os/kernelhwsrv/userlibandfileserver/fileserver/sfat/ram_fat_table.cpp
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
sl@0
     1
// Copyright (c) 1996-2009 Nokia Corporation and/or its subsidiary(-ies).
sl@0
     2
// All rights reserved.
sl@0
     3
// This component and the accompanying materials are made available
sl@0
     4
// under the terms of the License "Eclipse Public License v1.0"
sl@0
     5
// which accompanies this distribution, and is available
sl@0
     6
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
sl@0
     7
//
sl@0
     8
// Initial Contributors:
sl@0
     9
// Nokia Corporation - initial contribution.
sl@0
    10
//
sl@0
    11
// Contributors:
sl@0
    12
//
sl@0
    13
// Description:
sl@0
    14
// f32\sfat\ram_fat_table.cpp
sl@0
    15
// FAT16 File Allocation Table classes implementation for the RAM media
sl@0
    16
// 
sl@0
    17
//
sl@0
    18
sl@0
    19
/**
sl@0
    20
 @file
sl@0
    21
 @internalTechnology
sl@0
    22
*/
sl@0
    23
sl@0
    24
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
sl@0
    25
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
sl@0
    26
//!!
sl@0
    27
//!! WARNING!! DO NOT edit this file !! '\sfat' component is obsolete and is not being used. '\sfat32'replaces it
sl@0
    28
//!!
sl@0
    29
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
sl@0
    30
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
sl@0
    31
sl@0
    32
sl@0
    33
#include "sl_std.h"
sl@0
    34
#include "sl_fatcache.h"
sl@0
    35
#include "fat_table.h"
sl@0
    36
sl@0
    37
sl@0
    38
//#######################################################################################################################################
sl@0
    39
//#     CRamFatTable class implementation 
sl@0
    40
//#######################################################################################################################################
sl@0
    41
sl@0
    42
/**
sl@0
    43
Constructor, the RamFatTable allows disk compression by redirecting the FAT
sl@0
    44
sl@0
    45
@param aOwner Owning mount.
sl@0
    46
*/
sl@0
    47
CRamFatTable::CRamFatTable(CFatMountCB& aOwner)
sl@0
    48
             :CFatTable(aOwner)
sl@0
    49
    {
sl@0
    50
    iFatTablePos=aOwner.FirstFatSector()<<aOwner.SectorSizeLog2();
sl@0
    51
    iIndirectionTablePos=iFatTablePos+aOwner.FatSizeInBytes();
sl@0
    52
    }
sl@0
    53
sl@0
    54
/** factory method */
sl@0
    55
CRamFatTable* CRamFatTable::NewL(CFatMountCB& aOwner)
sl@0
    56
{
sl@0
    57
    __PRINT1(_L("CRamFatTable::NewL() drv:%d"),aOwner.DriveNumber());
sl@0
    58
sl@0
    59
    CRamFatTable* pSelf = new (ELeave) CRamFatTable(aOwner);
sl@0
    60
sl@0
    61
    CleanupStack::PushL(pSelf);
sl@0
    62
    pSelf->InitializeL();
sl@0
    63
    CleanupStack::Pop();
sl@0
    64
sl@0
    65
    return pSelf;
sl@0
    66
}
sl@0
    67
sl@0
    68
void CRamFatTable::InitializeL() 
sl@0
    69
{
sl@0
    70
    CFatTable::InitializeL();
sl@0
    71
sl@0
    72
    ASSERT(iMediaAtt & KMediaAttVariableSize);
sl@0
    73
sl@0
    74
    iFatTablePos=iOwner->FirstFatSector()<<iOwner->SectorSizeLog2();
sl@0
    75
    iIndirectionTablePos=iFatTablePos+iOwner->FatSizeInBytes();
sl@0
    76
sl@0
    77
    //-- set RAM disk base
sl@0
    78
    TLocalDriveCapsV2 caps;
sl@0
    79
    TPckg<TLocalDriveCapsV2> capsPckg(caps);
sl@0
    80
    User::LeaveIfError(iOwner->LocalDrive()->Caps(capsPckg));
sl@0
    81
  
sl@0
    82
    iRamDiskBase = caps.iBaseAddress; 
sl@0
    83
}
sl@0
    84
sl@0
    85
/**
sl@0
    86
    Remount the FAT table. This method call means that the media parameters wasn't changed, 
sl@0
    87
    otherwise CFatMountCB::DoReMountL() would reject it. 
sl@0
    88
    Just do some re-initialisation work.
sl@0
    89
*/
sl@0
    90
void CRamFatTable::ReMountL()
sl@0
    91
{
sl@0
    92
    //-- re-initialise, actually
sl@0
    93
    ASSERT(iMediaAtt & KMediaAttVariableSize);
sl@0
    94
    ASSERT(FatType() == EFat16);
sl@0
    95
sl@0
    96
    iFatTablePos=iOwner->FirstFatSector()<<iOwner->SectorSizeLog2();
sl@0
    97
    iIndirectionTablePos=iFatTablePos+iOwner->FatSizeInBytes();
sl@0
    98
sl@0
    99
    //-- set RAM disk base
sl@0
   100
    TLocalDriveCapsV2 caps;
sl@0
   101
    TPckg<TLocalDriveCapsV2> capsPckg(caps);
sl@0
   102
    User::LeaveIfError(iOwner->LocalDrive()->Caps(capsPckg));
sl@0
   103
  
sl@0
   104
    iRamDiskBase = caps.iBaseAddress; 
sl@0
   105
}
sl@0
   106
sl@0
   107
sl@0
   108
/**
sl@0
   109
Return the start address of the Ram Drive
sl@0
   110
sl@0
   111
@return start address of the Ram Drive 
sl@0
   112
*/
sl@0
   113
TUint8 *CRamFatTable::RamDiskBase() const
sl@0
   114
    {
sl@0
   115
    return(iRamDiskBase);
sl@0
   116
    }
sl@0
   117
sl@0
   118
sl@0
   119
/**
sl@0
   120
Allocate a new cluster number
sl@0
   121
sl@0
   122
@return New cluster number
sl@0
   123
*/
sl@0
   124
TInt CRamFatTable::AllocateClusterNumber()
sl@0
   125
    {
sl@0
   126
    return(iOwner->MaxClusterNumber()-NumberOfFreeClusters());
sl@0
   127
    }
sl@0
   128
sl@0
   129
/**
sl@0
   130
Write a value to the FAT (indirection table) 
sl@0
   131
sl@0
   132
@param aFatIndex Cluster to write to
sl@0
   133
@param aValue value to write to Fat
sl@0
   134
@leave 
sl@0
   135
*/
sl@0
   136
void CRamFatTable::WriteL(TUint32 aFatIndex, TUint32 aValue)
sl@0
   137
    {
sl@0
   138
    //__PRINT(_L("CRamFatTable::WriteL"));
sl@0
   139
sl@0
   140
    __ASSERT_ALWAYS(aFatIndex>=2 && (aValue>=2 || aValue==0) && aValue<=0xFFFF,User::Leave(KErrCorrupt));
sl@0
   141
    TUint32 indirectCluster=aFatIndex;
sl@0
   142
    TUint32 indirectClusterNewVal=0;
sl@0
   143
    ReadIndirectionTable(indirectCluster);
sl@0
   144
//  If value in indirection table!=0 we assume we have already written to the indirection table
sl@0
   145
//  So just update the FAT table
sl@0
   146
    if (indirectCluster!=0 && aValue!=0)
sl@0
   147
        {
sl@0
   148
        WriteFatTable(aFatIndex,aValue);
sl@0
   149
        return;
sl@0
   150
        }
sl@0
   151
//  If value in indirection table is 0, we haven't written to it yet, though the memory has
sl@0
   152
//  already been allocated by the EnlargeL() function
sl@0
   153
    if (indirectCluster==0 && aValue!=0) // Assumes memory has already been allocated
sl@0
   154
        indirectClusterNewVal=AllocateClusterNumber();
sl@0
   155
//  Write aValue into aFaxIndex and indirectClusterNewVal into the corresponding position
sl@0
   156
//  in the indirection table    
sl@0
   157
    WriteFatTable(aFatIndex,aValue,indirectClusterNewVal);
sl@0
   158
    }   
sl@0
   159
sl@0
   160
/**
sl@0
   161
Read the value of a cluster in the Fat
sl@0
   162
sl@0
   163
@param aFatIndex A cluster to read
sl@0
   164
@leave 
sl@0
   165
@return The cluster value read
sl@0
   166
*/
sl@0
   167
sl@0
   168
TUint32 CRamFatTable::ReadL(TUint32 aFatIndex) const
sl@0
   169
    {
sl@0
   170
    __ASSERT_ALWAYS(aFatIndex>=KFatFirstSearchCluster,User::Leave(KErrCorrupt));
sl@0
   171
    TUint clusterVal=*(TUint16*)(RamDiskBase()+PosInBytes(aFatIndex)+iFatTablePos);
sl@0
   172
    return(clusterVal);
sl@0
   173
    }
sl@0
   174
sl@0
   175
/**
sl@0
   176
Write a value to the FAT and indirection table
sl@0
   177
sl@0
   178
@param aFatIndex Cluster number to write to
sl@0
   179
@param aFatValue Cluster value for Fat
sl@0
   180
@param anIndirectionValue Value for indirection table
sl@0
   181
*/
sl@0
   182
void CRamFatTable::WriteFatTable(TInt aFatIndex,TInt aFatValue,TInt anIndirectionValue)
sl@0
   183
    {
sl@0
   184
    TUint8* pos=RamDiskBase()+PosInBytes(aFatIndex);
sl@0
   185
    *(TUint16*)(pos+iFatTablePos)=(TUint16)aFatValue;
sl@0
   186
    *(TUint16*)(pos+iIndirectionTablePos)=(TUint16)anIndirectionValue;
sl@0
   187
    }
sl@0
   188
sl@0
   189
/**
sl@0
   190
Write to just the fat table
sl@0
   191
sl@0
   192
@param aFatIndex Cluster number to write to
sl@0
   193
@param aFatValue Cluster value for Fat
sl@0
   194
*/
sl@0
   195
void CRamFatTable::WriteFatTable(TInt aFatIndex,TInt aFatValue)
sl@0
   196
    {
sl@0
   197
    *(TUint16*)(RamDiskBase()+PosInBytes(aFatIndex)+iFatTablePos)=(TUint16)aFatValue;
sl@0
   198
    }
sl@0
   199
sl@0
   200
/**
sl@0
   201
Write to just the fat table
sl@0
   202
sl@0
   203
@param aFatIndex Cluster number to write to
sl@0
   204
@param aFatValue Value for indirection table
sl@0
   205
*/
sl@0
   206
void CRamFatTable::WriteIndirectionTable(TInt aFatIndex,TInt aFatValue)
sl@0
   207
    {
sl@0
   208
    *(TUint16*)(RamDiskBase()+PosInBytes(aFatIndex)+iIndirectionTablePos)=(TUint16)aFatValue;
sl@0
   209
    }
sl@0
   210
sl@0
   211
/**
sl@0
   212
Find the real location of aCluster
sl@0
   213
sl@0
   214
@param aCluster Cluster to read, contians cluster value upon return
sl@0
   215
*/
sl@0
   216
void CRamFatTable::ReadIndirectionTable(TUint32& aCluster) const
sl@0
   217
    {
sl@0
   218
    aCluster=*(TUint16*)(RamDiskBase()+PosInBytes(aCluster)+iIndirectionTablePos);
sl@0
   219
    }
sl@0
   220
sl@0
   221
/**
sl@0
   222
Copy memory in RAM drive area, unlocking required
sl@0
   223
sl@0
   224
@param aTrg Pointer to destination location
sl@0
   225
@param aSrc Pointer to source location
sl@0
   226
@param aLength Length of data to copy
sl@0
   227
@return Pointer to end of data copied
sl@0
   228
*/
sl@0
   229
TUint8* CRamFatTable::MemCopy(TAny* aTrg,const TAny* aSrc,TInt aLength)
sl@0
   230
    {
sl@0
   231
    TUint8* p=Mem::Copy(aTrg,aSrc,aLength);
sl@0
   232
    return(p);
sl@0
   233
    }
sl@0
   234
sl@0
   235
/**
sl@0
   236
    Copy memory with filling the source buffer with zeroes. Target and source buffers can overlap.
sl@0
   237
    Used on RAMDrive srinking in order to wipe data from the file that is being deleted.
sl@0
   238
    
sl@0
   239
    @param   aTrg       pointer to the target address
sl@0
   240
    @param   aSrc       pointer to the destination address
sl@0
   241
    @param   aLength    how many bytes to copy
sl@0
   242
    @return  A pointer to a location aLength bytes beyond aTrg (i.e. the location aTrg+aLength).
sl@0
   243
*/
sl@0
   244
TUint8* CRamFatTable::MemCopyFillZ(TAny* aTrg, TAny* aSrc,TInt aLength)
sl@0
   245
{
sl@0
   246
    //-- just copy src to the trg, the memory areas can overlap.
sl@0
   247
    TUint8* p=Mem::Copy(aTrg, aSrc, aLength);
sl@0
   248
    
sl@0
   249
    //-- now zero-fill the source memory area taking into account possible overlap.
sl@0
   250
    TUint8* pSrc = static_cast<TUint8*>(aSrc);
sl@0
   251
    TUint8* pTrg = static_cast<TUint8*>(aTrg);
sl@0
   252
    
sl@0
   253
    TUint8* pZFill = NULL; //-- pointer to the beginning of zerofilled area
sl@0
   254
    TInt    zFillLen = 0;  //-- a number of bytes to zero-fill
sl@0
   255
    
sl@0
   256
    if(aTrg < aSrc)
sl@0
   257
    {
sl@0
   258
        if(pTrg+aLength < pSrc)
sl@0
   259
        {//-- target and source areas do not overlap
sl@0
   260
         pZFill = pSrc;
sl@0
   261
         zFillLen = aLength;
sl@0
   262
        }
sl@0
   263
        else
sl@0
   264
        {//-- target and source areas overlap, try not to corrupt the target area
sl@0
   265
         zFillLen = pSrc-pTrg;
sl@0
   266
         pZFill = pTrg+aLength;
sl@0
   267
        }
sl@0
   268
    }
sl@0
   269
    else
sl@0
   270
    {
sl@0
   271
        if(pSrc+aLength < pTrg)
sl@0
   272
        {//-- target and source areas do not overlap
sl@0
   273
         pZFill = pSrc;
sl@0
   274
         zFillLen = aLength;
sl@0
   275
        }
sl@0
   276
        else
sl@0
   277
        {//-- target and source areas overlap, try not to corrupt the target area
sl@0
   278
         zFillLen = pSrc+aLength-pTrg;
sl@0
   279
         pZFill = pSrc;
sl@0
   280
        }
sl@0
   281
    }
sl@0
   282
sl@0
   283
    Mem::FillZ(pZFill, zFillLen);
sl@0
   284
sl@0
   285
    return(p);
sl@0
   286
}
sl@0
   287
sl@0
   288
/**
sl@0
   289
    Zero fill RAM area corresponding to the cluster number aCluster
sl@0
   290
    @param  aCluster a cluster number to be zero-filled
sl@0
   291
*/
sl@0
   292
void CRamFatTable::ZeroFillCluster(TInt aCluster)
sl@0
   293
{
sl@0
   294
        TLinAddr clusterPos= I64LOW(DataPositionInBytes(aCluster));
sl@0
   295
        Mem::FillZ(iRamDiskBase+clusterPos, 1<< iOwner->ClusterSizeLog2());     
sl@0
   296
    }
sl@0
   297
sl@0
   298
sl@0
   299
/**
sl@0
   300
Return the location of a Cluster in the data section of the media
sl@0
   301
sl@0
   302
@param aCluster to find location of
sl@0
   303
@return Byte offset of the cluster data 
sl@0
   304
*/
sl@0
   305
TInt64 CRamFatTable::DataPositionInBytes(TUint32 aCluster) const
sl@0
   306
    {
sl@0
   307
    //__PRINT(_L("CRamFatTable::DataPositionInBytes"));
sl@0
   308
    ReadIndirectionTable(aCluster);
sl@0
   309
    return(aCluster<<iOwner->ClusterSizeLog2());
sl@0
   310
    }
sl@0
   311
sl@0
   312
/**
sl@0
   313
Allocate and mark as EOF a single cluster as close as possible to aNearestCluster,
sl@0
   314
calls base class implementation but must Enlarge the RAM drive first. Allocated cluster RAM area will be zero-filled.
sl@0
   315
sl@0
   316
@param  aNearestCluster Cluster the new cluster should be nearest to
sl@0
   317
@leave  System wide error codes
sl@0
   318
@return The cluster number allocated
sl@0
   319
*/
sl@0
   320
TUint32 CRamFatTable::AllocateSingleClusterL(TUint32 aNearestCluster)
sl@0
   321
    {
sl@0
   322
    __PRINT(_L("CRamFatTable::AllocateSingleClusterL"));
sl@0
   323
    iOwner->EnlargeL(1<<iOwner->ClusterSizeLog2()); //  First enlarge the RAM drive
sl@0
   324
    TInt fileAllocated=CFatTable::AllocateSingleClusterL(aNearestCluster); //   Now update the free cluster and fat/fit
sl@0
   325
    ZeroFillCluster(fileAllocated);  //-- zero-fill allocated cluster 
sl@0
   326
    return(fileAllocated);
sl@0
   327
    }   
sl@0
   328
sl@0
   329
sl@0
   330
/**
sl@0
   331
    Extend a file or directory cluster chain, enlarging RAM drive first. Allocated clusters are zero-filled.
sl@0
   332
    Leaves if there are no free clusters (the disk is full).
sl@0
   333
    Note that method now doesn't call CFatTable::ExtendClusterListL() from its base class, be careful making changes there.
sl@0
   334
sl@0
   335
    @param aNumber      number of clusters to allocate
sl@0
   336
    @param aCluster     starting cluster number / ending cluster number after
sl@0
   337
    @leave              KErrDiskFull + system wide error codes
sl@0
   338
*/
sl@0
   339
void CRamFatTable::ExtendClusterListL(TUint32 aNumber,TInt& aCluster)
sl@0
   340
    {
sl@0
   341
    __PRINT(_L("CRamFatTable::ExtendClusterListL"));
sl@0
   342
    __ASSERT_DEBUG(aNumber>0,Fault(EFatBadParameter));
sl@0
   343
    
sl@0
   344
    iOwner->EnlargeL(aNumber<<iOwner->ClusterSizeLog2());
sl@0
   345
sl@0
   346
    while(aNumber && GetNextClusterL(aCluster))
sl@0
   347
        aNumber--;
sl@0
   348
sl@0
   349
    if(!aNumber)
sl@0
   350
        return;
sl@0
   351
sl@0
   352
    if (NumberOfFreeClusters() < aNumber)
sl@0
   353
        {
sl@0
   354
        __PRINT(_L("CRamFatTable::ExtendClusterListL - leaving KErrDirFull"));
sl@0
   355
        User::Leave(KErrDiskFull);
sl@0
   356
        }
sl@0
   357
sl@0
   358
    while (aNumber--)
sl@0
   359
        {
sl@0
   360
        const TInt freeCluster=FindClosestFreeClusterL(aCluster);
sl@0
   361
sl@0
   362
        WriteFatEntryEofL(freeCluster); //  Must write EOF for FindClosestFreeCluster to work again
sl@0
   363
        DecrementFreeClusterCount(1);
sl@0
   364
        WriteL(aCluster,freeCluster);
sl@0
   365
        aCluster=freeCluster;
sl@0
   366
        ZeroFillCluster(freeCluster); //-- zero fill just allocated cluster (RAM area)
sl@0
   367
        }
sl@0
   368
sl@0
   369
    SetFreeClusterHint(aCluster); 
sl@0
   370
  
sl@0
   371
    }
sl@0
   372
sl@0
   373
/**
sl@0
   374
Mark a chain of clusters as free in the FAT. Shrinks the RAM drive once the
sl@0
   375
clusters are free 
sl@0
   376
sl@0
   377
@param aCluster Start cluster of cluster chain to free
sl@0
   378
@leave System wide error codes
sl@0
   379
*/
sl@0
   380
void CRamFatTable::FreeClusterListL(TUint32 aCluster)
sl@0
   381
    {
sl@0
   382
    __PRINT1(_L("CRamFatTable::FreeClusterListL aCluster=%d"),aCluster);
sl@0
   383
    if (aCluster==0)
sl@0
   384
        return; // File has no cluster allocated
sl@0
   385
sl@0
   386
    const TInt clusterShift=iOwner->ClusterSizeLog2();
sl@0
   387
    TInt startCluster=aCluster;
sl@0
   388
    TInt endCluster=0;
sl@0
   389
    TInt totalFreed=0;
sl@0
   390
    TLinAddr srcEnd=0;
sl@0
   391
sl@0
   392
    while(endCluster!=EOF_16Bit)
sl@0
   393
        {
sl@0
   394
        TInt num=CountContiguousClustersL(startCluster,endCluster,KMaxTInt);
sl@0
   395
        if (GetNextClusterL(endCluster)==EFalse || endCluster==0)
sl@0
   396
            endCluster=EOF_16Bit;   // endCluster==0 -> file contained FAT loop
sl@0
   397
sl@0
   398
    //  Real position in bytes of the start cluster in the data area
sl@0
   399
        TLinAddr startClusterPos= I64LOW(DataPositionInBytes(startCluster));
sl@0
   400
    //  Sliding value when more than one block is freed
sl@0
   401
        TLinAddr trg=startClusterPos-(totalFreed<<clusterShift);
sl@0
   402
        __PRINT1(_L("trg=0x%x"),trg);
sl@0
   403
sl@0
   404
    //  Beginning of data area to move
sl@0
   405
        TLinAddr srcStart=startClusterPos+(num<<clusterShift);
sl@0
   406
        __PRINT1(_L("srcStart=0x%x"),srcStart);
sl@0
   407
    //  Position of next part of cluster chain or position of end of ram drive
sl@0
   408
        if (endCluster==EOF_16Bit)  //  Last cluster is the end of the chain
sl@0
   409
            {
sl@0
   410
        
sl@0
   411
    
sl@0
   412
        //  Fixed to use the genuine RAM drive size rather than the number
sl@0
   413
        //  of free clusters - though they *should* be the same
sl@0
   414
        //  It avoids the problem of iFreeClusters getting out of sync with 
sl@0
   415
        //  the RAM drive size but doesn't solve the issue of why it can happen...
sl@0
   416
            
sl@0
   417
            srcEnd=I64LOW(iOwner->Size());
sl@0
   418
            __PRINT1(_L("srcEnd=0x%x"),srcEnd);
sl@0
   419
            }
sl@0
   420
        else                        //  Just move up to the next part of the chain
sl@0
   421
            srcEnd=I64LOW(DataPositionInBytes(endCluster));
sl@0
   422
sl@0
   423
        //-- Copy (srcEnd-srcStart) bytes from iRamDiskBase+srcStart onto iRamDiskBase+trg
sl@0
   424
        //-- zero-filling free space to avoid leaving something important there
sl@0
   425
        ASSERT(srcEnd >= srcStart);
sl@0
   426
        if(srcEnd-srcStart > 0)
sl@0
   427
            { 
sl@0
   428
            MemCopyFillZ(iRamDiskBase+trg,iRamDiskBase+srcStart,srcEnd-srcStart);
sl@0
   429
            }    
sl@0
   430
        else
sl@0
   431
            {//-- we are freeing the cluster chain at the end of the RAMdrive; Nothing to copy to the drive space that has become free,
sl@0
   432
             //-- but nevertheless zero fill this space.
sl@0
   433
            Mem::FillZ(iRamDiskBase+trg, num<<clusterShift);
sl@0
   434
            }    
sl@0
   435
        
sl@0
   436
        totalFreed+=num;
sl@0
   437
        startCluster=endCluster;
sl@0
   438
        UpdateIndirectionTable(srcStart>>clusterShift,srcEnd>>clusterShift,totalFreed);
sl@0
   439
        }
sl@0
   440
    TInt bytesFreed=totalFreed<<clusterShift;
sl@0
   441
    
sl@0
   442
//  First free the cluster list
sl@0
   443
    CFatTable::FreeClusterListL(aCluster);
sl@0
   444
//  Now reduce the size of the RAM drive
sl@0
   445
    iOwner->ReduceSizeL(srcEnd-bytesFreed,bytesFreed);
sl@0
   446
    }
sl@0
   447
sl@0
   448
/**
sl@0
   449
Shift any clusters between aStart and anEnd backwards by aClusterShift
sl@0
   450
sl@0
   451
@param aStart Start of shift region
sl@0
   452
@param anEnd End of shift region
sl@0
   453
@param aClusterShift amount to shift cluster by
sl@0
   454
*/
sl@0
   455
void CRamFatTable::UpdateIndirectionTable(TUint32 aStart,TUint32 anEnd,TInt aClusterShift)
sl@0
   456
    {
sl@0
   457
    __PRINT(_L("CRamFatTable::UpdateIndirectionTable"));
sl@0
   458
#if defined(__WINS__)
sl@0
   459
    TUint32 count=iOwner->MaxClusterNumber();
sl@0
   460
    while (count--)
sl@0
   461
        {
sl@0
   462
        TUint32 cluster=count;
sl@0
   463
        ReadIndirectionTable(cluster);
sl@0
   464
        if (cluster>=aStart && cluster<anEnd)
sl@0
   465
            WriteIndirectionTable(count,cluster-aClusterShift);
sl@0
   466
        }
sl@0
   467
#else
sl@0
   468
    TUint16* table=(TUint16*)(RamDiskBase()+iIndirectionTablePos);
sl@0
   469
    TUint16* entry=table+iOwner->MaxClusterNumber();
sl@0
   470
    while (entry>table)
sl@0
   471
        {
sl@0
   472
        TUint32 cluster=*--entry;
sl@0
   473
        if (cluster<aStart)
sl@0
   474
            continue;
sl@0
   475
        if (cluster<anEnd)
sl@0
   476
            *entry=TUint16(cluster-aClusterShift);
sl@0
   477
        }
sl@0
   478
#endif
sl@0
   479
    }
sl@0
   480
sl@0
   481
sl@0
   482
sl@0
   483
sl@0
   484
sl@0
   485