sl@0: /* sl@0: * Contributed to the OpenSSL Project by the American Registry for sl@0: * Internet Numbers ("ARIN"). sl@0: */ sl@0: /* ==================================================================== sl@0: * Copyright (c) 2006 The OpenSSL Project. All rights reserved. sl@0: * sl@0: * Redistribution and use in source and binary forms, with or without sl@0: * modification, are permitted provided that the following conditions sl@0: * are met: sl@0: * sl@0: * 1. Redistributions of source code must retain the above copyright sl@0: * notice, this list of conditions and the following disclaimer. sl@0: * sl@0: * 2. Redistributions in binary form must reproduce the above copyright sl@0: * notice, this list of conditions and the following disclaimer in sl@0: * the documentation and/or other materials provided with the sl@0: * distribution. sl@0: * sl@0: * 3. All advertising materials mentioning features or use of this sl@0: * software must display the following acknowledgment: sl@0: * "This product includes software developed by the OpenSSL Project sl@0: * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" sl@0: * sl@0: * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to sl@0: * endorse or promote products derived from this software without sl@0: * prior written permission. For written permission, please contact sl@0: * licensing@OpenSSL.org. sl@0: * sl@0: * 5. Products derived from this software may not be called "OpenSSL" sl@0: * nor may "OpenSSL" appear in their names without prior written sl@0: * permission of the OpenSSL Project. sl@0: * sl@0: * 6. Redistributions of any form whatsoever must retain the following sl@0: * acknowledgment: sl@0: * "This product includes software developed by the OpenSSL Project sl@0: * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" sl@0: * sl@0: * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY sl@0: * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE sl@0: * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR sl@0: * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR sl@0: * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, sl@0: * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT sl@0: * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; sl@0: * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) sl@0: * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, sl@0: * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) sl@0: * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED sl@0: * OF THE POSSIBILITY OF SUCH DAMAGE. sl@0: * ==================================================================== sl@0: * sl@0: * This product includes cryptographic software written by Eric Young sl@0: * (eay@cryptsoft.com). This product includes software written by Tim sl@0: * Hudson (tjh@cryptsoft.com). sl@0: */ sl@0: sl@0: /* sl@0: * Implementation of RFC 3779 section 2.2. sl@0: */ sl@0: sl@0: #include sl@0: #include sl@0: #include sl@0: #include "cryptlib.h" sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: sl@0: #ifndef OPENSSL_NO_RFC3779 sl@0: sl@0: /* sl@0: * OpenSSL ASN.1 template translation of RFC 3779 2.2.3. sl@0: */ sl@0: sl@0: ASN1_SEQUENCE(IPAddressRange) = { sl@0: ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING), sl@0: ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING) sl@0: } ASN1_SEQUENCE_END(IPAddressRange) sl@0: sl@0: ASN1_CHOICE(IPAddressOrRange) = { sl@0: ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING), sl@0: ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange) sl@0: } ASN1_CHOICE_END(IPAddressOrRange) sl@0: sl@0: ASN1_CHOICE(IPAddressChoice) = { sl@0: ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL), sl@0: ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange) sl@0: } ASN1_CHOICE_END(IPAddressChoice) sl@0: sl@0: ASN1_SEQUENCE(IPAddressFamily) = { sl@0: ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING), sl@0: ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice) sl@0: } ASN1_SEQUENCE_END(IPAddressFamily) sl@0: sl@0: ASN1_ITEM_TEMPLATE(IPAddrBlocks) = sl@0: ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, sl@0: IPAddrBlocks, IPAddressFamily) sl@0: ASN1_ITEM_TEMPLATE_END(IPAddrBlocks) sl@0: sl@0: IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange) sl@0: IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange) sl@0: IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice) sl@0: IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily) sl@0: sl@0: /* sl@0: * How much buffer space do we need for a raw address? sl@0: */ sl@0: #define ADDR_RAW_BUF_LEN 16 sl@0: sl@0: /* sl@0: * What's the address length associated with this AFI? sl@0: */ sl@0: static int length_from_afi(const unsigned afi) sl@0: { sl@0: switch (afi) { sl@0: case IANA_AFI_IPV4: sl@0: return 4; sl@0: case IANA_AFI_IPV6: sl@0: return 16; sl@0: default: sl@0: return 0; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: * Extract the AFI from an IPAddressFamily. sl@0: */ sl@0: unsigned v3_addr_get_afi(const IPAddressFamily *f) sl@0: { sl@0: return ((f != NULL && sl@0: f->addressFamily != NULL && sl@0: f->addressFamily->data != NULL) sl@0: ? ((f->addressFamily->data[0] << 8) | sl@0: (f->addressFamily->data[1])) sl@0: : 0); sl@0: } sl@0: sl@0: /* sl@0: * Expand the bitstring form of an address into a raw byte array. sl@0: * At the moment this is coded for simplicity, not speed. sl@0: */ sl@0: static void addr_expand(unsigned char *addr, sl@0: const ASN1_BIT_STRING *bs, sl@0: const int length, sl@0: const unsigned char fill) sl@0: { sl@0: assert(bs->length >= 0 && bs->length <= length); sl@0: if (bs->length > 0) { sl@0: memcpy(addr, bs->data, bs->length); sl@0: if ((bs->flags & 7) != 0) { sl@0: unsigned char mask = 0xFF >> (8 - (bs->flags & 7)); sl@0: if (fill == 0) sl@0: addr[bs->length - 1] &= ~mask; sl@0: else sl@0: addr[bs->length - 1] |= mask; sl@0: } sl@0: } sl@0: memset(addr + bs->length, fill, length - bs->length); sl@0: } sl@0: sl@0: /* sl@0: * Extract the prefix length from a bitstring. sl@0: */ sl@0: #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7))) sl@0: sl@0: /* sl@0: * i2r handler for one address bitstring. sl@0: */ sl@0: static int i2r_address(BIO *out, sl@0: const unsigned afi, sl@0: const unsigned char fill, sl@0: const ASN1_BIT_STRING *bs) sl@0: { sl@0: unsigned char addr[ADDR_RAW_BUF_LEN]; sl@0: int i, n; sl@0: sl@0: switch (afi) { sl@0: case IANA_AFI_IPV4: sl@0: addr_expand(addr, bs, 4, fill); sl@0: BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]); sl@0: break; sl@0: case IANA_AFI_IPV6: sl@0: addr_expand(addr, bs, 16, fill); sl@0: for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2) sl@0: ; sl@0: for (i = 0; i < n; i += 2) sl@0: BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : "")); sl@0: if (i < 16) sl@0: BIO_puts(out, ":"); sl@0: break; sl@0: default: sl@0: for (i = 0; i < bs->length; i++) sl@0: BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]); sl@0: BIO_printf(out, "[%d]", (int) (bs->flags & 7)); sl@0: break; sl@0: } sl@0: return 1; sl@0: } sl@0: sl@0: /* sl@0: * i2r handler for a sequence of addresses and ranges. sl@0: */ sl@0: static int i2r_IPAddressOrRanges(BIO *out, sl@0: const int indent, sl@0: const IPAddressOrRanges *aors, sl@0: const unsigned afi) sl@0: { sl@0: int i; sl@0: for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) { sl@0: const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i); sl@0: BIO_printf(out, "%*s", indent, ""); sl@0: switch (aor->type) { sl@0: case IPAddressOrRange_addressPrefix: sl@0: if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix)) sl@0: return 0; sl@0: BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix)); sl@0: continue; sl@0: case IPAddressOrRange_addressRange: sl@0: if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min)) sl@0: return 0; sl@0: BIO_puts(out, "-"); sl@0: if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max)) sl@0: return 0; sl@0: BIO_puts(out, "\n"); sl@0: continue; sl@0: } sl@0: } sl@0: return 1; sl@0: } sl@0: sl@0: /* sl@0: * i2r handler for an IPAddrBlocks extension. sl@0: */ sl@0: static int i2r_IPAddrBlocks(X509V3_EXT_METHOD *method, sl@0: void *ext, sl@0: BIO *out, sl@0: int indent) sl@0: { sl@0: const IPAddrBlocks *addr = ext; sl@0: int i; sl@0: for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { sl@0: IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); sl@0: const unsigned afi = v3_addr_get_afi(f); sl@0: switch (afi) { sl@0: case IANA_AFI_IPV4: sl@0: BIO_printf(out, "%*sIPv4", indent, ""); sl@0: break; sl@0: case IANA_AFI_IPV6: sl@0: BIO_printf(out, "%*sIPv6", indent, ""); sl@0: break; sl@0: default: sl@0: BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi); sl@0: break; sl@0: } sl@0: if (f->addressFamily->length > 2) { sl@0: switch (f->addressFamily->data[2]) { sl@0: case 1: sl@0: BIO_puts(out, " (Unicast)"); sl@0: break; sl@0: case 2: sl@0: BIO_puts(out, " (Multicast)"); sl@0: break; sl@0: case 3: sl@0: BIO_puts(out, " (Unicast/Multicast)"); sl@0: break; sl@0: case 4: sl@0: BIO_puts(out, " (MPLS)"); sl@0: break; sl@0: case 64: sl@0: BIO_puts(out, " (Tunnel)"); sl@0: break; sl@0: case 65: sl@0: BIO_puts(out, " (VPLS)"); sl@0: break; sl@0: case 66: sl@0: BIO_puts(out, " (BGP MDT)"); sl@0: break; sl@0: case 128: sl@0: BIO_puts(out, " (MPLS-labeled VPN)"); sl@0: break; sl@0: default: sl@0: BIO_printf(out, " (Unknown SAFI %u)", sl@0: (unsigned) f->addressFamily->data[2]); sl@0: break; sl@0: } sl@0: } sl@0: switch (f->ipAddressChoice->type) { sl@0: case IPAddressChoice_inherit: sl@0: BIO_puts(out, ": inherit\n"); sl@0: break; sl@0: case IPAddressChoice_addressesOrRanges: sl@0: BIO_puts(out, ":\n"); sl@0: if (!i2r_IPAddressOrRanges(out, sl@0: indent + 2, sl@0: f->ipAddressChoice->u.addressesOrRanges, sl@0: afi)) sl@0: return 0; sl@0: break; sl@0: } sl@0: } sl@0: return 1; sl@0: } sl@0: sl@0: /* sl@0: * Sort comparison function for a sequence of IPAddressOrRange sl@0: * elements. sl@0: */ sl@0: static int IPAddressOrRange_cmp(const IPAddressOrRange *a, sl@0: const IPAddressOrRange *b, sl@0: const int length) sl@0: { sl@0: unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN]; sl@0: int prefixlen_a = 0; sl@0: int prefixlen_b = 0; sl@0: int r; sl@0: sl@0: switch (a->type) { sl@0: case IPAddressOrRange_addressPrefix: sl@0: addr_expand(addr_a, a->u.addressPrefix, length, 0x00); sl@0: prefixlen_a = addr_prefixlen(a->u.addressPrefix); sl@0: break; sl@0: case IPAddressOrRange_addressRange: sl@0: addr_expand(addr_a, a->u.addressRange->min, length, 0x00); sl@0: prefixlen_a = length * 8; sl@0: break; sl@0: } sl@0: sl@0: switch (b->type) { sl@0: case IPAddressOrRange_addressPrefix: sl@0: addr_expand(addr_b, b->u.addressPrefix, length, 0x00); sl@0: prefixlen_b = addr_prefixlen(b->u.addressPrefix); sl@0: break; sl@0: case IPAddressOrRange_addressRange: sl@0: addr_expand(addr_b, b->u.addressRange->min, length, 0x00); sl@0: prefixlen_b = length * 8; sl@0: break; sl@0: } sl@0: sl@0: if ((r = memcmp(addr_a, addr_b, length)) != 0) sl@0: return r; sl@0: else sl@0: return prefixlen_a - prefixlen_b; sl@0: } sl@0: sl@0: /* sl@0: * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort() sl@0: * comparision routines are only allowed two arguments. sl@0: */ sl@0: static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a, sl@0: const IPAddressOrRange * const *b) sl@0: { sl@0: return IPAddressOrRange_cmp(*a, *b, 4); sl@0: } sl@0: sl@0: /* sl@0: * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort() sl@0: * comparision routines are only allowed two arguments. sl@0: */ sl@0: static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a, sl@0: const IPAddressOrRange * const *b) sl@0: { sl@0: return IPAddressOrRange_cmp(*a, *b, 16); sl@0: } sl@0: sl@0: /* sl@0: * Calculate whether a range collapses to a prefix. sl@0: * See last paragraph of RFC 3779 2.2.3.7. sl@0: */ sl@0: static int range_should_be_prefix(const unsigned char *min, sl@0: const unsigned char *max, sl@0: const int length) sl@0: { sl@0: unsigned char mask; sl@0: int i, j; sl@0: sl@0: for (i = 0; i < length && min[i] == max[i]; i++) sl@0: ; sl@0: for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) sl@0: ; sl@0: if (i < j) sl@0: return -1; sl@0: if (i > j) sl@0: return i * 8; sl@0: mask = min[i] ^ max[i]; sl@0: switch (mask) { sl@0: case 0x01: j = 7; break; sl@0: case 0x03: j = 6; break; sl@0: case 0x07: j = 5; break; sl@0: case 0x0F: j = 4; break; sl@0: case 0x1F: j = 3; break; sl@0: case 0x3F: j = 2; break; sl@0: case 0x7F: j = 1; break; sl@0: default: return -1; sl@0: } sl@0: if ((min[i] & mask) != 0 || (max[i] & mask) != mask) sl@0: return -1; sl@0: else sl@0: return i * 8 + j; sl@0: } sl@0: sl@0: /* sl@0: * Construct a prefix. sl@0: */ sl@0: static int make_addressPrefix(IPAddressOrRange **result, sl@0: unsigned char *addr, sl@0: const int prefixlen) sl@0: { sl@0: int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8; sl@0: IPAddressOrRange *aor = IPAddressOrRange_new(); sl@0: sl@0: if (aor == NULL) sl@0: return 0; sl@0: aor->type = IPAddressOrRange_addressPrefix; sl@0: if (aor->u.addressPrefix == NULL && sl@0: (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL) sl@0: goto err; sl@0: if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen)) sl@0: goto err; sl@0: aor->u.addressPrefix->flags &= ~7; sl@0: aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT; sl@0: if (bitlen > 0) { sl@0: aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen); sl@0: aor->u.addressPrefix->flags |= 8 - bitlen; sl@0: } sl@0: sl@0: *result = aor; sl@0: return 1; sl@0: sl@0: err: sl@0: IPAddressOrRange_free(aor); sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: * Construct a range. If it can be expressed as a prefix, sl@0: * return a prefix instead. Doing this here simplifies sl@0: * the rest of the code considerably. sl@0: */ sl@0: static int make_addressRange(IPAddressOrRange **result, sl@0: unsigned char *min, sl@0: unsigned char *max, sl@0: const int length) sl@0: { sl@0: IPAddressOrRange *aor; sl@0: int i, prefixlen; sl@0: sl@0: if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0) sl@0: return make_addressPrefix(result, min, prefixlen); sl@0: sl@0: if ((aor = IPAddressOrRange_new()) == NULL) sl@0: return 0; sl@0: aor->type = IPAddressOrRange_addressRange; sl@0: assert(aor->u.addressRange == NULL); sl@0: if ((aor->u.addressRange = IPAddressRange_new()) == NULL) sl@0: goto err; sl@0: if (aor->u.addressRange->min == NULL && sl@0: (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL) sl@0: goto err; sl@0: if (aor->u.addressRange->max == NULL && sl@0: (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL) sl@0: goto err; sl@0: sl@0: for (i = length; i > 0 && min[i - 1] == 0x00; --i) sl@0: ; sl@0: if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i)) sl@0: goto err; sl@0: aor->u.addressRange->min->flags &= ~7; sl@0: aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT; sl@0: if (i > 0) { sl@0: unsigned char b = min[i - 1]; sl@0: int j = 1; sl@0: while ((b & (0xFFU >> j)) != 0) sl@0: ++j; sl@0: aor->u.addressRange->min->flags |= 8 - j; sl@0: } sl@0: sl@0: for (i = length; i > 0 && max[i - 1] == 0xFF; --i) sl@0: ; sl@0: if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i)) sl@0: goto err; sl@0: aor->u.addressRange->max->flags &= ~7; sl@0: aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT; sl@0: if (i > 0) { sl@0: unsigned char b = max[i - 1]; sl@0: int j = 1; sl@0: while ((b & (0xFFU >> j)) != (0xFFU >> j)) sl@0: ++j; sl@0: aor->u.addressRange->max->flags |= 8 - j; sl@0: } sl@0: sl@0: *result = aor; sl@0: return 1; sl@0: sl@0: err: sl@0: IPAddressOrRange_free(aor); sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: * Construct a new address family or find an existing one. sl@0: */ sl@0: static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr, sl@0: const unsigned afi, sl@0: const unsigned *safi) sl@0: { sl@0: IPAddressFamily *f; sl@0: unsigned char key[3]; sl@0: unsigned keylen; sl@0: int i; sl@0: sl@0: key[0] = (afi >> 8) & 0xFF; sl@0: key[1] = afi & 0xFF; sl@0: if (safi != NULL) { sl@0: key[2] = *safi & 0xFF; sl@0: keylen = 3; sl@0: } else { sl@0: keylen = 2; sl@0: } sl@0: sl@0: for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { sl@0: f = sk_IPAddressFamily_value(addr, i); sl@0: assert(f->addressFamily->data != NULL); sl@0: if (f->addressFamily->length == keylen && sl@0: !memcmp(f->addressFamily->data, key, keylen)) sl@0: return f; sl@0: } sl@0: sl@0: if ((f = IPAddressFamily_new()) == NULL) sl@0: goto err; sl@0: if (f->ipAddressChoice == NULL && sl@0: (f->ipAddressChoice = IPAddressChoice_new()) == NULL) sl@0: goto err; sl@0: if (f->addressFamily == NULL && sl@0: (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL) sl@0: goto err; sl@0: if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen)) sl@0: goto err; sl@0: if (!sk_IPAddressFamily_push(addr, f)) sl@0: goto err; sl@0: sl@0: return f; sl@0: sl@0: err: sl@0: IPAddressFamily_free(f); sl@0: return NULL; sl@0: } sl@0: sl@0: /* sl@0: * Add an inheritance element. sl@0: */ sl@0: int v3_addr_add_inherit(IPAddrBlocks *addr, sl@0: const unsigned afi, sl@0: const unsigned *safi) sl@0: { sl@0: IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); sl@0: if (f == NULL || sl@0: f->ipAddressChoice == NULL || sl@0: (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && sl@0: f->ipAddressChoice->u.addressesOrRanges != NULL)) sl@0: return 0; sl@0: if (f->ipAddressChoice->type == IPAddressChoice_inherit && sl@0: f->ipAddressChoice->u.inherit != NULL) sl@0: return 1; sl@0: if (f->ipAddressChoice->u.inherit == NULL && sl@0: (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL) sl@0: return 0; sl@0: f->ipAddressChoice->type = IPAddressChoice_inherit; sl@0: return 1; sl@0: } sl@0: sl@0: /* sl@0: * Construct an IPAddressOrRange sequence, or return an existing one. sl@0: */ sl@0: static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr, sl@0: const unsigned afi, sl@0: const unsigned *safi) sl@0: { sl@0: IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); sl@0: IPAddressOrRanges *aors = NULL; sl@0: sl@0: if (f == NULL || sl@0: f->ipAddressChoice == NULL || sl@0: (f->ipAddressChoice->type == IPAddressChoice_inherit && sl@0: f->ipAddressChoice->u.inherit != NULL)) sl@0: return NULL; sl@0: if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) sl@0: aors = f->ipAddressChoice->u.addressesOrRanges; sl@0: if (aors != NULL) sl@0: return aors; sl@0: if ((aors = sk_IPAddressOrRange_new_null()) == NULL) sl@0: return NULL; sl@0: switch (afi) { sl@0: case IANA_AFI_IPV4: sl@0: sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp); sl@0: break; sl@0: case IANA_AFI_IPV6: sl@0: sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp); sl@0: break; sl@0: } sl@0: f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges; sl@0: f->ipAddressChoice->u.addressesOrRanges = aors; sl@0: return aors; sl@0: } sl@0: sl@0: /* sl@0: * Add a prefix. sl@0: */ sl@0: int v3_addr_add_prefix(IPAddrBlocks *addr, sl@0: const unsigned afi, sl@0: const unsigned *safi, sl@0: unsigned char *a, sl@0: const int prefixlen) sl@0: { sl@0: IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); sl@0: IPAddressOrRange *aor; sl@0: if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen)) sl@0: return 0; sl@0: if (sk_IPAddressOrRange_push(aors, aor)) sl@0: return 1; sl@0: IPAddressOrRange_free(aor); sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: * Add a range. sl@0: */ sl@0: int v3_addr_add_range(IPAddrBlocks *addr, sl@0: const unsigned afi, sl@0: const unsigned *safi, sl@0: unsigned char *min, sl@0: unsigned char *max) sl@0: { sl@0: IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); sl@0: IPAddressOrRange *aor; sl@0: int length = length_from_afi(afi); sl@0: if (aors == NULL) sl@0: return 0; sl@0: if (!make_addressRange(&aor, min, max, length)) sl@0: return 0; sl@0: if (sk_IPAddressOrRange_push(aors, aor)) sl@0: return 1; sl@0: IPAddressOrRange_free(aor); sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: * Extract min and max values from an IPAddressOrRange. sl@0: */ sl@0: static void extract_min_max(IPAddressOrRange *aor, sl@0: unsigned char *min, sl@0: unsigned char *max, sl@0: int length) sl@0: { sl@0: assert(aor != NULL && min != NULL && max != NULL); sl@0: switch (aor->type) { sl@0: case IPAddressOrRange_addressPrefix: sl@0: addr_expand(min, aor->u.addressPrefix, length, 0x00); sl@0: addr_expand(max, aor->u.addressPrefix, length, 0xFF); sl@0: return; sl@0: case IPAddressOrRange_addressRange: sl@0: addr_expand(min, aor->u.addressRange->min, length, 0x00); sl@0: addr_expand(max, aor->u.addressRange->max, length, 0xFF); sl@0: return; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: * Public wrapper for extract_min_max(). sl@0: */ sl@0: int v3_addr_get_range(IPAddressOrRange *aor, sl@0: const unsigned afi, sl@0: unsigned char *min, sl@0: unsigned char *max, sl@0: const int length) sl@0: { sl@0: int afi_length = length_from_afi(afi); sl@0: if (aor == NULL || min == NULL || max == NULL || sl@0: afi_length == 0 || length < afi_length || sl@0: (aor->type != IPAddressOrRange_addressPrefix && sl@0: aor->type != IPAddressOrRange_addressRange)) sl@0: return 0; sl@0: extract_min_max(aor, min, max, afi_length); sl@0: return afi_length; sl@0: } sl@0: sl@0: /* sl@0: * Sort comparision function for a sequence of IPAddressFamily. sl@0: * sl@0: * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about sl@0: * the ordering: I can read it as meaning that IPv6 without a SAFI sl@0: * comes before IPv4 with a SAFI, which seems pretty weird. The sl@0: * examples in appendix B suggest that the author intended the sl@0: * null-SAFI rule to apply only within a single AFI, which is what I sl@0: * would have expected and is what the following code implements. sl@0: */ sl@0: static int IPAddressFamily_cmp(const IPAddressFamily * const *a_, sl@0: const IPAddressFamily * const *b_) sl@0: { sl@0: const ASN1_OCTET_STRING *a = (*a_)->addressFamily; sl@0: const ASN1_OCTET_STRING *b = (*b_)->addressFamily; sl@0: int len = ((a->length <= b->length) ? a->length : b->length); sl@0: int cmp = memcmp(a->data, b->data, len); sl@0: return cmp ? cmp : a->length - b->length; sl@0: } sl@0: sl@0: /* sl@0: * Check whether an IPAddrBLocks is in canonical form. sl@0: */ sl@0: int v3_addr_is_canonical(IPAddrBlocks *addr) sl@0: { sl@0: unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; sl@0: unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; sl@0: IPAddressOrRanges *aors; sl@0: int i, j, k; sl@0: sl@0: /* sl@0: * Empty extension is cannonical. sl@0: */ sl@0: if (addr == NULL) sl@0: return 1; sl@0: sl@0: /* sl@0: * Check whether the top-level list is in order. sl@0: */ sl@0: for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) { sl@0: const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i); sl@0: const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1); sl@0: if (IPAddressFamily_cmp(&a, &b) >= 0) sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: * Top level's ok, now check each address family. sl@0: */ sl@0: for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { sl@0: IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); sl@0: int length = length_from_afi(v3_addr_get_afi(f)); sl@0: sl@0: /* sl@0: * Inheritance is canonical. Anything other than inheritance or sl@0: * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something. sl@0: */ sl@0: if (f == NULL || f->ipAddressChoice == NULL) sl@0: return 0; sl@0: switch (f->ipAddressChoice->type) { sl@0: case IPAddressChoice_inherit: sl@0: continue; sl@0: case IPAddressChoice_addressesOrRanges: sl@0: break; sl@0: default: sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: * It's an IPAddressOrRanges sequence, check it. sl@0: */ sl@0: aors = f->ipAddressChoice->u.addressesOrRanges; sl@0: if (sk_IPAddressOrRange_num(aors) == 0) sl@0: return 0; sl@0: for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) { sl@0: IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); sl@0: IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1); sl@0: sl@0: extract_min_max(a, a_min, a_max, length); sl@0: extract_min_max(b, b_min, b_max, length); sl@0: sl@0: /* sl@0: * Punt misordered list, overlapping start, or inverted range. sl@0: */ sl@0: if (memcmp(a_min, b_min, length) >= 0 || sl@0: memcmp(a_min, a_max, length) > 0 || sl@0: memcmp(b_min, b_max, length) > 0) sl@0: return 0; sl@0: sl@0: /* sl@0: * Punt if adjacent or overlapping. Check for adjacency by sl@0: * subtracting one from b_min first. sl@0: */ sl@0: for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) sl@0: ; sl@0: if (memcmp(a_max, b_min, length) >= 0) sl@0: return 0; sl@0: sl@0: /* sl@0: * Check for range that should be expressed as a prefix. sl@0: */ sl@0: if (a->type == IPAddressOrRange_addressRange && sl@0: range_should_be_prefix(a_min, a_max, length) >= 0) sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: * Check final range to see if it should be a prefix. sl@0: */ sl@0: j = sk_IPAddressOrRange_num(aors) - 1; sl@0: { sl@0: IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); sl@0: if (a->type == IPAddressOrRange_addressRange) { sl@0: extract_min_max(a, a_min, a_max, length); sl@0: if (range_should_be_prefix(a_min, a_max, length) >= 0) sl@0: return 0; sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: * If we made it through all that, we're happy. sl@0: */ sl@0: return 1; sl@0: } sl@0: sl@0: /* sl@0: * Whack an IPAddressOrRanges into canonical form. sl@0: */ sl@0: static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors, sl@0: const unsigned afi) sl@0: { sl@0: int i, j, length = length_from_afi(afi); sl@0: sl@0: /* sl@0: * Sort the IPAddressOrRanges sequence. sl@0: */ sl@0: sk_IPAddressOrRange_sort(aors); sl@0: sl@0: /* sl@0: * Clean up representation issues, punt on duplicates or overlaps. sl@0: */ sl@0: for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) { sl@0: IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i); sl@0: IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1); sl@0: unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; sl@0: unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; sl@0: sl@0: extract_min_max(a, a_min, a_max, length); sl@0: extract_min_max(b, b_min, b_max, length); sl@0: sl@0: /* sl@0: * Punt overlaps. sl@0: */ sl@0: if (memcmp(a_max, b_min, length) >= 0) sl@0: return 0; sl@0: sl@0: /* sl@0: * Merge if a and b are adjacent. We check for sl@0: * adjacency by subtracting one from b_min first. sl@0: */ sl@0: for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) sl@0: ; sl@0: if (memcmp(a_max, b_min, length) == 0) { sl@0: IPAddressOrRange *merged; sl@0: if (!make_addressRange(&merged, a_min, b_max, length)) sl@0: return 0; sl@0: sk_IPAddressOrRange_set(aors, i, merged); sl@0: sk_IPAddressOrRange_delete(aors, i + 1); sl@0: IPAddressOrRange_free(a); sl@0: IPAddressOrRange_free(b); sl@0: --i; sl@0: continue; sl@0: } sl@0: } sl@0: sl@0: return 1; sl@0: } sl@0: sl@0: /* sl@0: * Whack an IPAddrBlocks extension into canonical form. sl@0: */ sl@0: int v3_addr_canonize(IPAddrBlocks *addr) sl@0: { sl@0: int i; sl@0: for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { sl@0: IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); sl@0: if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && sl@0: !IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges, sl@0: v3_addr_get_afi(f))) sl@0: return 0; sl@0: } sl@0: sk_IPAddressFamily_sort(addr); sl@0: assert(v3_addr_is_canonical(addr)); sl@0: return 1; sl@0: } sl@0: sl@0: /* sl@0: * v2i handler for the IPAddrBlocks extension. sl@0: */ sl@0: static void *v2i_IPAddrBlocks(struct v3_ext_method *method, sl@0: struct v3_ext_ctx *ctx, sl@0: STACK_OF(CONF_VALUE) *values) sl@0: { sl@0: static const char v4addr_chars[] = "0123456789."; sl@0: static const char v6addr_chars[] = "0123456789.:abcdefABCDEF"; sl@0: IPAddrBlocks *addr = NULL; sl@0: char *s = NULL, *t; sl@0: int i; sl@0: sl@0: if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) { sl@0: X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); sl@0: return NULL; sl@0: } sl@0: sl@0: for (i = 0; i < sk_CONF_VALUE_num(values); i++) { sl@0: CONF_VALUE *val = sk_CONF_VALUE_value(values, i); sl@0: unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN]; sl@0: unsigned afi, *safi = NULL, safi_; sl@0: const char *addr_chars; sl@0: int prefixlen, i1, i2, delim, length; sl@0: sl@0: if ( !name_cmp(val->name, "IPv4")) { sl@0: afi = IANA_AFI_IPV4; sl@0: } else if (!name_cmp(val->name, "IPv6")) { sl@0: afi = IANA_AFI_IPV6; sl@0: } else if (!name_cmp(val->name, "IPv4-SAFI")) { sl@0: afi = IANA_AFI_IPV4; sl@0: safi = &safi_; sl@0: } else if (!name_cmp(val->name, "IPv6-SAFI")) { sl@0: afi = IANA_AFI_IPV6; sl@0: safi = &safi_; sl@0: } else { sl@0: X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR); sl@0: X509V3_conf_err(val); sl@0: goto err; sl@0: } sl@0: sl@0: switch (afi) { sl@0: case IANA_AFI_IPV4: sl@0: addr_chars = v4addr_chars; sl@0: break; sl@0: case IANA_AFI_IPV6: sl@0: addr_chars = v6addr_chars; sl@0: break; sl@0: } sl@0: sl@0: length = length_from_afi(afi); sl@0: sl@0: /* sl@0: * Handle SAFI, if any, and BUF_strdup() so we can null-terminate sl@0: * the other input values. sl@0: */ sl@0: if (safi != NULL) { sl@0: *safi = strtoul(val->value, &t, 0); sl@0: t += strspn(t, " \t"); sl@0: if (*safi > 0xFF || *t++ != ':') { sl@0: X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI); sl@0: X509V3_conf_err(val); sl@0: goto err; sl@0: } sl@0: t += strspn(t, " \t"); sl@0: s = BUF_strdup(t); sl@0: } else { sl@0: s = BUF_strdup(val->value); sl@0: } sl@0: if (s == NULL) { sl@0: X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); sl@0: goto err; sl@0: } sl@0: sl@0: /* sl@0: * Check for inheritance. Not worth additional complexity to sl@0: * optimize this (seldom-used) case. sl@0: */ sl@0: if (!strcmp(s, "inherit")) { sl@0: if (!v3_addr_add_inherit(addr, afi, safi)) { sl@0: X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE); sl@0: X509V3_conf_err(val); sl@0: goto err; sl@0: } sl@0: OPENSSL_free(s); sl@0: s = NULL; sl@0: continue; sl@0: } sl@0: sl@0: i1 = strspn(s, addr_chars); sl@0: i2 = i1 + strspn(s + i1, " \t"); sl@0: delim = s[i2++]; sl@0: s[i1] = '\0'; sl@0: sl@0: if (a2i_ipadd(min, s) != length) { sl@0: X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS); sl@0: X509V3_conf_err(val); sl@0: goto err; sl@0: } sl@0: sl@0: switch (delim) { sl@0: case '/': sl@0: prefixlen = (int) strtoul(s + i2, &t, 10); sl@0: if (t == s + i2 || *t != '\0') { sl@0: X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); sl@0: X509V3_conf_err(val); sl@0: goto err; sl@0: } sl@0: if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) { sl@0: X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); sl@0: goto err; sl@0: } sl@0: break; sl@0: case '-': sl@0: i1 = i2 + strspn(s + i2, " \t"); sl@0: i2 = i1 + strspn(s + i1, addr_chars); sl@0: if (i1 == i2 || s[i2] != '\0') { sl@0: X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); sl@0: X509V3_conf_err(val); sl@0: goto err; sl@0: } sl@0: if (a2i_ipadd(max, s + i1) != length) { sl@0: X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS); sl@0: X509V3_conf_err(val); sl@0: goto err; sl@0: } sl@0: if (!v3_addr_add_range(addr, afi, safi, min, max)) { sl@0: X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); sl@0: goto err; sl@0: } sl@0: break; sl@0: case '\0': sl@0: if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) { sl@0: X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); sl@0: goto err; sl@0: } sl@0: break; sl@0: default: sl@0: X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); sl@0: X509V3_conf_err(val); sl@0: goto err; sl@0: } sl@0: sl@0: OPENSSL_free(s); sl@0: s = NULL; sl@0: } sl@0: sl@0: /* sl@0: * Canonize the result, then we're done. sl@0: */ sl@0: if (!v3_addr_canonize(addr)) sl@0: goto err; sl@0: return addr; sl@0: sl@0: err: sl@0: OPENSSL_free(s); sl@0: sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); sl@0: return NULL; sl@0: } sl@0: sl@0: /* sl@0: * OpenSSL dispatch sl@0: */ sl@0: const X509V3_EXT_METHOD v3_addr = { sl@0: NID_sbgp_ipAddrBlock, /* nid */ sl@0: 0, /* flags */ sl@0: ASN1_ITEM_ref(IPAddrBlocks), /* template */ sl@0: 0, 0, 0, 0, /* old functions, ignored */ sl@0: 0, /* i2s */ sl@0: 0, /* s2i */ sl@0: 0, /* i2v */ sl@0: v2i_IPAddrBlocks, /* v2i */ sl@0: i2r_IPAddrBlocks, /* i2r */ sl@0: 0, /* r2i */ sl@0: NULL /* extension-specific data */ sl@0: }; sl@0: sl@0: /* sl@0: * Figure out whether extension sues inheritance. sl@0: */ sl@0: int v3_addr_inherits(IPAddrBlocks *addr) sl@0: { sl@0: int i; sl@0: if (addr == NULL) sl@0: return 0; sl@0: for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { sl@0: IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); sl@0: if (f->ipAddressChoice->type == IPAddressChoice_inherit) sl@0: return 1; sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: * Figure out whether parent contains child. sl@0: */ sl@0: static int addr_contains(IPAddressOrRanges *parent, sl@0: IPAddressOrRanges *child, sl@0: int length) sl@0: { sl@0: unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN]; sl@0: unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN]; sl@0: int p, c; sl@0: sl@0: if (child == NULL || parent == child) sl@0: return 1; sl@0: if (parent == NULL) sl@0: return 0; sl@0: sl@0: p = 0; sl@0: for (c = 0; c < sk_IPAddressOrRange_num(child); c++) { sl@0: extract_min_max(sk_IPAddressOrRange_value(child, c), sl@0: c_min, c_max, length); sl@0: for (;; p++) { sl@0: if (p >= sk_IPAddressOrRange_num(parent)) sl@0: return 0; sl@0: extract_min_max(sk_IPAddressOrRange_value(parent, p), sl@0: p_min, p_max, length); sl@0: if (memcmp(p_max, c_max, length) < 0) sl@0: continue; sl@0: if (memcmp(p_min, c_min, length) > 0) sl@0: return 0; sl@0: break; sl@0: } sl@0: } sl@0: sl@0: return 1; sl@0: } sl@0: sl@0: /* sl@0: * Test whether a is a subset of b. sl@0: */ sl@0: int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b) sl@0: { sl@0: int i; sl@0: if (a == NULL || a == b) sl@0: return 1; sl@0: if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b)) sl@0: return 0; sl@0: sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp); sl@0: for (i = 0; i < sk_IPAddressFamily_num(a); i++) { sl@0: IPAddressFamily *fa = sk_IPAddressFamily_value(a, i); sl@0: int j = sk_IPAddressFamily_find(b, fa); sl@0: IPAddressFamily *fb = sk_IPAddressFamily_value(b, j); sl@0: if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges, sl@0: fa->ipAddressChoice->u.addressesOrRanges, sl@0: length_from_afi(v3_addr_get_afi(fb)))) sl@0: return 0; sl@0: } sl@0: return 1; sl@0: } sl@0: sl@0: /* sl@0: * Validation error handling via callback. sl@0: */ sl@0: #define validation_err(_err_) \ sl@0: do { \ sl@0: if (ctx != NULL) { \ sl@0: ctx->error = _err_; \ sl@0: ctx->error_depth = i; \ sl@0: ctx->current_cert = x; \ sl@0: ret = ctx->verify_cb(0, ctx); \ sl@0: } else { \ sl@0: ret = 0; \ sl@0: } \ sl@0: if (!ret) \ sl@0: goto done; \ sl@0: } while (0) sl@0: sl@0: /* sl@0: * Core code for RFC 3779 2.3 path validation. sl@0: */ sl@0: static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx, sl@0: STACK_OF(X509) *chain, sl@0: IPAddrBlocks *ext) sl@0: { sl@0: IPAddrBlocks *child = NULL; sl@0: int i, j, ret = 1; sl@0: X509 *x = NULL; sl@0: sl@0: assert(chain != NULL && sk_X509_num(chain) > 0); sl@0: assert(ctx != NULL || ext != NULL); sl@0: assert(ctx == NULL || ctx->verify_cb != NULL); sl@0: sl@0: /* sl@0: * Figure out where to start. If we don't have an extension to sl@0: * check, we're done. Otherwise, check canonical form and sl@0: * set up for walking up the chain. sl@0: */ sl@0: if (ext != NULL) { sl@0: i = -1; sl@0: } else { sl@0: i = 0; sl@0: x = sk_X509_value(chain, i); sl@0: assert(x != NULL); sl@0: if ((ext = x->rfc3779_addr) == NULL) sl@0: goto done; sl@0: } sl@0: if (!v3_addr_is_canonical(ext)) sl@0: validation_err(X509_V_ERR_INVALID_EXTENSION); sl@0: sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp); sl@0: if ((child = sk_IPAddressFamily_dup(ext)) == NULL) { sl@0: X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE); sl@0: ret = 0; sl@0: goto done; sl@0: } sl@0: sl@0: /* sl@0: * Now walk up the chain. No cert may list resources that its sl@0: * parent doesn't list. sl@0: */ sl@0: for (i++; i < sk_X509_num(chain); i++) { sl@0: x = sk_X509_value(chain, i); sl@0: assert(x != NULL); sl@0: if (!v3_addr_is_canonical(x->rfc3779_addr)) sl@0: validation_err(X509_V_ERR_INVALID_EXTENSION); sl@0: if (x->rfc3779_addr == NULL) { sl@0: for (j = 0; j < sk_IPAddressFamily_num(child); j++) { sl@0: IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); sl@0: if (fc->ipAddressChoice->type != IPAddressChoice_inherit) { sl@0: validation_err(X509_V_ERR_UNNESTED_RESOURCE); sl@0: break; sl@0: } sl@0: } sl@0: continue; sl@0: } sl@0: sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp); sl@0: for (j = 0; j < sk_IPAddressFamily_num(child); j++) { sl@0: IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); sl@0: int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc); sl@0: IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k); sl@0: if (fp == NULL) { sl@0: if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { sl@0: validation_err(X509_V_ERR_UNNESTED_RESOURCE); sl@0: break; sl@0: } sl@0: continue; sl@0: } sl@0: if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { sl@0: if (fc->ipAddressChoice->type == IPAddressChoice_inherit || sl@0: addr_contains(fp->ipAddressChoice->u.addressesOrRanges, sl@0: fc->ipAddressChoice->u.addressesOrRanges, sl@0: length_from_afi(v3_addr_get_afi(fc)))) sl@0: sk_IPAddressFamily_set(child, j, fp); sl@0: else sl@0: validation_err(X509_V_ERR_UNNESTED_RESOURCE); sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: * Trust anchor can't inherit. sl@0: */ sl@0: if (x->rfc3779_addr != NULL) { sl@0: for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) { sl@0: IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j); sl@0: if (fp->ipAddressChoice->type == IPAddressChoice_inherit && sl@0: sk_IPAddressFamily_find(child, fp) >= 0) sl@0: validation_err(X509_V_ERR_UNNESTED_RESOURCE); sl@0: } sl@0: } sl@0: sl@0: done: sl@0: sk_IPAddressFamily_free(child); sl@0: return ret; sl@0: } sl@0: sl@0: #undef validation_err sl@0: sl@0: /* sl@0: * RFC 3779 2.3 path validation -- called from X509_verify_cert(). sl@0: */ sl@0: int v3_addr_validate_path(X509_STORE_CTX *ctx) sl@0: { sl@0: return v3_addr_validate_path_internal(ctx, ctx->chain, NULL); sl@0: } sl@0: sl@0: /* sl@0: * RFC 3779 2.3 path validation of an extension. sl@0: * Test whether chain covers extension. sl@0: */ sl@0: int v3_addr_validate_resource_set(STACK_OF(X509) *chain, sl@0: IPAddrBlocks *ext, sl@0: int allow_inheritance) sl@0: { sl@0: if (ext == NULL) sl@0: return 1; sl@0: if (chain == NULL || sk_X509_num(chain) == 0) sl@0: return 0; sl@0: if (!allow_inheritance && v3_addr_inherits(ext)) sl@0: return 0; sl@0: return v3_addr_validate_path_internal(NULL, chain, ext); sl@0: } sl@0: sl@0: #endif /* OPENSSL_NO_RFC3779 */