sl@0
|
1 |
/*
|
sl@0
|
2 |
* Contributed to the OpenSSL Project by the American Registry for
|
sl@0
|
3 |
* Internet Numbers ("ARIN").
|
sl@0
|
4 |
*/
|
sl@0
|
5 |
/* ====================================================================
|
sl@0
|
6 |
* Copyright (c) 2006 The OpenSSL Project. All rights reserved.
|
sl@0
|
7 |
*
|
sl@0
|
8 |
* Redistribution and use in source and binary forms, with or without
|
sl@0
|
9 |
* modification, are permitted provided that the following conditions
|
sl@0
|
10 |
* are met:
|
sl@0
|
11 |
*
|
sl@0
|
12 |
* 1. Redistributions of source code must retain the above copyright
|
sl@0
|
13 |
* notice, this list of conditions and the following disclaimer.
|
sl@0
|
14 |
*
|
sl@0
|
15 |
* 2. Redistributions in binary form must reproduce the above copyright
|
sl@0
|
16 |
* notice, this list of conditions and the following disclaimer in
|
sl@0
|
17 |
* the documentation and/or other materials provided with the
|
sl@0
|
18 |
* distribution.
|
sl@0
|
19 |
*
|
sl@0
|
20 |
* 3. All advertising materials mentioning features or use of this
|
sl@0
|
21 |
* software must display the following acknowledgment:
|
sl@0
|
22 |
* "This product includes software developed by the OpenSSL Project
|
sl@0
|
23 |
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
sl@0
|
24 |
*
|
sl@0
|
25 |
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
sl@0
|
26 |
* endorse or promote products derived from this software without
|
sl@0
|
27 |
* prior written permission. For written permission, please contact
|
sl@0
|
28 |
* licensing@OpenSSL.org.
|
sl@0
|
29 |
*
|
sl@0
|
30 |
* 5. Products derived from this software may not be called "OpenSSL"
|
sl@0
|
31 |
* nor may "OpenSSL" appear in their names without prior written
|
sl@0
|
32 |
* permission of the OpenSSL Project.
|
sl@0
|
33 |
*
|
sl@0
|
34 |
* 6. Redistributions of any form whatsoever must retain the following
|
sl@0
|
35 |
* acknowledgment:
|
sl@0
|
36 |
* "This product includes software developed by the OpenSSL Project
|
sl@0
|
37 |
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
sl@0
|
38 |
*
|
sl@0
|
39 |
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
sl@0
|
40 |
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
sl@0
|
41 |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
sl@0
|
42 |
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
sl@0
|
43 |
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
sl@0
|
44 |
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
sl@0
|
45 |
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
sl@0
|
46 |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
sl@0
|
47 |
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
sl@0
|
48 |
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
sl@0
|
49 |
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
sl@0
|
50 |
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
sl@0
|
51 |
* ====================================================================
|
sl@0
|
52 |
*
|
sl@0
|
53 |
* This product includes cryptographic software written by Eric Young
|
sl@0
|
54 |
* (eay@cryptsoft.com). This product includes software written by Tim
|
sl@0
|
55 |
* Hudson (tjh@cryptsoft.com).
|
sl@0
|
56 |
*/
|
sl@0
|
57 |
|
sl@0
|
58 |
/*
|
sl@0
|
59 |
* Implementation of RFC 3779 section 2.2.
|
sl@0
|
60 |
*/
|
sl@0
|
61 |
|
sl@0
|
62 |
#include <stdio.h>
|
sl@0
|
63 |
#include <stdlib.h>
|
sl@0
|
64 |
#include <assert.h>
|
sl@0
|
65 |
#include "cryptlib.h"
|
sl@0
|
66 |
#include <openssl/conf.h>
|
sl@0
|
67 |
#include <openssl/asn1.h>
|
sl@0
|
68 |
#include <openssl/asn1t.h>
|
sl@0
|
69 |
#include <openssl/buffer.h>
|
sl@0
|
70 |
#include <openssl/x509v3.h>
|
sl@0
|
71 |
|
sl@0
|
72 |
#ifndef OPENSSL_NO_RFC3779
|
sl@0
|
73 |
|
sl@0
|
74 |
/*
|
sl@0
|
75 |
* OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
|
sl@0
|
76 |
*/
|
sl@0
|
77 |
|
sl@0
|
78 |
ASN1_SEQUENCE(IPAddressRange) = {
|
sl@0
|
79 |
ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
|
sl@0
|
80 |
ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
|
sl@0
|
81 |
} ASN1_SEQUENCE_END(IPAddressRange)
|
sl@0
|
82 |
|
sl@0
|
83 |
ASN1_CHOICE(IPAddressOrRange) = {
|
sl@0
|
84 |
ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
|
sl@0
|
85 |
ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
|
sl@0
|
86 |
} ASN1_CHOICE_END(IPAddressOrRange)
|
sl@0
|
87 |
|
sl@0
|
88 |
ASN1_CHOICE(IPAddressChoice) = {
|
sl@0
|
89 |
ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
|
sl@0
|
90 |
ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
|
sl@0
|
91 |
} ASN1_CHOICE_END(IPAddressChoice)
|
sl@0
|
92 |
|
sl@0
|
93 |
ASN1_SEQUENCE(IPAddressFamily) = {
|
sl@0
|
94 |
ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
|
sl@0
|
95 |
ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
|
sl@0
|
96 |
} ASN1_SEQUENCE_END(IPAddressFamily)
|
sl@0
|
97 |
|
sl@0
|
98 |
ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
|
sl@0
|
99 |
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
|
sl@0
|
100 |
IPAddrBlocks, IPAddressFamily)
|
sl@0
|
101 |
ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
|
sl@0
|
102 |
|
sl@0
|
103 |
IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
|
sl@0
|
104 |
IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
|
sl@0
|
105 |
IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
|
sl@0
|
106 |
IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
|
sl@0
|
107 |
|
sl@0
|
108 |
/*
|
sl@0
|
109 |
* How much buffer space do we need for a raw address?
|
sl@0
|
110 |
*/
|
sl@0
|
111 |
#define ADDR_RAW_BUF_LEN 16
|
sl@0
|
112 |
|
sl@0
|
113 |
/*
|
sl@0
|
114 |
* What's the address length associated with this AFI?
|
sl@0
|
115 |
*/
|
sl@0
|
116 |
static int length_from_afi(const unsigned afi)
|
sl@0
|
117 |
{
|
sl@0
|
118 |
switch (afi) {
|
sl@0
|
119 |
case IANA_AFI_IPV4:
|
sl@0
|
120 |
return 4;
|
sl@0
|
121 |
case IANA_AFI_IPV6:
|
sl@0
|
122 |
return 16;
|
sl@0
|
123 |
default:
|
sl@0
|
124 |
return 0;
|
sl@0
|
125 |
}
|
sl@0
|
126 |
}
|
sl@0
|
127 |
|
sl@0
|
128 |
/*
|
sl@0
|
129 |
* Extract the AFI from an IPAddressFamily.
|
sl@0
|
130 |
*/
|
sl@0
|
131 |
unsigned v3_addr_get_afi(const IPAddressFamily *f)
|
sl@0
|
132 |
{
|
sl@0
|
133 |
return ((f != NULL &&
|
sl@0
|
134 |
f->addressFamily != NULL &&
|
sl@0
|
135 |
f->addressFamily->data != NULL)
|
sl@0
|
136 |
? ((f->addressFamily->data[0] << 8) |
|
sl@0
|
137 |
(f->addressFamily->data[1]))
|
sl@0
|
138 |
: 0);
|
sl@0
|
139 |
}
|
sl@0
|
140 |
|
sl@0
|
141 |
/*
|
sl@0
|
142 |
* Expand the bitstring form of an address into a raw byte array.
|
sl@0
|
143 |
* At the moment this is coded for simplicity, not speed.
|
sl@0
|
144 |
*/
|
sl@0
|
145 |
static void addr_expand(unsigned char *addr,
|
sl@0
|
146 |
const ASN1_BIT_STRING *bs,
|
sl@0
|
147 |
const int length,
|
sl@0
|
148 |
const unsigned char fill)
|
sl@0
|
149 |
{
|
sl@0
|
150 |
assert(bs->length >= 0 && bs->length <= length);
|
sl@0
|
151 |
if (bs->length > 0) {
|
sl@0
|
152 |
memcpy(addr, bs->data, bs->length);
|
sl@0
|
153 |
if ((bs->flags & 7) != 0) {
|
sl@0
|
154 |
unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
|
sl@0
|
155 |
if (fill == 0)
|
sl@0
|
156 |
addr[bs->length - 1] &= ~mask;
|
sl@0
|
157 |
else
|
sl@0
|
158 |
addr[bs->length - 1] |= mask;
|
sl@0
|
159 |
}
|
sl@0
|
160 |
}
|
sl@0
|
161 |
memset(addr + bs->length, fill, length - bs->length);
|
sl@0
|
162 |
}
|
sl@0
|
163 |
|
sl@0
|
164 |
/*
|
sl@0
|
165 |
* Extract the prefix length from a bitstring.
|
sl@0
|
166 |
*/
|
sl@0
|
167 |
#define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
|
sl@0
|
168 |
|
sl@0
|
169 |
/*
|
sl@0
|
170 |
* i2r handler for one address bitstring.
|
sl@0
|
171 |
*/
|
sl@0
|
172 |
static int i2r_address(BIO *out,
|
sl@0
|
173 |
const unsigned afi,
|
sl@0
|
174 |
const unsigned char fill,
|
sl@0
|
175 |
const ASN1_BIT_STRING *bs)
|
sl@0
|
176 |
{
|
sl@0
|
177 |
unsigned char addr[ADDR_RAW_BUF_LEN];
|
sl@0
|
178 |
int i, n;
|
sl@0
|
179 |
|
sl@0
|
180 |
switch (afi) {
|
sl@0
|
181 |
case IANA_AFI_IPV4:
|
sl@0
|
182 |
addr_expand(addr, bs, 4, fill);
|
sl@0
|
183 |
BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
|
sl@0
|
184 |
break;
|
sl@0
|
185 |
case IANA_AFI_IPV6:
|
sl@0
|
186 |
addr_expand(addr, bs, 16, fill);
|
sl@0
|
187 |
for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2)
|
sl@0
|
188 |
;
|
sl@0
|
189 |
for (i = 0; i < n; i += 2)
|
sl@0
|
190 |
BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : ""));
|
sl@0
|
191 |
if (i < 16)
|
sl@0
|
192 |
BIO_puts(out, ":");
|
sl@0
|
193 |
break;
|
sl@0
|
194 |
default:
|
sl@0
|
195 |
for (i = 0; i < bs->length; i++)
|
sl@0
|
196 |
BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
|
sl@0
|
197 |
BIO_printf(out, "[%d]", (int) (bs->flags & 7));
|
sl@0
|
198 |
break;
|
sl@0
|
199 |
}
|
sl@0
|
200 |
return 1;
|
sl@0
|
201 |
}
|
sl@0
|
202 |
|
sl@0
|
203 |
/*
|
sl@0
|
204 |
* i2r handler for a sequence of addresses and ranges.
|
sl@0
|
205 |
*/
|
sl@0
|
206 |
static int i2r_IPAddressOrRanges(BIO *out,
|
sl@0
|
207 |
const int indent,
|
sl@0
|
208 |
const IPAddressOrRanges *aors,
|
sl@0
|
209 |
const unsigned afi)
|
sl@0
|
210 |
{
|
sl@0
|
211 |
int i;
|
sl@0
|
212 |
for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
|
sl@0
|
213 |
const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
|
sl@0
|
214 |
BIO_printf(out, "%*s", indent, "");
|
sl@0
|
215 |
switch (aor->type) {
|
sl@0
|
216 |
case IPAddressOrRange_addressPrefix:
|
sl@0
|
217 |
if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
|
sl@0
|
218 |
return 0;
|
sl@0
|
219 |
BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
|
sl@0
|
220 |
continue;
|
sl@0
|
221 |
case IPAddressOrRange_addressRange:
|
sl@0
|
222 |
if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
|
sl@0
|
223 |
return 0;
|
sl@0
|
224 |
BIO_puts(out, "-");
|
sl@0
|
225 |
if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
|
sl@0
|
226 |
return 0;
|
sl@0
|
227 |
BIO_puts(out, "\n");
|
sl@0
|
228 |
continue;
|
sl@0
|
229 |
}
|
sl@0
|
230 |
}
|
sl@0
|
231 |
return 1;
|
sl@0
|
232 |
}
|
sl@0
|
233 |
|
sl@0
|
234 |
/*
|
sl@0
|
235 |
* i2r handler for an IPAddrBlocks extension.
|
sl@0
|
236 |
*/
|
sl@0
|
237 |
static int i2r_IPAddrBlocks(X509V3_EXT_METHOD *method,
|
sl@0
|
238 |
void *ext,
|
sl@0
|
239 |
BIO *out,
|
sl@0
|
240 |
int indent)
|
sl@0
|
241 |
{
|
sl@0
|
242 |
const IPAddrBlocks *addr = ext;
|
sl@0
|
243 |
int i;
|
sl@0
|
244 |
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
|
sl@0
|
245 |
IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
|
sl@0
|
246 |
const unsigned afi = v3_addr_get_afi(f);
|
sl@0
|
247 |
switch (afi) {
|
sl@0
|
248 |
case IANA_AFI_IPV4:
|
sl@0
|
249 |
BIO_printf(out, "%*sIPv4", indent, "");
|
sl@0
|
250 |
break;
|
sl@0
|
251 |
case IANA_AFI_IPV6:
|
sl@0
|
252 |
BIO_printf(out, "%*sIPv6", indent, "");
|
sl@0
|
253 |
break;
|
sl@0
|
254 |
default:
|
sl@0
|
255 |
BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
|
sl@0
|
256 |
break;
|
sl@0
|
257 |
}
|
sl@0
|
258 |
if (f->addressFamily->length > 2) {
|
sl@0
|
259 |
switch (f->addressFamily->data[2]) {
|
sl@0
|
260 |
case 1:
|
sl@0
|
261 |
BIO_puts(out, " (Unicast)");
|
sl@0
|
262 |
break;
|
sl@0
|
263 |
case 2:
|
sl@0
|
264 |
BIO_puts(out, " (Multicast)");
|
sl@0
|
265 |
break;
|
sl@0
|
266 |
case 3:
|
sl@0
|
267 |
BIO_puts(out, " (Unicast/Multicast)");
|
sl@0
|
268 |
break;
|
sl@0
|
269 |
case 4:
|
sl@0
|
270 |
BIO_puts(out, " (MPLS)");
|
sl@0
|
271 |
break;
|
sl@0
|
272 |
case 64:
|
sl@0
|
273 |
BIO_puts(out, " (Tunnel)");
|
sl@0
|
274 |
break;
|
sl@0
|
275 |
case 65:
|
sl@0
|
276 |
BIO_puts(out, " (VPLS)");
|
sl@0
|
277 |
break;
|
sl@0
|
278 |
case 66:
|
sl@0
|
279 |
BIO_puts(out, " (BGP MDT)");
|
sl@0
|
280 |
break;
|
sl@0
|
281 |
case 128:
|
sl@0
|
282 |
BIO_puts(out, " (MPLS-labeled VPN)");
|
sl@0
|
283 |
break;
|
sl@0
|
284 |
default:
|
sl@0
|
285 |
BIO_printf(out, " (Unknown SAFI %u)",
|
sl@0
|
286 |
(unsigned) f->addressFamily->data[2]);
|
sl@0
|
287 |
break;
|
sl@0
|
288 |
}
|
sl@0
|
289 |
}
|
sl@0
|
290 |
switch (f->ipAddressChoice->type) {
|
sl@0
|
291 |
case IPAddressChoice_inherit:
|
sl@0
|
292 |
BIO_puts(out, ": inherit\n");
|
sl@0
|
293 |
break;
|
sl@0
|
294 |
case IPAddressChoice_addressesOrRanges:
|
sl@0
|
295 |
BIO_puts(out, ":\n");
|
sl@0
|
296 |
if (!i2r_IPAddressOrRanges(out,
|
sl@0
|
297 |
indent + 2,
|
sl@0
|
298 |
f->ipAddressChoice->u.addressesOrRanges,
|
sl@0
|
299 |
afi))
|
sl@0
|
300 |
return 0;
|
sl@0
|
301 |
break;
|
sl@0
|
302 |
}
|
sl@0
|
303 |
}
|
sl@0
|
304 |
return 1;
|
sl@0
|
305 |
}
|
sl@0
|
306 |
|
sl@0
|
307 |
/*
|
sl@0
|
308 |
* Sort comparison function for a sequence of IPAddressOrRange
|
sl@0
|
309 |
* elements.
|
sl@0
|
310 |
*/
|
sl@0
|
311 |
static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
|
sl@0
|
312 |
const IPAddressOrRange *b,
|
sl@0
|
313 |
const int length)
|
sl@0
|
314 |
{
|
sl@0
|
315 |
unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
|
sl@0
|
316 |
int prefixlen_a = 0;
|
sl@0
|
317 |
int prefixlen_b = 0;
|
sl@0
|
318 |
int r;
|
sl@0
|
319 |
|
sl@0
|
320 |
switch (a->type) {
|
sl@0
|
321 |
case IPAddressOrRange_addressPrefix:
|
sl@0
|
322 |
addr_expand(addr_a, a->u.addressPrefix, length, 0x00);
|
sl@0
|
323 |
prefixlen_a = addr_prefixlen(a->u.addressPrefix);
|
sl@0
|
324 |
break;
|
sl@0
|
325 |
case IPAddressOrRange_addressRange:
|
sl@0
|
326 |
addr_expand(addr_a, a->u.addressRange->min, length, 0x00);
|
sl@0
|
327 |
prefixlen_a = length * 8;
|
sl@0
|
328 |
break;
|
sl@0
|
329 |
}
|
sl@0
|
330 |
|
sl@0
|
331 |
switch (b->type) {
|
sl@0
|
332 |
case IPAddressOrRange_addressPrefix:
|
sl@0
|
333 |
addr_expand(addr_b, b->u.addressPrefix, length, 0x00);
|
sl@0
|
334 |
prefixlen_b = addr_prefixlen(b->u.addressPrefix);
|
sl@0
|
335 |
break;
|
sl@0
|
336 |
case IPAddressOrRange_addressRange:
|
sl@0
|
337 |
addr_expand(addr_b, b->u.addressRange->min, length, 0x00);
|
sl@0
|
338 |
prefixlen_b = length * 8;
|
sl@0
|
339 |
break;
|
sl@0
|
340 |
}
|
sl@0
|
341 |
|
sl@0
|
342 |
if ((r = memcmp(addr_a, addr_b, length)) != 0)
|
sl@0
|
343 |
return r;
|
sl@0
|
344 |
else
|
sl@0
|
345 |
return prefixlen_a - prefixlen_b;
|
sl@0
|
346 |
}
|
sl@0
|
347 |
|
sl@0
|
348 |
/*
|
sl@0
|
349 |
* IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
|
sl@0
|
350 |
* comparision routines are only allowed two arguments.
|
sl@0
|
351 |
*/
|
sl@0
|
352 |
static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
|
sl@0
|
353 |
const IPAddressOrRange * const *b)
|
sl@0
|
354 |
{
|
sl@0
|
355 |
return IPAddressOrRange_cmp(*a, *b, 4);
|
sl@0
|
356 |
}
|
sl@0
|
357 |
|
sl@0
|
358 |
/*
|
sl@0
|
359 |
* IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
|
sl@0
|
360 |
* comparision routines are only allowed two arguments.
|
sl@0
|
361 |
*/
|
sl@0
|
362 |
static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
|
sl@0
|
363 |
const IPAddressOrRange * const *b)
|
sl@0
|
364 |
{
|
sl@0
|
365 |
return IPAddressOrRange_cmp(*a, *b, 16);
|
sl@0
|
366 |
}
|
sl@0
|
367 |
|
sl@0
|
368 |
/*
|
sl@0
|
369 |
* Calculate whether a range collapses to a prefix.
|
sl@0
|
370 |
* See last paragraph of RFC 3779 2.2.3.7.
|
sl@0
|
371 |
*/
|
sl@0
|
372 |
static int range_should_be_prefix(const unsigned char *min,
|
sl@0
|
373 |
const unsigned char *max,
|
sl@0
|
374 |
const int length)
|
sl@0
|
375 |
{
|
sl@0
|
376 |
unsigned char mask;
|
sl@0
|
377 |
int i, j;
|
sl@0
|
378 |
|
sl@0
|
379 |
for (i = 0; i < length && min[i] == max[i]; i++)
|
sl@0
|
380 |
;
|
sl@0
|
381 |
for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--)
|
sl@0
|
382 |
;
|
sl@0
|
383 |
if (i < j)
|
sl@0
|
384 |
return -1;
|
sl@0
|
385 |
if (i > j)
|
sl@0
|
386 |
return i * 8;
|
sl@0
|
387 |
mask = min[i] ^ max[i];
|
sl@0
|
388 |
switch (mask) {
|
sl@0
|
389 |
case 0x01: j = 7; break;
|
sl@0
|
390 |
case 0x03: j = 6; break;
|
sl@0
|
391 |
case 0x07: j = 5; break;
|
sl@0
|
392 |
case 0x0F: j = 4; break;
|
sl@0
|
393 |
case 0x1F: j = 3; break;
|
sl@0
|
394 |
case 0x3F: j = 2; break;
|
sl@0
|
395 |
case 0x7F: j = 1; break;
|
sl@0
|
396 |
default: return -1;
|
sl@0
|
397 |
}
|
sl@0
|
398 |
if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
|
sl@0
|
399 |
return -1;
|
sl@0
|
400 |
else
|
sl@0
|
401 |
return i * 8 + j;
|
sl@0
|
402 |
}
|
sl@0
|
403 |
|
sl@0
|
404 |
/*
|
sl@0
|
405 |
* Construct a prefix.
|
sl@0
|
406 |
*/
|
sl@0
|
407 |
static int make_addressPrefix(IPAddressOrRange **result,
|
sl@0
|
408 |
unsigned char *addr,
|
sl@0
|
409 |
const int prefixlen)
|
sl@0
|
410 |
{
|
sl@0
|
411 |
int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
|
sl@0
|
412 |
IPAddressOrRange *aor = IPAddressOrRange_new();
|
sl@0
|
413 |
|
sl@0
|
414 |
if (aor == NULL)
|
sl@0
|
415 |
return 0;
|
sl@0
|
416 |
aor->type = IPAddressOrRange_addressPrefix;
|
sl@0
|
417 |
if (aor->u.addressPrefix == NULL &&
|
sl@0
|
418 |
(aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
|
sl@0
|
419 |
goto err;
|
sl@0
|
420 |
if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
|
sl@0
|
421 |
goto err;
|
sl@0
|
422 |
aor->u.addressPrefix->flags &= ~7;
|
sl@0
|
423 |
aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
|
sl@0
|
424 |
if (bitlen > 0) {
|
sl@0
|
425 |
aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
|
sl@0
|
426 |
aor->u.addressPrefix->flags |= 8 - bitlen;
|
sl@0
|
427 |
}
|
sl@0
|
428 |
|
sl@0
|
429 |
*result = aor;
|
sl@0
|
430 |
return 1;
|
sl@0
|
431 |
|
sl@0
|
432 |
err:
|
sl@0
|
433 |
IPAddressOrRange_free(aor);
|
sl@0
|
434 |
return 0;
|
sl@0
|
435 |
}
|
sl@0
|
436 |
|
sl@0
|
437 |
/*
|
sl@0
|
438 |
* Construct a range. If it can be expressed as a prefix,
|
sl@0
|
439 |
* return a prefix instead. Doing this here simplifies
|
sl@0
|
440 |
* the rest of the code considerably.
|
sl@0
|
441 |
*/
|
sl@0
|
442 |
static int make_addressRange(IPAddressOrRange **result,
|
sl@0
|
443 |
unsigned char *min,
|
sl@0
|
444 |
unsigned char *max,
|
sl@0
|
445 |
const int length)
|
sl@0
|
446 |
{
|
sl@0
|
447 |
IPAddressOrRange *aor;
|
sl@0
|
448 |
int i, prefixlen;
|
sl@0
|
449 |
|
sl@0
|
450 |
if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
|
sl@0
|
451 |
return make_addressPrefix(result, min, prefixlen);
|
sl@0
|
452 |
|
sl@0
|
453 |
if ((aor = IPAddressOrRange_new()) == NULL)
|
sl@0
|
454 |
return 0;
|
sl@0
|
455 |
aor->type = IPAddressOrRange_addressRange;
|
sl@0
|
456 |
assert(aor->u.addressRange == NULL);
|
sl@0
|
457 |
if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
|
sl@0
|
458 |
goto err;
|
sl@0
|
459 |
if (aor->u.addressRange->min == NULL &&
|
sl@0
|
460 |
(aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
|
sl@0
|
461 |
goto err;
|
sl@0
|
462 |
if (aor->u.addressRange->max == NULL &&
|
sl@0
|
463 |
(aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
|
sl@0
|
464 |
goto err;
|
sl@0
|
465 |
|
sl@0
|
466 |
for (i = length; i > 0 && min[i - 1] == 0x00; --i)
|
sl@0
|
467 |
;
|
sl@0
|
468 |
if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
|
sl@0
|
469 |
goto err;
|
sl@0
|
470 |
aor->u.addressRange->min->flags &= ~7;
|
sl@0
|
471 |
aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
|
sl@0
|
472 |
if (i > 0) {
|
sl@0
|
473 |
unsigned char b = min[i - 1];
|
sl@0
|
474 |
int j = 1;
|
sl@0
|
475 |
while ((b & (0xFFU >> j)) != 0)
|
sl@0
|
476 |
++j;
|
sl@0
|
477 |
aor->u.addressRange->min->flags |= 8 - j;
|
sl@0
|
478 |
}
|
sl@0
|
479 |
|
sl@0
|
480 |
for (i = length; i > 0 && max[i - 1] == 0xFF; --i)
|
sl@0
|
481 |
;
|
sl@0
|
482 |
if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
|
sl@0
|
483 |
goto err;
|
sl@0
|
484 |
aor->u.addressRange->max->flags &= ~7;
|
sl@0
|
485 |
aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
|
sl@0
|
486 |
if (i > 0) {
|
sl@0
|
487 |
unsigned char b = max[i - 1];
|
sl@0
|
488 |
int j = 1;
|
sl@0
|
489 |
while ((b & (0xFFU >> j)) != (0xFFU >> j))
|
sl@0
|
490 |
++j;
|
sl@0
|
491 |
aor->u.addressRange->max->flags |= 8 - j;
|
sl@0
|
492 |
}
|
sl@0
|
493 |
|
sl@0
|
494 |
*result = aor;
|
sl@0
|
495 |
return 1;
|
sl@0
|
496 |
|
sl@0
|
497 |
err:
|
sl@0
|
498 |
IPAddressOrRange_free(aor);
|
sl@0
|
499 |
return 0;
|
sl@0
|
500 |
}
|
sl@0
|
501 |
|
sl@0
|
502 |
/*
|
sl@0
|
503 |
* Construct a new address family or find an existing one.
|
sl@0
|
504 |
*/
|
sl@0
|
505 |
static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
|
sl@0
|
506 |
const unsigned afi,
|
sl@0
|
507 |
const unsigned *safi)
|
sl@0
|
508 |
{
|
sl@0
|
509 |
IPAddressFamily *f;
|
sl@0
|
510 |
unsigned char key[3];
|
sl@0
|
511 |
unsigned keylen;
|
sl@0
|
512 |
int i;
|
sl@0
|
513 |
|
sl@0
|
514 |
key[0] = (afi >> 8) & 0xFF;
|
sl@0
|
515 |
key[1] = afi & 0xFF;
|
sl@0
|
516 |
if (safi != NULL) {
|
sl@0
|
517 |
key[2] = *safi & 0xFF;
|
sl@0
|
518 |
keylen = 3;
|
sl@0
|
519 |
} else {
|
sl@0
|
520 |
keylen = 2;
|
sl@0
|
521 |
}
|
sl@0
|
522 |
|
sl@0
|
523 |
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
|
sl@0
|
524 |
f = sk_IPAddressFamily_value(addr, i);
|
sl@0
|
525 |
assert(f->addressFamily->data != NULL);
|
sl@0
|
526 |
if (f->addressFamily->length == keylen &&
|
sl@0
|
527 |
!memcmp(f->addressFamily->data, key, keylen))
|
sl@0
|
528 |
return f;
|
sl@0
|
529 |
}
|
sl@0
|
530 |
|
sl@0
|
531 |
if ((f = IPAddressFamily_new()) == NULL)
|
sl@0
|
532 |
goto err;
|
sl@0
|
533 |
if (f->ipAddressChoice == NULL &&
|
sl@0
|
534 |
(f->ipAddressChoice = IPAddressChoice_new()) == NULL)
|
sl@0
|
535 |
goto err;
|
sl@0
|
536 |
if (f->addressFamily == NULL &&
|
sl@0
|
537 |
(f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
|
sl@0
|
538 |
goto err;
|
sl@0
|
539 |
if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
|
sl@0
|
540 |
goto err;
|
sl@0
|
541 |
if (!sk_IPAddressFamily_push(addr, f))
|
sl@0
|
542 |
goto err;
|
sl@0
|
543 |
|
sl@0
|
544 |
return f;
|
sl@0
|
545 |
|
sl@0
|
546 |
err:
|
sl@0
|
547 |
IPAddressFamily_free(f);
|
sl@0
|
548 |
return NULL;
|
sl@0
|
549 |
}
|
sl@0
|
550 |
|
sl@0
|
551 |
/*
|
sl@0
|
552 |
* Add an inheritance element.
|
sl@0
|
553 |
*/
|
sl@0
|
554 |
int v3_addr_add_inherit(IPAddrBlocks *addr,
|
sl@0
|
555 |
const unsigned afi,
|
sl@0
|
556 |
const unsigned *safi)
|
sl@0
|
557 |
{
|
sl@0
|
558 |
IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
|
sl@0
|
559 |
if (f == NULL ||
|
sl@0
|
560 |
f->ipAddressChoice == NULL ||
|
sl@0
|
561 |
(f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
|
sl@0
|
562 |
f->ipAddressChoice->u.addressesOrRanges != NULL))
|
sl@0
|
563 |
return 0;
|
sl@0
|
564 |
if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
|
sl@0
|
565 |
f->ipAddressChoice->u.inherit != NULL)
|
sl@0
|
566 |
return 1;
|
sl@0
|
567 |
if (f->ipAddressChoice->u.inherit == NULL &&
|
sl@0
|
568 |
(f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
|
sl@0
|
569 |
return 0;
|
sl@0
|
570 |
f->ipAddressChoice->type = IPAddressChoice_inherit;
|
sl@0
|
571 |
return 1;
|
sl@0
|
572 |
}
|
sl@0
|
573 |
|
sl@0
|
574 |
/*
|
sl@0
|
575 |
* Construct an IPAddressOrRange sequence, or return an existing one.
|
sl@0
|
576 |
*/
|
sl@0
|
577 |
static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
|
sl@0
|
578 |
const unsigned afi,
|
sl@0
|
579 |
const unsigned *safi)
|
sl@0
|
580 |
{
|
sl@0
|
581 |
IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
|
sl@0
|
582 |
IPAddressOrRanges *aors = NULL;
|
sl@0
|
583 |
|
sl@0
|
584 |
if (f == NULL ||
|
sl@0
|
585 |
f->ipAddressChoice == NULL ||
|
sl@0
|
586 |
(f->ipAddressChoice->type == IPAddressChoice_inherit &&
|
sl@0
|
587 |
f->ipAddressChoice->u.inherit != NULL))
|
sl@0
|
588 |
return NULL;
|
sl@0
|
589 |
if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
|
sl@0
|
590 |
aors = f->ipAddressChoice->u.addressesOrRanges;
|
sl@0
|
591 |
if (aors != NULL)
|
sl@0
|
592 |
return aors;
|
sl@0
|
593 |
if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
|
sl@0
|
594 |
return NULL;
|
sl@0
|
595 |
switch (afi) {
|
sl@0
|
596 |
case IANA_AFI_IPV4:
|
sl@0
|
597 |
sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
|
sl@0
|
598 |
break;
|
sl@0
|
599 |
case IANA_AFI_IPV6:
|
sl@0
|
600 |
sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
|
sl@0
|
601 |
break;
|
sl@0
|
602 |
}
|
sl@0
|
603 |
f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
|
sl@0
|
604 |
f->ipAddressChoice->u.addressesOrRanges = aors;
|
sl@0
|
605 |
return aors;
|
sl@0
|
606 |
}
|
sl@0
|
607 |
|
sl@0
|
608 |
/*
|
sl@0
|
609 |
* Add a prefix.
|
sl@0
|
610 |
*/
|
sl@0
|
611 |
int v3_addr_add_prefix(IPAddrBlocks *addr,
|
sl@0
|
612 |
const unsigned afi,
|
sl@0
|
613 |
const unsigned *safi,
|
sl@0
|
614 |
unsigned char *a,
|
sl@0
|
615 |
const int prefixlen)
|
sl@0
|
616 |
{
|
sl@0
|
617 |
IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
|
sl@0
|
618 |
IPAddressOrRange *aor;
|
sl@0
|
619 |
if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
|
sl@0
|
620 |
return 0;
|
sl@0
|
621 |
if (sk_IPAddressOrRange_push(aors, aor))
|
sl@0
|
622 |
return 1;
|
sl@0
|
623 |
IPAddressOrRange_free(aor);
|
sl@0
|
624 |
return 0;
|
sl@0
|
625 |
}
|
sl@0
|
626 |
|
sl@0
|
627 |
/*
|
sl@0
|
628 |
* Add a range.
|
sl@0
|
629 |
*/
|
sl@0
|
630 |
int v3_addr_add_range(IPAddrBlocks *addr,
|
sl@0
|
631 |
const unsigned afi,
|
sl@0
|
632 |
const unsigned *safi,
|
sl@0
|
633 |
unsigned char *min,
|
sl@0
|
634 |
unsigned char *max)
|
sl@0
|
635 |
{
|
sl@0
|
636 |
IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
|
sl@0
|
637 |
IPAddressOrRange *aor;
|
sl@0
|
638 |
int length = length_from_afi(afi);
|
sl@0
|
639 |
if (aors == NULL)
|
sl@0
|
640 |
return 0;
|
sl@0
|
641 |
if (!make_addressRange(&aor, min, max, length))
|
sl@0
|
642 |
return 0;
|
sl@0
|
643 |
if (sk_IPAddressOrRange_push(aors, aor))
|
sl@0
|
644 |
return 1;
|
sl@0
|
645 |
IPAddressOrRange_free(aor);
|
sl@0
|
646 |
return 0;
|
sl@0
|
647 |
}
|
sl@0
|
648 |
|
sl@0
|
649 |
/*
|
sl@0
|
650 |
* Extract min and max values from an IPAddressOrRange.
|
sl@0
|
651 |
*/
|
sl@0
|
652 |
static void extract_min_max(IPAddressOrRange *aor,
|
sl@0
|
653 |
unsigned char *min,
|
sl@0
|
654 |
unsigned char *max,
|
sl@0
|
655 |
int length)
|
sl@0
|
656 |
{
|
sl@0
|
657 |
assert(aor != NULL && min != NULL && max != NULL);
|
sl@0
|
658 |
switch (aor->type) {
|
sl@0
|
659 |
case IPAddressOrRange_addressPrefix:
|
sl@0
|
660 |
addr_expand(min, aor->u.addressPrefix, length, 0x00);
|
sl@0
|
661 |
addr_expand(max, aor->u.addressPrefix, length, 0xFF);
|
sl@0
|
662 |
return;
|
sl@0
|
663 |
case IPAddressOrRange_addressRange:
|
sl@0
|
664 |
addr_expand(min, aor->u.addressRange->min, length, 0x00);
|
sl@0
|
665 |
addr_expand(max, aor->u.addressRange->max, length, 0xFF);
|
sl@0
|
666 |
return;
|
sl@0
|
667 |
}
|
sl@0
|
668 |
}
|
sl@0
|
669 |
|
sl@0
|
670 |
/*
|
sl@0
|
671 |
* Public wrapper for extract_min_max().
|
sl@0
|
672 |
*/
|
sl@0
|
673 |
int v3_addr_get_range(IPAddressOrRange *aor,
|
sl@0
|
674 |
const unsigned afi,
|
sl@0
|
675 |
unsigned char *min,
|
sl@0
|
676 |
unsigned char *max,
|
sl@0
|
677 |
const int length)
|
sl@0
|
678 |
{
|
sl@0
|
679 |
int afi_length = length_from_afi(afi);
|
sl@0
|
680 |
if (aor == NULL || min == NULL || max == NULL ||
|
sl@0
|
681 |
afi_length == 0 || length < afi_length ||
|
sl@0
|
682 |
(aor->type != IPAddressOrRange_addressPrefix &&
|
sl@0
|
683 |
aor->type != IPAddressOrRange_addressRange))
|
sl@0
|
684 |
return 0;
|
sl@0
|
685 |
extract_min_max(aor, min, max, afi_length);
|
sl@0
|
686 |
return afi_length;
|
sl@0
|
687 |
}
|
sl@0
|
688 |
|
sl@0
|
689 |
/*
|
sl@0
|
690 |
* Sort comparision function for a sequence of IPAddressFamily.
|
sl@0
|
691 |
*
|
sl@0
|
692 |
* The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
|
sl@0
|
693 |
* the ordering: I can read it as meaning that IPv6 without a SAFI
|
sl@0
|
694 |
* comes before IPv4 with a SAFI, which seems pretty weird. The
|
sl@0
|
695 |
* examples in appendix B suggest that the author intended the
|
sl@0
|
696 |
* null-SAFI rule to apply only within a single AFI, which is what I
|
sl@0
|
697 |
* would have expected and is what the following code implements.
|
sl@0
|
698 |
*/
|
sl@0
|
699 |
static int IPAddressFamily_cmp(const IPAddressFamily * const *a_,
|
sl@0
|
700 |
const IPAddressFamily * const *b_)
|
sl@0
|
701 |
{
|
sl@0
|
702 |
const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
|
sl@0
|
703 |
const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
|
sl@0
|
704 |
int len = ((a->length <= b->length) ? a->length : b->length);
|
sl@0
|
705 |
int cmp = memcmp(a->data, b->data, len);
|
sl@0
|
706 |
return cmp ? cmp : a->length - b->length;
|
sl@0
|
707 |
}
|
sl@0
|
708 |
|
sl@0
|
709 |
/*
|
sl@0
|
710 |
* Check whether an IPAddrBLocks is in canonical form.
|
sl@0
|
711 |
*/
|
sl@0
|
712 |
int v3_addr_is_canonical(IPAddrBlocks *addr)
|
sl@0
|
713 |
{
|
sl@0
|
714 |
unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
|
sl@0
|
715 |
unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
|
sl@0
|
716 |
IPAddressOrRanges *aors;
|
sl@0
|
717 |
int i, j, k;
|
sl@0
|
718 |
|
sl@0
|
719 |
/*
|
sl@0
|
720 |
* Empty extension is cannonical.
|
sl@0
|
721 |
*/
|
sl@0
|
722 |
if (addr == NULL)
|
sl@0
|
723 |
return 1;
|
sl@0
|
724 |
|
sl@0
|
725 |
/*
|
sl@0
|
726 |
* Check whether the top-level list is in order.
|
sl@0
|
727 |
*/
|
sl@0
|
728 |
for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
|
sl@0
|
729 |
const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
|
sl@0
|
730 |
const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
|
sl@0
|
731 |
if (IPAddressFamily_cmp(&a, &b) >= 0)
|
sl@0
|
732 |
return 0;
|
sl@0
|
733 |
}
|
sl@0
|
734 |
|
sl@0
|
735 |
/*
|
sl@0
|
736 |
* Top level's ok, now check each address family.
|
sl@0
|
737 |
*/
|
sl@0
|
738 |
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
|
sl@0
|
739 |
IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
|
sl@0
|
740 |
int length = length_from_afi(v3_addr_get_afi(f));
|
sl@0
|
741 |
|
sl@0
|
742 |
/*
|
sl@0
|
743 |
* Inheritance is canonical. Anything other than inheritance or
|
sl@0
|
744 |
* a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
|
sl@0
|
745 |
*/
|
sl@0
|
746 |
if (f == NULL || f->ipAddressChoice == NULL)
|
sl@0
|
747 |
return 0;
|
sl@0
|
748 |
switch (f->ipAddressChoice->type) {
|
sl@0
|
749 |
case IPAddressChoice_inherit:
|
sl@0
|
750 |
continue;
|
sl@0
|
751 |
case IPAddressChoice_addressesOrRanges:
|
sl@0
|
752 |
break;
|
sl@0
|
753 |
default:
|
sl@0
|
754 |
return 0;
|
sl@0
|
755 |
}
|
sl@0
|
756 |
|
sl@0
|
757 |
/*
|
sl@0
|
758 |
* It's an IPAddressOrRanges sequence, check it.
|
sl@0
|
759 |
*/
|
sl@0
|
760 |
aors = f->ipAddressChoice->u.addressesOrRanges;
|
sl@0
|
761 |
if (sk_IPAddressOrRange_num(aors) == 0)
|
sl@0
|
762 |
return 0;
|
sl@0
|
763 |
for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
|
sl@0
|
764 |
IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
|
sl@0
|
765 |
IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
|
sl@0
|
766 |
|
sl@0
|
767 |
extract_min_max(a, a_min, a_max, length);
|
sl@0
|
768 |
extract_min_max(b, b_min, b_max, length);
|
sl@0
|
769 |
|
sl@0
|
770 |
/*
|
sl@0
|
771 |
* Punt misordered list, overlapping start, or inverted range.
|
sl@0
|
772 |
*/
|
sl@0
|
773 |
if (memcmp(a_min, b_min, length) >= 0 ||
|
sl@0
|
774 |
memcmp(a_min, a_max, length) > 0 ||
|
sl@0
|
775 |
memcmp(b_min, b_max, length) > 0)
|
sl@0
|
776 |
return 0;
|
sl@0
|
777 |
|
sl@0
|
778 |
/*
|
sl@0
|
779 |
* Punt if adjacent or overlapping. Check for adjacency by
|
sl@0
|
780 |
* subtracting one from b_min first.
|
sl@0
|
781 |
*/
|
sl@0
|
782 |
for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--)
|
sl@0
|
783 |
;
|
sl@0
|
784 |
if (memcmp(a_max, b_min, length) >= 0)
|
sl@0
|
785 |
return 0;
|
sl@0
|
786 |
|
sl@0
|
787 |
/*
|
sl@0
|
788 |
* Check for range that should be expressed as a prefix.
|
sl@0
|
789 |
*/
|
sl@0
|
790 |
if (a->type == IPAddressOrRange_addressRange &&
|
sl@0
|
791 |
range_should_be_prefix(a_min, a_max, length) >= 0)
|
sl@0
|
792 |
return 0;
|
sl@0
|
793 |
}
|
sl@0
|
794 |
|
sl@0
|
795 |
/*
|
sl@0
|
796 |
* Check final range to see if it should be a prefix.
|
sl@0
|
797 |
*/
|
sl@0
|
798 |
j = sk_IPAddressOrRange_num(aors) - 1;
|
sl@0
|
799 |
{
|
sl@0
|
800 |
IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
|
sl@0
|
801 |
if (a->type == IPAddressOrRange_addressRange) {
|
sl@0
|
802 |
extract_min_max(a, a_min, a_max, length);
|
sl@0
|
803 |
if (range_should_be_prefix(a_min, a_max, length) >= 0)
|
sl@0
|
804 |
return 0;
|
sl@0
|
805 |
}
|
sl@0
|
806 |
}
|
sl@0
|
807 |
}
|
sl@0
|
808 |
|
sl@0
|
809 |
/*
|
sl@0
|
810 |
* If we made it through all that, we're happy.
|
sl@0
|
811 |
*/
|
sl@0
|
812 |
return 1;
|
sl@0
|
813 |
}
|
sl@0
|
814 |
|
sl@0
|
815 |
/*
|
sl@0
|
816 |
* Whack an IPAddressOrRanges into canonical form.
|
sl@0
|
817 |
*/
|
sl@0
|
818 |
static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
|
sl@0
|
819 |
const unsigned afi)
|
sl@0
|
820 |
{
|
sl@0
|
821 |
int i, j, length = length_from_afi(afi);
|
sl@0
|
822 |
|
sl@0
|
823 |
/*
|
sl@0
|
824 |
* Sort the IPAddressOrRanges sequence.
|
sl@0
|
825 |
*/
|
sl@0
|
826 |
sk_IPAddressOrRange_sort(aors);
|
sl@0
|
827 |
|
sl@0
|
828 |
/*
|
sl@0
|
829 |
* Clean up representation issues, punt on duplicates or overlaps.
|
sl@0
|
830 |
*/
|
sl@0
|
831 |
for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
|
sl@0
|
832 |
IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
|
sl@0
|
833 |
IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
|
sl@0
|
834 |
unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
|
sl@0
|
835 |
unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
|
sl@0
|
836 |
|
sl@0
|
837 |
extract_min_max(a, a_min, a_max, length);
|
sl@0
|
838 |
extract_min_max(b, b_min, b_max, length);
|
sl@0
|
839 |
|
sl@0
|
840 |
/*
|
sl@0
|
841 |
* Punt overlaps.
|
sl@0
|
842 |
*/
|
sl@0
|
843 |
if (memcmp(a_max, b_min, length) >= 0)
|
sl@0
|
844 |
return 0;
|
sl@0
|
845 |
|
sl@0
|
846 |
/*
|
sl@0
|
847 |
* Merge if a and b are adjacent. We check for
|
sl@0
|
848 |
* adjacency by subtracting one from b_min first.
|
sl@0
|
849 |
*/
|
sl@0
|
850 |
for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--)
|
sl@0
|
851 |
;
|
sl@0
|
852 |
if (memcmp(a_max, b_min, length) == 0) {
|
sl@0
|
853 |
IPAddressOrRange *merged;
|
sl@0
|
854 |
if (!make_addressRange(&merged, a_min, b_max, length))
|
sl@0
|
855 |
return 0;
|
sl@0
|
856 |
sk_IPAddressOrRange_set(aors, i, merged);
|
sl@0
|
857 |
sk_IPAddressOrRange_delete(aors, i + 1);
|
sl@0
|
858 |
IPAddressOrRange_free(a);
|
sl@0
|
859 |
IPAddressOrRange_free(b);
|
sl@0
|
860 |
--i;
|
sl@0
|
861 |
continue;
|
sl@0
|
862 |
}
|
sl@0
|
863 |
}
|
sl@0
|
864 |
|
sl@0
|
865 |
return 1;
|
sl@0
|
866 |
}
|
sl@0
|
867 |
|
sl@0
|
868 |
/*
|
sl@0
|
869 |
* Whack an IPAddrBlocks extension into canonical form.
|
sl@0
|
870 |
*/
|
sl@0
|
871 |
int v3_addr_canonize(IPAddrBlocks *addr)
|
sl@0
|
872 |
{
|
sl@0
|
873 |
int i;
|
sl@0
|
874 |
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
|
sl@0
|
875 |
IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
|
sl@0
|
876 |
if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
|
sl@0
|
877 |
!IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges,
|
sl@0
|
878 |
v3_addr_get_afi(f)))
|
sl@0
|
879 |
return 0;
|
sl@0
|
880 |
}
|
sl@0
|
881 |
sk_IPAddressFamily_sort(addr);
|
sl@0
|
882 |
assert(v3_addr_is_canonical(addr));
|
sl@0
|
883 |
return 1;
|
sl@0
|
884 |
}
|
sl@0
|
885 |
|
sl@0
|
886 |
/*
|
sl@0
|
887 |
* v2i handler for the IPAddrBlocks extension.
|
sl@0
|
888 |
*/
|
sl@0
|
889 |
static void *v2i_IPAddrBlocks(struct v3_ext_method *method,
|
sl@0
|
890 |
struct v3_ext_ctx *ctx,
|
sl@0
|
891 |
STACK_OF(CONF_VALUE) *values)
|
sl@0
|
892 |
{
|
sl@0
|
893 |
static const char v4addr_chars[] = "0123456789.";
|
sl@0
|
894 |
static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
|
sl@0
|
895 |
IPAddrBlocks *addr = NULL;
|
sl@0
|
896 |
char *s = NULL, *t;
|
sl@0
|
897 |
int i;
|
sl@0
|
898 |
|
sl@0
|
899 |
if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
|
sl@0
|
900 |
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
|
sl@0
|
901 |
return NULL;
|
sl@0
|
902 |
}
|
sl@0
|
903 |
|
sl@0
|
904 |
for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
|
sl@0
|
905 |
CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
|
sl@0
|
906 |
unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
|
sl@0
|
907 |
unsigned afi, *safi = NULL, safi_;
|
sl@0
|
908 |
const char *addr_chars;
|
sl@0
|
909 |
int prefixlen, i1, i2, delim, length;
|
sl@0
|
910 |
|
sl@0
|
911 |
if ( !name_cmp(val->name, "IPv4")) {
|
sl@0
|
912 |
afi = IANA_AFI_IPV4;
|
sl@0
|
913 |
} else if (!name_cmp(val->name, "IPv6")) {
|
sl@0
|
914 |
afi = IANA_AFI_IPV6;
|
sl@0
|
915 |
} else if (!name_cmp(val->name, "IPv4-SAFI")) {
|
sl@0
|
916 |
afi = IANA_AFI_IPV4;
|
sl@0
|
917 |
safi = &safi_;
|
sl@0
|
918 |
} else if (!name_cmp(val->name, "IPv6-SAFI")) {
|
sl@0
|
919 |
afi = IANA_AFI_IPV6;
|
sl@0
|
920 |
safi = &safi_;
|
sl@0
|
921 |
} else {
|
sl@0
|
922 |
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR);
|
sl@0
|
923 |
X509V3_conf_err(val);
|
sl@0
|
924 |
goto err;
|
sl@0
|
925 |
}
|
sl@0
|
926 |
|
sl@0
|
927 |
switch (afi) {
|
sl@0
|
928 |
case IANA_AFI_IPV4:
|
sl@0
|
929 |
addr_chars = v4addr_chars;
|
sl@0
|
930 |
break;
|
sl@0
|
931 |
case IANA_AFI_IPV6:
|
sl@0
|
932 |
addr_chars = v6addr_chars;
|
sl@0
|
933 |
break;
|
sl@0
|
934 |
}
|
sl@0
|
935 |
|
sl@0
|
936 |
length = length_from_afi(afi);
|
sl@0
|
937 |
|
sl@0
|
938 |
/*
|
sl@0
|
939 |
* Handle SAFI, if any, and BUF_strdup() so we can null-terminate
|
sl@0
|
940 |
* the other input values.
|
sl@0
|
941 |
*/
|
sl@0
|
942 |
if (safi != NULL) {
|
sl@0
|
943 |
*safi = strtoul(val->value, &t, 0);
|
sl@0
|
944 |
t += strspn(t, " \t");
|
sl@0
|
945 |
if (*safi > 0xFF || *t++ != ':') {
|
sl@0
|
946 |
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
|
sl@0
|
947 |
X509V3_conf_err(val);
|
sl@0
|
948 |
goto err;
|
sl@0
|
949 |
}
|
sl@0
|
950 |
t += strspn(t, " \t");
|
sl@0
|
951 |
s = BUF_strdup(t);
|
sl@0
|
952 |
} else {
|
sl@0
|
953 |
s = BUF_strdup(val->value);
|
sl@0
|
954 |
}
|
sl@0
|
955 |
if (s == NULL) {
|
sl@0
|
956 |
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
|
sl@0
|
957 |
goto err;
|
sl@0
|
958 |
}
|
sl@0
|
959 |
|
sl@0
|
960 |
/*
|
sl@0
|
961 |
* Check for inheritance. Not worth additional complexity to
|
sl@0
|
962 |
* optimize this (seldom-used) case.
|
sl@0
|
963 |
*/
|
sl@0
|
964 |
if (!strcmp(s, "inherit")) {
|
sl@0
|
965 |
if (!v3_addr_add_inherit(addr, afi, safi)) {
|
sl@0
|
966 |
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE);
|
sl@0
|
967 |
X509V3_conf_err(val);
|
sl@0
|
968 |
goto err;
|
sl@0
|
969 |
}
|
sl@0
|
970 |
OPENSSL_free(s);
|
sl@0
|
971 |
s = NULL;
|
sl@0
|
972 |
continue;
|
sl@0
|
973 |
}
|
sl@0
|
974 |
|
sl@0
|
975 |
i1 = strspn(s, addr_chars);
|
sl@0
|
976 |
i2 = i1 + strspn(s + i1, " \t");
|
sl@0
|
977 |
delim = s[i2++];
|
sl@0
|
978 |
s[i1] = '\0';
|
sl@0
|
979 |
|
sl@0
|
980 |
if (a2i_ipadd(min, s) != length) {
|
sl@0
|
981 |
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
|
sl@0
|
982 |
X509V3_conf_err(val);
|
sl@0
|
983 |
goto err;
|
sl@0
|
984 |
}
|
sl@0
|
985 |
|
sl@0
|
986 |
switch (delim) {
|
sl@0
|
987 |
case '/':
|
sl@0
|
988 |
prefixlen = (int) strtoul(s + i2, &t, 10);
|
sl@0
|
989 |
if (t == s + i2 || *t != '\0') {
|
sl@0
|
990 |
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
|
sl@0
|
991 |
X509V3_conf_err(val);
|
sl@0
|
992 |
goto err;
|
sl@0
|
993 |
}
|
sl@0
|
994 |
if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
|
sl@0
|
995 |
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
|
sl@0
|
996 |
goto err;
|
sl@0
|
997 |
}
|
sl@0
|
998 |
break;
|
sl@0
|
999 |
case '-':
|
sl@0
|
1000 |
i1 = i2 + strspn(s + i2, " \t");
|
sl@0
|
1001 |
i2 = i1 + strspn(s + i1, addr_chars);
|
sl@0
|
1002 |
if (i1 == i2 || s[i2] != '\0') {
|
sl@0
|
1003 |
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
|
sl@0
|
1004 |
X509V3_conf_err(val);
|
sl@0
|
1005 |
goto err;
|
sl@0
|
1006 |
}
|
sl@0
|
1007 |
if (a2i_ipadd(max, s + i1) != length) {
|
sl@0
|
1008 |
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
|
sl@0
|
1009 |
X509V3_conf_err(val);
|
sl@0
|
1010 |
goto err;
|
sl@0
|
1011 |
}
|
sl@0
|
1012 |
if (!v3_addr_add_range(addr, afi, safi, min, max)) {
|
sl@0
|
1013 |
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
|
sl@0
|
1014 |
goto err;
|
sl@0
|
1015 |
}
|
sl@0
|
1016 |
break;
|
sl@0
|
1017 |
case '\0':
|
sl@0
|
1018 |
if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
|
sl@0
|
1019 |
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
|
sl@0
|
1020 |
goto err;
|
sl@0
|
1021 |
}
|
sl@0
|
1022 |
break;
|
sl@0
|
1023 |
default:
|
sl@0
|
1024 |
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
|
sl@0
|
1025 |
X509V3_conf_err(val);
|
sl@0
|
1026 |
goto err;
|
sl@0
|
1027 |
}
|
sl@0
|
1028 |
|
sl@0
|
1029 |
OPENSSL_free(s);
|
sl@0
|
1030 |
s = NULL;
|
sl@0
|
1031 |
}
|
sl@0
|
1032 |
|
sl@0
|
1033 |
/*
|
sl@0
|
1034 |
* Canonize the result, then we're done.
|
sl@0
|
1035 |
*/
|
sl@0
|
1036 |
if (!v3_addr_canonize(addr))
|
sl@0
|
1037 |
goto err;
|
sl@0
|
1038 |
return addr;
|
sl@0
|
1039 |
|
sl@0
|
1040 |
err:
|
sl@0
|
1041 |
OPENSSL_free(s);
|
sl@0
|
1042 |
sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
|
sl@0
|
1043 |
return NULL;
|
sl@0
|
1044 |
}
|
sl@0
|
1045 |
|
sl@0
|
1046 |
/*
|
sl@0
|
1047 |
* OpenSSL dispatch
|
sl@0
|
1048 |
*/
|
sl@0
|
1049 |
const X509V3_EXT_METHOD v3_addr = {
|
sl@0
|
1050 |
NID_sbgp_ipAddrBlock, /* nid */
|
sl@0
|
1051 |
0, /* flags */
|
sl@0
|
1052 |
ASN1_ITEM_ref(IPAddrBlocks), /* template */
|
sl@0
|
1053 |
0, 0, 0, 0, /* old functions, ignored */
|
sl@0
|
1054 |
0, /* i2s */
|
sl@0
|
1055 |
0, /* s2i */
|
sl@0
|
1056 |
0, /* i2v */
|
sl@0
|
1057 |
v2i_IPAddrBlocks, /* v2i */
|
sl@0
|
1058 |
i2r_IPAddrBlocks, /* i2r */
|
sl@0
|
1059 |
0, /* r2i */
|
sl@0
|
1060 |
NULL /* extension-specific data */
|
sl@0
|
1061 |
};
|
sl@0
|
1062 |
|
sl@0
|
1063 |
/*
|
sl@0
|
1064 |
* Figure out whether extension sues inheritance.
|
sl@0
|
1065 |
*/
|
sl@0
|
1066 |
int v3_addr_inherits(IPAddrBlocks *addr)
|
sl@0
|
1067 |
{
|
sl@0
|
1068 |
int i;
|
sl@0
|
1069 |
if (addr == NULL)
|
sl@0
|
1070 |
return 0;
|
sl@0
|
1071 |
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
|
sl@0
|
1072 |
IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
|
sl@0
|
1073 |
if (f->ipAddressChoice->type == IPAddressChoice_inherit)
|
sl@0
|
1074 |
return 1;
|
sl@0
|
1075 |
}
|
sl@0
|
1076 |
return 0;
|
sl@0
|
1077 |
}
|
sl@0
|
1078 |
|
sl@0
|
1079 |
/*
|
sl@0
|
1080 |
* Figure out whether parent contains child.
|
sl@0
|
1081 |
*/
|
sl@0
|
1082 |
static int addr_contains(IPAddressOrRanges *parent,
|
sl@0
|
1083 |
IPAddressOrRanges *child,
|
sl@0
|
1084 |
int length)
|
sl@0
|
1085 |
{
|
sl@0
|
1086 |
unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
|
sl@0
|
1087 |
unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
|
sl@0
|
1088 |
int p, c;
|
sl@0
|
1089 |
|
sl@0
|
1090 |
if (child == NULL || parent == child)
|
sl@0
|
1091 |
return 1;
|
sl@0
|
1092 |
if (parent == NULL)
|
sl@0
|
1093 |
return 0;
|
sl@0
|
1094 |
|
sl@0
|
1095 |
p = 0;
|
sl@0
|
1096 |
for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
|
sl@0
|
1097 |
extract_min_max(sk_IPAddressOrRange_value(child, c),
|
sl@0
|
1098 |
c_min, c_max, length);
|
sl@0
|
1099 |
for (;; p++) {
|
sl@0
|
1100 |
if (p >= sk_IPAddressOrRange_num(parent))
|
sl@0
|
1101 |
return 0;
|
sl@0
|
1102 |
extract_min_max(sk_IPAddressOrRange_value(parent, p),
|
sl@0
|
1103 |
p_min, p_max, length);
|
sl@0
|
1104 |
if (memcmp(p_max, c_max, length) < 0)
|
sl@0
|
1105 |
continue;
|
sl@0
|
1106 |
if (memcmp(p_min, c_min, length) > 0)
|
sl@0
|
1107 |
return 0;
|
sl@0
|
1108 |
break;
|
sl@0
|
1109 |
}
|
sl@0
|
1110 |
}
|
sl@0
|
1111 |
|
sl@0
|
1112 |
return 1;
|
sl@0
|
1113 |
}
|
sl@0
|
1114 |
|
sl@0
|
1115 |
/*
|
sl@0
|
1116 |
* Test whether a is a subset of b.
|
sl@0
|
1117 |
*/
|
sl@0
|
1118 |
int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
|
sl@0
|
1119 |
{
|
sl@0
|
1120 |
int i;
|
sl@0
|
1121 |
if (a == NULL || a == b)
|
sl@0
|
1122 |
return 1;
|
sl@0
|
1123 |
if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
|
sl@0
|
1124 |
return 0;
|
sl@0
|
1125 |
sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
|
sl@0
|
1126 |
for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
|
sl@0
|
1127 |
IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
|
sl@0
|
1128 |
int j = sk_IPAddressFamily_find(b, fa);
|
sl@0
|
1129 |
IPAddressFamily *fb = sk_IPAddressFamily_value(b, j);
|
sl@0
|
1130 |
if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
|
sl@0
|
1131 |
fa->ipAddressChoice->u.addressesOrRanges,
|
sl@0
|
1132 |
length_from_afi(v3_addr_get_afi(fb))))
|
sl@0
|
1133 |
return 0;
|
sl@0
|
1134 |
}
|
sl@0
|
1135 |
return 1;
|
sl@0
|
1136 |
}
|
sl@0
|
1137 |
|
sl@0
|
1138 |
/*
|
sl@0
|
1139 |
* Validation error handling via callback.
|
sl@0
|
1140 |
*/
|
sl@0
|
1141 |
#define validation_err(_err_) \
|
sl@0
|
1142 |
do { \
|
sl@0
|
1143 |
if (ctx != NULL) { \
|
sl@0
|
1144 |
ctx->error = _err_; \
|
sl@0
|
1145 |
ctx->error_depth = i; \
|
sl@0
|
1146 |
ctx->current_cert = x; \
|
sl@0
|
1147 |
ret = ctx->verify_cb(0, ctx); \
|
sl@0
|
1148 |
} else { \
|
sl@0
|
1149 |
ret = 0; \
|
sl@0
|
1150 |
} \
|
sl@0
|
1151 |
if (!ret) \
|
sl@0
|
1152 |
goto done; \
|
sl@0
|
1153 |
} while (0)
|
sl@0
|
1154 |
|
sl@0
|
1155 |
/*
|
sl@0
|
1156 |
* Core code for RFC 3779 2.3 path validation.
|
sl@0
|
1157 |
*/
|
sl@0
|
1158 |
static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
|
sl@0
|
1159 |
STACK_OF(X509) *chain,
|
sl@0
|
1160 |
IPAddrBlocks *ext)
|
sl@0
|
1161 |
{
|
sl@0
|
1162 |
IPAddrBlocks *child = NULL;
|
sl@0
|
1163 |
int i, j, ret = 1;
|
sl@0
|
1164 |
X509 *x = NULL;
|
sl@0
|
1165 |
|
sl@0
|
1166 |
assert(chain != NULL && sk_X509_num(chain) > 0);
|
sl@0
|
1167 |
assert(ctx != NULL || ext != NULL);
|
sl@0
|
1168 |
assert(ctx == NULL || ctx->verify_cb != NULL);
|
sl@0
|
1169 |
|
sl@0
|
1170 |
/*
|
sl@0
|
1171 |
* Figure out where to start. If we don't have an extension to
|
sl@0
|
1172 |
* check, we're done. Otherwise, check canonical form and
|
sl@0
|
1173 |
* set up for walking up the chain.
|
sl@0
|
1174 |
*/
|
sl@0
|
1175 |
if (ext != NULL) {
|
sl@0
|
1176 |
i = -1;
|
sl@0
|
1177 |
} else {
|
sl@0
|
1178 |
i = 0;
|
sl@0
|
1179 |
x = sk_X509_value(chain, i);
|
sl@0
|
1180 |
assert(x != NULL);
|
sl@0
|
1181 |
if ((ext = x->rfc3779_addr) == NULL)
|
sl@0
|
1182 |
goto done;
|
sl@0
|
1183 |
}
|
sl@0
|
1184 |
if (!v3_addr_is_canonical(ext))
|
sl@0
|
1185 |
validation_err(X509_V_ERR_INVALID_EXTENSION);
|
sl@0
|
1186 |
sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
|
sl@0
|
1187 |
if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
|
sl@0
|
1188 |
X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE);
|
sl@0
|
1189 |
ret = 0;
|
sl@0
|
1190 |
goto done;
|
sl@0
|
1191 |
}
|
sl@0
|
1192 |
|
sl@0
|
1193 |
/*
|
sl@0
|
1194 |
* Now walk up the chain. No cert may list resources that its
|
sl@0
|
1195 |
* parent doesn't list.
|
sl@0
|
1196 |
*/
|
sl@0
|
1197 |
for (i++; i < sk_X509_num(chain); i++) {
|
sl@0
|
1198 |
x = sk_X509_value(chain, i);
|
sl@0
|
1199 |
assert(x != NULL);
|
sl@0
|
1200 |
if (!v3_addr_is_canonical(x->rfc3779_addr))
|
sl@0
|
1201 |
validation_err(X509_V_ERR_INVALID_EXTENSION);
|
sl@0
|
1202 |
if (x->rfc3779_addr == NULL) {
|
sl@0
|
1203 |
for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
|
sl@0
|
1204 |
IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
|
sl@0
|
1205 |
if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
|
sl@0
|
1206 |
validation_err(X509_V_ERR_UNNESTED_RESOURCE);
|
sl@0
|
1207 |
break;
|
sl@0
|
1208 |
}
|
sl@0
|
1209 |
}
|
sl@0
|
1210 |
continue;
|
sl@0
|
1211 |
}
|
sl@0
|
1212 |
sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp);
|
sl@0
|
1213 |
for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
|
sl@0
|
1214 |
IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
|
sl@0
|
1215 |
int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
|
sl@0
|
1216 |
IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k);
|
sl@0
|
1217 |
if (fp == NULL) {
|
sl@0
|
1218 |
if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
|
sl@0
|
1219 |
validation_err(X509_V_ERR_UNNESTED_RESOURCE);
|
sl@0
|
1220 |
break;
|
sl@0
|
1221 |
}
|
sl@0
|
1222 |
continue;
|
sl@0
|
1223 |
}
|
sl@0
|
1224 |
if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
|
sl@0
|
1225 |
if (fc->ipAddressChoice->type == IPAddressChoice_inherit ||
|
sl@0
|
1226 |
addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
|
sl@0
|
1227 |
fc->ipAddressChoice->u.addressesOrRanges,
|
sl@0
|
1228 |
length_from_afi(v3_addr_get_afi(fc))))
|
sl@0
|
1229 |
sk_IPAddressFamily_set(child, j, fp);
|
sl@0
|
1230 |
else
|
sl@0
|
1231 |
validation_err(X509_V_ERR_UNNESTED_RESOURCE);
|
sl@0
|
1232 |
}
|
sl@0
|
1233 |
}
|
sl@0
|
1234 |
}
|
sl@0
|
1235 |
|
sl@0
|
1236 |
/*
|
sl@0
|
1237 |
* Trust anchor can't inherit.
|
sl@0
|
1238 |
*/
|
sl@0
|
1239 |
if (x->rfc3779_addr != NULL) {
|
sl@0
|
1240 |
for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
|
sl@0
|
1241 |
IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
|
sl@0
|
1242 |
if (fp->ipAddressChoice->type == IPAddressChoice_inherit &&
|
sl@0
|
1243 |
sk_IPAddressFamily_find(child, fp) >= 0)
|
sl@0
|
1244 |
validation_err(X509_V_ERR_UNNESTED_RESOURCE);
|
sl@0
|
1245 |
}
|
sl@0
|
1246 |
}
|
sl@0
|
1247 |
|
sl@0
|
1248 |
done:
|
sl@0
|
1249 |
sk_IPAddressFamily_free(child);
|
sl@0
|
1250 |
return ret;
|
sl@0
|
1251 |
}
|
sl@0
|
1252 |
|
sl@0
|
1253 |
#undef validation_err
|
sl@0
|
1254 |
|
sl@0
|
1255 |
/*
|
sl@0
|
1256 |
* RFC 3779 2.3 path validation -- called from X509_verify_cert().
|
sl@0
|
1257 |
*/
|
sl@0
|
1258 |
int v3_addr_validate_path(X509_STORE_CTX *ctx)
|
sl@0
|
1259 |
{
|
sl@0
|
1260 |
return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
|
sl@0
|
1261 |
}
|
sl@0
|
1262 |
|
sl@0
|
1263 |
/*
|
sl@0
|
1264 |
* RFC 3779 2.3 path validation of an extension.
|
sl@0
|
1265 |
* Test whether chain covers extension.
|
sl@0
|
1266 |
*/
|
sl@0
|
1267 |
int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
|
sl@0
|
1268 |
IPAddrBlocks *ext,
|
sl@0
|
1269 |
int allow_inheritance)
|
sl@0
|
1270 |
{
|
sl@0
|
1271 |
if (ext == NULL)
|
sl@0
|
1272 |
return 1;
|
sl@0
|
1273 |
if (chain == NULL || sk_X509_num(chain) == 0)
|
sl@0
|
1274 |
return 0;
|
sl@0
|
1275 |
if (!allow_inheritance && v3_addr_inherits(ext))
|
sl@0
|
1276 |
return 0;
|
sl@0
|
1277 |
return v3_addr_validate_path_internal(NULL, chain, ext);
|
sl@0
|
1278 |
}
|
sl@0
|
1279 |
|
sl@0
|
1280 |
#endif /* OPENSSL_NO_RFC3779 */
|