sl@0
|
1 |
//
|
sl@0
|
2 |
// Copyright (c) 2000-2002
|
sl@0
|
3 |
// Joerg Walter, Mathias Koch
|
sl@0
|
4 |
//
|
sl@0
|
5 |
// Permission to use, copy, modify, distribute and sell this software
|
sl@0
|
6 |
// and its documentation for any purpose is hereby granted without fee,
|
sl@0
|
7 |
// provided that the above copyright notice appear in all copies and
|
sl@0
|
8 |
// that both that copyright notice and this permission notice appear
|
sl@0
|
9 |
// in supporting documentation. The authors make no representations
|
sl@0
|
10 |
// about the suitability of this software for any purpose.
|
sl@0
|
11 |
// It is provided "as is" without express or implied warranty.
|
sl@0
|
12 |
//
|
sl@0
|
13 |
// The authors gratefully acknowledge the support of
|
sl@0
|
14 |
// GeNeSys mbH & Co. KG in producing this work.
|
sl@0
|
15 |
//
|
sl@0
|
16 |
|
sl@0
|
17 |
#ifndef _BOOST_UBLAS_BLAS_
|
sl@0
|
18 |
#define _BOOST_UBLAS_BLAS_
|
sl@0
|
19 |
|
sl@0
|
20 |
#include <boost/numeric/ublas/traits.hpp>
|
sl@0
|
21 |
|
sl@0
|
22 |
namespace boost { namespace numeric { namespace ublas {
|
sl@0
|
23 |
|
sl@0
|
24 |
namespace blas_1 {
|
sl@0
|
25 |
|
sl@0
|
26 |
/** \namespace boost::numeric::ublas::blas_1
|
sl@0
|
27 |
\brief wrapper functions for level 1 blas
|
sl@0
|
28 |
*/
|
sl@0
|
29 |
|
sl@0
|
30 |
|
sl@0
|
31 |
/** \brief 1-Norm: \f$\sum_i |x_i|\f$
|
sl@0
|
32 |
\ingroup blas1
|
sl@0
|
33 |
*/
|
sl@0
|
34 |
template<class V>
|
sl@0
|
35 |
typename type_traits<typename V::value_type>::real_type
|
sl@0
|
36 |
asum (const V &v) {
|
sl@0
|
37 |
return norm_1 (v);
|
sl@0
|
38 |
}
|
sl@0
|
39 |
/** \brief 2-Norm: \f$\sum_i |x_i|^2\f$
|
sl@0
|
40 |
\ingroup blas1
|
sl@0
|
41 |
*/
|
sl@0
|
42 |
template<class V>
|
sl@0
|
43 |
typename type_traits<typename V::value_type>::real_type
|
sl@0
|
44 |
nrm2 (const V &v) {
|
sl@0
|
45 |
return norm_2 (v);
|
sl@0
|
46 |
}
|
sl@0
|
47 |
/** \brief element with larges absolute value: \f$\max_i |x_i|\f$
|
sl@0
|
48 |
\ingroup blas1
|
sl@0
|
49 |
*/
|
sl@0
|
50 |
template<class V>
|
sl@0
|
51 |
typename type_traits<typename V::value_type>::real_type
|
sl@0
|
52 |
amax (const V &v) {
|
sl@0
|
53 |
return norm_inf (v);
|
sl@0
|
54 |
}
|
sl@0
|
55 |
|
sl@0
|
56 |
/** \brief inner product of vectors \a v1 and \a v2
|
sl@0
|
57 |
\ingroup blas1
|
sl@0
|
58 |
*/
|
sl@0
|
59 |
template<class V1, class V2>
|
sl@0
|
60 |
typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type
|
sl@0
|
61 |
dot (const V1 &v1, const V2 &v2) {
|
sl@0
|
62 |
return inner_prod (v1, v2);
|
sl@0
|
63 |
}
|
sl@0
|
64 |
|
sl@0
|
65 |
/** \brief copy vector \a v2 to \a v1
|
sl@0
|
66 |
\ingroup blas1
|
sl@0
|
67 |
*/
|
sl@0
|
68 |
template<class V1, class V2>
|
sl@0
|
69 |
V1 &
|
sl@0
|
70 |
copy (V1 &v1, const V2 &v2) {
|
sl@0
|
71 |
return v1.assign (v2);
|
sl@0
|
72 |
}
|
sl@0
|
73 |
|
sl@0
|
74 |
/** \brief swap vectors \a v1 and \a v2
|
sl@0
|
75 |
\ingroup blas1
|
sl@0
|
76 |
*/
|
sl@0
|
77 |
template<class V1, class V2>
|
sl@0
|
78 |
void swap (V1 &v1, V2 &v2) {
|
sl@0
|
79 |
v1.swap (v2);
|
sl@0
|
80 |
}
|
sl@0
|
81 |
|
sl@0
|
82 |
/** \brief scale vector \a v with scalar \a t
|
sl@0
|
83 |
\ingroup blas1
|
sl@0
|
84 |
*/
|
sl@0
|
85 |
template<class V, class T>
|
sl@0
|
86 |
V &
|
sl@0
|
87 |
scal (V &v, const T &t) {
|
sl@0
|
88 |
return v *= t;
|
sl@0
|
89 |
}
|
sl@0
|
90 |
|
sl@0
|
91 |
/** \brief compute \a v1 = \a v1 + \a t * \a v2
|
sl@0
|
92 |
\ingroup blas1
|
sl@0
|
93 |
*/
|
sl@0
|
94 |
template<class V1, class T, class V2>
|
sl@0
|
95 |
V1 &
|
sl@0
|
96 |
axpy (V1 &v1, const T &t, const V2 &v2) {
|
sl@0
|
97 |
return v1.plus_assign (t * v2);
|
sl@0
|
98 |
}
|
sl@0
|
99 |
|
sl@0
|
100 |
/** \brief apply plane rotation
|
sl@0
|
101 |
\ingroup blas1
|
sl@0
|
102 |
*/
|
sl@0
|
103 |
template<class T1, class V1, class T2, class V2>
|
sl@0
|
104 |
void
|
sl@0
|
105 |
rot (const T1 &t1, V1 &v1, const T2 &t2, V2 &v2) {
|
sl@0
|
106 |
typedef typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type promote_type;
|
sl@0
|
107 |
vector<promote_type> vt (t1 * v1 + t2 * v2);
|
sl@0
|
108 |
v2.assign (- t2 * v1 + t1 * v2);
|
sl@0
|
109 |
v1.assign (vt);
|
sl@0
|
110 |
}
|
sl@0
|
111 |
|
sl@0
|
112 |
}
|
sl@0
|
113 |
|
sl@0
|
114 |
namespace blas_2 {
|
sl@0
|
115 |
|
sl@0
|
116 |
/** \namespace boost::numeric::ublas::blas_2
|
sl@0
|
117 |
\brief wrapper functions for level 2 blas
|
sl@0
|
118 |
*/
|
sl@0
|
119 |
|
sl@0
|
120 |
/** \brief multiply vector \a v with triangular matrix \a m
|
sl@0
|
121 |
\ingroup blas2
|
sl@0
|
122 |
\todo: check that matrix is really triangular
|
sl@0
|
123 |
*/
|
sl@0
|
124 |
template<class V, class M>
|
sl@0
|
125 |
V &
|
sl@0
|
126 |
tmv (V &v, const M &m) {
|
sl@0
|
127 |
return v = prod (m, v);
|
sl@0
|
128 |
}
|
sl@0
|
129 |
|
sl@0
|
130 |
/** \brief solve \a m \a x = \a v in place, \a m is triangular matrix
|
sl@0
|
131 |
\ingroup blas2
|
sl@0
|
132 |
*/
|
sl@0
|
133 |
template<class V, class M, class C>
|
sl@0
|
134 |
V &
|
sl@0
|
135 |
tsv (V &v, const M &m, C) {
|
sl@0
|
136 |
return v = solve (m, v, C ());
|
sl@0
|
137 |
}
|
sl@0
|
138 |
|
sl@0
|
139 |
/** \brief compute \a v1 = \a t1 * \a v1 + \a t2 * (\a m * \a v2)
|
sl@0
|
140 |
\ingroup blas2
|
sl@0
|
141 |
*/
|
sl@0
|
142 |
template<class V1, class T1, class T2, class M, class V2>
|
sl@0
|
143 |
V1 &
|
sl@0
|
144 |
gmv (V1 &v1, const T1 &t1, const T2 &t2, const M &m, const V2 &v2) {
|
sl@0
|
145 |
return v1 = t1 * v1 + t2 * prod (m, v2);
|
sl@0
|
146 |
}
|
sl@0
|
147 |
|
sl@0
|
148 |
/** \brief rank 1 update: \a m = \a m + \a t * (\a v1 * \a v2<sup>T</sup>)
|
sl@0
|
149 |
\ingroup blas2
|
sl@0
|
150 |
*/
|
sl@0
|
151 |
template<class M, class T, class V1, class V2>
|
sl@0
|
152 |
M &
|
sl@0
|
153 |
gr (M &m, const T &t, const V1 &v1, const V2 &v2) {
|
sl@0
|
154 |
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
|
sl@0
|
155 |
return m += t * outer_prod (v1, v2);
|
sl@0
|
156 |
#else
|
sl@0
|
157 |
return m = m + t * outer_prod (v1, v2);
|
sl@0
|
158 |
#endif
|
sl@0
|
159 |
}
|
sl@0
|
160 |
|
sl@0
|
161 |
/** \brief symmetric rank 1 update: \a m = \a m + \a t * (\a v * \a v<sup>T</sup>)
|
sl@0
|
162 |
\ingroup blas2
|
sl@0
|
163 |
*/
|
sl@0
|
164 |
template<class M, class T, class V>
|
sl@0
|
165 |
M &
|
sl@0
|
166 |
sr (M &m, const T &t, const V &v) {
|
sl@0
|
167 |
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
|
sl@0
|
168 |
return m += t * outer_prod (v, v);
|
sl@0
|
169 |
#else
|
sl@0
|
170 |
return m = m + t * outer_prod (v, v);
|
sl@0
|
171 |
#endif
|
sl@0
|
172 |
}
|
sl@0
|
173 |
/** \brief hermitian rank 1 update: \a m = \a m + \a t * (\a v * \a v<sup>H</sup>)
|
sl@0
|
174 |
\ingroup blas2
|
sl@0
|
175 |
*/
|
sl@0
|
176 |
template<class M, class T, class V>
|
sl@0
|
177 |
M &
|
sl@0
|
178 |
hr (M &m, const T &t, const V &v) {
|
sl@0
|
179 |
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
|
sl@0
|
180 |
return m += t * outer_prod (v, conj (v));
|
sl@0
|
181 |
#else
|
sl@0
|
182 |
return m = m + t * outer_prod (v, conj (v));
|
sl@0
|
183 |
#endif
|
sl@0
|
184 |
}
|
sl@0
|
185 |
|
sl@0
|
186 |
/** \brief symmetric rank 2 update: \a m = \a m + \a t *
|
sl@0
|
187 |
(\a v1 * \a v2<sup>T</sup> + \a v2 * \a v1<sup>T</sup>)
|
sl@0
|
188 |
\ingroup blas2
|
sl@0
|
189 |
*/
|
sl@0
|
190 |
template<class M, class T, class V1, class V2>
|
sl@0
|
191 |
M &
|
sl@0
|
192 |
sr2 (M &m, const T &t, const V1 &v1, const V2 &v2) {
|
sl@0
|
193 |
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
|
sl@0
|
194 |
return m += t * (outer_prod (v1, v2) + outer_prod (v2, v1));
|
sl@0
|
195 |
#else
|
sl@0
|
196 |
return m = m + t * (outer_prod (v1, v2) + outer_prod (v2, v1));
|
sl@0
|
197 |
#endif
|
sl@0
|
198 |
}
|
sl@0
|
199 |
/** \brief hermitian rank 2 update: \a m = \a m +
|
sl@0
|
200 |
\a t * (\a v1 * \a v2<sup>H</sup>)
|
sl@0
|
201 |
+ \a v2 * (\a t * \a v1)<sup>H</sup>)
|
sl@0
|
202 |
\ingroup blas2
|
sl@0
|
203 |
*/
|
sl@0
|
204 |
template<class M, class T, class V1, class V2>
|
sl@0
|
205 |
M &
|
sl@0
|
206 |
hr2 (M &m, const T &t, const V1 &v1, const V2 &v2) {
|
sl@0
|
207 |
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
|
sl@0
|
208 |
return m += t * outer_prod (v1, conj (v2)) + type_traits<T>::conj (t) * outer_prod (v2, conj (v1));
|
sl@0
|
209 |
#else
|
sl@0
|
210 |
return m = m + t * outer_prod (v1, conj (v2)) + type_traits<T>::conj (t) * outer_prod (v2, conj (v1));
|
sl@0
|
211 |
#endif
|
sl@0
|
212 |
}
|
sl@0
|
213 |
|
sl@0
|
214 |
}
|
sl@0
|
215 |
|
sl@0
|
216 |
namespace blas_3 {
|
sl@0
|
217 |
|
sl@0
|
218 |
/** \namespace boost::numeric::ublas::blas_3
|
sl@0
|
219 |
\brief wrapper functions for level 3 blas
|
sl@0
|
220 |
*/
|
sl@0
|
221 |
|
sl@0
|
222 |
/** \brief triangular matrix multiplication
|
sl@0
|
223 |
\ingroup blas3
|
sl@0
|
224 |
*/
|
sl@0
|
225 |
template<class M1, class T, class M2, class M3>
|
sl@0
|
226 |
M1 &
|
sl@0
|
227 |
tmm (M1 &m1, const T &t, const M2 &m2, const M3 &m3) {
|
sl@0
|
228 |
return m1 = t * prod (m2, m3);
|
sl@0
|
229 |
}
|
sl@0
|
230 |
|
sl@0
|
231 |
/** \brief triangular solve \a m2 * \a x = \a t * \a m1 in place,
|
sl@0
|
232 |
\a m2 is a triangular matrix
|
sl@0
|
233 |
\ingroup blas3
|
sl@0
|
234 |
*/
|
sl@0
|
235 |
template<class M1, class T, class M2, class C>
|
sl@0
|
236 |
M1 &
|
sl@0
|
237 |
tsm (M1 &m1, const T &t, const M2 &m2, C) {
|
sl@0
|
238 |
return m1 = solve (m2, t * m1, C ());
|
sl@0
|
239 |
}
|
sl@0
|
240 |
|
sl@0
|
241 |
/** \brief general matrix multiplication
|
sl@0
|
242 |
\ingroup blas3
|
sl@0
|
243 |
*/
|
sl@0
|
244 |
template<class M1, class T1, class T2, class M2, class M3>
|
sl@0
|
245 |
M1 &
|
sl@0
|
246 |
gmm (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) {
|
sl@0
|
247 |
return m1 = t1 * m1 + t2 * prod (m2, m3);
|
sl@0
|
248 |
}
|
sl@0
|
249 |
|
sl@0
|
250 |
/** \brief symmetric rank k update: \a m1 = \a t * \a m1 +
|
sl@0
|
251 |
\a t2 * (\a m2 * \a m2<sup>T</sup>)
|
sl@0
|
252 |
\ingroup blas3
|
sl@0
|
253 |
\todo use opb_prod()
|
sl@0
|
254 |
*/
|
sl@0
|
255 |
template<class M1, class T1, class T2, class M2>
|
sl@0
|
256 |
M1 &
|
sl@0
|
257 |
srk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2) {
|
sl@0
|
258 |
return m1 = t1 * m1 + t2 * prod (m2, trans (m2));
|
sl@0
|
259 |
}
|
sl@0
|
260 |
/** \brief hermitian rank k update: \a m1 = \a t * \a m1 +
|
sl@0
|
261 |
\a t2 * (\a m2 * \a m2<sup>H</sup>)
|
sl@0
|
262 |
\ingroup blas3
|
sl@0
|
263 |
\todo use opb_prod()
|
sl@0
|
264 |
*/
|
sl@0
|
265 |
template<class M1, class T1, class T2, class M2>
|
sl@0
|
266 |
M1 &
|
sl@0
|
267 |
hrk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2) {
|
sl@0
|
268 |
return m1 = t1 * m1 + t2 * prod (m2, herm (m2));
|
sl@0
|
269 |
}
|
sl@0
|
270 |
|
sl@0
|
271 |
/** \brief generalized symmetric rank k update:
|
sl@0
|
272 |
\a m1 = \a t1 * \a m1 + \a t2 * (\a m2 * \a m3<sup>T</sup>)
|
sl@0
|
273 |
+ \a t2 * (\a m3 * \a m2<sup>T</sup>)
|
sl@0
|
274 |
\ingroup blas3
|
sl@0
|
275 |
\todo use opb_prod()
|
sl@0
|
276 |
*/
|
sl@0
|
277 |
template<class M1, class T1, class T2, class M2, class M3>
|
sl@0
|
278 |
M1 &
|
sl@0
|
279 |
sr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) {
|
sl@0
|
280 |
return m1 = t1 * m1 + t2 * (prod (m2, trans (m3)) + prod (m3, trans (m2)));
|
sl@0
|
281 |
}
|
sl@0
|
282 |
/** \brief generalized hermitian rank k update:
|
sl@0
|
283 |
\a m1 = \a t1 * \a m1 + \a t2 * (\a m2 * \a m3<sup>H</sup>)
|
sl@0
|
284 |
+ (\a m3 * (\a t2 * \a m2)<sup>H</sup>)
|
sl@0
|
285 |
\ingroup blas3
|
sl@0
|
286 |
\todo use opb_prod()
|
sl@0
|
287 |
*/
|
sl@0
|
288 |
template<class M1, class T1, class T2, class M2, class M3>
|
sl@0
|
289 |
M1 &
|
sl@0
|
290 |
hr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) {
|
sl@0
|
291 |
return m1 = t1 * m1 + t2 * prod (m2, herm (m3)) + type_traits<T2>::conj (t2) * prod (m3, herm (m2));
|
sl@0
|
292 |
}
|
sl@0
|
293 |
|
sl@0
|
294 |
}
|
sl@0
|
295 |
|
sl@0
|
296 |
}}}
|
sl@0
|
297 |
|
sl@0
|
298 |
#endif
|
sl@0
|
299 |
|
sl@0
|
300 |
|