os/ossrv/ossrv_pub/boost_apis/boost/numeric/ublas/blas.hpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/ossrv/ossrv_pub/boost_apis/boost/numeric/ublas/blas.hpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,300 @@
     1.4 +//
     1.5 +//  Copyright (c) 2000-2002
     1.6 +//  Joerg Walter, Mathias Koch
     1.7 +//
     1.8 +//  Permission to use, copy, modify, distribute and sell this software
     1.9 +//  and its documentation for any purpose is hereby granted without fee,
    1.10 +//  provided that the above copyright notice appear in all copies and
    1.11 +//  that both that copyright notice and this permission notice appear
    1.12 +//  in supporting documentation.  The authors make no representations
    1.13 +//  about the suitability of this software for any purpose.
    1.14 +//  It is provided "as is" without express or implied warranty.
    1.15 +//
    1.16 +//  The authors gratefully acknowledge the support of
    1.17 +//  GeNeSys mbH & Co. KG in producing this work.
    1.18 +//
    1.19 +
    1.20 +#ifndef _BOOST_UBLAS_BLAS_
    1.21 +#define _BOOST_UBLAS_BLAS_
    1.22 +
    1.23 +#include <boost/numeric/ublas/traits.hpp>
    1.24 +
    1.25 +namespace boost { namespace numeric { namespace ublas {
    1.26 +
    1.27 +    namespace blas_1 {
    1.28 +
    1.29 +          /** \namespace boost::numeric::ublas::blas_1
    1.30 +                  \brief wrapper functions for level 1 blas
    1.31 +          */
    1.32 +
    1.33 +
    1.34 +          /** \brief 1-Norm: \f$\sum_i |x_i|\f$
    1.35 +                  \ingroup blas1
    1.36 +           */
    1.37 +        template<class V>
    1.38 +        typename type_traits<typename V::value_type>::real_type
    1.39 +        asum (const V &v) {
    1.40 +            return norm_1 (v);
    1.41 +        }
    1.42 +          /** \brief 2-Norm: \f$\sum_i |x_i|^2\f$
    1.43 +                  \ingroup blas1
    1.44 +           */
    1.45 +        template<class V>
    1.46 +        typename type_traits<typename V::value_type>::real_type
    1.47 +        nrm2 (const V &v) {
    1.48 +            return norm_2 (v);
    1.49 +        }
    1.50 +          /** \brief element with larges absolute value: \f$\max_i |x_i|\f$
    1.51 +                  \ingroup blas1
    1.52 +          */                 
    1.53 +        template<class V>
    1.54 +        typename type_traits<typename V::value_type>::real_type
    1.55 +        amax (const V &v) {
    1.56 +            return norm_inf (v);
    1.57 +        }
    1.58 +
    1.59 +          /** \brief inner product of vectors \a v1 and \a v2
    1.60 +                  \ingroup blas1
    1.61 +          */                 
    1.62 +        template<class V1, class V2>
    1.63 +        typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type
    1.64 +        dot (const V1 &v1, const V2 &v2) {
    1.65 +            return inner_prod (v1, v2);
    1.66 +        }
    1.67 +
    1.68 +          /** \brief copy vector \a v2 to \a v1
    1.69 +                  \ingroup blas1
    1.70 +          */                 
    1.71 +        template<class V1, class V2>
    1.72 +        V1 &
    1.73 +        copy (V1 &v1, const V2 &v2) {
    1.74 +            return v1.assign (v2);
    1.75 +        }
    1.76 +
    1.77 +          /** \brief swap vectors \a v1 and \a v2
    1.78 +                  \ingroup blas1
    1.79 +          */                 
    1.80 +        template<class V1, class V2>
    1.81 +        void swap (V1 &v1, V2 &v2) {
    1.82 +            v1.swap (v2);
    1.83 +        }
    1.84 +
    1.85 +          /** \brief scale vector \a v with scalar \a t
    1.86 +                  \ingroup blas1
    1.87 +          */                 
    1.88 +        template<class V, class T>
    1.89 +        V &
    1.90 +        scal (V &v, const T &t) {
    1.91 +            return v *= t;
    1.92 +        }
    1.93 +
    1.94 +          /** \brief compute \a v1 = \a v1 + \a t * \a v2
    1.95 +                  \ingroup blas1
    1.96 +          */                 
    1.97 +        template<class V1, class T, class V2>
    1.98 +        V1 &
    1.99 +        axpy (V1 &v1, const T &t, const V2 &v2) {
   1.100 +            return v1.plus_assign (t * v2);
   1.101 +        }
   1.102 +
   1.103 +          /** \brief apply plane rotation
   1.104 +                  \ingroup blas1
   1.105 +          */                 
   1.106 +        template<class T1, class V1, class T2, class V2>
   1.107 +        void
   1.108 +        rot (const T1 &t1, V1 &v1, const T2 &t2, V2 &v2) {
   1.109 +            typedef typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type promote_type;
   1.110 +            vector<promote_type> vt (t1 * v1 + t2 * v2);
   1.111 +            v2.assign (- t2 * v1 + t1 * v2);
   1.112 +            v1.assign (vt);
   1.113 +        }
   1.114 +
   1.115 +    }
   1.116 +
   1.117 +    namespace blas_2 {
   1.118 +
   1.119 +          /** \namespace boost::numeric::ublas::blas_2
   1.120 +                  \brief wrapper functions for level 2 blas
   1.121 +          */
   1.122 +
   1.123 +          /** \brief multiply vector \a v with triangular matrix \a m
   1.124 +                  \ingroup blas2
   1.125 +                  \todo: check that matrix is really triangular
   1.126 +          */                 
   1.127 +        template<class V, class M>
   1.128 +        V &
   1.129 +        tmv (V &v, const M &m) {
   1.130 +            return v = prod (m, v);
   1.131 +        }
   1.132 +
   1.133 +          /** \brief solve \a m \a x = \a v in place, \a m is triangular matrix
   1.134 +                  \ingroup blas2
   1.135 +          */                 
   1.136 +        template<class V, class M, class C>
   1.137 +        V &
   1.138 +        tsv (V &v, const M &m, C) {
   1.139 +            return v = solve (m, v, C ());
   1.140 +        }
   1.141 +
   1.142 +          /** \brief compute \a v1 = \a t1 * \a v1 + \a t2 * (\a m * \a v2)
   1.143 +                  \ingroup blas2
   1.144 +          */                 
   1.145 +        template<class V1, class T1, class T2, class M, class V2>
   1.146 +        V1 &
   1.147 +        gmv (V1 &v1, const T1 &t1, const T2 &t2, const M &m, const V2 &v2) {
   1.148 +            return v1 = t1 * v1 + t2 * prod (m, v2);
   1.149 +        }
   1.150 +
   1.151 +          /** \brief rank 1 update: \a m = \a m + \a t * (\a v1 * \a v2<sup>T</sup>)
   1.152 +                  \ingroup blas2
   1.153 +          */                 
   1.154 +        template<class M, class T, class V1, class V2>
   1.155 +        M &
   1.156 +        gr (M &m, const T &t, const V1 &v1, const V2 &v2) {
   1.157 +#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
   1.158 +            return m += t * outer_prod (v1, v2);
   1.159 +#else
   1.160 +            return m = m + t * outer_prod (v1, v2);
   1.161 +#endif
   1.162 +        }
   1.163 +
   1.164 +          /** \brief symmetric rank 1 update: \a m = \a m + \a t * (\a v * \a v<sup>T</sup>)
   1.165 +                  \ingroup blas2
   1.166 +          */                 
   1.167 +        template<class M, class T, class V>
   1.168 +        M &
   1.169 +        sr (M &m, const T &t, const V &v) {
   1.170 +#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
   1.171 +            return m += t * outer_prod (v, v);
   1.172 +#else
   1.173 +            return m = m + t * outer_prod (v, v);
   1.174 +#endif
   1.175 +        }
   1.176 +          /** \brief hermitian rank 1 update: \a m = \a m + \a t * (\a v * \a v<sup>H</sup>)
   1.177 +                  \ingroup blas2
   1.178 +          */                 
   1.179 +        template<class M, class T, class V>
   1.180 +        M &
   1.181 +        hr (M &m, const T &t, const V &v) {
   1.182 +#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
   1.183 +            return m += t * outer_prod (v, conj (v));
   1.184 +#else
   1.185 +            return m = m + t * outer_prod (v, conj (v));
   1.186 +#endif
   1.187 +        }
   1.188 +
   1.189 +          /** \brief symmetric rank 2 update: \a m = \a m + \a t * 
   1.190 +                  (\a v1 * \a v2<sup>T</sup> + \a v2 * \a v1<sup>T</sup>) 
   1.191 +                  \ingroup blas2
   1.192 +          */                 
   1.193 +        template<class M, class T, class V1, class V2>
   1.194 +        M &
   1.195 +        sr2 (M &m, const T &t, const V1 &v1, const V2 &v2) {
   1.196 +#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
   1.197 +            return m += t * (outer_prod (v1, v2) + outer_prod (v2, v1));
   1.198 +#else
   1.199 +            return m = m + t * (outer_prod (v1, v2) + outer_prod (v2, v1));
   1.200 +#endif
   1.201 +        }
   1.202 +          /** \brief hermitian rank 2 update: \a m = \a m + 
   1.203 +                  \a t * (\a v1 * \a v2<sup>H</sup>)
   1.204 +                  + \a v2 * (\a t * \a v1)<sup>H</sup>) 
   1.205 +                  \ingroup blas2
   1.206 +          */                 
   1.207 +        template<class M, class T, class V1, class V2>
   1.208 +        M &
   1.209 +        hr2 (M &m, const T &t, const V1 &v1, const V2 &v2) {
   1.210 +#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
   1.211 +            return m += t * outer_prod (v1, conj (v2)) + type_traits<T>::conj (t) * outer_prod (v2, conj (v1));
   1.212 +#else
   1.213 +            return m = m + t * outer_prod (v1, conj (v2)) + type_traits<T>::conj (t) * outer_prod (v2, conj (v1));
   1.214 +#endif
   1.215 +        }
   1.216 +
   1.217 +    }
   1.218 +
   1.219 +    namespace blas_3 {
   1.220 +
   1.221 +          /** \namespace boost::numeric::ublas::blas_3
   1.222 +                  \brief wrapper functions for level 3 blas
   1.223 +          */
   1.224 +
   1.225 +          /** \brief triangular matrix multiplication
   1.226 +                  \ingroup blas3
   1.227 +          */                 
   1.228 +        template<class M1, class T, class M2, class M3>
   1.229 +        M1 &
   1.230 +        tmm (M1 &m1, const T &t, const M2 &m2, const M3 &m3) {
   1.231 +            return m1 = t * prod (m2, m3);
   1.232 +        }
   1.233 +
   1.234 +          /** \brief triangular solve \a m2 * \a x = \a t * \a m1 in place,
   1.235 +                  \a m2 is a triangular matrix
   1.236 +                  \ingroup blas3
   1.237 +          */                 
   1.238 +        template<class M1, class T, class M2, class C>
   1.239 +        M1 &
   1.240 +        tsm (M1 &m1, const T &t, const M2 &m2, C) {
   1.241 +            return m1 = solve (m2, t * m1, C ());
   1.242 +        }
   1.243 +
   1.244 +          /** \brief general matrix multiplication
   1.245 +                  \ingroup blas3
   1.246 +          */                 
   1.247 +        template<class M1, class T1, class T2, class M2, class M3>
   1.248 +        M1 &
   1.249 +        gmm (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) {
   1.250 +            return m1 = t1 * m1 + t2 * prod (m2, m3);
   1.251 +        }
   1.252 +
   1.253 +          /** \brief symmetric rank k update: \a m1 = \a t * \a m1 + 
   1.254 +                  \a t2 * (\a m2 * \a m2<sup>T</sup>)
   1.255 +                  \ingroup blas3
   1.256 +                  \todo use opb_prod()
   1.257 +          */                 
   1.258 +        template<class M1, class T1, class T2, class M2>
   1.259 +        M1 &
   1.260 +        srk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2) {
   1.261 +            return m1 = t1 * m1 + t2 * prod (m2, trans (m2));
   1.262 +        }
   1.263 +          /** \brief hermitian rank k update: \a m1 = \a t * \a m1 + 
   1.264 +                  \a t2 * (\a m2 * \a m2<sup>H</sup>)
   1.265 +                  \ingroup blas3
   1.266 +                  \todo use opb_prod()
   1.267 +          */                 
   1.268 +        template<class M1, class T1, class T2, class M2>
   1.269 +        M1 &
   1.270 +        hrk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2) {
   1.271 +            return m1 = t1 * m1 + t2 * prod (m2, herm (m2));
   1.272 +        }
   1.273 +
   1.274 +          /** \brief generalized symmetric rank k update:
   1.275 +                  \a m1 = \a t1 * \a m1 + \a t2 * (\a m2 * \a m3<sup>T</sup>)
   1.276 +                  + \a t2 * (\a m3 * \a m2<sup>T</sup>)
   1.277 +                  \ingroup blas3
   1.278 +                  \todo use opb_prod()
   1.279 +          */                 
   1.280 +        template<class M1, class T1, class T2, class M2, class M3>
   1.281 +        M1 &
   1.282 +        sr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) {
   1.283 +            return m1 = t1 * m1 + t2 * (prod (m2, trans (m3)) + prod (m3, trans (m2)));
   1.284 +        }
   1.285 +          /** \brief generalized hermitian rank k update:
   1.286 +                  \a m1 = \a t1 * \a m1 + \a t2 * (\a m2 * \a m3<sup>H</sup>)
   1.287 +                  + (\a m3 * (\a t2 * \a m2)<sup>H</sup>)
   1.288 +                  \ingroup blas3
   1.289 +                  \todo use opb_prod()
   1.290 +          */                 
   1.291 +        template<class M1, class T1, class T2, class M2, class M3>
   1.292 +        M1 &
   1.293 +        hr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) {
   1.294 +            return m1 = t1 * m1 + t2 * prod (m2, herm (m3)) + type_traits<T2>::conj (t2) * prod (m3, herm (m2));
   1.295 +        }
   1.296 +
   1.297 +    }
   1.298 +
   1.299 +}}}
   1.300 +
   1.301 +#endif
   1.302 +
   1.303 +