os/persistentdata/persistentstorage/sql/SQLite/mem3.c
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
sl@0
     1
/*
sl@0
     2
** 2007 October 14
sl@0
     3
**
sl@0
     4
** The author disclaims copyright to this source code.  In place of
sl@0
     5
** a legal notice, here is a blessing:
sl@0
     6
**
sl@0
     7
**    May you do good and not evil.
sl@0
     8
**    May you find forgiveness for yourself and forgive others.
sl@0
     9
**    May you share freely, never taking more than you give.
sl@0
    10
**
sl@0
    11
*************************************************************************
sl@0
    12
** This file contains the C functions that implement a memory
sl@0
    13
** allocation subsystem for use by SQLite. 
sl@0
    14
**
sl@0
    15
** This version of the memory allocation subsystem omits all
sl@0
    16
** use of malloc(). The SQLite user supplies a block of memory
sl@0
    17
** before calling sqlite3_initialize() from which allocations
sl@0
    18
** are made and returned by the xMalloc() and xRealloc() 
sl@0
    19
** implementations. Once sqlite3_initialize() has been called,
sl@0
    20
** the amount of memory available to SQLite is fixed and cannot
sl@0
    21
** be changed.
sl@0
    22
**
sl@0
    23
** This version of the memory allocation subsystem is included
sl@0
    24
** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
sl@0
    25
**
sl@0
    26
** $Id: mem3.c,v 1.20 2008/07/18 18:56:17 drh Exp $
sl@0
    27
*/
sl@0
    28
#include "sqliteInt.h"
sl@0
    29
sl@0
    30
/*
sl@0
    31
** This version of the memory allocator is only built into the library
sl@0
    32
** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
sl@0
    33
** mean that the library will use a memory-pool by default, just that
sl@0
    34
** it is available. The mempool allocator is activated by calling
sl@0
    35
** sqlite3_config().
sl@0
    36
*/
sl@0
    37
#ifdef SQLITE_ENABLE_MEMSYS3
sl@0
    38
sl@0
    39
/*
sl@0
    40
** Maximum size (in Mem3Blocks) of a "small" chunk.
sl@0
    41
*/
sl@0
    42
#define MX_SMALL 10
sl@0
    43
sl@0
    44
sl@0
    45
/*
sl@0
    46
** Number of freelist hash slots
sl@0
    47
*/
sl@0
    48
#define N_HASH  61
sl@0
    49
sl@0
    50
/*
sl@0
    51
** A memory allocation (also called a "chunk") consists of two or 
sl@0
    52
** more blocks where each block is 8 bytes.  The first 8 bytes are 
sl@0
    53
** a header that is not returned to the user.
sl@0
    54
**
sl@0
    55
** A chunk is two or more blocks that is either checked out or
sl@0
    56
** free.  The first block has format u.hdr.  u.hdr.size4x is 4 times the
sl@0
    57
** size of the allocation in blocks if the allocation is free.
sl@0
    58
** The u.hdr.size4x&1 bit is true if the chunk is checked out and
sl@0
    59
** false if the chunk is on the freelist.  The u.hdr.size4x&2 bit
sl@0
    60
** is true if the previous chunk is checked out and false if the
sl@0
    61
** previous chunk is free.  The u.hdr.prevSize field is the size of
sl@0
    62
** the previous chunk in blocks if the previous chunk is on the
sl@0
    63
** freelist. If the previous chunk is checked out, then
sl@0
    64
** u.hdr.prevSize can be part of the data for that chunk and should
sl@0
    65
** not be read or written.
sl@0
    66
**
sl@0
    67
** We often identify a chunk by its index in mem3.aPool[].  When
sl@0
    68
** this is done, the chunk index refers to the second block of
sl@0
    69
** the chunk.  In this way, the first chunk has an index of 1.
sl@0
    70
** A chunk index of 0 means "no such chunk" and is the equivalent
sl@0
    71
** of a NULL pointer.
sl@0
    72
**
sl@0
    73
** The second block of free chunks is of the form u.list.  The
sl@0
    74
** two fields form a double-linked list of chunks of related sizes.
sl@0
    75
** Pointers to the head of the list are stored in mem3.aiSmall[] 
sl@0
    76
** for smaller chunks and mem3.aiHash[] for larger chunks.
sl@0
    77
**
sl@0
    78
** The second block of a chunk is user data if the chunk is checked 
sl@0
    79
** out.  If a chunk is checked out, the user data may extend into
sl@0
    80
** the u.hdr.prevSize value of the following chunk.
sl@0
    81
*/
sl@0
    82
typedef struct Mem3Block Mem3Block;
sl@0
    83
struct Mem3Block {
sl@0
    84
  union {
sl@0
    85
    struct {
sl@0
    86
      u32 prevSize;   /* Size of previous chunk in Mem3Block elements */
sl@0
    87
      u32 size4x;     /* 4x the size of current chunk in Mem3Block elements */
sl@0
    88
    } hdr;
sl@0
    89
    struct {
sl@0
    90
      u32 next;       /* Index in mem3.aPool[] of next free chunk */
sl@0
    91
      u32 prev;       /* Index in mem3.aPool[] of previous free chunk */
sl@0
    92
    } list;
sl@0
    93
  } u;
sl@0
    94
};
sl@0
    95
sl@0
    96
/*
sl@0
    97
** All of the static variables used by this module are collected
sl@0
    98
** into a single structure named "mem3".  This is to keep the
sl@0
    99
** static variables organized and to reduce namespace pollution
sl@0
   100
** when this module is combined with other in the amalgamation.
sl@0
   101
*/
sl@0
   102
static struct {
sl@0
   103
  /*
sl@0
   104
  ** True if we are evaluating an out-of-memory callback.
sl@0
   105
  */
sl@0
   106
  int alarmBusy;
sl@0
   107
  
sl@0
   108
  /*
sl@0
   109
  ** Mutex to control access to the memory allocation subsystem.
sl@0
   110
  */
sl@0
   111
  sqlite3_mutex *mutex;
sl@0
   112
  
sl@0
   113
  /*
sl@0
   114
  ** The minimum amount of free space that we have seen.
sl@0
   115
  */
sl@0
   116
  u32 mnMaster;
sl@0
   117
sl@0
   118
  /*
sl@0
   119
  ** iMaster is the index of the master chunk.  Most new allocations
sl@0
   120
  ** occur off of this chunk.  szMaster is the size (in Mem3Blocks)
sl@0
   121
  ** of the current master.  iMaster is 0 if there is not master chunk.
sl@0
   122
  ** The master chunk is not in either the aiHash[] or aiSmall[].
sl@0
   123
  */
sl@0
   124
  u32 iMaster;
sl@0
   125
  u32 szMaster;
sl@0
   126
sl@0
   127
  /*
sl@0
   128
  ** Array of lists of free blocks according to the block size 
sl@0
   129
  ** for smaller chunks, or a hash on the block size for larger
sl@0
   130
  ** chunks.
sl@0
   131
  */
sl@0
   132
  u32 aiSmall[MX_SMALL-1];   /* For sizes 2 through MX_SMALL, inclusive */
sl@0
   133
  u32 aiHash[N_HASH];        /* For sizes MX_SMALL+1 and larger */
sl@0
   134
sl@0
   135
  /*
sl@0
   136
  ** Memory available for allocation. nPool is the size of the array
sl@0
   137
  ** (in Mem3Blocks) pointed to by aPool less 2.
sl@0
   138
  */
sl@0
   139
  u32 nPool;
sl@0
   140
  Mem3Block *aPool;
sl@0
   141
} mem3;
sl@0
   142
sl@0
   143
/*
sl@0
   144
** Unlink the chunk at mem3.aPool[i] from list it is currently
sl@0
   145
** on.  *pRoot is the list that i is a member of.
sl@0
   146
*/
sl@0
   147
static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
sl@0
   148
  u32 next = mem3.aPool[i].u.list.next;
sl@0
   149
  u32 prev = mem3.aPool[i].u.list.prev;
sl@0
   150
  assert( sqlite3_mutex_held(mem3.mutex) );
sl@0
   151
  if( prev==0 ){
sl@0
   152
    *pRoot = next;
sl@0
   153
  }else{
sl@0
   154
    mem3.aPool[prev].u.list.next = next;
sl@0
   155
  }
sl@0
   156
  if( next ){
sl@0
   157
    mem3.aPool[next].u.list.prev = prev;
sl@0
   158
  }
sl@0
   159
  mem3.aPool[i].u.list.next = 0;
sl@0
   160
  mem3.aPool[i].u.list.prev = 0;
sl@0
   161
}
sl@0
   162
sl@0
   163
/*
sl@0
   164
** Unlink the chunk at index i from 
sl@0
   165
** whatever list is currently a member of.
sl@0
   166
*/
sl@0
   167
static void memsys3Unlink(u32 i){
sl@0
   168
  u32 size, hash;
sl@0
   169
  assert( sqlite3_mutex_held(mem3.mutex) );
sl@0
   170
  assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
sl@0
   171
  assert( i>=1 );
sl@0
   172
  size = mem3.aPool[i-1].u.hdr.size4x/4;
sl@0
   173
  assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
sl@0
   174
  assert( size>=2 );
sl@0
   175
  if( size <= MX_SMALL ){
sl@0
   176
    memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
sl@0
   177
  }else{
sl@0
   178
    hash = size % N_HASH;
sl@0
   179
    memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
sl@0
   180
  }
sl@0
   181
}
sl@0
   182
sl@0
   183
/*
sl@0
   184
** Link the chunk at mem3.aPool[i] so that is on the list rooted
sl@0
   185
** at *pRoot.
sl@0
   186
*/
sl@0
   187
static void memsys3LinkIntoList(u32 i, u32 *pRoot){
sl@0
   188
  assert( sqlite3_mutex_held(mem3.mutex) );
sl@0
   189
  mem3.aPool[i].u.list.next = *pRoot;
sl@0
   190
  mem3.aPool[i].u.list.prev = 0;
sl@0
   191
  if( *pRoot ){
sl@0
   192
    mem3.aPool[*pRoot].u.list.prev = i;
sl@0
   193
  }
sl@0
   194
  *pRoot = i;
sl@0
   195
}
sl@0
   196
sl@0
   197
/*
sl@0
   198
** Link the chunk at index i into either the appropriate
sl@0
   199
** small chunk list, or into the large chunk hash table.
sl@0
   200
*/
sl@0
   201
static void memsys3Link(u32 i){
sl@0
   202
  u32 size, hash;
sl@0
   203
  assert( sqlite3_mutex_held(mem3.mutex) );
sl@0
   204
  assert( i>=1 );
sl@0
   205
  assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
sl@0
   206
  size = mem3.aPool[i-1].u.hdr.size4x/4;
sl@0
   207
  assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
sl@0
   208
  assert( size>=2 );
sl@0
   209
  if( size <= MX_SMALL ){
sl@0
   210
    memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
sl@0
   211
  }else{
sl@0
   212
    hash = size % N_HASH;
sl@0
   213
    memsys3LinkIntoList(i, &mem3.aiHash[hash]);
sl@0
   214
  }
sl@0
   215
}
sl@0
   216
sl@0
   217
/*
sl@0
   218
** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
sl@0
   219
** will already be held (obtained by code in malloc.c) if
sl@0
   220
** sqlite3Config.bMemStat is true.
sl@0
   221
*/
sl@0
   222
static void memsys3Enter(void){
sl@0
   223
  if( sqlite3Config.bMemstat==0 && mem3.mutex==0 ){
sl@0
   224
    mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
sl@0
   225
  }
sl@0
   226
  sqlite3_mutex_enter(mem3.mutex);
sl@0
   227
}
sl@0
   228
static void memsys3Leave(void){
sl@0
   229
  sqlite3_mutex_leave(mem3.mutex);
sl@0
   230
}
sl@0
   231
sl@0
   232
/*
sl@0
   233
** Called when we are unable to satisfy an allocation of nBytes.
sl@0
   234
*/
sl@0
   235
static void memsys3OutOfMemory(int nByte){
sl@0
   236
  if( !mem3.alarmBusy ){
sl@0
   237
    mem3.alarmBusy = 1;
sl@0
   238
    assert( sqlite3_mutex_held(mem3.mutex) );
sl@0
   239
    sqlite3_mutex_leave(mem3.mutex);
sl@0
   240
    sqlite3_release_memory(nByte);
sl@0
   241
    sqlite3_mutex_enter(mem3.mutex);
sl@0
   242
    mem3.alarmBusy = 0;
sl@0
   243
  }
sl@0
   244
}
sl@0
   245
sl@0
   246
sl@0
   247
/*
sl@0
   248
** Chunk i is a free chunk that has been unlinked.  Adjust its 
sl@0
   249
** size parameters for check-out and return a pointer to the 
sl@0
   250
** user portion of the chunk.
sl@0
   251
*/
sl@0
   252
static void *memsys3Checkout(u32 i, int nBlock){
sl@0
   253
  u32 x;
sl@0
   254
  assert( sqlite3_mutex_held(mem3.mutex) );
sl@0
   255
  assert( i>=1 );
sl@0
   256
  assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
sl@0
   257
  assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
sl@0
   258
  x = mem3.aPool[i-1].u.hdr.size4x;
sl@0
   259
  mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
sl@0
   260
  mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
sl@0
   261
  mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
sl@0
   262
  return &mem3.aPool[i];
sl@0
   263
}
sl@0
   264
sl@0
   265
/*
sl@0
   266
** Carve a piece off of the end of the mem3.iMaster free chunk.
sl@0
   267
** Return a pointer to the new allocation.  Or, if the master chunk
sl@0
   268
** is not large enough, return 0.
sl@0
   269
*/
sl@0
   270
static void *memsys3FromMaster(int nBlock){
sl@0
   271
  assert( sqlite3_mutex_held(mem3.mutex) );
sl@0
   272
  assert( mem3.szMaster>=nBlock );
sl@0
   273
  if( nBlock>=mem3.szMaster-1 ){
sl@0
   274
    /* Use the entire master */
sl@0
   275
    void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster);
sl@0
   276
    mem3.iMaster = 0;
sl@0
   277
    mem3.szMaster = 0;
sl@0
   278
    mem3.mnMaster = 0;
sl@0
   279
    return p;
sl@0
   280
  }else{
sl@0
   281
    /* Split the master block.  Return the tail. */
sl@0
   282
    u32 newi, x;
sl@0
   283
    newi = mem3.iMaster + mem3.szMaster - nBlock;
sl@0
   284
    assert( newi > mem3.iMaster+1 );
sl@0
   285
    mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock;
sl@0
   286
    mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2;
sl@0
   287
    mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
sl@0
   288
    mem3.szMaster -= nBlock;
sl@0
   289
    mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster;
sl@0
   290
    x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
sl@0
   291
    mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
sl@0
   292
    if( mem3.szMaster < mem3.mnMaster ){
sl@0
   293
      mem3.mnMaster = mem3.szMaster;
sl@0
   294
    }
sl@0
   295
    return (void*)&mem3.aPool[newi];
sl@0
   296
  }
sl@0
   297
}
sl@0
   298
sl@0
   299
/*
sl@0
   300
** *pRoot is the head of a list of free chunks of the same size
sl@0
   301
** or same size hash.  In other words, *pRoot is an entry in either
sl@0
   302
** mem3.aiSmall[] or mem3.aiHash[].  
sl@0
   303
**
sl@0
   304
** This routine examines all entries on the given list and tries
sl@0
   305
** to coalesce each entries with adjacent free chunks.  
sl@0
   306
**
sl@0
   307
** If it sees a chunk that is larger than mem3.iMaster, it replaces 
sl@0
   308
** the current mem3.iMaster with the new larger chunk.  In order for
sl@0
   309
** this mem3.iMaster replacement to work, the master chunk must be
sl@0
   310
** linked into the hash tables.  That is not the normal state of
sl@0
   311
** affairs, of course.  The calling routine must link the master
sl@0
   312
** chunk before invoking this routine, then must unlink the (possibly
sl@0
   313
** changed) master chunk once this routine has finished.
sl@0
   314
*/
sl@0
   315
static void memsys3Merge(u32 *pRoot){
sl@0
   316
  u32 iNext, prev, size, i, x;
sl@0
   317
sl@0
   318
  assert( sqlite3_mutex_held(mem3.mutex) );
sl@0
   319
  for(i=*pRoot; i>0; i=iNext){
sl@0
   320
    iNext = mem3.aPool[i].u.list.next;
sl@0
   321
    size = mem3.aPool[i-1].u.hdr.size4x;
sl@0
   322
    assert( (size&1)==0 );
sl@0
   323
    if( (size&2)==0 ){
sl@0
   324
      memsys3UnlinkFromList(i, pRoot);
sl@0
   325
      assert( i > mem3.aPool[i-1].u.hdr.prevSize );
sl@0
   326
      prev = i - mem3.aPool[i-1].u.hdr.prevSize;
sl@0
   327
      if( prev==iNext ){
sl@0
   328
        iNext = mem3.aPool[prev].u.list.next;
sl@0
   329
      }
sl@0
   330
      memsys3Unlink(prev);
sl@0
   331
      size = i + size/4 - prev;
sl@0
   332
      x = mem3.aPool[prev-1].u.hdr.size4x & 2;
sl@0
   333
      mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
sl@0
   334
      mem3.aPool[prev+size-1].u.hdr.prevSize = size;
sl@0
   335
      memsys3Link(prev);
sl@0
   336
      i = prev;
sl@0
   337
    }else{
sl@0
   338
      size /= 4;
sl@0
   339
    }
sl@0
   340
    if( size>mem3.szMaster ){
sl@0
   341
      mem3.iMaster = i;
sl@0
   342
      mem3.szMaster = size;
sl@0
   343
    }
sl@0
   344
  }
sl@0
   345
}
sl@0
   346
sl@0
   347
/*
sl@0
   348
** Return a block of memory of at least nBytes in size.
sl@0
   349
** Return NULL if unable.
sl@0
   350
**
sl@0
   351
** This function assumes that the necessary mutexes, if any, are
sl@0
   352
** already held by the caller. Hence "Unsafe".
sl@0
   353
*/
sl@0
   354
static void *memsys3MallocUnsafe(int nByte){
sl@0
   355
  u32 i;
sl@0
   356
  int nBlock;
sl@0
   357
  int toFree;
sl@0
   358
sl@0
   359
  assert( sqlite3_mutex_held(mem3.mutex) );
sl@0
   360
  assert( sizeof(Mem3Block)==8 );
sl@0
   361
  if( nByte<=12 ){
sl@0
   362
    nBlock = 2;
sl@0
   363
  }else{
sl@0
   364
    nBlock = (nByte + 11)/8;
sl@0
   365
  }
sl@0
   366
  assert( nBlock>=2 );
sl@0
   367
sl@0
   368
  /* STEP 1:
sl@0
   369
  ** Look for an entry of the correct size in either the small
sl@0
   370
  ** chunk table or in the large chunk hash table.  This is
sl@0
   371
  ** successful most of the time (about 9 times out of 10).
sl@0
   372
  */
sl@0
   373
  if( nBlock <= MX_SMALL ){
sl@0
   374
    i = mem3.aiSmall[nBlock-2];
sl@0
   375
    if( i>0 ){
sl@0
   376
      memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
sl@0
   377
      return memsys3Checkout(i, nBlock);
sl@0
   378
    }
sl@0
   379
  }else{
sl@0
   380
    int hash = nBlock % N_HASH;
sl@0
   381
    for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
sl@0
   382
      if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
sl@0
   383
        memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
sl@0
   384
        return memsys3Checkout(i, nBlock);
sl@0
   385
      }
sl@0
   386
    }
sl@0
   387
  }
sl@0
   388
sl@0
   389
  /* STEP 2:
sl@0
   390
  ** Try to satisfy the allocation by carving a piece off of the end
sl@0
   391
  ** of the master chunk.  This step usually works if step 1 fails.
sl@0
   392
  */
sl@0
   393
  if( mem3.szMaster>=nBlock ){
sl@0
   394
    return memsys3FromMaster(nBlock);
sl@0
   395
  }
sl@0
   396
sl@0
   397
sl@0
   398
  /* STEP 3:  
sl@0
   399
  ** Loop through the entire memory pool.  Coalesce adjacent free
sl@0
   400
  ** chunks.  Recompute the master chunk as the largest free chunk.
sl@0
   401
  ** Then try again to satisfy the allocation by carving a piece off
sl@0
   402
  ** of the end of the master chunk.  This step happens very
sl@0
   403
  ** rarely (we hope!)
sl@0
   404
  */
sl@0
   405
  for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
sl@0
   406
    memsys3OutOfMemory(toFree);
sl@0
   407
    if( mem3.iMaster ){
sl@0
   408
      memsys3Link(mem3.iMaster);
sl@0
   409
      mem3.iMaster = 0;
sl@0
   410
      mem3.szMaster = 0;
sl@0
   411
    }
sl@0
   412
    for(i=0; i<N_HASH; i++){
sl@0
   413
      memsys3Merge(&mem3.aiHash[i]);
sl@0
   414
    }
sl@0
   415
    for(i=0; i<MX_SMALL-1; i++){
sl@0
   416
      memsys3Merge(&mem3.aiSmall[i]);
sl@0
   417
    }
sl@0
   418
    if( mem3.szMaster ){
sl@0
   419
      memsys3Unlink(mem3.iMaster);
sl@0
   420
      if( mem3.szMaster>=nBlock ){
sl@0
   421
        return memsys3FromMaster(nBlock);
sl@0
   422
      }
sl@0
   423
    }
sl@0
   424
  }
sl@0
   425
sl@0
   426
  /* If none of the above worked, then we fail. */
sl@0
   427
  return 0;
sl@0
   428
}
sl@0
   429
sl@0
   430
/*
sl@0
   431
** Free an outstanding memory allocation.
sl@0
   432
**
sl@0
   433
** This function assumes that the necessary mutexes, if any, are
sl@0
   434
** already held by the caller. Hence "Unsafe".
sl@0
   435
*/
sl@0
   436
void memsys3FreeUnsafe(void *pOld){
sl@0
   437
  Mem3Block *p = (Mem3Block*)pOld;
sl@0
   438
  int i;
sl@0
   439
  u32 size, x;
sl@0
   440
  assert( sqlite3_mutex_held(mem3.mutex) );
sl@0
   441
  assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
sl@0
   442
  i = p - mem3.aPool;
sl@0
   443
  assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
sl@0
   444
  size = mem3.aPool[i-1].u.hdr.size4x/4;
sl@0
   445
  assert( i+size<=mem3.nPool+1 );
sl@0
   446
  mem3.aPool[i-1].u.hdr.size4x &= ~1;
sl@0
   447
  mem3.aPool[i+size-1].u.hdr.prevSize = size;
sl@0
   448
  mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
sl@0
   449
  memsys3Link(i);
sl@0
   450
sl@0
   451
  /* Try to expand the master using the newly freed chunk */
sl@0
   452
  if( mem3.iMaster ){
sl@0
   453
    while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){
sl@0
   454
      size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize;
sl@0
   455
      mem3.iMaster -= size;
sl@0
   456
      mem3.szMaster += size;
sl@0
   457
      memsys3Unlink(mem3.iMaster);
sl@0
   458
      x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
sl@0
   459
      mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
sl@0
   460
      mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
sl@0
   461
    }
sl@0
   462
    x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
sl@0
   463
    while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){
sl@0
   464
      memsys3Unlink(mem3.iMaster+mem3.szMaster);
sl@0
   465
      mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4;
sl@0
   466
      mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
sl@0
   467
      mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
sl@0
   468
    }
sl@0
   469
  }
sl@0
   470
}
sl@0
   471
sl@0
   472
/*
sl@0
   473
** Return the size of an outstanding allocation, in bytes.  The
sl@0
   474
** size returned omits the 8-byte header overhead.  This only
sl@0
   475
** works for chunks that are currently checked out.
sl@0
   476
*/
sl@0
   477
static int memsys3Size(void *p){
sl@0
   478
  Mem3Block *pBlock;
sl@0
   479
  if( p==0 ) return 0;
sl@0
   480
  pBlock = (Mem3Block*)p;
sl@0
   481
  assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
sl@0
   482
  return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
sl@0
   483
}
sl@0
   484
sl@0
   485
/*
sl@0
   486
** Round up a request size to the next valid allocation size.
sl@0
   487
*/
sl@0
   488
static int memsys3Roundup(int n){
sl@0
   489
  if( n<=12 ){
sl@0
   490
    return 12;
sl@0
   491
  }else{
sl@0
   492
    return ((n+11)&~7) - 4;
sl@0
   493
  }
sl@0
   494
}
sl@0
   495
sl@0
   496
/*
sl@0
   497
** Allocate nBytes of memory.
sl@0
   498
*/
sl@0
   499
static void *memsys3Malloc(int nBytes){
sl@0
   500
  sqlite3_int64 *p;
sl@0
   501
  assert( nBytes>0 );          /* malloc.c filters out 0 byte requests */
sl@0
   502
  memsys3Enter();
sl@0
   503
  p = memsys3MallocUnsafe(nBytes);
sl@0
   504
  memsys3Leave();
sl@0
   505
  return (void*)p; 
sl@0
   506
}
sl@0
   507
sl@0
   508
/*
sl@0
   509
** Free memory.
sl@0
   510
*/
sl@0
   511
void memsys3Free(void *pPrior){
sl@0
   512
  assert( pPrior );
sl@0
   513
  memsys3Enter();
sl@0
   514
  memsys3FreeUnsafe(pPrior);
sl@0
   515
  memsys3Leave();
sl@0
   516
}
sl@0
   517
sl@0
   518
/*
sl@0
   519
** Change the size of an existing memory allocation
sl@0
   520
*/
sl@0
   521
void *memsys3Realloc(void *pPrior, int nBytes){
sl@0
   522
  int nOld;
sl@0
   523
  void *p;
sl@0
   524
  if( pPrior==0 ){
sl@0
   525
    return sqlite3_malloc(nBytes);
sl@0
   526
  }
sl@0
   527
  if( nBytes<=0 ){
sl@0
   528
    sqlite3_free(pPrior);
sl@0
   529
    return 0;
sl@0
   530
  }
sl@0
   531
  nOld = memsys3Size(pPrior);
sl@0
   532
  if( nBytes<=nOld && nBytes>=nOld-128 ){
sl@0
   533
    return pPrior;
sl@0
   534
  }
sl@0
   535
  memsys3Enter();
sl@0
   536
  p = memsys3MallocUnsafe(nBytes);
sl@0
   537
  if( p ){
sl@0
   538
    if( nOld<nBytes ){
sl@0
   539
      memcpy(p, pPrior, nOld);
sl@0
   540
    }else{
sl@0
   541
      memcpy(p, pPrior, nBytes);
sl@0
   542
    }
sl@0
   543
    memsys3FreeUnsafe(pPrior);
sl@0
   544
  }
sl@0
   545
  memsys3Leave();
sl@0
   546
  return p;
sl@0
   547
}
sl@0
   548
sl@0
   549
/*
sl@0
   550
** Initialize this module.
sl@0
   551
*/
sl@0
   552
static int memsys3Init(void *NotUsed){
sl@0
   553
  if( !sqlite3Config.pHeap ){
sl@0
   554
    return SQLITE_ERROR;
sl@0
   555
  }
sl@0
   556
sl@0
   557
  /* Store a pointer to the memory block in global structure mem3. */
sl@0
   558
  assert( sizeof(Mem3Block)==8 );
sl@0
   559
  mem3.aPool = (Mem3Block *)sqlite3Config.pHeap;
sl@0
   560
  mem3.nPool = (sqlite3Config.nHeap / sizeof(Mem3Block)) - 2;
sl@0
   561
sl@0
   562
  /* Initialize the master block. */
sl@0
   563
  mem3.szMaster = mem3.nPool;
sl@0
   564
  mem3.mnMaster = mem3.szMaster;
sl@0
   565
  mem3.iMaster = 1;
sl@0
   566
  mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2;
sl@0
   567
  mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
sl@0
   568
  mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
sl@0
   569
sl@0
   570
  return SQLITE_OK;
sl@0
   571
}
sl@0
   572
sl@0
   573
/*
sl@0
   574
** Deinitialize this module.
sl@0
   575
*/
sl@0
   576
static void memsys3Shutdown(void *NotUsed){
sl@0
   577
  return;
sl@0
   578
}
sl@0
   579
sl@0
   580
sl@0
   581
sl@0
   582
/*
sl@0
   583
** Open the file indicated and write a log of all unfreed memory 
sl@0
   584
** allocations into that log.
sl@0
   585
*/
sl@0
   586
#ifdef SQLITE_DEBUG
sl@0
   587
void sqlite3Memsys3Dump(const char *zFilename){
sl@0
   588
  FILE *out;
sl@0
   589
  int i, j;
sl@0
   590
  u32 size;
sl@0
   591
  if( zFilename==0 || zFilename[0]==0 ){
sl@0
   592
    out = stdout;
sl@0
   593
  }else{
sl@0
   594
    out = fopen(zFilename, "w");
sl@0
   595
    if( out==0 ){
sl@0
   596
      fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
sl@0
   597
                      zFilename);
sl@0
   598
      return;
sl@0
   599
    }
sl@0
   600
  }
sl@0
   601
  memsys3Enter();
sl@0
   602
  fprintf(out, "CHUNKS:\n");
sl@0
   603
  for(i=1; i<=mem3.nPool; i+=size/4){
sl@0
   604
    size = mem3.aPool[i-1].u.hdr.size4x;
sl@0
   605
    if( size/4<=1 ){
sl@0
   606
      fprintf(out, "%p size error\n", &mem3.aPool[i]);
sl@0
   607
      assert( 0 );
sl@0
   608
      break;
sl@0
   609
    }
sl@0
   610
    if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
sl@0
   611
      fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
sl@0
   612
      assert( 0 );
sl@0
   613
      break;
sl@0
   614
    }
sl@0
   615
    if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
sl@0
   616
      fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
sl@0
   617
      assert( 0 );
sl@0
   618
      break;
sl@0
   619
    }
sl@0
   620
    if( size&1 ){
sl@0
   621
      fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
sl@0
   622
    }else{
sl@0
   623
      fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
sl@0
   624
                  i==mem3.iMaster ? " **master**" : "");
sl@0
   625
    }
sl@0
   626
  }
sl@0
   627
  for(i=0; i<MX_SMALL-1; i++){
sl@0
   628
    if( mem3.aiSmall[i]==0 ) continue;
sl@0
   629
    fprintf(out, "small(%2d):", i);
sl@0
   630
    for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
sl@0
   631
      fprintf(out, " %p(%d)", &mem3.aPool[j],
sl@0
   632
              (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
sl@0
   633
    }
sl@0
   634
    fprintf(out, "\n"); 
sl@0
   635
  }
sl@0
   636
  for(i=0; i<N_HASH; i++){
sl@0
   637
    if( mem3.aiHash[i]==0 ) continue;
sl@0
   638
    fprintf(out, "hash(%2d):", i);
sl@0
   639
    for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
sl@0
   640
      fprintf(out, " %p(%d)", &mem3.aPool[j],
sl@0
   641
              (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
sl@0
   642
    }
sl@0
   643
    fprintf(out, "\n"); 
sl@0
   644
  }
sl@0
   645
  fprintf(out, "master=%d\n", mem3.iMaster);
sl@0
   646
  fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8);
sl@0
   647
  fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8);
sl@0
   648
  sqlite3_mutex_leave(mem3.mutex);
sl@0
   649
  if( out==stdout ){
sl@0
   650
    fflush(stdout);
sl@0
   651
  }else{
sl@0
   652
    fclose(out);
sl@0
   653
  }
sl@0
   654
}
sl@0
   655
#endif
sl@0
   656
sl@0
   657
/*
sl@0
   658
** This routine is the only routine in this file with external 
sl@0
   659
** linkage.
sl@0
   660
**
sl@0
   661
** Populate the low-level memory allocation function pointers in
sl@0
   662
** sqlite3Config.m with pointers to the routines in this file. The
sl@0
   663
** arguments specify the block of memory to manage.
sl@0
   664
**
sl@0
   665
** This routine is only called by sqlite3_config(), and therefore
sl@0
   666
** is not required to be threadsafe (it is not).
sl@0
   667
*/
sl@0
   668
const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
sl@0
   669
  static const sqlite3_mem_methods mempoolMethods = {
sl@0
   670
     memsys3Malloc,
sl@0
   671
     memsys3Free,
sl@0
   672
     memsys3Realloc,
sl@0
   673
     memsys3Size,
sl@0
   674
     memsys3Roundup,
sl@0
   675
     memsys3Init,
sl@0
   676
     memsys3Shutdown,
sl@0
   677
     0
sl@0
   678
  };
sl@0
   679
  return &mempoolMethods;
sl@0
   680
}
sl@0
   681
sl@0
   682
#endif /* SQLITE_ENABLE_MEMSYS3 */