1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000
1.2 +++ b/os/persistentdata/persistentstorage/sql/SQLite/mem3.c Fri Jun 15 03:10:57 2012 +0200
1.3 @@ -0,0 +1,682 @@
1.4 +/*
1.5 +** 2007 October 14
1.6 +**
1.7 +** The author disclaims copyright to this source code. In place of
1.8 +** a legal notice, here is a blessing:
1.9 +**
1.10 +** May you do good and not evil.
1.11 +** May you find forgiveness for yourself and forgive others.
1.12 +** May you share freely, never taking more than you give.
1.13 +**
1.14 +*************************************************************************
1.15 +** This file contains the C functions that implement a memory
1.16 +** allocation subsystem for use by SQLite.
1.17 +**
1.18 +** This version of the memory allocation subsystem omits all
1.19 +** use of malloc(). The SQLite user supplies a block of memory
1.20 +** before calling sqlite3_initialize() from which allocations
1.21 +** are made and returned by the xMalloc() and xRealloc()
1.22 +** implementations. Once sqlite3_initialize() has been called,
1.23 +** the amount of memory available to SQLite is fixed and cannot
1.24 +** be changed.
1.25 +**
1.26 +** This version of the memory allocation subsystem is included
1.27 +** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
1.28 +**
1.29 +** $Id: mem3.c,v 1.20 2008/07/18 18:56:17 drh Exp $
1.30 +*/
1.31 +#include "sqliteInt.h"
1.32 +
1.33 +/*
1.34 +** This version of the memory allocator is only built into the library
1.35 +** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
1.36 +** mean that the library will use a memory-pool by default, just that
1.37 +** it is available. The mempool allocator is activated by calling
1.38 +** sqlite3_config().
1.39 +*/
1.40 +#ifdef SQLITE_ENABLE_MEMSYS3
1.41 +
1.42 +/*
1.43 +** Maximum size (in Mem3Blocks) of a "small" chunk.
1.44 +*/
1.45 +#define MX_SMALL 10
1.46 +
1.47 +
1.48 +/*
1.49 +** Number of freelist hash slots
1.50 +*/
1.51 +#define N_HASH 61
1.52 +
1.53 +/*
1.54 +** A memory allocation (also called a "chunk") consists of two or
1.55 +** more blocks where each block is 8 bytes. The first 8 bytes are
1.56 +** a header that is not returned to the user.
1.57 +**
1.58 +** A chunk is two or more blocks that is either checked out or
1.59 +** free. The first block has format u.hdr. u.hdr.size4x is 4 times the
1.60 +** size of the allocation in blocks if the allocation is free.
1.61 +** The u.hdr.size4x&1 bit is true if the chunk is checked out and
1.62 +** false if the chunk is on the freelist. The u.hdr.size4x&2 bit
1.63 +** is true if the previous chunk is checked out and false if the
1.64 +** previous chunk is free. The u.hdr.prevSize field is the size of
1.65 +** the previous chunk in blocks if the previous chunk is on the
1.66 +** freelist. If the previous chunk is checked out, then
1.67 +** u.hdr.prevSize can be part of the data for that chunk and should
1.68 +** not be read or written.
1.69 +**
1.70 +** We often identify a chunk by its index in mem3.aPool[]. When
1.71 +** this is done, the chunk index refers to the second block of
1.72 +** the chunk. In this way, the first chunk has an index of 1.
1.73 +** A chunk index of 0 means "no such chunk" and is the equivalent
1.74 +** of a NULL pointer.
1.75 +**
1.76 +** The second block of free chunks is of the form u.list. The
1.77 +** two fields form a double-linked list of chunks of related sizes.
1.78 +** Pointers to the head of the list are stored in mem3.aiSmall[]
1.79 +** for smaller chunks and mem3.aiHash[] for larger chunks.
1.80 +**
1.81 +** The second block of a chunk is user data if the chunk is checked
1.82 +** out. If a chunk is checked out, the user data may extend into
1.83 +** the u.hdr.prevSize value of the following chunk.
1.84 +*/
1.85 +typedef struct Mem3Block Mem3Block;
1.86 +struct Mem3Block {
1.87 + union {
1.88 + struct {
1.89 + u32 prevSize; /* Size of previous chunk in Mem3Block elements */
1.90 + u32 size4x; /* 4x the size of current chunk in Mem3Block elements */
1.91 + } hdr;
1.92 + struct {
1.93 + u32 next; /* Index in mem3.aPool[] of next free chunk */
1.94 + u32 prev; /* Index in mem3.aPool[] of previous free chunk */
1.95 + } list;
1.96 + } u;
1.97 +};
1.98 +
1.99 +/*
1.100 +** All of the static variables used by this module are collected
1.101 +** into a single structure named "mem3". This is to keep the
1.102 +** static variables organized and to reduce namespace pollution
1.103 +** when this module is combined with other in the amalgamation.
1.104 +*/
1.105 +static struct {
1.106 + /*
1.107 + ** True if we are evaluating an out-of-memory callback.
1.108 + */
1.109 + int alarmBusy;
1.110 +
1.111 + /*
1.112 + ** Mutex to control access to the memory allocation subsystem.
1.113 + */
1.114 + sqlite3_mutex *mutex;
1.115 +
1.116 + /*
1.117 + ** The minimum amount of free space that we have seen.
1.118 + */
1.119 + u32 mnMaster;
1.120 +
1.121 + /*
1.122 + ** iMaster is the index of the master chunk. Most new allocations
1.123 + ** occur off of this chunk. szMaster is the size (in Mem3Blocks)
1.124 + ** of the current master. iMaster is 0 if there is not master chunk.
1.125 + ** The master chunk is not in either the aiHash[] or aiSmall[].
1.126 + */
1.127 + u32 iMaster;
1.128 + u32 szMaster;
1.129 +
1.130 + /*
1.131 + ** Array of lists of free blocks according to the block size
1.132 + ** for smaller chunks, or a hash on the block size for larger
1.133 + ** chunks.
1.134 + */
1.135 + u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */
1.136 + u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */
1.137 +
1.138 + /*
1.139 + ** Memory available for allocation. nPool is the size of the array
1.140 + ** (in Mem3Blocks) pointed to by aPool less 2.
1.141 + */
1.142 + u32 nPool;
1.143 + Mem3Block *aPool;
1.144 +} mem3;
1.145 +
1.146 +/*
1.147 +** Unlink the chunk at mem3.aPool[i] from list it is currently
1.148 +** on. *pRoot is the list that i is a member of.
1.149 +*/
1.150 +static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
1.151 + u32 next = mem3.aPool[i].u.list.next;
1.152 + u32 prev = mem3.aPool[i].u.list.prev;
1.153 + assert( sqlite3_mutex_held(mem3.mutex) );
1.154 + if( prev==0 ){
1.155 + *pRoot = next;
1.156 + }else{
1.157 + mem3.aPool[prev].u.list.next = next;
1.158 + }
1.159 + if( next ){
1.160 + mem3.aPool[next].u.list.prev = prev;
1.161 + }
1.162 + mem3.aPool[i].u.list.next = 0;
1.163 + mem3.aPool[i].u.list.prev = 0;
1.164 +}
1.165 +
1.166 +/*
1.167 +** Unlink the chunk at index i from
1.168 +** whatever list is currently a member of.
1.169 +*/
1.170 +static void memsys3Unlink(u32 i){
1.171 + u32 size, hash;
1.172 + assert( sqlite3_mutex_held(mem3.mutex) );
1.173 + assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
1.174 + assert( i>=1 );
1.175 + size = mem3.aPool[i-1].u.hdr.size4x/4;
1.176 + assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
1.177 + assert( size>=2 );
1.178 + if( size <= MX_SMALL ){
1.179 + memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
1.180 + }else{
1.181 + hash = size % N_HASH;
1.182 + memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
1.183 + }
1.184 +}
1.185 +
1.186 +/*
1.187 +** Link the chunk at mem3.aPool[i] so that is on the list rooted
1.188 +** at *pRoot.
1.189 +*/
1.190 +static void memsys3LinkIntoList(u32 i, u32 *pRoot){
1.191 + assert( sqlite3_mutex_held(mem3.mutex) );
1.192 + mem3.aPool[i].u.list.next = *pRoot;
1.193 + mem3.aPool[i].u.list.prev = 0;
1.194 + if( *pRoot ){
1.195 + mem3.aPool[*pRoot].u.list.prev = i;
1.196 + }
1.197 + *pRoot = i;
1.198 +}
1.199 +
1.200 +/*
1.201 +** Link the chunk at index i into either the appropriate
1.202 +** small chunk list, or into the large chunk hash table.
1.203 +*/
1.204 +static void memsys3Link(u32 i){
1.205 + u32 size, hash;
1.206 + assert( sqlite3_mutex_held(mem3.mutex) );
1.207 + assert( i>=1 );
1.208 + assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
1.209 + size = mem3.aPool[i-1].u.hdr.size4x/4;
1.210 + assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
1.211 + assert( size>=2 );
1.212 + if( size <= MX_SMALL ){
1.213 + memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
1.214 + }else{
1.215 + hash = size % N_HASH;
1.216 + memsys3LinkIntoList(i, &mem3.aiHash[hash]);
1.217 + }
1.218 +}
1.219 +
1.220 +/*
1.221 +** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
1.222 +** will already be held (obtained by code in malloc.c) if
1.223 +** sqlite3Config.bMemStat is true.
1.224 +*/
1.225 +static void memsys3Enter(void){
1.226 + if( sqlite3Config.bMemstat==0 && mem3.mutex==0 ){
1.227 + mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
1.228 + }
1.229 + sqlite3_mutex_enter(mem3.mutex);
1.230 +}
1.231 +static void memsys3Leave(void){
1.232 + sqlite3_mutex_leave(mem3.mutex);
1.233 +}
1.234 +
1.235 +/*
1.236 +** Called when we are unable to satisfy an allocation of nBytes.
1.237 +*/
1.238 +static void memsys3OutOfMemory(int nByte){
1.239 + if( !mem3.alarmBusy ){
1.240 + mem3.alarmBusy = 1;
1.241 + assert( sqlite3_mutex_held(mem3.mutex) );
1.242 + sqlite3_mutex_leave(mem3.mutex);
1.243 + sqlite3_release_memory(nByte);
1.244 + sqlite3_mutex_enter(mem3.mutex);
1.245 + mem3.alarmBusy = 0;
1.246 + }
1.247 +}
1.248 +
1.249 +
1.250 +/*
1.251 +** Chunk i is a free chunk that has been unlinked. Adjust its
1.252 +** size parameters for check-out and return a pointer to the
1.253 +** user portion of the chunk.
1.254 +*/
1.255 +static void *memsys3Checkout(u32 i, int nBlock){
1.256 + u32 x;
1.257 + assert( sqlite3_mutex_held(mem3.mutex) );
1.258 + assert( i>=1 );
1.259 + assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
1.260 + assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
1.261 + x = mem3.aPool[i-1].u.hdr.size4x;
1.262 + mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
1.263 + mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
1.264 + mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
1.265 + return &mem3.aPool[i];
1.266 +}
1.267 +
1.268 +/*
1.269 +** Carve a piece off of the end of the mem3.iMaster free chunk.
1.270 +** Return a pointer to the new allocation. Or, if the master chunk
1.271 +** is not large enough, return 0.
1.272 +*/
1.273 +static void *memsys3FromMaster(int nBlock){
1.274 + assert( sqlite3_mutex_held(mem3.mutex) );
1.275 + assert( mem3.szMaster>=nBlock );
1.276 + if( nBlock>=mem3.szMaster-1 ){
1.277 + /* Use the entire master */
1.278 + void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster);
1.279 + mem3.iMaster = 0;
1.280 + mem3.szMaster = 0;
1.281 + mem3.mnMaster = 0;
1.282 + return p;
1.283 + }else{
1.284 + /* Split the master block. Return the tail. */
1.285 + u32 newi, x;
1.286 + newi = mem3.iMaster + mem3.szMaster - nBlock;
1.287 + assert( newi > mem3.iMaster+1 );
1.288 + mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock;
1.289 + mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2;
1.290 + mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
1.291 + mem3.szMaster -= nBlock;
1.292 + mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster;
1.293 + x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
1.294 + mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
1.295 + if( mem3.szMaster < mem3.mnMaster ){
1.296 + mem3.mnMaster = mem3.szMaster;
1.297 + }
1.298 + return (void*)&mem3.aPool[newi];
1.299 + }
1.300 +}
1.301 +
1.302 +/*
1.303 +** *pRoot is the head of a list of free chunks of the same size
1.304 +** or same size hash. In other words, *pRoot is an entry in either
1.305 +** mem3.aiSmall[] or mem3.aiHash[].
1.306 +**
1.307 +** This routine examines all entries on the given list and tries
1.308 +** to coalesce each entries with adjacent free chunks.
1.309 +**
1.310 +** If it sees a chunk that is larger than mem3.iMaster, it replaces
1.311 +** the current mem3.iMaster with the new larger chunk. In order for
1.312 +** this mem3.iMaster replacement to work, the master chunk must be
1.313 +** linked into the hash tables. That is not the normal state of
1.314 +** affairs, of course. The calling routine must link the master
1.315 +** chunk before invoking this routine, then must unlink the (possibly
1.316 +** changed) master chunk once this routine has finished.
1.317 +*/
1.318 +static void memsys3Merge(u32 *pRoot){
1.319 + u32 iNext, prev, size, i, x;
1.320 +
1.321 + assert( sqlite3_mutex_held(mem3.mutex) );
1.322 + for(i=*pRoot; i>0; i=iNext){
1.323 + iNext = mem3.aPool[i].u.list.next;
1.324 + size = mem3.aPool[i-1].u.hdr.size4x;
1.325 + assert( (size&1)==0 );
1.326 + if( (size&2)==0 ){
1.327 + memsys3UnlinkFromList(i, pRoot);
1.328 + assert( i > mem3.aPool[i-1].u.hdr.prevSize );
1.329 + prev = i - mem3.aPool[i-1].u.hdr.prevSize;
1.330 + if( prev==iNext ){
1.331 + iNext = mem3.aPool[prev].u.list.next;
1.332 + }
1.333 + memsys3Unlink(prev);
1.334 + size = i + size/4 - prev;
1.335 + x = mem3.aPool[prev-1].u.hdr.size4x & 2;
1.336 + mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
1.337 + mem3.aPool[prev+size-1].u.hdr.prevSize = size;
1.338 + memsys3Link(prev);
1.339 + i = prev;
1.340 + }else{
1.341 + size /= 4;
1.342 + }
1.343 + if( size>mem3.szMaster ){
1.344 + mem3.iMaster = i;
1.345 + mem3.szMaster = size;
1.346 + }
1.347 + }
1.348 +}
1.349 +
1.350 +/*
1.351 +** Return a block of memory of at least nBytes in size.
1.352 +** Return NULL if unable.
1.353 +**
1.354 +** This function assumes that the necessary mutexes, if any, are
1.355 +** already held by the caller. Hence "Unsafe".
1.356 +*/
1.357 +static void *memsys3MallocUnsafe(int nByte){
1.358 + u32 i;
1.359 + int nBlock;
1.360 + int toFree;
1.361 +
1.362 + assert( sqlite3_mutex_held(mem3.mutex) );
1.363 + assert( sizeof(Mem3Block)==8 );
1.364 + if( nByte<=12 ){
1.365 + nBlock = 2;
1.366 + }else{
1.367 + nBlock = (nByte + 11)/8;
1.368 + }
1.369 + assert( nBlock>=2 );
1.370 +
1.371 + /* STEP 1:
1.372 + ** Look for an entry of the correct size in either the small
1.373 + ** chunk table or in the large chunk hash table. This is
1.374 + ** successful most of the time (about 9 times out of 10).
1.375 + */
1.376 + if( nBlock <= MX_SMALL ){
1.377 + i = mem3.aiSmall[nBlock-2];
1.378 + if( i>0 ){
1.379 + memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
1.380 + return memsys3Checkout(i, nBlock);
1.381 + }
1.382 + }else{
1.383 + int hash = nBlock % N_HASH;
1.384 + for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
1.385 + if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
1.386 + memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
1.387 + return memsys3Checkout(i, nBlock);
1.388 + }
1.389 + }
1.390 + }
1.391 +
1.392 + /* STEP 2:
1.393 + ** Try to satisfy the allocation by carving a piece off of the end
1.394 + ** of the master chunk. This step usually works if step 1 fails.
1.395 + */
1.396 + if( mem3.szMaster>=nBlock ){
1.397 + return memsys3FromMaster(nBlock);
1.398 + }
1.399 +
1.400 +
1.401 + /* STEP 3:
1.402 + ** Loop through the entire memory pool. Coalesce adjacent free
1.403 + ** chunks. Recompute the master chunk as the largest free chunk.
1.404 + ** Then try again to satisfy the allocation by carving a piece off
1.405 + ** of the end of the master chunk. This step happens very
1.406 + ** rarely (we hope!)
1.407 + */
1.408 + for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
1.409 + memsys3OutOfMemory(toFree);
1.410 + if( mem3.iMaster ){
1.411 + memsys3Link(mem3.iMaster);
1.412 + mem3.iMaster = 0;
1.413 + mem3.szMaster = 0;
1.414 + }
1.415 + for(i=0; i<N_HASH; i++){
1.416 + memsys3Merge(&mem3.aiHash[i]);
1.417 + }
1.418 + for(i=0; i<MX_SMALL-1; i++){
1.419 + memsys3Merge(&mem3.aiSmall[i]);
1.420 + }
1.421 + if( mem3.szMaster ){
1.422 + memsys3Unlink(mem3.iMaster);
1.423 + if( mem3.szMaster>=nBlock ){
1.424 + return memsys3FromMaster(nBlock);
1.425 + }
1.426 + }
1.427 + }
1.428 +
1.429 + /* If none of the above worked, then we fail. */
1.430 + return 0;
1.431 +}
1.432 +
1.433 +/*
1.434 +** Free an outstanding memory allocation.
1.435 +**
1.436 +** This function assumes that the necessary mutexes, if any, are
1.437 +** already held by the caller. Hence "Unsafe".
1.438 +*/
1.439 +void memsys3FreeUnsafe(void *pOld){
1.440 + Mem3Block *p = (Mem3Block*)pOld;
1.441 + int i;
1.442 + u32 size, x;
1.443 + assert( sqlite3_mutex_held(mem3.mutex) );
1.444 + assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
1.445 + i = p - mem3.aPool;
1.446 + assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
1.447 + size = mem3.aPool[i-1].u.hdr.size4x/4;
1.448 + assert( i+size<=mem3.nPool+1 );
1.449 + mem3.aPool[i-1].u.hdr.size4x &= ~1;
1.450 + mem3.aPool[i+size-1].u.hdr.prevSize = size;
1.451 + mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
1.452 + memsys3Link(i);
1.453 +
1.454 + /* Try to expand the master using the newly freed chunk */
1.455 + if( mem3.iMaster ){
1.456 + while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){
1.457 + size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize;
1.458 + mem3.iMaster -= size;
1.459 + mem3.szMaster += size;
1.460 + memsys3Unlink(mem3.iMaster);
1.461 + x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
1.462 + mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
1.463 + mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
1.464 + }
1.465 + x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
1.466 + while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){
1.467 + memsys3Unlink(mem3.iMaster+mem3.szMaster);
1.468 + mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4;
1.469 + mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
1.470 + mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
1.471 + }
1.472 + }
1.473 +}
1.474 +
1.475 +/*
1.476 +** Return the size of an outstanding allocation, in bytes. The
1.477 +** size returned omits the 8-byte header overhead. This only
1.478 +** works for chunks that are currently checked out.
1.479 +*/
1.480 +static int memsys3Size(void *p){
1.481 + Mem3Block *pBlock;
1.482 + if( p==0 ) return 0;
1.483 + pBlock = (Mem3Block*)p;
1.484 + assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
1.485 + return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
1.486 +}
1.487 +
1.488 +/*
1.489 +** Round up a request size to the next valid allocation size.
1.490 +*/
1.491 +static int memsys3Roundup(int n){
1.492 + if( n<=12 ){
1.493 + return 12;
1.494 + }else{
1.495 + return ((n+11)&~7) - 4;
1.496 + }
1.497 +}
1.498 +
1.499 +/*
1.500 +** Allocate nBytes of memory.
1.501 +*/
1.502 +static void *memsys3Malloc(int nBytes){
1.503 + sqlite3_int64 *p;
1.504 + assert( nBytes>0 ); /* malloc.c filters out 0 byte requests */
1.505 + memsys3Enter();
1.506 + p = memsys3MallocUnsafe(nBytes);
1.507 + memsys3Leave();
1.508 + return (void*)p;
1.509 +}
1.510 +
1.511 +/*
1.512 +** Free memory.
1.513 +*/
1.514 +void memsys3Free(void *pPrior){
1.515 + assert( pPrior );
1.516 + memsys3Enter();
1.517 + memsys3FreeUnsafe(pPrior);
1.518 + memsys3Leave();
1.519 +}
1.520 +
1.521 +/*
1.522 +** Change the size of an existing memory allocation
1.523 +*/
1.524 +void *memsys3Realloc(void *pPrior, int nBytes){
1.525 + int nOld;
1.526 + void *p;
1.527 + if( pPrior==0 ){
1.528 + return sqlite3_malloc(nBytes);
1.529 + }
1.530 + if( nBytes<=0 ){
1.531 + sqlite3_free(pPrior);
1.532 + return 0;
1.533 + }
1.534 + nOld = memsys3Size(pPrior);
1.535 + if( nBytes<=nOld && nBytes>=nOld-128 ){
1.536 + return pPrior;
1.537 + }
1.538 + memsys3Enter();
1.539 + p = memsys3MallocUnsafe(nBytes);
1.540 + if( p ){
1.541 + if( nOld<nBytes ){
1.542 + memcpy(p, pPrior, nOld);
1.543 + }else{
1.544 + memcpy(p, pPrior, nBytes);
1.545 + }
1.546 + memsys3FreeUnsafe(pPrior);
1.547 + }
1.548 + memsys3Leave();
1.549 + return p;
1.550 +}
1.551 +
1.552 +/*
1.553 +** Initialize this module.
1.554 +*/
1.555 +static int memsys3Init(void *NotUsed){
1.556 + if( !sqlite3Config.pHeap ){
1.557 + return SQLITE_ERROR;
1.558 + }
1.559 +
1.560 + /* Store a pointer to the memory block in global structure mem3. */
1.561 + assert( sizeof(Mem3Block)==8 );
1.562 + mem3.aPool = (Mem3Block *)sqlite3Config.pHeap;
1.563 + mem3.nPool = (sqlite3Config.nHeap / sizeof(Mem3Block)) - 2;
1.564 +
1.565 + /* Initialize the master block. */
1.566 + mem3.szMaster = mem3.nPool;
1.567 + mem3.mnMaster = mem3.szMaster;
1.568 + mem3.iMaster = 1;
1.569 + mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2;
1.570 + mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
1.571 + mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
1.572 +
1.573 + return SQLITE_OK;
1.574 +}
1.575 +
1.576 +/*
1.577 +** Deinitialize this module.
1.578 +*/
1.579 +static void memsys3Shutdown(void *NotUsed){
1.580 + return;
1.581 +}
1.582 +
1.583 +
1.584 +
1.585 +/*
1.586 +** Open the file indicated and write a log of all unfreed memory
1.587 +** allocations into that log.
1.588 +*/
1.589 +#ifdef SQLITE_DEBUG
1.590 +void sqlite3Memsys3Dump(const char *zFilename){
1.591 + FILE *out;
1.592 + int i, j;
1.593 + u32 size;
1.594 + if( zFilename==0 || zFilename[0]==0 ){
1.595 + out = stdout;
1.596 + }else{
1.597 + out = fopen(zFilename, "w");
1.598 + if( out==0 ){
1.599 + fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
1.600 + zFilename);
1.601 + return;
1.602 + }
1.603 + }
1.604 + memsys3Enter();
1.605 + fprintf(out, "CHUNKS:\n");
1.606 + for(i=1; i<=mem3.nPool; i+=size/4){
1.607 + size = mem3.aPool[i-1].u.hdr.size4x;
1.608 + if( size/4<=1 ){
1.609 + fprintf(out, "%p size error\n", &mem3.aPool[i]);
1.610 + assert( 0 );
1.611 + break;
1.612 + }
1.613 + if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
1.614 + fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
1.615 + assert( 0 );
1.616 + break;
1.617 + }
1.618 + if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
1.619 + fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
1.620 + assert( 0 );
1.621 + break;
1.622 + }
1.623 + if( size&1 ){
1.624 + fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
1.625 + }else{
1.626 + fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
1.627 + i==mem3.iMaster ? " **master**" : "");
1.628 + }
1.629 + }
1.630 + for(i=0; i<MX_SMALL-1; i++){
1.631 + if( mem3.aiSmall[i]==0 ) continue;
1.632 + fprintf(out, "small(%2d):", i);
1.633 + for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
1.634 + fprintf(out, " %p(%d)", &mem3.aPool[j],
1.635 + (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
1.636 + }
1.637 + fprintf(out, "\n");
1.638 + }
1.639 + for(i=0; i<N_HASH; i++){
1.640 + if( mem3.aiHash[i]==0 ) continue;
1.641 + fprintf(out, "hash(%2d):", i);
1.642 + for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
1.643 + fprintf(out, " %p(%d)", &mem3.aPool[j],
1.644 + (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
1.645 + }
1.646 + fprintf(out, "\n");
1.647 + }
1.648 + fprintf(out, "master=%d\n", mem3.iMaster);
1.649 + fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8);
1.650 + fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8);
1.651 + sqlite3_mutex_leave(mem3.mutex);
1.652 + if( out==stdout ){
1.653 + fflush(stdout);
1.654 + }else{
1.655 + fclose(out);
1.656 + }
1.657 +}
1.658 +#endif
1.659 +
1.660 +/*
1.661 +** This routine is the only routine in this file with external
1.662 +** linkage.
1.663 +**
1.664 +** Populate the low-level memory allocation function pointers in
1.665 +** sqlite3Config.m with pointers to the routines in this file. The
1.666 +** arguments specify the block of memory to manage.
1.667 +**
1.668 +** This routine is only called by sqlite3_config(), and therefore
1.669 +** is not required to be threadsafe (it is not).
1.670 +*/
1.671 +const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
1.672 + static const sqlite3_mem_methods mempoolMethods = {
1.673 + memsys3Malloc,
1.674 + memsys3Free,
1.675 + memsys3Realloc,
1.676 + memsys3Size,
1.677 + memsys3Roundup,
1.678 + memsys3Init,
1.679 + memsys3Shutdown,
1.680 + 0
1.681 + };
1.682 + return &mempoolMethods;
1.683 +}
1.684 +
1.685 +#endif /* SQLITE_ENABLE_MEMSYS3 */