO(shess) Revise writeZeroSegment() so that doclists are sl@0: ** constructed directly in pWriter->data. sl@0: */ sl@0: static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter, sl@0: const char *pTerm, int nTerm, sl@0: const char *pData, int nData){ sl@0: int rc; sl@0: DLReader reader; sl@0: sl@0: dlrInit(&reader, DL_DEFAULT, pData, nData); sl@0: rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1); sl@0: dlrDestroy(&reader); sl@0: sl@0: return rc; sl@0: } sl@0: sl@0: sl@0: /****************************************************************/ sl@0: /* LeafReader is used to iterate over an individual leaf node. */ sl@0: typedef struct LeafReader { sl@0: DataBuffer term; /* copy of current term. */ sl@0: sl@0: const char *pData; /* data for current term. */ sl@0: int nData; sl@0: } LeafReader; sl@0: sl@0: static void leafReaderDestroy(LeafReader *pReader){ sl@0: dataBufferDestroy(&pReader->term); sl@0: SCRAMBLE(pReader); sl@0: } sl@0: sl@0: static int leafReaderAtEnd(LeafReader *pReader){ sl@0: return pReader->nData<=0; sl@0: } sl@0: sl@0: /* Access the current term. */ sl@0: static int leafReaderTermBytes(LeafReader *pReader){ sl@0: return pReader->term.nData; sl@0: } sl@0: static const char *leafReaderTerm(LeafReader *pReader){ sl@0: assert( pReader->term.nData>0 ); sl@0: return pReader->term.pData; sl@0: } sl@0: sl@0: /* Access the doclist data for the current term. */ sl@0: static int leafReaderDataBytes(LeafReader *pReader){ sl@0: int nData; sl@0: assert( pReader->term.nData>0 ); sl@0: getVarint32(pReader->pData, &nData); sl@0: return nData; sl@0: } sl@0: static const char *leafReaderData(LeafReader *pReader){ sl@0: int n, nData; sl@0: assert( pReader->term.nData>0 ); sl@0: n = getVarint32(pReader->pData, &nData); sl@0: return pReader->pData+n; sl@0: } sl@0: sl@0: static void leafReaderInit(const char *pData, int nData, sl@0: LeafReader *pReader){ sl@0: int nTerm, n; sl@0: sl@0: assert( nData>0 ); sl@0: assert( pData[0]=='\0' ); sl@0: sl@0: CLEAR(pReader); sl@0: sl@0: /* Read the first term, skipping the header byte. */ sl@0: n = getVarint32(pData+1, &nTerm); sl@0: dataBufferInit(&pReader->term, nTerm); sl@0: dataBufferReplace(&pReader->term, pData+1+n, nTerm); sl@0: sl@0: /* Position after the first term. */ sl@0: assert( 1+n+nTermpData = pData+1+n+nTerm; sl@0: pReader->nData = nData-1-n-nTerm; sl@0: } sl@0: sl@0: /* Step the reader forward to the next term. */ sl@0: static void leafReaderStep(LeafReader *pReader){ sl@0: int n, nData, nPrefix, nSuffix; sl@0: assert( !leafReaderAtEnd(pReader) ); sl@0: sl@0: /* Skip previous entry's data block. */ sl@0: n = getVarint32(pReader->pData, &nData); sl@0: assert( n+nData<=pReader->nData ); sl@0: pReader->pData += n+nData; sl@0: pReader->nData -= n+nData; sl@0: sl@0: if( !leafReaderAtEnd(pReader) ){ sl@0: /* Construct the new term using a prefix from the old term plus a sl@0: ** suffix from the leaf data. sl@0: */ sl@0: n = getVarint32(pReader->pData, &nPrefix); sl@0: n += getVarint32(pReader->pData+n, &nSuffix); sl@0: assert( n+nSuffixnData ); sl@0: pReader->term.nData = nPrefix; sl@0: dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix); sl@0: sl@0: pReader->pData += n+nSuffix; sl@0: pReader->nData -= n+nSuffix; sl@0: } sl@0: } sl@0: sl@0: /* strcmp-style comparison of pReader's current term against pTerm. sl@0: ** If isPrefix, equality means equal through nTerm bytes. sl@0: */ sl@0: static int leafReaderTermCmp(LeafReader *pReader, sl@0: const char *pTerm, int nTerm, int isPrefix){ sl@0: int c, n = pReader->term.nDataterm.nData : nTerm; sl@0: if( n==0 ){ sl@0: if( pReader->term.nData>0 ) return -1; sl@0: if(nTerm>0 ) return 1; sl@0: return 0; sl@0: } sl@0: sl@0: c = memcmp(pReader->term.pData, pTerm, n); sl@0: if( c!=0 ) return c; sl@0: if( isPrefix && n==nTerm ) return 0; sl@0: return pReader->term.nData - nTerm; sl@0: } sl@0: sl@0: sl@0: /****************************************************************/ sl@0: /* LeavesReader wraps LeafReader to allow iterating over the entire sl@0: ** leaf layer of the tree. sl@0: */ sl@0: typedef struct LeavesReader { sl@0: int idx; /* Index within the segment. */ sl@0: sl@0: sqlite3_stmt *pStmt; /* Statement we're streaming leaves from. */ sl@0: int eof; /* we've seen SQLITE_DONE from pStmt. */ sl@0: sl@0: LeafReader leafReader; /* reader for the current leaf. */ sl@0: DataBuffer rootData; /* root data for inline. */ sl@0: } LeavesReader; sl@0: sl@0: /* Access the current term. */ sl@0: static int leavesReaderTermBytes(LeavesReader *pReader){ sl@0: assert( !pReader->eof ); sl@0: return leafReaderTermBytes(&pReader->leafReader); sl@0: } sl@0: static const char *leavesReaderTerm(LeavesReader *pReader){ sl@0: assert( !pReader->eof ); sl@0: return leafReaderTerm(&pReader->leafReader); sl@0: } sl@0: sl@0: /* Access the doclist data for the current term. */ sl@0: static int leavesReaderDataBytes(LeavesReader *pReader){ sl@0: assert( !pReader->eof ); sl@0: return leafReaderDataBytes(&pReader->leafReader); sl@0: } sl@0: static const char *leavesReaderData(LeavesReader *pReader){ sl@0: assert( !pReader->eof ); sl@0: return leafReaderData(&pReader->leafReader); sl@0: } sl@0: sl@0: static int leavesReaderAtEnd(LeavesReader *pReader){ sl@0: return pReader->eof; sl@0: } sl@0: sl@0: /* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus sl@0: ** leaving the statement handle open, which locks the table. sl@0: */ sl@0: /* TODO(shess) This "solution" is not satisfactory. Really, there sl@0: ** should be check-in function for all statement handles which sl@0: ** arranges to call sqlite3_reset(). This most likely will require sl@0: ** modification to control flow all over the place, though, so for now sl@0: ** just punt. sl@0: ** sl@0: ** Note the the current system assumes that segment merges will run to sl@0: ** completion, which is why this particular probably hasn't arisen in sl@0: ** this case. Probably a brittle assumption. sl@0: */ sl@0: static int leavesReaderReset(LeavesReader *pReader){ sl@0: return sqlite3_reset(pReader->pStmt); sl@0: } sl@0: sl@0: static void leavesReaderDestroy(LeavesReader *pReader){ sl@0: /* If idx is -1, that means we're using a non-cached statement sl@0: ** handle in the optimize() case, so we need to release it. sl@0: */ sl@0: if( pReader->pStmt!=NULL && pReader->idx==-1 ){ sl@0: sqlite3_finalize(pReader->pStmt); sl@0: } sl@0: leafReaderDestroy(&pReader->leafReader); sl@0: dataBufferDestroy(&pReader->rootData); sl@0: SCRAMBLE(pReader); sl@0: } sl@0: sl@0: /* Initialize pReader with the given root data (if iStartBlockid==0 sl@0: ** the leaf data was entirely contained in the root), or from the sl@0: ** stream of blocks between iStartBlockid and iEndBlockid, inclusive. sl@0: */ sl@0: static int leavesReaderInit(fulltext_vtab *v, sl@0: int idx, sl@0: sqlite_int64 iStartBlockid, sl@0: sqlite_int64 iEndBlockid, sl@0: const char *pRootData, int nRootData, sl@0: LeavesReader *pReader){ sl@0: CLEAR(pReader); sl@0: pReader->idx = idx; sl@0: sl@0: dataBufferInit(&pReader->rootData, 0); sl@0: if( iStartBlockid==0 ){ sl@0: /* Entire leaf level fit in root data. */ sl@0: dataBufferReplace(&pReader->rootData, pRootData, nRootData); sl@0: leafReaderInit(pReader->rootData.pData, pReader->rootData.nData, sl@0: &pReader->leafReader); sl@0: }else{ sl@0: sqlite3_stmt *s; sl@0: int rc = sql_get_leaf_statement(v, idx, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int64(s, 1, iStartBlockid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int64(s, 2, iEndBlockid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_step(s); sl@0: if( rc==SQLITE_DONE ){ sl@0: pReader->eof = 1; sl@0: return SQLITE_OK; sl@0: } sl@0: if( rc!=SQLITE_ROW ) return rc; sl@0: sl@0: pReader->pStmt = s; sl@0: leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0), sl@0: sqlite3_column_bytes(pReader->pStmt, 0), sl@0: &pReader->leafReader); sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Step the current leaf forward to the next term. If we reach the sl@0: ** end of the current leaf, step forward to the next leaf block. sl@0: */ sl@0: static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){ sl@0: assert( !leavesReaderAtEnd(pReader) ); sl@0: leafReaderStep(&pReader->leafReader); sl@0: sl@0: if( leafReaderAtEnd(&pReader->leafReader) ){ sl@0: int rc; sl@0: if( pReader->rootData.pData ){ sl@0: pReader->eof = 1; sl@0: return SQLITE_OK; sl@0: } sl@0: rc = sqlite3_step(pReader->pStmt); sl@0: if( rc!=SQLITE_ROW ){ sl@0: pReader->eof = 1; sl@0: return rc==SQLITE_DONE ? SQLITE_OK : rc; sl@0: } sl@0: leafReaderDestroy(&pReader->leafReader); sl@0: leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0), sl@0: sqlite3_column_bytes(pReader->pStmt, 0), sl@0: &pReader->leafReader); sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Order LeavesReaders by their term, ignoring idx. Readers at eof sl@0: ** always sort to the end. sl@0: */ sl@0: static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){ sl@0: if( leavesReaderAtEnd(lr1) ){ sl@0: if( leavesReaderAtEnd(lr2) ) return 0; sl@0: return 1; sl@0: } sl@0: if( leavesReaderAtEnd(lr2) ) return -1; sl@0: sl@0: return leafReaderTermCmp(&lr1->leafReader, sl@0: leavesReaderTerm(lr2), leavesReaderTermBytes(lr2), sl@0: 0); sl@0: } sl@0: sl@0: /* Similar to leavesReaderTermCmp(), with additional ordering by idx sl@0: ** so that older segments sort before newer segments. sl@0: */ sl@0: static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){ sl@0: int c = leavesReaderTermCmp(lr1, lr2); sl@0: if( c!=0 ) return c; sl@0: return lr1->idx-lr2->idx; sl@0: } sl@0: sl@0: /* Assume that pLr[1]..pLr[nLr] are sorted. Bubble pLr[0] into its sl@0: ** sorted position. sl@0: */ sl@0: static void leavesReaderReorder(LeavesReader *pLr, int nLr){ sl@0: while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){ sl@0: LeavesReader tmp = pLr[0]; sl@0: pLr[0] = pLr[1]; sl@0: pLr[1] = tmp; sl@0: nLr--; sl@0: pLr++; sl@0: } sl@0: } sl@0: sl@0: /* Initializes pReaders with the segments from level iLevel, returning sl@0: ** the number of segments in *piReaders. Leaves pReaders in sorted sl@0: ** order. sl@0: */ sl@0: static int leavesReadersInit(fulltext_vtab *v, int iLevel, sl@0: LeavesReader *pReaders, int *piReaders){ sl@0: sqlite3_stmt *s; sl@0: int i, rc = sql_get_statement(v, SEGDIR_SELECT_LEVEL_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int(s, 1, iLevel); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: i = 0; sl@0: while( (rc = sqlite3_step(s))==SQLITE_ROW ){ sl@0: sqlite_int64 iStart = sqlite3_column_int64(s, 0); sl@0: sqlite_int64 iEnd = sqlite3_column_int64(s, 1); sl@0: const char *pRootData = sqlite3_column_blob(s, 2); sl@0: int nRootData = sqlite3_column_bytes(s, 2); sl@0: sl@0: assert( i0 ){ sl@0: leavesReaderDestroy(&pReaders[i]); sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: *piReaders = i; sl@0: sl@0: /* Leave our results sorted by term, then age. */ sl@0: while( i-- ){ sl@0: leavesReaderReorder(pReaders+i, *piReaders-i); sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Merge doclists from pReaders[nReaders] into a single doclist, which sl@0: ** is written to pWriter. Assumes pReaders is ordered oldest to sl@0: ** newest. sl@0: */ sl@0: /* TODO(shess) Consider putting this inline in segmentMerge(). */ sl@0: static int leavesReadersMerge(fulltext_vtab *v, sl@0: LeavesReader *pReaders, int nReaders, sl@0: LeafWriter *pWriter){ sl@0: DLReader dlReaders[MERGE_COUNT]; sl@0: const char *pTerm = leavesReaderTerm(pReaders); sl@0: int i, nTerm = leavesReaderTermBytes(pReaders); sl@0: sl@0: assert( nReaders<=MERGE_COUNT ); sl@0: sl@0: for(i=0; i0 ){ sl@0: rc = leavesReaderStep(v, lrs+i); sl@0: if( rc!=SQLITE_OK ) goto err; sl@0: sl@0: /* Reorder by term, then by age. */ sl@0: leavesReaderReorder(lrs+i, MERGE_COUNT-i); sl@0: } sl@0: } sl@0: sl@0: for(i=0; i0 ); sl@0: sl@0: for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader); sl@0: rc=leavesReaderStep(v, pReader)){ sl@0: /* TODO(shess) Really want leavesReaderTermCmp(), but that name is sl@0: ** already taken to compare the terms of two LeavesReaders. Think sl@0: ** on a better name. [Meanwhile, break encapsulation rather than sl@0: ** use a confusing name.] sl@0: */ sl@0: int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix); sl@0: if( c>0 ) break; /* Past any possible matches. */ sl@0: if( c==0 ){ sl@0: const char *pData = leavesReaderData(pReader); sl@0: int iBuffer, nData = leavesReaderDataBytes(pReader); sl@0: sl@0: /* Find the first empty buffer. */ sl@0: for(iBuffer=0; iBuffer0 ){ sl@0: assert(pBuffers!=NULL); sl@0: memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers)); sl@0: sqlite3_free(pBuffers); sl@0: } sl@0: pBuffers = p; sl@0: } sl@0: dataBufferInit(&(pBuffers[nBuffers]), 0); sl@0: nBuffers++; sl@0: } sl@0: sl@0: /* At this point, must have an empty at iBuffer. */ sl@0: assert(iBufferpData, p->nData); sl@0: sl@0: /* dataBufferReset() could allow a large doclist to blow up sl@0: ** our memory requirements. sl@0: */ sl@0: if( p->nCapacity<1024 ){ sl@0: dataBufferReset(p); sl@0: }else{ sl@0: dataBufferDestroy(p); sl@0: dataBufferInit(p, 0); sl@0: } sl@0: } sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* Union all the doclists together into *out. */ sl@0: /* TODO(shess) What if *out is big? Sigh. */ sl@0: if( rc==SQLITE_OK && nBuffers>0 ){ sl@0: int iBuffer; sl@0: for(iBuffer=0; iBuffer0 ){ sl@0: if( out->nData==0 ){ sl@0: dataBufferSwap(out, &(pBuffers[iBuffer])); sl@0: }else{ sl@0: docListAccumulateUnion(out, pBuffers[iBuffer].pData, sl@0: pBuffers[iBuffer].nData); sl@0: } sl@0: } sl@0: } sl@0: } sl@0: sl@0: while( nBuffers-- ){ sl@0: dataBufferDestroy(&(pBuffers[nBuffers])); sl@0: } sl@0: if( pBuffers!=NULL ) sqlite3_free(pBuffers); sl@0: sl@0: return rc; sl@0: } sl@0: sl@0: /* Call loadSegmentLeavesInt() with pData/nData as input. */ sl@0: static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData, sl@0: const char *pTerm, int nTerm, int isPrefix, sl@0: DataBuffer *out){ sl@0: LeavesReader reader; sl@0: int rc; sl@0: sl@0: assert( nData>1 ); sl@0: assert( *pData=='\0' ); sl@0: rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); sl@0: leavesReaderReset(&reader); sl@0: leavesReaderDestroy(&reader); sl@0: return rc; sl@0: } sl@0: sl@0: /* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to sl@0: ** iEndLeaf (inclusive) as input, and merge the resulting doclist into sl@0: ** out. sl@0: */ sl@0: static int loadSegmentLeaves(fulltext_vtab *v, sl@0: sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf, sl@0: const char *pTerm, int nTerm, int isPrefix, sl@0: DataBuffer *out){ sl@0: int rc; sl@0: LeavesReader reader; sl@0: sl@0: assert( iStartLeaf<=iEndLeaf ); sl@0: rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); sl@0: leavesReaderReset(&reader); sl@0: leavesReaderDestroy(&reader); sl@0: return rc; sl@0: } sl@0: sl@0: /* Taking pData/nData as an interior node, find the sequence of child sl@0: ** nodes which could include pTerm/nTerm/isPrefix. Note that the sl@0: ** interior node terms logically come between the blocks, so there is sl@0: ** one more blockid than there are terms (that block contains terms >= sl@0: ** the last interior-node term). sl@0: */ sl@0: /* TODO(shess) The calling code may already know that the end child is sl@0: ** not worth calculating, because the end may be in a later sibling sl@0: ** node. Consider whether breaking symmetry is worthwhile. I suspect sl@0: ** it is not worthwhile. sl@0: */ sl@0: static void getChildrenContaining(const char *pData, int nData, sl@0: const char *pTerm, int nTerm, int isPrefix, sl@0: sqlite_int64 *piStartChild, sl@0: sqlite_int64 *piEndChild){ sl@0: InteriorReader reader; sl@0: sl@0: assert( nData>1 ); sl@0: assert( *pData!='\0' ); sl@0: interiorReaderInit(pData, nData, &reader); sl@0: sl@0: /* Scan for the first child which could contain pTerm/nTerm. */ sl@0: while( !interiorReaderAtEnd(&reader) ){ sl@0: if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break; sl@0: interiorReaderStep(&reader); sl@0: } sl@0: *piStartChild = interiorReaderCurrentBlockid(&reader); sl@0: sl@0: /* Keep scanning to find a term greater than our term, using prefix sl@0: ** comparison if indicated. If isPrefix is false, this will be the sl@0: ** same blockid as the starting block. sl@0: */ sl@0: while( !interiorReaderAtEnd(&reader) ){ sl@0: if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break; sl@0: interiorReaderStep(&reader); sl@0: } sl@0: *piEndChild = interiorReaderCurrentBlockid(&reader); sl@0: sl@0: interiorReaderDestroy(&reader); sl@0: sl@0: /* Children must ascend, and if !prefix, both must be the same. */ sl@0: assert( *piEndChild>=*piStartChild ); sl@0: assert( isPrefix || *piStartChild==*piEndChild ); sl@0: } sl@0: sl@0: /* Read block at iBlockid and pass it with other params to sl@0: ** getChildrenContaining(). sl@0: */ sl@0: static int loadAndGetChildrenContaining( sl@0: fulltext_vtab *v, sl@0: sqlite_int64 iBlockid, sl@0: const char *pTerm, int nTerm, int isPrefix, sl@0: sqlite_int64 *piStartChild, sqlite_int64 *piEndChild sl@0: ){ sl@0: sqlite3_stmt *s = NULL; sl@0: int rc; sl@0: sl@0: assert( iBlockid!=0 ); sl@0: assert( pTerm!=NULL ); sl@0: assert( nTerm!=0 ); /* TODO(shess) Why not allow this? */ sl@0: assert( piStartChild!=NULL ); sl@0: assert( piEndChild!=NULL ); sl@0: sl@0: rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int64(s, 1, iBlockid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_step(s); sl@0: if( rc==SQLITE_DONE ) return SQLITE_ERROR; sl@0: if( rc!=SQLITE_ROW ) return rc; sl@0: sl@0: getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0), sl@0: pTerm, nTerm, isPrefix, piStartChild, piEndChild); sl@0: sl@0: /* We expect only one row. We must execute another sqlite3_step() sl@0: * to complete the iteration; otherwise the table will remain sl@0: * locked. */ sl@0: rc = sqlite3_step(s); sl@0: if( rc==SQLITE_ROW ) return SQLITE_ERROR; sl@0: if( rc!=SQLITE_DONE ) return rc; sl@0: sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Traverse the tree represented by pData[nData] looking for sl@0: ** pTerm[nTerm], placing its doclist into *out. This is internal to sl@0: ** loadSegment() to make error-handling cleaner. sl@0: */ sl@0: static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData, sl@0: sqlite_int64 iLeavesEnd, sl@0: const char *pTerm, int nTerm, int isPrefix, sl@0: DataBuffer *out){ sl@0: /* Special case where root is a leaf. */ sl@0: if( *pData=='\0' ){ sl@0: return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out); sl@0: }else{ sl@0: int rc; sl@0: sqlite_int64 iStartChild, iEndChild; sl@0: sl@0: /* Process pData as an interior node, then loop down the tree sl@0: ** until we find the set of leaf nodes to scan for the term. sl@0: */ sl@0: getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix, sl@0: &iStartChild, &iEndChild); sl@0: while( iStartChild>iLeavesEnd ){ sl@0: sqlite_int64 iNextStart, iNextEnd; sl@0: rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix, sl@0: &iNextStart, &iNextEnd); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: /* If we've branched, follow the end branch, too. */ sl@0: if( iStartChild!=iEndChild ){ sl@0: sqlite_int64 iDummy; sl@0: rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix, sl@0: &iDummy, &iNextEnd); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: } sl@0: sl@0: assert( iNextStart<=iNextEnd ); sl@0: iStartChild = iNextStart; sl@0: iEndChild = iNextEnd; sl@0: } sl@0: assert( iStartChild<=iLeavesEnd ); sl@0: assert( iEndChild<=iLeavesEnd ); sl@0: sl@0: /* Scan through the leaf segments for doclists. */ sl@0: return loadSegmentLeaves(v, iStartChild, iEndChild, sl@0: pTerm, nTerm, isPrefix, out); sl@0: } sl@0: } sl@0: sl@0: /* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then sl@0: ** merge its doclist over *out (any duplicate doclists read from the sl@0: ** segment rooted at pData will overwrite those in *out). sl@0: */ sl@0: /* TODO(shess) Consider changing this to determine the depth of the sl@0: ** leaves using either the first characters of interior nodes (when sl@0: ** ==1, we're one level above the leaves), or the first character of sl@0: ** the root (which will describe the height of the tree directly). sl@0: ** Either feels somewhat tricky to me. sl@0: */ sl@0: /* TODO(shess) The current merge is likely to be slow for large sl@0: ** doclists (though it should process from newest/smallest to sl@0: ** oldest/largest, so it may not be that bad). It might be useful to sl@0: ** modify things to allow for N-way merging. This could either be sl@0: ** within a segment, with pairwise merges across segments, or across sl@0: ** all segments at once. sl@0: */ sl@0: static int loadSegment(fulltext_vtab *v, const char *pData, int nData, sl@0: sqlite_int64 iLeavesEnd, sl@0: const char *pTerm, int nTerm, int isPrefix, sl@0: DataBuffer *out){ sl@0: DataBuffer result; sl@0: int rc; sl@0: sl@0: assert( nData>1 ); sl@0: sl@0: /* This code should never be called with buffered updates. */ sl@0: assert( v->nPendingData<0 ); sl@0: sl@0: dataBufferInit(&result, 0); sl@0: rc = loadSegmentInt(v, pData, nData, iLeavesEnd, sl@0: pTerm, nTerm, isPrefix, &result); sl@0: if( rc==SQLITE_OK && result.nData>0 ){ sl@0: if( out->nData==0 ){ sl@0: DataBuffer tmp = *out; sl@0: *out = result; sl@0: result = tmp; sl@0: }else{ sl@0: DataBuffer merged; sl@0: DLReader readers[2]; sl@0: sl@0: dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData); sl@0: dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData); sl@0: dataBufferInit(&merged, out->nData+result.nData); sl@0: docListMerge(&merged, readers, 2); sl@0: dataBufferDestroy(out); sl@0: *out = merged; sl@0: dlrDestroy(&readers[0]); sl@0: dlrDestroy(&readers[1]); sl@0: } sl@0: } sl@0: dataBufferDestroy(&result); sl@0: return rc; sl@0: } sl@0: sl@0: /* Scan the database and merge together the posting lists for the term sl@0: ** into *out. sl@0: */ sl@0: static int termSelect(fulltext_vtab *v, int iColumn, sl@0: const char *pTerm, int nTerm, int isPrefix, sl@0: DocListType iType, DataBuffer *out){ sl@0: DataBuffer doclist; sl@0: sqlite3_stmt *s; sl@0: int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: /* This code should never be called with buffered updates. */ sl@0: assert( v->nPendingData<0 ); sl@0: sl@0: dataBufferInit(&doclist, 0); sl@0: sl@0: /* Traverse the segments from oldest to newest so that newer doclist sl@0: ** elements for given docids overwrite older elements. sl@0: */ sl@0: while( (rc = sqlite3_step(s))==SQLITE_ROW ){ sl@0: const char *pData = sqlite3_column_blob(s, 2); sl@0: const int nData = sqlite3_column_bytes(s, 2); sl@0: const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1); sl@0: rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix, sl@0: &doclist); sl@0: if( rc!=SQLITE_OK ) goto err; sl@0: } sl@0: if( rc==SQLITE_DONE ){ sl@0: if( doclist.nData!=0 ){ sl@0: /* TODO(shess) The old term_select_all() code applied the column sl@0: ** restrict as we merged segments, leading to smaller buffers. sl@0: ** This is probably worthwhile to bring back, once the new storage sl@0: ** system is checked in. sl@0: */ sl@0: if( iColumn==v->nColumn) iColumn = -1; sl@0: docListTrim(DL_DEFAULT, doclist.pData, doclist.nData, sl@0: iColumn, iType, out); sl@0: } sl@0: rc = SQLITE_OK; sl@0: } sl@0: sl@0: err: sl@0: dataBufferDestroy(&doclist); sl@0: return rc; sl@0: } sl@0: sl@0: /****************************************************************/ sl@0: /* Used to hold hashtable data for sorting. */ sl@0: typedef struct TermData { sl@0: const char *pTerm; sl@0: int nTerm; sl@0: DLCollector *pCollector; sl@0: } TermData; sl@0: sl@0: /* Orders TermData elements in strcmp fashion ( <0 for less-than, 0 sl@0: ** for equal, >0 for greater-than). sl@0: */ sl@0: static int termDataCmp(const void *av, const void *bv){ sl@0: const TermData *a = (const TermData *)av; sl@0: const TermData *b = (const TermData *)bv; sl@0: int n = a->nTermnTerm ? a->nTerm : b->nTerm; sl@0: int c = memcmp(a->pTerm, b->pTerm, n); sl@0: if( c!=0 ) return c; sl@0: return a->nTerm-b->nTerm; sl@0: } sl@0: sl@0: /* Order pTerms data by term, then write a new level 0 segment using sl@0: ** LeafWriter. sl@0: */ sl@0: static int writeZeroSegment(fulltext_vtab *v, fts2Hash *pTerms){ sl@0: fts2HashElem *e; sl@0: int idx, rc, i, n; sl@0: TermData *pData; sl@0: LeafWriter writer; sl@0: DataBuffer dl; sl@0: sl@0: /* Determine the next index at level 0, merging as necessary. */ sl@0: rc = segdirNextIndex(v, 0, &idx); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: n = fts2HashCount(pTerms); sl@0: pData = sqlite3_malloc(n*sizeof(TermData)); sl@0: sl@0: for(i = 0, e = fts2HashFirst(pTerms); e; i++, e = fts2HashNext(e)){ sl@0: assert( i1 ) qsort(pData, n, sizeof(*pData), termDataCmp); sl@0: sl@0: /* TODO(shess) Refactor so that we can write directly to the segment sl@0: ** DataBuffer, as happens for segment merges. sl@0: */ sl@0: leafWriterInit(0, idx, &writer); sl@0: dataBufferInit(&dl, 0); sl@0: for(i=0; inPendingData>=0 ){ sl@0: fts2HashElem *e; sl@0: for(e=fts2HashFirst(&v->pendingTerms); e; e=fts2HashNext(e)){ sl@0: dlcDelete(fts2HashData(e)); sl@0: } sl@0: fts2HashClear(&v->pendingTerms); sl@0: v->nPendingData = -1; sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* If pendingTerms has data, flush it to a level-zero segment, and sl@0: ** free it. sl@0: */ sl@0: static int flushPendingTerms(fulltext_vtab *v){ sl@0: if( v->nPendingData>=0 ){ sl@0: int rc = writeZeroSegment(v, &v->pendingTerms); sl@0: if( rc==SQLITE_OK ) clearPendingTerms(v); sl@0: return rc; sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* If pendingTerms is "too big", or docid is out of order, flush it. sl@0: ** Regardless, be certain that pendingTerms is initialized for use. sl@0: */ sl@0: static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){ sl@0: /* TODO(shess) Explore whether partially flushing the buffer on sl@0: ** forced-flush would provide better performance. I suspect that if sl@0: ** we ordered the doclists by size and flushed the largest until the sl@0: ** buffer was half empty, that would let the less frequent terms sl@0: ** generate longer doclists. sl@0: */ sl@0: if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){ sl@0: int rc = flushPendingTerms(v); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: } sl@0: if( v->nPendingData<0 ){ sl@0: fts2HashInit(&v->pendingTerms, FTS2_HASH_STRING, 1); sl@0: v->nPendingData = 0; sl@0: } sl@0: v->iPrevDocid = iDocid; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* This function implements the xUpdate callback; it is the top-level entry sl@0: * point for inserting, deleting or updating a row in a full-text table. */ sl@0: static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg, sl@0: sqlite_int64 *pRowid){ sl@0: fulltext_vtab *v = (fulltext_vtab *) pVtab; sl@0: int rc; sl@0: sl@0: TRACE(("FTS2 Update %p\n", pVtab)); sl@0: sl@0: if( nArg<2 ){ sl@0: rc = index_delete(v, sqlite3_value_int64(ppArg[0])); sl@0: if( rc==SQLITE_OK ){ sl@0: /* If we just deleted the last row in the table, clear out the sl@0: ** index data. sl@0: */ sl@0: rc = content_exists(v); sl@0: if( rc==SQLITE_ROW ){ sl@0: rc = SQLITE_OK; sl@0: }else if( rc==SQLITE_DONE ){ sl@0: /* Clear the pending terms so we don't flush a useless level-0 sl@0: ** segment when the transaction closes. sl@0: */ sl@0: rc = clearPendingTerms(v); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = segdir_delete_all(v); sl@0: } sl@0: } sl@0: } sl@0: } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){ sl@0: /* An update: sl@0: * ppArg[0] = old rowid sl@0: * ppArg[1] = new rowid sl@0: * ppArg[2..2+v->nColumn-1] = values sl@0: * ppArg[2+v->nColumn] = value for magic column (we ignore this) sl@0: */ sl@0: sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]); sl@0: if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER || sl@0: sqlite3_value_int64(ppArg[1]) != rowid ){ sl@0: rc = SQLITE_ERROR; /* we don't allow changing the rowid */ sl@0: } else { sl@0: assert( nArg==2+v->nColumn+1); sl@0: rc = index_update(v, rowid, &ppArg[2]); sl@0: } sl@0: } else { sl@0: /* An insert: sl@0: * ppArg[1] = requested rowid sl@0: * ppArg[2..2+v->nColumn-1] = values sl@0: * ppArg[2+v->nColumn] = value for magic column (we ignore this) sl@0: */ sl@0: assert( nArg==2+v->nColumn+1); sl@0: rc = index_insert(v, ppArg[1], &ppArg[2], pRowid); sl@0: } sl@0: sl@0: return rc; sl@0: } sl@0: sl@0: static int fulltextSync(sqlite3_vtab *pVtab){ sl@0: TRACE(("FTS2 xSync()\n")); sl@0: return flushPendingTerms((fulltext_vtab *)pVtab); sl@0: } sl@0: sl@0: static int fulltextBegin(sqlite3_vtab *pVtab){ sl@0: fulltext_vtab *v = (fulltext_vtab *) pVtab; sl@0: TRACE(("FTS2 xBegin()\n")); sl@0: sl@0: /* Any buffered updates should have been cleared by the previous sl@0: ** transaction. sl@0: */ sl@0: assert( v->nPendingData<0 ); sl@0: return clearPendingTerms(v); sl@0: } sl@0: sl@0: static int fulltextCommit(sqlite3_vtab *pVtab){ sl@0: fulltext_vtab *v = (fulltext_vtab *) pVtab; sl@0: TRACE(("FTS2 xCommit()\n")); sl@0: sl@0: /* Buffered updates should have been cleared by fulltextSync(). */ sl@0: assert( v->nPendingData<0 ); sl@0: return clearPendingTerms(v); sl@0: } sl@0: sl@0: static int fulltextRollback(sqlite3_vtab *pVtab){ sl@0: TRACE(("FTS2 xRollback()\n")); sl@0: return clearPendingTerms((fulltext_vtab *)pVtab); sl@0: } sl@0: sl@0: /* sl@0: ** Implementation of the snippet() function for FTS2 sl@0: */ sl@0: static void snippetFunc( sl@0: sqlite3_context *pContext, sl@0: int argc, sl@0: sqlite3_value **argv sl@0: ){ sl@0: fulltext_cursor *pCursor; sl@0: if( argc<1 ) return; sl@0: if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || sl@0: sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ sl@0: sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1); sl@0: }else{ sl@0: const char *zStart = ""; sl@0: const char *zEnd = ""; sl@0: const char *zEllipsis = "..."; sl@0: memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); sl@0: if( argc>=2 ){ sl@0: zStart = (const char*)sqlite3_value_text(argv[1]); sl@0: if( argc>=3 ){ sl@0: zEnd = (const char*)sqlite3_value_text(argv[2]); sl@0: if( argc>=4 ){ sl@0: zEllipsis = (const char*)sqlite3_value_text(argv[3]); sl@0: } sl@0: } sl@0: } sl@0: snippetAllOffsets(pCursor); sl@0: snippetText(pCursor, zStart, zEnd, zEllipsis); sl@0: sqlite3_result_text(pContext, pCursor->snippet.zSnippet, sl@0: pCursor->snippet.nSnippet, SQLITE_STATIC); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Implementation of the offsets() function for FTS2 sl@0: */ sl@0: static void snippetOffsetsFunc( sl@0: sqlite3_context *pContext, sl@0: int argc, sl@0: sqlite3_value **argv sl@0: ){ sl@0: fulltext_cursor *pCursor; sl@0: if( argc<1 ) return; sl@0: if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || sl@0: sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ sl@0: sqlite3_result_error(pContext, "illegal first argument to offsets",-1); sl@0: }else{ sl@0: memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); sl@0: snippetAllOffsets(pCursor); sl@0: snippetOffsetText(&pCursor->snippet); sl@0: sqlite3_result_text(pContext, sl@0: pCursor->snippet.zOffset, pCursor->snippet.nOffset, sl@0: SQLITE_STATIC); sl@0: } sl@0: } sl@0: sl@0: /* OptLeavesReader is nearly identical to LeavesReader, except that sl@0: ** where LeavesReader is geared towards the merging of complete sl@0: ** segment levels (with exactly MERGE_COUNT segments), OptLeavesReader sl@0: ** is geared towards implementation of the optimize() function, and sl@0: ** can merge all segments simultaneously. This version may be sl@0: ** somewhat less efficient than LeavesReader because it merges into an sl@0: ** accumulator rather than doing an N-way merge, but since segment sl@0: ** size grows exponentially (so segment count logrithmically) this is sl@0: ** probably not an immediate problem. sl@0: */ sl@0: /* TODO(shess): Prove that assertion, or extend the merge code to sl@0: ** merge tree fashion (like the prefix-searching code does). sl@0: */ sl@0: /* TODO(shess): OptLeavesReader and LeavesReader could probably be sl@0: ** merged with little or no loss of performance for LeavesReader. The sl@0: ** merged code would need to handle >MERGE_COUNT segments, and would sl@0: ** also need to be able to optionally optimize away deletes. sl@0: */ sl@0: typedef struct OptLeavesReader { sl@0: /* Segment number, to order readers by age. */ sl@0: int segment; sl@0: LeavesReader reader; sl@0: } OptLeavesReader; sl@0: sl@0: static int optLeavesReaderAtEnd(OptLeavesReader *pReader){ sl@0: return leavesReaderAtEnd(&pReader->reader); sl@0: } sl@0: static int optLeavesReaderTermBytes(OptLeavesReader *pReader){ sl@0: return leavesReaderTermBytes(&pReader->reader); sl@0: } sl@0: static const char *optLeavesReaderData(OptLeavesReader *pReader){ sl@0: return leavesReaderData(&pReader->reader); sl@0: } sl@0: static int optLeavesReaderDataBytes(OptLeavesReader *pReader){ sl@0: return leavesReaderDataBytes(&pReader->reader); sl@0: } sl@0: static const char *optLeavesReaderTerm(OptLeavesReader *pReader){ sl@0: return leavesReaderTerm(&pReader->reader); sl@0: } sl@0: static int optLeavesReaderStep(fulltext_vtab *v, OptLeavesReader *pReader){ sl@0: return leavesReaderStep(v, &pReader->reader); sl@0: } sl@0: static int optLeavesReaderTermCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){ sl@0: return leavesReaderTermCmp(&lr1->reader, &lr2->reader); sl@0: } sl@0: /* Order by term ascending, segment ascending (oldest to newest), with sl@0: ** exhausted readers to the end. sl@0: */ sl@0: static int optLeavesReaderCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){ sl@0: int c = optLeavesReaderTermCmp(lr1, lr2); sl@0: if( c!=0 ) return c; sl@0: return lr1->segment-lr2->segment; sl@0: } sl@0: /* Bubble pLr[0] to appropriate place in pLr[1..nLr-1]. Assumes that sl@0: ** pLr[1..nLr-1] is already sorted. sl@0: */ sl@0: static void optLeavesReaderReorder(OptLeavesReader *pLr, int nLr){ sl@0: while( nLr>1 && optLeavesReaderCmp(pLr, pLr+1)>0 ){ sl@0: OptLeavesReader tmp = pLr[0]; sl@0: pLr[0] = pLr[1]; sl@0: pLr[1] = tmp; sl@0: nLr--; sl@0: pLr++; sl@0: } sl@0: } sl@0: sl@0: /* optimize() helper function. Put the readers in order and iterate sl@0: ** through them, merging doclists for matching terms into pWriter. sl@0: ** Returns SQLITE_OK on success, or the SQLite error code which sl@0: ** prevented success. sl@0: */ sl@0: static int optimizeInternal(fulltext_vtab *v, sl@0: OptLeavesReader *readers, int nReaders, sl@0: LeafWriter *pWriter){ sl@0: int i, rc = SQLITE_OK; sl@0: DataBuffer doclist, merged, tmp; sl@0: sl@0: /* Order the readers. */ sl@0: i = nReaders; sl@0: while( i-- > 0 ){ sl@0: optLeavesReaderReorder(&readers[i], nReaders-i); sl@0: } sl@0: sl@0: dataBufferInit(&doclist, LEAF_MAX); sl@0: dataBufferInit(&merged, LEAF_MAX); sl@0: sl@0: /* Exhausted readers bubble to the end, so when the first reader is sl@0: ** at eof, all are at eof. sl@0: */ sl@0: while( !optLeavesReaderAtEnd(&readers[0]) ){ sl@0: sl@0: /* Figure out how many readers share the next term. */ sl@0: for(i=1; i 0 ){ sl@0: dlrDestroy(&dlReaders[nReaders]); sl@0: } sl@0: sl@0: /* Accumulated doclist to reader 0 for next pass. */ sl@0: dlrInit(&dlReaders[0], DL_DEFAULT, doclist.pData, doclist.nData); sl@0: } sl@0: sl@0: /* Destroy reader that was left in the pipeline. */ sl@0: dlrDestroy(&dlReaders[0]); sl@0: sl@0: /* Trim deletions from the doclist. */ sl@0: dataBufferReset(&merged); sl@0: docListTrim(DL_DEFAULT, doclist.pData, doclist.nData, sl@0: -1, DL_DEFAULT, &merged); sl@0: } sl@0: sl@0: /* Only pass doclists with hits (skip if all hits deleted). */ sl@0: if( merged.nData>0 ){ sl@0: rc = leafWriterStep(v, pWriter, sl@0: optLeavesReaderTerm(&readers[0]), sl@0: optLeavesReaderTermBytes(&readers[0]), sl@0: merged.pData, merged.nData); sl@0: if( rc!=SQLITE_OK ) goto err; sl@0: } sl@0: sl@0: /* Step merged readers to next term and reorder. */ sl@0: while( i-- > 0 ){ sl@0: rc = optLeavesReaderStep(v, &readers[i]); sl@0: if( rc!=SQLITE_OK ) goto err; sl@0: sl@0: optLeavesReaderReorder(&readers[i], nReaders-i); sl@0: } sl@0: } sl@0: sl@0: err: sl@0: dataBufferDestroy(&doclist); sl@0: dataBufferDestroy(&merged); sl@0: return rc; sl@0: } sl@0: sl@0: /* Implement optimize() function for FTS3. optimize(t) merges all sl@0: ** segments in the fts index into a single segment. 't' is the magic sl@0: ** table-named column. sl@0: */ sl@0: static void optimizeFunc(sqlite3_context *pContext, sl@0: int argc, sqlite3_value **argv){ sl@0: fulltext_cursor *pCursor; sl@0: if( argc>1 ){ sl@0: sqlite3_result_error(pContext, "excess arguments to optimize()",-1); sl@0: }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || sl@0: sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ sl@0: sqlite3_result_error(pContext, "illegal first argument to optimize",-1); sl@0: }else{ sl@0: fulltext_vtab *v; sl@0: int i, rc, iMaxLevel; sl@0: OptLeavesReader *readers; sl@0: int nReaders; sl@0: LeafWriter writer; sl@0: sqlite3_stmt *s; sl@0: sl@0: memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); sl@0: v = cursor_vtab(pCursor); sl@0: sl@0: /* Flush any buffered updates before optimizing. */ sl@0: rc = flushPendingTerms(v); sl@0: if( rc!=SQLITE_OK ) goto err; sl@0: sl@0: rc = segdir_count(v, &nReaders, &iMaxLevel); sl@0: if( rc!=SQLITE_OK ) goto err; sl@0: if( nReaders==0 || nReaders==1 ){ sl@0: sqlite3_result_text(pContext, "Index already optimal", -1, sl@0: SQLITE_STATIC); sl@0: return; sl@0: } sl@0: sl@0: rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); sl@0: if( rc!=SQLITE_OK ) goto err; sl@0: sl@0: readers = sqlite3_malloc(nReaders*sizeof(readers[0])); sl@0: if( readers==NULL ) goto err; sl@0: sl@0: /* Note that there will already be a segment at this position sl@0: ** until we call segdir_delete() on iMaxLevel. sl@0: */ sl@0: leafWriterInit(iMaxLevel, 0, &writer); sl@0: sl@0: i = 0; sl@0: while( (rc = sqlite3_step(s))==SQLITE_ROW ){ sl@0: sqlite_int64 iStart = sqlite3_column_int64(s, 0); sl@0: sqlite_int64 iEnd = sqlite3_column_int64(s, 1); sl@0: const char *pRootData = sqlite3_column_blob(s, 2); sl@0: int nRootData = sqlite3_column_bytes(s, 2); sl@0: sl@0: assert( i 0 ){ sl@0: leavesReaderDestroy(&readers[i].reader); sl@0: } sl@0: sqlite3_free(readers); sl@0: sl@0: /* If we've successfully gotten to here, delete the old segments sl@0: ** and flush the interior structure of the new segment. sl@0: */ sl@0: if( rc==SQLITE_OK ){ sl@0: for( i=0; i<=iMaxLevel; i++ ){ sl@0: rc = segdir_delete(v, i); sl@0: if( rc!=SQLITE_OK ) break; sl@0: } sl@0: sl@0: if( rc==SQLITE_OK ) rc = leafWriterFinalize(v, &writer); sl@0: } sl@0: sl@0: leafWriterDestroy(&writer); sl@0: sl@0: if( rc!=SQLITE_OK ) goto err; sl@0: sl@0: sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC); sl@0: return; sl@0: sl@0: /* TODO(shess): Error-handling needs to be improved along the sl@0: ** lines of the dump_ functions. sl@0: */ sl@0: err: sl@0: { sl@0: char buf[512]; sl@0: sqlite3_snprintf(sizeof(buf), buf, "Error in optimize: %s", sl@0: sqlite3_errmsg(sqlite3_context_db_handle(pContext))); sl@0: sqlite3_result_error(pContext, buf, -1); sl@0: } sl@0: } sl@0: } sl@0: sl@0: #ifdef SQLITE_TEST sl@0: /* Generate an error of the form ": ". If msg is NULL, sl@0: ** pull the error from the context's db handle. sl@0: */ sl@0: static void generateError(sqlite3_context *pContext, sl@0: const char *prefix, const char *msg){ sl@0: char buf[512]; sl@0: if( msg==NULL ) msg = sqlite3_errmsg(sqlite3_context_db_handle(pContext)); sl@0: sqlite3_snprintf(sizeof(buf), buf, "%s: %s", prefix, msg); sl@0: sqlite3_result_error(pContext, buf, -1); sl@0: } sl@0: sl@0: /* Helper function to collect the set of terms in the segment into sl@0: ** pTerms. The segment is defined by the leaf nodes between sl@0: ** iStartBlockid and iEndBlockid, inclusive, or by the contents of sl@0: ** pRootData if iStartBlockid is 0 (in which case the entire segment sl@0: ** fit in a leaf). sl@0: */ sl@0: static int collectSegmentTerms(fulltext_vtab *v, sqlite3_stmt *s, sl@0: fts2Hash *pTerms){ sl@0: const sqlite_int64 iStartBlockid = sqlite3_column_int64(s, 0); sl@0: const sqlite_int64 iEndBlockid = sqlite3_column_int64(s, 1); sl@0: const char *pRootData = sqlite3_column_blob(s, 2); sl@0: const int nRootData = sqlite3_column_bytes(s, 2); sl@0: LeavesReader reader; sl@0: int rc = leavesReaderInit(v, 0, iStartBlockid, iEndBlockid, sl@0: pRootData, nRootData, &reader); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: while( rc==SQLITE_OK && !leavesReaderAtEnd(&reader) ){ sl@0: const char *pTerm = leavesReaderTerm(&reader); sl@0: const int nTerm = leavesReaderTermBytes(&reader); sl@0: void *oldValue = sqlite3Fts2HashFind(pTerms, pTerm, nTerm); sl@0: void *newValue = (void *)((char *)oldValue+1); sl@0: sl@0: /* From the comment before sqlite3Fts2HashInsert in fts2_hash.c, sl@0: ** the data value passed is returned in case of malloc failure. sl@0: */ sl@0: if( newValue==sqlite3Fts2HashInsert(pTerms, pTerm, nTerm, newValue) ){ sl@0: rc = SQLITE_NOMEM; sl@0: }else{ sl@0: rc = leavesReaderStep(v, &reader); sl@0: } sl@0: } sl@0: sl@0: leavesReaderDestroy(&reader); sl@0: return rc; sl@0: } sl@0: sl@0: /* Helper function to build the result string for dump_terms(). */ sl@0: static int generateTermsResult(sqlite3_context *pContext, fts2Hash *pTerms){ sl@0: int iTerm, nTerms, nResultBytes, iByte; sl@0: char *result; sl@0: TermData *pData; sl@0: fts2HashElem *e; sl@0: sl@0: /* Iterate pTerms to generate an array of terms in pData for sl@0: ** sorting. sl@0: */ sl@0: nTerms = fts2HashCount(pTerms); sl@0: assert( nTerms>0 ); sl@0: pData = sqlite3_malloc(nTerms*sizeof(TermData)); sl@0: if( pData==NULL ) return SQLITE_NOMEM; sl@0: sl@0: nResultBytes = 0; sl@0: for(iTerm = 0, e = fts2HashFirst(pTerms); e; iTerm++, e = fts2HashNext(e)){ sl@0: nResultBytes += fts2HashKeysize(e)+1; /* Term plus trailing space */ sl@0: assert( iTerm0 ); /* nTerms>0, nResultsBytes must be, too. */ sl@0: result = sqlite3_malloc(nResultBytes); sl@0: if( result==NULL ){ sl@0: sqlite3_free(pData); sl@0: return SQLITE_NOMEM; sl@0: } sl@0: sl@0: if( nTerms>1 ) qsort(pData, nTerms, sizeof(*pData), termDataCmp); sl@0: sl@0: /* Read the terms in order to build the result. */ sl@0: iByte = 0; sl@0: for(iTerm=0; iTerm0 ){ sl@0: rc = generateTermsResult(pContext, &terms); sl@0: if( rc==SQLITE_NOMEM ){ sl@0: generateError(pContext, "dump_terms", "out of memory"); sl@0: }else{ sl@0: assert( rc==SQLITE_OK ); sl@0: } sl@0: }else if( argc==3 ){ sl@0: /* The specific segment asked for could not be found. */ sl@0: generateError(pContext, "dump_terms", "segment not found"); sl@0: }else{ sl@0: /* No segments found. */ sl@0: /* TODO(shess): It should be impossible to reach this. This sl@0: ** case can only happen for an empty table, in which case sl@0: ** SQLite has no rows to call this function on. sl@0: */ sl@0: sqlite3_result_null(pContext); sl@0: } sl@0: } sl@0: sqlite3Fts2HashClear(&terms); sl@0: } sl@0: } sl@0: sl@0: /* Expand the DL_DEFAULT doclist in pData into a text result in sl@0: ** pContext. sl@0: */ sl@0: static void createDoclistResult(sqlite3_context *pContext, sl@0: const char *pData, int nData){ sl@0: DataBuffer dump; sl@0: DLReader dlReader; sl@0: sl@0: assert( pData!=NULL && nData>0 ); sl@0: sl@0: dataBufferInit(&dump, 0); sl@0: dlrInit(&dlReader, DL_DEFAULT, pData, nData); sl@0: for( ; !dlrAtEnd(&dlReader); dlrStep(&dlReader) ){ sl@0: char buf[256]; sl@0: PLReader plReader; sl@0: sl@0: plrInit(&plReader, &dlReader); sl@0: if( DL_DEFAULT==DL_DOCIDS || plrAtEnd(&plReader) ){ sl@0: sqlite3_snprintf(sizeof(buf), buf, "[%lld] ", dlrDocid(&dlReader)); sl@0: dataBufferAppend(&dump, buf, strlen(buf)); sl@0: }else{ sl@0: int iColumn = plrColumn(&plReader); sl@0: sl@0: sqlite3_snprintf(sizeof(buf), buf, "[%lld %d[", sl@0: dlrDocid(&dlReader), iColumn); sl@0: dataBufferAppend(&dump, buf, strlen(buf)); sl@0: sl@0: for( ; !plrAtEnd(&plReader); plrStep(&plReader) ){ sl@0: if( plrColumn(&plReader)!=iColumn ){ sl@0: iColumn = plrColumn(&plReader); sl@0: sqlite3_snprintf(sizeof(buf), buf, "] %d[", iColumn); sl@0: assert( dump.nData>0 ); sl@0: dump.nData--; /* Overwrite trailing space. */ sl@0: assert( dump.pData[dump.nData]==' '); sl@0: dataBufferAppend(&dump, buf, strlen(buf)); sl@0: } sl@0: if( DL_DEFAULT==DL_POSITIONS_OFFSETS ){ sl@0: sqlite3_snprintf(sizeof(buf), buf, "%d,%d,%d ", sl@0: plrPosition(&plReader), sl@0: plrStartOffset(&plReader), plrEndOffset(&plReader)); sl@0: }else if( DL_DEFAULT==DL_POSITIONS ){ sl@0: sqlite3_snprintf(sizeof(buf), buf, "%d ", plrPosition(&plReader)); sl@0: }else{ sl@0: assert( NULL=="Unhandled DL_DEFAULT value"); sl@0: } sl@0: dataBufferAppend(&dump, buf, strlen(buf)); sl@0: } sl@0: plrDestroy(&plReader); sl@0: sl@0: assert( dump.nData>0 ); sl@0: dump.nData--; /* Overwrite trailing space. */ sl@0: assert( dump.pData[dump.nData]==' '); sl@0: dataBufferAppend(&dump, "]] ", 3); sl@0: } sl@0: } sl@0: dlrDestroy(&dlReader); sl@0: sl@0: assert( dump.nData>0 ); sl@0: dump.nData--; /* Overwrite trailing space. */ sl@0: assert( dump.pData[dump.nData]==' '); sl@0: dump.pData[dump.nData] = '\0'; sl@0: assert( dump.nData>0 ); sl@0: sl@0: /* Passes ownership of dump's buffer to pContext. */ sl@0: sqlite3_result_text(pContext, dump.pData, dump.nData, sqlite3_free); sl@0: dump.pData = NULL; sl@0: dump.nData = dump.nCapacity = 0; sl@0: } sl@0: sl@0: /* Implements dump_doclist() for use in inspecting the fts2 index from sl@0: ** tests. TEXT result containing a string representation of the sl@0: ** doclist for the indicated term. dump_doclist(t, term, level, idx) sl@0: ** dumps the doclist for term from the segment specified by level, idx sl@0: ** (in %_segdir), while dump_doclist(t, term) dumps the logical sl@0: ** doclist for the term across all segments. The per-segment doclist sl@0: ** can contain deletions, while the full-index doclist will not sl@0: ** (deletions are omitted). sl@0: ** sl@0: ** Result formats differ with the setting of DL_DEFAULTS. Examples: sl@0: ** sl@0: ** DL_DOCIDS: [1] [3] [7] sl@0: ** DL_POSITIONS: [1 0[0 4] 1[17]] [3 1[5]] sl@0: ** DL_POSITIONS_OFFSETS: [1 0[0,0,3 4,23,26] 1[17,102,105]] [3 1[5,20,23]] sl@0: ** sl@0: ** In each case the number after the outer '[' is the docid. In the sl@0: ** latter two cases, the number before the inner '[' is the column sl@0: ** associated with the values within. For DL_POSITIONS the numbers sl@0: ** within are the positions, for DL_POSITIONS_OFFSETS they are the sl@0: ** position, the start offset, and the end offset. sl@0: */ sl@0: static void dumpDoclistFunc( sl@0: sqlite3_context *pContext, sl@0: int argc, sqlite3_value **argv sl@0: ){ sl@0: fulltext_cursor *pCursor; sl@0: if( argc!=2 && argc!=4 ){ sl@0: generateError(pContext, "dump_doclist", "incorrect arguments"); sl@0: }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || sl@0: sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ sl@0: generateError(pContext, "dump_doclist", "illegal first argument"); sl@0: }else if( sqlite3_value_text(argv[1])==NULL || sl@0: sqlite3_value_text(argv[1])[0]=='\0' ){ sl@0: generateError(pContext, "dump_doclist", "empty second argument"); sl@0: }else{ sl@0: const char *pTerm = (const char *)sqlite3_value_text(argv[1]); sl@0: const int nTerm = strlen(pTerm); sl@0: fulltext_vtab *v; sl@0: int rc; sl@0: DataBuffer doclist; sl@0: sl@0: memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); sl@0: v = cursor_vtab(pCursor); sl@0: sl@0: dataBufferInit(&doclist, 0); sl@0: sl@0: /* termSelect() yields the same logical doclist that queries are sl@0: ** run against. sl@0: */ sl@0: if( argc==2 ){ sl@0: rc = termSelect(v, v->nColumn, pTerm, nTerm, 0, DL_DEFAULT, &doclist); sl@0: }else{ sl@0: sqlite3_stmt *s = NULL; sl@0: sl@0: /* Get our specific segment's information. */ sl@0: rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[2])); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[3])); sl@0: } sl@0: } sl@0: sl@0: if( rc==SQLITE_OK ){ sl@0: rc = sqlite3_step(s); sl@0: sl@0: if( rc==SQLITE_DONE ){ sl@0: dataBufferDestroy(&doclist); sl@0: generateError(pContext, "dump_doclist", "segment not found"); sl@0: return; sl@0: } sl@0: sl@0: /* Found a segment, load it into doclist. */ sl@0: if( rc==SQLITE_ROW ){ sl@0: const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1); sl@0: const char *pData = sqlite3_column_blob(s, 2); sl@0: const int nData = sqlite3_column_bytes(s, 2); sl@0: sl@0: /* loadSegment() is used by termSelect() to load each sl@0: ** segment's data. sl@0: */ sl@0: rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, 0, sl@0: &doclist); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = sqlite3_step(s); sl@0: sl@0: /* Should not have more than one matching segment. */ sl@0: if( rc!=SQLITE_DONE ){ sl@0: sqlite3_reset(s); sl@0: dataBufferDestroy(&doclist); sl@0: generateError(pContext, "dump_doclist", "invalid segdir"); sl@0: return; sl@0: } sl@0: rc = SQLITE_OK; sl@0: } sl@0: } sl@0: } sl@0: sl@0: sqlite3_reset(s); sl@0: } sl@0: sl@0: if( rc==SQLITE_OK ){ sl@0: if( doclist.nData>0 ){ sl@0: createDoclistResult(pContext, doclist.pData, doclist.nData); sl@0: }else{ sl@0: /* TODO(shess): This can happen if the term is not present, or sl@0: ** if all instances of the term have been deleted and this is sl@0: ** an all-index dump. It may be interesting to distinguish sl@0: ** these cases. sl@0: */ sl@0: sqlite3_result_text(pContext, "", 0, SQLITE_STATIC); sl@0: } sl@0: }else if( rc==SQLITE_NOMEM ){ sl@0: /* Handle out-of-memory cases specially because if they are sl@0: ** generated in fts2 code they may not be reflected in the db sl@0: ** handle. sl@0: */ sl@0: /* TODO(shess): Handle this more comprehensively. sl@0: ** sqlite3ErrStr() has what I need, but is internal. sl@0: */ sl@0: generateError(pContext, "dump_doclist", "out of memory"); sl@0: }else{ sl@0: generateError(pContext, "dump_doclist", NULL); sl@0: } sl@0: sl@0: dataBufferDestroy(&doclist); sl@0: } sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** This routine implements the xFindFunction method for the FTS2 sl@0: ** virtual table. sl@0: */ sl@0: static int fulltextFindFunction( sl@0: sqlite3_vtab *pVtab, sl@0: int nArg, sl@0: const char *zName, sl@0: void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), sl@0: void **ppArg sl@0: ){ sl@0: if( strcmp(zName,"snippet")==0 ){ sl@0: *pxFunc = snippetFunc; sl@0: return 1; sl@0: }else if( strcmp(zName,"offsets")==0 ){ sl@0: *pxFunc = snippetOffsetsFunc; sl@0: return 1; sl@0: }else if( strcmp(zName,"optimize")==0 ){ sl@0: *pxFunc = optimizeFunc; sl@0: return 1; sl@0: #ifdef SQLITE_TEST sl@0: /* NOTE(shess): These functions are present only for testing sl@0: ** purposes. No particular effort is made to optimize their sl@0: ** execution or how they build their results. sl@0: */ sl@0: }else if( strcmp(zName,"dump_terms")==0 ){ sl@0: /* fprintf(stderr, "Found dump_terms\n"); */ sl@0: *pxFunc = dumpTermsFunc; sl@0: return 1; sl@0: }else if( strcmp(zName,"dump_doclist")==0 ){ sl@0: /* fprintf(stderr, "Found dump_doclist\n"); */ sl@0: *pxFunc = dumpDoclistFunc; sl@0: return 1; sl@0: #endif sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: ** Rename an fts2 table. sl@0: */ sl@0: static int fulltextRename( sl@0: sqlite3_vtab *pVtab, sl@0: const char *zName sl@0: ){ sl@0: fulltext_vtab *p = (fulltext_vtab *)pVtab; sl@0: int rc = SQLITE_NOMEM; sl@0: char *zSql = sqlite3_mprintf( sl@0: "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';" sl@0: "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';" sl@0: "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';" sl@0: , p->zDb, p->zName, zName sl@0: , p->zDb, p->zName, zName sl@0: , p->zDb, p->zName, zName sl@0: ); sl@0: if( zSql ){ sl@0: rc = sqlite3_exec(p->db, zSql, 0, 0, 0); sl@0: sqlite3_free(zSql); sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: static const sqlite3_module fts2Module = { sl@0: /* iVersion */ 0, sl@0: /* xCreate */ fulltextCreate, sl@0: /* xConnect */ fulltextConnect, sl@0: /* xBestIndex */ fulltextBestIndex, sl@0: /* xDisconnect */ fulltextDisconnect, sl@0: /* xDestroy */ fulltextDestroy, sl@0: /* xOpen */ fulltextOpen, sl@0: /* xClose */ fulltextClose, sl@0: /* xFilter */ fulltextFilter, sl@0: /* xNext */ fulltextNext, sl@0: /* xEof */ fulltextEof, sl@0: /* xColumn */ fulltextColumn, sl@0: /* xRowid */ fulltextRowid, sl@0: /* xUpdate */ fulltextUpdate, sl@0: /* xBegin */ fulltextBegin, sl@0: /* xSync */ fulltextSync, sl@0: /* xCommit */ fulltextCommit, sl@0: /* xRollback */ fulltextRollback, sl@0: /* xFindFunction */ fulltextFindFunction, sl@0: /* xRename */ fulltextRename, sl@0: }; sl@0: sl@0: static void hashDestroy(void *p){ sl@0: fts2Hash *pHash = (fts2Hash *)p; sl@0: sqlite3Fts2HashClear(pHash); sl@0: sqlite3_free(pHash); sl@0: } sl@0: sl@0: /* sl@0: ** The fts2 built-in tokenizers - "simple" and "porter" - are implemented sl@0: ** in files fts2_tokenizer1.c and fts2_porter.c respectively. The following sl@0: ** two forward declarations are for functions declared in these files sl@0: ** used to retrieve the respective implementations. sl@0: ** sl@0: ** Calling sqlite3Fts2SimpleTokenizerModule() sets the value pointed sl@0: ** to by the argument to point a the "simple" tokenizer implementation. sl@0: ** Function ...PorterTokenizerModule() sets *pModule to point to the sl@0: ** porter tokenizer/stemmer implementation. sl@0: */ sl@0: void sqlite3Fts2SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); sl@0: void sqlite3Fts2PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule); sl@0: void sqlite3Fts2IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule); sl@0: sl@0: int sqlite3Fts2InitHashTable(sqlite3 *, fts2Hash *, const char *); sl@0: sl@0: /* sl@0: ** Initialise the fts2 extension. If this extension is built as part sl@0: ** of the sqlite library, then this function is called directly by sl@0: ** SQLite. If fts2 is built as a dynamically loadable extension, this sl@0: ** function is called by the sqlite3_extension_init() entry point. sl@0: */ sl@0: int sqlite3Fts2Init(sqlite3 *db){ sl@0: int rc = SQLITE_OK; sl@0: fts2Hash *pHash = 0; sl@0: const sqlite3_tokenizer_module *pSimple = 0; sl@0: const sqlite3_tokenizer_module *pPorter = 0; sl@0: const sqlite3_tokenizer_module *pIcu = 0; sl@0: sl@0: sqlite3Fts2SimpleTokenizerModule(&pSimple); sl@0: sqlite3Fts2PorterTokenizerModule(&pPorter); sl@0: #ifdef SQLITE_ENABLE_ICU sl@0: sqlite3Fts2IcuTokenizerModule(&pIcu); sl@0: #endif sl@0: sl@0: /* Allocate and initialise the hash-table used to store tokenizers. */ sl@0: pHash = sqlite3_malloc(sizeof(fts2Hash)); sl@0: if( !pHash ){ sl@0: rc = SQLITE_NOMEM; sl@0: }else{ sl@0: sqlite3Fts2HashInit(pHash, FTS2_HASH_STRING, 1); sl@0: } sl@0: sl@0: /* Load the built-in tokenizers into the hash table */ sl@0: if( rc==SQLITE_OK ){ sl@0: if( sqlite3Fts2HashInsert(pHash, "simple", 7, (void *)pSimple) sl@0: || sqlite3Fts2HashInsert(pHash, "porter", 7, (void *)pPorter) sl@0: || (pIcu && sqlite3Fts2HashInsert(pHash, "icu", 4, (void *)pIcu)) sl@0: ){ sl@0: rc = SQLITE_NOMEM; sl@0: } sl@0: } sl@0: sl@0: /* Create the virtual table wrapper around the hash-table and overload sl@0: ** the two scalar functions. If this is successful, register the sl@0: ** module with sqlite. sl@0: */ sl@0: if( SQLITE_OK==rc sl@0: && SQLITE_OK==(rc = sqlite3Fts2InitHashTable(db, pHash, "fts2_tokenizer")) sl@0: && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) sl@0: && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1)) sl@0: && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", -1)) sl@0: #ifdef SQLITE_TEST sl@0: && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_terms", -1)) sl@0: && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_doclist", -1)) sl@0: #endif sl@0: ){ sl@0: return sqlite3_create_module_v2( sl@0: db, "fts2", &fts2Module, (void *)pHash, hashDestroy sl@0: ); sl@0: } sl@0: sl@0: /* An error has occured. Delete the hash table and return the error code. */ sl@0: assert( rc!=SQLITE_OK ); sl@0: if( pHash ){ sl@0: sqlite3Fts2HashClear(pHash); sl@0: sqlite3_free(pHash); sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: #if !SQLITE_CORE sl@0: int sqlite3_extension_init( sl@0: sqlite3 *db, sl@0: char **pzErrMsg, sl@0: const sqlite3_api_routines *pApi sl@0: ){ sl@0: SQLITE_EXTENSION_INIT2(pApi) sl@0: return sqlite3Fts2Init(db); sl@0: } sl@0: #endif sl@0: sl@0: #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */