os/kernelhwsrv/userlibandfileserver/fileserver/sfat/ram_fat_table.cpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/kernelhwsrv/userlibandfileserver/fileserver/sfat/ram_fat_table.cpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,485 @@
     1.4 +// Copyright (c) 1996-2009 Nokia Corporation and/or its subsidiary(-ies).
     1.5 +// All rights reserved.
     1.6 +// This component and the accompanying materials are made available
     1.7 +// under the terms of the License "Eclipse Public License v1.0"
     1.8 +// which accompanies this distribution, and is available
     1.9 +// at the URL "http://www.eclipse.org/legal/epl-v10.html".
    1.10 +//
    1.11 +// Initial Contributors:
    1.12 +// Nokia Corporation - initial contribution.
    1.13 +//
    1.14 +// Contributors:
    1.15 +//
    1.16 +// Description:
    1.17 +// f32\sfat\ram_fat_table.cpp
    1.18 +// FAT16 File Allocation Table classes implementation for the RAM media
    1.19 +// 
    1.20 +//
    1.21 +
    1.22 +/**
    1.23 + @file
    1.24 + @internalTechnology
    1.25 +*/
    1.26 +
    1.27 +//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    1.28 +//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    1.29 +//!!
    1.30 +//!! WARNING!! DO NOT edit this file !! '\sfat' component is obsolete and is not being used. '\sfat32'replaces it
    1.31 +//!!
    1.32 +//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    1.33 +//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    1.34 +
    1.35 +
    1.36 +#include "sl_std.h"
    1.37 +#include "sl_fatcache.h"
    1.38 +#include "fat_table.h"
    1.39 +
    1.40 +
    1.41 +//#######################################################################################################################################
    1.42 +//#     CRamFatTable class implementation 
    1.43 +//#######################################################################################################################################
    1.44 +
    1.45 +/**
    1.46 +Constructor, the RamFatTable allows disk compression by redirecting the FAT
    1.47 +
    1.48 +@param aOwner Owning mount.
    1.49 +*/
    1.50 +CRamFatTable::CRamFatTable(CFatMountCB& aOwner)
    1.51 +             :CFatTable(aOwner)
    1.52 +    {
    1.53 +    iFatTablePos=aOwner.FirstFatSector()<<aOwner.SectorSizeLog2();
    1.54 +    iIndirectionTablePos=iFatTablePos+aOwner.FatSizeInBytes();
    1.55 +    }
    1.56 +
    1.57 +/** factory method */
    1.58 +CRamFatTable* CRamFatTable::NewL(CFatMountCB& aOwner)
    1.59 +{
    1.60 +    __PRINT1(_L("CRamFatTable::NewL() drv:%d"),aOwner.DriveNumber());
    1.61 +
    1.62 +    CRamFatTable* pSelf = new (ELeave) CRamFatTable(aOwner);
    1.63 +
    1.64 +    CleanupStack::PushL(pSelf);
    1.65 +    pSelf->InitializeL();
    1.66 +    CleanupStack::Pop();
    1.67 +
    1.68 +    return pSelf;
    1.69 +}
    1.70 +
    1.71 +void CRamFatTable::InitializeL() 
    1.72 +{
    1.73 +    CFatTable::InitializeL();
    1.74 +
    1.75 +    ASSERT(iMediaAtt & KMediaAttVariableSize);
    1.76 +
    1.77 +    iFatTablePos=iOwner->FirstFatSector()<<iOwner->SectorSizeLog2();
    1.78 +    iIndirectionTablePos=iFatTablePos+iOwner->FatSizeInBytes();
    1.79 +
    1.80 +    //-- set RAM disk base
    1.81 +    TLocalDriveCapsV2 caps;
    1.82 +    TPckg<TLocalDriveCapsV2> capsPckg(caps);
    1.83 +    User::LeaveIfError(iOwner->LocalDrive()->Caps(capsPckg));
    1.84 +  
    1.85 +    iRamDiskBase = caps.iBaseAddress; 
    1.86 +}
    1.87 +
    1.88 +/**
    1.89 +    Remount the FAT table. This method call means that the media parameters wasn't changed, 
    1.90 +    otherwise CFatMountCB::DoReMountL() would reject it. 
    1.91 +    Just do some re-initialisation work.
    1.92 +*/
    1.93 +void CRamFatTable::ReMountL()
    1.94 +{
    1.95 +    //-- re-initialise, actually
    1.96 +    ASSERT(iMediaAtt & KMediaAttVariableSize);
    1.97 +    ASSERT(FatType() == EFat16);
    1.98 +
    1.99 +    iFatTablePos=iOwner->FirstFatSector()<<iOwner->SectorSizeLog2();
   1.100 +    iIndirectionTablePos=iFatTablePos+iOwner->FatSizeInBytes();
   1.101 +
   1.102 +    //-- set RAM disk base
   1.103 +    TLocalDriveCapsV2 caps;
   1.104 +    TPckg<TLocalDriveCapsV2> capsPckg(caps);
   1.105 +    User::LeaveIfError(iOwner->LocalDrive()->Caps(capsPckg));
   1.106 +  
   1.107 +    iRamDiskBase = caps.iBaseAddress; 
   1.108 +}
   1.109 +
   1.110 +
   1.111 +/**
   1.112 +Return the start address of the Ram Drive
   1.113 +
   1.114 +@return start address of the Ram Drive 
   1.115 +*/
   1.116 +TUint8 *CRamFatTable::RamDiskBase() const
   1.117 +    {
   1.118 +    return(iRamDiskBase);
   1.119 +    }
   1.120 +
   1.121 +
   1.122 +/**
   1.123 +Allocate a new cluster number
   1.124 +
   1.125 +@return New cluster number
   1.126 +*/
   1.127 +TInt CRamFatTable::AllocateClusterNumber()
   1.128 +    {
   1.129 +    return(iOwner->MaxClusterNumber()-NumberOfFreeClusters());
   1.130 +    }
   1.131 +
   1.132 +/**
   1.133 +Write a value to the FAT (indirection table) 
   1.134 +
   1.135 +@param aFatIndex Cluster to write to
   1.136 +@param aValue value to write to Fat
   1.137 +@leave 
   1.138 +*/
   1.139 +void CRamFatTable::WriteL(TUint32 aFatIndex, TUint32 aValue)
   1.140 +    {
   1.141 +    //__PRINT(_L("CRamFatTable::WriteL"));
   1.142 +
   1.143 +    __ASSERT_ALWAYS(aFatIndex>=2 && (aValue>=2 || aValue==0) && aValue<=0xFFFF,User::Leave(KErrCorrupt));
   1.144 +    TUint32 indirectCluster=aFatIndex;
   1.145 +    TUint32 indirectClusterNewVal=0;
   1.146 +    ReadIndirectionTable(indirectCluster);
   1.147 +//  If value in indirection table!=0 we assume we have already written to the indirection table
   1.148 +//  So just update the FAT table
   1.149 +    if (indirectCluster!=0 && aValue!=0)
   1.150 +        {
   1.151 +        WriteFatTable(aFatIndex,aValue);
   1.152 +        return;
   1.153 +        }
   1.154 +//  If value in indirection table is 0, we haven't written to it yet, though the memory has
   1.155 +//  already been allocated by the EnlargeL() function
   1.156 +    if (indirectCluster==0 && aValue!=0) // Assumes memory has already been allocated
   1.157 +        indirectClusterNewVal=AllocateClusterNumber();
   1.158 +//  Write aValue into aFaxIndex and indirectClusterNewVal into the corresponding position
   1.159 +//  in the indirection table    
   1.160 +    WriteFatTable(aFatIndex,aValue,indirectClusterNewVal);
   1.161 +    }   
   1.162 +
   1.163 +/**
   1.164 +Read the value of a cluster in the Fat
   1.165 +
   1.166 +@param aFatIndex A cluster to read
   1.167 +@leave 
   1.168 +@return The cluster value read
   1.169 +*/
   1.170 +
   1.171 +TUint32 CRamFatTable::ReadL(TUint32 aFatIndex) const
   1.172 +    {
   1.173 +    __ASSERT_ALWAYS(aFatIndex>=KFatFirstSearchCluster,User::Leave(KErrCorrupt));
   1.174 +    TUint clusterVal=*(TUint16*)(RamDiskBase()+PosInBytes(aFatIndex)+iFatTablePos);
   1.175 +    return(clusterVal);
   1.176 +    }
   1.177 +
   1.178 +/**
   1.179 +Write a value to the FAT and indirection table
   1.180 +
   1.181 +@param aFatIndex Cluster number to write to
   1.182 +@param aFatValue Cluster value for Fat
   1.183 +@param anIndirectionValue Value for indirection table
   1.184 +*/
   1.185 +void CRamFatTable::WriteFatTable(TInt aFatIndex,TInt aFatValue,TInt anIndirectionValue)
   1.186 +    {
   1.187 +    TUint8* pos=RamDiskBase()+PosInBytes(aFatIndex);
   1.188 +    *(TUint16*)(pos+iFatTablePos)=(TUint16)aFatValue;
   1.189 +    *(TUint16*)(pos+iIndirectionTablePos)=(TUint16)anIndirectionValue;
   1.190 +    }
   1.191 +
   1.192 +/**
   1.193 +Write to just the fat table
   1.194 +
   1.195 +@param aFatIndex Cluster number to write to
   1.196 +@param aFatValue Cluster value for Fat
   1.197 +*/
   1.198 +void CRamFatTable::WriteFatTable(TInt aFatIndex,TInt aFatValue)
   1.199 +    {
   1.200 +    *(TUint16*)(RamDiskBase()+PosInBytes(aFatIndex)+iFatTablePos)=(TUint16)aFatValue;
   1.201 +    }
   1.202 +
   1.203 +/**
   1.204 +Write to just the fat table
   1.205 +
   1.206 +@param aFatIndex Cluster number to write to
   1.207 +@param aFatValue Value for indirection table
   1.208 +*/
   1.209 +void CRamFatTable::WriteIndirectionTable(TInt aFatIndex,TInt aFatValue)
   1.210 +    {
   1.211 +    *(TUint16*)(RamDiskBase()+PosInBytes(aFatIndex)+iIndirectionTablePos)=(TUint16)aFatValue;
   1.212 +    }
   1.213 +
   1.214 +/**
   1.215 +Find the real location of aCluster
   1.216 +
   1.217 +@param aCluster Cluster to read, contians cluster value upon return
   1.218 +*/
   1.219 +void CRamFatTable::ReadIndirectionTable(TUint32& aCluster) const
   1.220 +    {
   1.221 +    aCluster=*(TUint16*)(RamDiskBase()+PosInBytes(aCluster)+iIndirectionTablePos);
   1.222 +    }
   1.223 +
   1.224 +/**
   1.225 +Copy memory in RAM drive area, unlocking required
   1.226 +
   1.227 +@param aTrg Pointer to destination location
   1.228 +@param aSrc Pointer to source location
   1.229 +@param aLength Length of data to copy
   1.230 +@return Pointer to end of data copied
   1.231 +*/
   1.232 +TUint8* CRamFatTable::MemCopy(TAny* aTrg,const TAny* aSrc,TInt aLength)
   1.233 +    {
   1.234 +    TUint8* p=Mem::Copy(aTrg,aSrc,aLength);
   1.235 +    return(p);
   1.236 +    }
   1.237 +
   1.238 +/**
   1.239 +    Copy memory with filling the source buffer with zeroes. Target and source buffers can overlap.
   1.240 +    Used on RAMDrive srinking in order to wipe data from the file that is being deleted.
   1.241 +    
   1.242 +    @param   aTrg       pointer to the target address
   1.243 +    @param   aSrc       pointer to the destination address
   1.244 +    @param   aLength    how many bytes to copy
   1.245 +    @return  A pointer to a location aLength bytes beyond aTrg (i.e. the location aTrg+aLength).
   1.246 +*/
   1.247 +TUint8* CRamFatTable::MemCopyFillZ(TAny* aTrg, TAny* aSrc,TInt aLength)
   1.248 +{
   1.249 +    //-- just copy src to the trg, the memory areas can overlap.
   1.250 +    TUint8* p=Mem::Copy(aTrg, aSrc, aLength);
   1.251 +    
   1.252 +    //-- now zero-fill the source memory area taking into account possible overlap.
   1.253 +    TUint8* pSrc = static_cast<TUint8*>(aSrc);
   1.254 +    TUint8* pTrg = static_cast<TUint8*>(aTrg);
   1.255 +    
   1.256 +    TUint8* pZFill = NULL; //-- pointer to the beginning of zerofilled area
   1.257 +    TInt    zFillLen = 0;  //-- a number of bytes to zero-fill
   1.258 +    
   1.259 +    if(aTrg < aSrc)
   1.260 +    {
   1.261 +        if(pTrg+aLength < pSrc)
   1.262 +        {//-- target and source areas do not overlap
   1.263 +         pZFill = pSrc;
   1.264 +         zFillLen = aLength;
   1.265 +        }
   1.266 +        else
   1.267 +        {//-- target and source areas overlap, try not to corrupt the target area
   1.268 +         zFillLen = pSrc-pTrg;
   1.269 +         pZFill = pTrg+aLength;
   1.270 +        }
   1.271 +    }
   1.272 +    else
   1.273 +    {
   1.274 +        if(pSrc+aLength < pTrg)
   1.275 +        {//-- target and source areas do not overlap
   1.276 +         pZFill = pSrc;
   1.277 +         zFillLen = aLength;
   1.278 +        }
   1.279 +        else
   1.280 +        {//-- target and source areas overlap, try not to corrupt the target area
   1.281 +         zFillLen = pSrc+aLength-pTrg;
   1.282 +         pZFill = pSrc;
   1.283 +        }
   1.284 +    }
   1.285 +
   1.286 +    Mem::FillZ(pZFill, zFillLen);
   1.287 +
   1.288 +    return(p);
   1.289 +}
   1.290 +
   1.291 +/**
   1.292 +    Zero fill RAM area corresponding to the cluster number aCluster
   1.293 +    @param  aCluster a cluster number to be zero-filled
   1.294 +*/
   1.295 +void CRamFatTable::ZeroFillCluster(TInt aCluster)
   1.296 +{
   1.297 +        TLinAddr clusterPos= I64LOW(DataPositionInBytes(aCluster));
   1.298 +        Mem::FillZ(iRamDiskBase+clusterPos, 1<< iOwner->ClusterSizeLog2());     
   1.299 +    }
   1.300 +
   1.301 +
   1.302 +/**
   1.303 +Return the location of a Cluster in the data section of the media
   1.304 +
   1.305 +@param aCluster to find location of
   1.306 +@return Byte offset of the cluster data 
   1.307 +*/
   1.308 +TInt64 CRamFatTable::DataPositionInBytes(TUint32 aCluster) const
   1.309 +    {
   1.310 +    //__PRINT(_L("CRamFatTable::DataPositionInBytes"));
   1.311 +    ReadIndirectionTable(aCluster);
   1.312 +    return(aCluster<<iOwner->ClusterSizeLog2());
   1.313 +    }
   1.314 +
   1.315 +/**
   1.316 +Allocate and mark as EOF a single cluster as close as possible to aNearestCluster,
   1.317 +calls base class implementation but must Enlarge the RAM drive first. Allocated cluster RAM area will be zero-filled.
   1.318 +
   1.319 +@param  aNearestCluster Cluster the new cluster should be nearest to
   1.320 +@leave  System wide error codes
   1.321 +@return The cluster number allocated
   1.322 +*/
   1.323 +TUint32 CRamFatTable::AllocateSingleClusterL(TUint32 aNearestCluster)
   1.324 +    {
   1.325 +    __PRINT(_L("CRamFatTable::AllocateSingleClusterL"));
   1.326 +    iOwner->EnlargeL(1<<iOwner->ClusterSizeLog2()); //  First enlarge the RAM drive
   1.327 +    TInt fileAllocated=CFatTable::AllocateSingleClusterL(aNearestCluster); //   Now update the free cluster and fat/fit
   1.328 +    ZeroFillCluster(fileAllocated);  //-- zero-fill allocated cluster 
   1.329 +    return(fileAllocated);
   1.330 +    }   
   1.331 +
   1.332 +
   1.333 +/**
   1.334 +    Extend a file or directory cluster chain, enlarging RAM drive first. Allocated clusters are zero-filled.
   1.335 +    Leaves if there are no free clusters (the disk is full).
   1.336 +    Note that method now doesn't call CFatTable::ExtendClusterListL() from its base class, be careful making changes there.
   1.337 +
   1.338 +    @param aNumber      number of clusters to allocate
   1.339 +    @param aCluster     starting cluster number / ending cluster number after
   1.340 +    @leave              KErrDiskFull + system wide error codes
   1.341 +*/
   1.342 +void CRamFatTable::ExtendClusterListL(TUint32 aNumber,TInt& aCluster)
   1.343 +    {
   1.344 +    __PRINT(_L("CRamFatTable::ExtendClusterListL"));
   1.345 +    __ASSERT_DEBUG(aNumber>0,Fault(EFatBadParameter));
   1.346 +    
   1.347 +    iOwner->EnlargeL(aNumber<<iOwner->ClusterSizeLog2());
   1.348 +
   1.349 +    while(aNumber && GetNextClusterL(aCluster))
   1.350 +        aNumber--;
   1.351 +
   1.352 +    if(!aNumber)
   1.353 +        return;
   1.354 +
   1.355 +    if (NumberOfFreeClusters() < aNumber)
   1.356 +        {
   1.357 +        __PRINT(_L("CRamFatTable::ExtendClusterListL - leaving KErrDirFull"));
   1.358 +        User::Leave(KErrDiskFull);
   1.359 +        }
   1.360 +
   1.361 +    while (aNumber--)
   1.362 +        {
   1.363 +        const TInt freeCluster=FindClosestFreeClusterL(aCluster);
   1.364 +
   1.365 +        WriteFatEntryEofL(freeCluster); //  Must write EOF for FindClosestFreeCluster to work again
   1.366 +        DecrementFreeClusterCount(1);
   1.367 +        WriteL(aCluster,freeCluster);
   1.368 +        aCluster=freeCluster;
   1.369 +        ZeroFillCluster(freeCluster); //-- zero fill just allocated cluster (RAM area)
   1.370 +        }
   1.371 +
   1.372 +    SetFreeClusterHint(aCluster); 
   1.373 +  
   1.374 +    }
   1.375 +
   1.376 +/**
   1.377 +Mark a chain of clusters as free in the FAT. Shrinks the RAM drive once the
   1.378 +clusters are free 
   1.379 +
   1.380 +@param aCluster Start cluster of cluster chain to free
   1.381 +@leave System wide error codes
   1.382 +*/
   1.383 +void CRamFatTable::FreeClusterListL(TUint32 aCluster)
   1.384 +    {
   1.385 +    __PRINT1(_L("CRamFatTable::FreeClusterListL aCluster=%d"),aCluster);
   1.386 +    if (aCluster==0)
   1.387 +        return; // File has no cluster allocated
   1.388 +
   1.389 +    const TInt clusterShift=iOwner->ClusterSizeLog2();
   1.390 +    TInt startCluster=aCluster;
   1.391 +    TInt endCluster=0;
   1.392 +    TInt totalFreed=0;
   1.393 +    TLinAddr srcEnd=0;
   1.394 +
   1.395 +    while(endCluster!=EOF_16Bit)
   1.396 +        {
   1.397 +        TInt num=CountContiguousClustersL(startCluster,endCluster,KMaxTInt);
   1.398 +        if (GetNextClusterL(endCluster)==EFalse || endCluster==0)
   1.399 +            endCluster=EOF_16Bit;   // endCluster==0 -> file contained FAT loop
   1.400 +
   1.401 +    //  Real position in bytes of the start cluster in the data area
   1.402 +        TLinAddr startClusterPos= I64LOW(DataPositionInBytes(startCluster));
   1.403 +    //  Sliding value when more than one block is freed
   1.404 +        TLinAddr trg=startClusterPos-(totalFreed<<clusterShift);
   1.405 +        __PRINT1(_L("trg=0x%x"),trg);
   1.406 +
   1.407 +    //  Beginning of data area to move
   1.408 +        TLinAddr srcStart=startClusterPos+(num<<clusterShift);
   1.409 +        __PRINT1(_L("srcStart=0x%x"),srcStart);
   1.410 +    //  Position of next part of cluster chain or position of end of ram drive
   1.411 +        if (endCluster==EOF_16Bit)  //  Last cluster is the end of the chain
   1.412 +            {
   1.413 +        
   1.414 +    
   1.415 +        //  Fixed to use the genuine RAM drive size rather than the number
   1.416 +        //  of free clusters - though they *should* be the same
   1.417 +        //  It avoids the problem of iFreeClusters getting out of sync with 
   1.418 +        //  the RAM drive size but doesn't solve the issue of why it can happen...
   1.419 +            
   1.420 +            srcEnd=I64LOW(iOwner->Size());
   1.421 +            __PRINT1(_L("srcEnd=0x%x"),srcEnd);
   1.422 +            }
   1.423 +        else                        //  Just move up to the next part of the chain
   1.424 +            srcEnd=I64LOW(DataPositionInBytes(endCluster));
   1.425 +
   1.426 +        //-- Copy (srcEnd-srcStart) bytes from iRamDiskBase+srcStart onto iRamDiskBase+trg
   1.427 +        //-- zero-filling free space to avoid leaving something important there
   1.428 +        ASSERT(srcEnd >= srcStart);
   1.429 +        if(srcEnd-srcStart > 0)
   1.430 +            { 
   1.431 +            MemCopyFillZ(iRamDiskBase+trg,iRamDiskBase+srcStart,srcEnd-srcStart);
   1.432 +            }    
   1.433 +        else
   1.434 +            {//-- we are freeing the cluster chain at the end of the RAMdrive; Nothing to copy to the drive space that has become free,
   1.435 +             //-- but nevertheless zero fill this space.
   1.436 +            Mem::FillZ(iRamDiskBase+trg, num<<clusterShift);
   1.437 +            }    
   1.438 +        
   1.439 +        totalFreed+=num;
   1.440 +        startCluster=endCluster;
   1.441 +        UpdateIndirectionTable(srcStart>>clusterShift,srcEnd>>clusterShift,totalFreed);
   1.442 +        }
   1.443 +    TInt bytesFreed=totalFreed<<clusterShift;
   1.444 +    
   1.445 +//  First free the cluster list
   1.446 +    CFatTable::FreeClusterListL(aCluster);
   1.447 +//  Now reduce the size of the RAM drive
   1.448 +    iOwner->ReduceSizeL(srcEnd-bytesFreed,bytesFreed);
   1.449 +    }
   1.450 +
   1.451 +/**
   1.452 +Shift any clusters between aStart and anEnd backwards by aClusterShift
   1.453 +
   1.454 +@param aStart Start of shift region
   1.455 +@param anEnd End of shift region
   1.456 +@param aClusterShift amount to shift cluster by
   1.457 +*/
   1.458 +void CRamFatTable::UpdateIndirectionTable(TUint32 aStart,TUint32 anEnd,TInt aClusterShift)
   1.459 +    {
   1.460 +    __PRINT(_L("CRamFatTable::UpdateIndirectionTable"));
   1.461 +#if defined(__WINS__)
   1.462 +    TUint32 count=iOwner->MaxClusterNumber();
   1.463 +    while (count--)
   1.464 +        {
   1.465 +        TUint32 cluster=count;
   1.466 +        ReadIndirectionTable(cluster);
   1.467 +        if (cluster>=aStart && cluster<anEnd)
   1.468 +            WriteIndirectionTable(count,cluster-aClusterShift);
   1.469 +        }
   1.470 +#else
   1.471 +    TUint16* table=(TUint16*)(RamDiskBase()+iIndirectionTablePos);
   1.472 +    TUint16* entry=table+iOwner->MaxClusterNumber();
   1.473 +    while (entry>table)
   1.474 +        {
   1.475 +        TUint32 cluster=*--entry;
   1.476 +        if (cluster<aStart)
   1.477 +            continue;
   1.478 +        if (cluster<anEnd)
   1.479 +            *entry=TUint16(cluster-aClusterShift);
   1.480 +        }
   1.481 +#endif
   1.482 +    }
   1.483 +
   1.484 +
   1.485 +
   1.486 +
   1.487 +
   1.488 +