os/kernelhwsrv/kerneltest/e32test/buffer/t_huff.cpp
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
sl@0
     1
// Copyright (c) 2004-2009 Nokia Corporation and/or its subsidiary(-ies).
sl@0
     2
// All rights reserved.
sl@0
     3
// This component and the accompanying materials are made available
sl@0
     4
// under the terms of the License "Eclipse Public License v1.0"
sl@0
     5
// which accompanies this distribution, and is available
sl@0
     6
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
sl@0
     7
//
sl@0
     8
// Initial Contributors:
sl@0
     9
// Nokia Corporation - initial contribution.
sl@0
    10
//
sl@0
    11
// Contributors:
sl@0
    12
//
sl@0
    13
// Description:
sl@0
    14
// e32test/buffer/t_huff.cpp
sl@0
    15
// Overview:
sl@0
    16
// Test methods of the Huffman, TBitInput and TBitOutput classes.
sl@0
    17
// API Information:
sl@0
    18
// Huffman, TBitInput, TBitOutput
sl@0
    19
// Details:
sl@0
    20
// - Test and verify the results of TBitInput bit reading:
sl@0
    21
// - test and verify single bit reads, multiple bit reads and 32-bit reads
sl@0
    22
// - test and verify single bit reads and multiple bit reads from a 
sl@0
    23
// fractured input.
sl@0
    24
// - test and verify overrun reads
sl@0
    25
// - Test and verify the results of TBitOutput bit writing:
sl@0
    26
// - test and verify bitstream padding
sl@0
    27
// - test and verify single bit and multiple bit writes
sl@0
    28
// - test and verify overflow writes
sl@0
    29
// - Test and verify the results of a Huffman decoder using Huffman class 
sl@0
    30
// static methods, TBitOutput and TBitInput objects.
sl@0
    31
// - Test and verify the results of a Huffman generator for known distributions:
sl@0
    32
// flat, power-of-2 and Fibonacci.
sl@0
    33
// - Test and verify the results of a Huffman generator for random distributions:
sl@0
    34
// - generate random frequency distributions and verify:
sl@0
    35
// (a) the Huffman generator creates a mathematically 'optimal code'
sl@0
    36
// (b) the canonical encoding is canonical
sl@0
    37
// (c) the decoding tree correctly decodes each code
sl@0
    38
// (d) the encoding can be correctly externalised and internalised
sl@0
    39
// Platforms/Drives/Compatibility:
sl@0
    40
// All 
sl@0
    41
// Assumptions/Requirement/Pre-requisites:
sl@0
    42
// Failures and causes:
sl@0
    43
// Base Port information:
sl@0
    44
// 
sl@0
    45
//
sl@0
    46
sl@0
    47
#include <e32test.h>
sl@0
    48
#include <e32math.h>
sl@0
    49
#include <e32huffman.h>
sl@0
    50
sl@0
    51
RTest test(RProcess().FileName());
sl@0
    52
sl@0
    53
const Uint64 KTestData=UI64LIT(0x6f1b09a7e8c523d4);
sl@0
    54
const TUint8 KTestBuffer[] = {0x6f,0x1b,0x09,0xa7,0xe8,0xc5,0x23,0xd4};
sl@0
    55
const TInt KTestBytes=sizeof(KTestBuffer);
sl@0
    56
const TInt KTestBits=KTestBytes*8;
sl@0
    57
sl@0
    58
// Input stream: bit and multi-bit read tests with exhsautive buffer reload testing
sl@0
    59
sl@0
    60
typedef TBool (*TestFn)(TBitInput& aIn, Uint64 aBits, TInt aCount);
sl@0
    61
sl@0
    62
class TAlignedBitInput : public TBitInput
sl@0
    63
	{
sl@0
    64
public:
sl@0
    65
	TAlignedBitInput(const TUint8*,TInt,TInt);
sl@0
    66
private:
sl@0
    67
	void UnderflowL();
sl@0
    68
private:
sl@0
    69
	const TUint8* iRemainder;
sl@0
    70
	TInt iCount;
sl@0
    71
	};
sl@0
    72
sl@0
    73
TAlignedBitInput::TAlignedBitInput(const TUint8* aPtr,TInt aCount,TInt aOffset)
sl@0
    74
	:TBitInput(aPtr,32-aOffset,aOffset), iRemainder(aPtr+4), iCount(aOffset+aCount-32)
sl@0
    75
	{}
sl@0
    76
sl@0
    77
void TAlignedBitInput::UnderflowL()
sl@0
    78
	{
sl@0
    79
	if (!iRemainder)
sl@0
    80
		User::Leave(KErrUnderflow);
sl@0
    81
	else
sl@0
    82
		{
sl@0
    83
		Set(iRemainder,iCount);
sl@0
    84
		iRemainder=0;
sl@0
    85
		}
sl@0
    86
	}
sl@0
    87
sl@0
    88
class TSplitBitInput : public TBitInput
sl@0
    89
	{
sl@0
    90
public:
sl@0
    91
	TSplitBitInput(const TUint8*,TInt,TInt,TInt);
sl@0
    92
private:
sl@0
    93
	void UnderflowL();
sl@0
    94
private:
sl@0
    95
	const TUint8* iBase;
sl@0
    96
	TInt iBlockSize;
sl@0
    97
	TInt iOffset;
sl@0
    98
	TInt iAvail;
sl@0
    99
	};
sl@0
   100
sl@0
   101
TSplitBitInput::TSplitBitInput(const TUint8* aPtr,TInt aLength,TInt aOffset,TInt aSize)
sl@0
   102
	:TBitInput(aPtr,aSize,aOffset), iBase(aPtr), iBlockSize(aSize), iOffset(aOffset+aSize), iAvail(aLength-aSize)
sl@0
   103
	{}
sl@0
   104
sl@0
   105
void TSplitBitInput::UnderflowL()
sl@0
   106
	{
sl@0
   107
	TInt len=Min(iBlockSize,iAvail);
sl@0
   108
	if (len==0)
sl@0
   109
		User::Leave(KErrUnderflow);
sl@0
   110
	Set(iBase,len,iOffset);
sl@0
   111
	iOffset+=len;
sl@0
   112
	iAvail-=len;
sl@0
   113
	}
sl@0
   114
sl@0
   115
class TAlternateBitInput : public TBitInput
sl@0
   116
	{
sl@0
   117
public:
sl@0
   118
	TAlternateBitInput(const TUint8*,TInt,TInt);
sl@0
   119
private:
sl@0
   120
	void UnderflowL();
sl@0
   121
private:
sl@0
   122
	const TUint8* iBase;
sl@0
   123
	TInt iOffset;
sl@0
   124
	TInt iAvail;
sl@0
   125
	};
sl@0
   126
sl@0
   127
TAlternateBitInput::TAlternateBitInput(const TUint8* aPtr,TInt aLength,TInt aOffset)
sl@0
   128
	:TBitInput(aPtr,1,aOffset), iBase(aPtr), iOffset(aOffset+2), iAvail(aLength-2)
sl@0
   129
	{}
sl@0
   130
sl@0
   131
void TAlternateBitInput::UnderflowL()
sl@0
   132
	{
sl@0
   133
	if (iAvail<=0)
sl@0
   134
		User::Leave(KErrUnderflow);
sl@0
   135
	Set(iBase,1,iOffset);
sl@0
   136
	iOffset+=2;
sl@0
   137
	iAvail-=2;
sl@0
   138
	}
sl@0
   139
sl@0
   140
void TestReader(TBitInput& aIn, TestFn aFunc, Uint64 aBits, TInt aCount)
sl@0
   141
	{
sl@0
   142
	TBool eof=EFalse;
sl@0
   143
	TRAPD(r,eof=aFunc(aIn,aBits,aCount));
sl@0
   144
	test (r==KErrNone);
sl@0
   145
	if (eof)
sl@0
   146
		{
sl@0
   147
		TRAP(r,aIn.ReadL());
sl@0
   148
		test (r==KErrUnderflow);
sl@0
   149
		}
sl@0
   150
	}
sl@0
   151
sl@0
   152
void TestBits(TInt aOffset, TInt aCount, TestFn aFunc)
sl@0
   153
	{
sl@0
   154
	Uint64 bits=KTestData;
sl@0
   155
	if (aOffset)
sl@0
   156
		bits<<=aOffset;
sl@0
   157
	if (aCount<64)
sl@0
   158
		bits&=~((Uint64(1)<<(64-aCount))-1);
sl@0
   159
	// test with direct input
sl@0
   160
	TBitInput in1(KTestBuffer,aCount,aOffset);
sl@0
   161
	TestReader(in1,aFunc,bits,aCount);
sl@0
   162
	// test with aligned input
sl@0
   163
	if (aOffset<32 && aOffset+aCount>32)
sl@0
   164
		{
sl@0
   165
		TAlignedBitInput in2(KTestBuffer,aCount,aOffset);
sl@0
   166
		TestReader(in2,aFunc,bits,aCount);
sl@0
   167
		}
sl@0
   168
	// test with blocked input
sl@0
   169
	for (TInt block=aCount;--block>0;)
sl@0
   170
		{
sl@0
   171
		TSplitBitInput in3(KTestBuffer,aCount,aOffset,block);
sl@0
   172
		TestReader(in3,aFunc,bits,aCount);
sl@0
   173
		}
sl@0
   174
	}
sl@0
   175
sl@0
   176
void TestAlternateBits(TInt aOffset, TInt aCount, TestFn aFunc)
sl@0
   177
	{
sl@0
   178
	Uint64 bits=0;
sl@0
   179
	TInt c=0;
sl@0
   180
	for (TInt ix=aOffset;ix<aOffset+aCount;ix+=2)
sl@0
   181
		{
sl@0
   182
		if (KTestData<<ix>>63)
sl@0
   183
			bits|=Uint64(1)<<(63-c);
sl@0
   184
		++c;
sl@0
   185
		}
sl@0
   186
	// test with alternate input
sl@0
   187
	TAlternateBitInput in1(KTestBuffer,aCount,aOffset);
sl@0
   188
	TestReader(in1,aFunc,bits,c);
sl@0
   189
	}
sl@0
   190
sl@0
   191
void PermBits(TestFn aFunc, TInt aMinCount=1, TInt aMaxCount=64)
sl@0
   192
	{
sl@0
   193
	for (TInt offset=0;offset<KTestBits;++offset)
sl@0
   194
		for (TInt count=Min(KTestBits-offset,aMaxCount);count>=aMinCount;--count)
sl@0
   195
			TestBits(offset,count,aFunc);
sl@0
   196
	}
sl@0
   197
sl@0
   198
void AlternateBits(TestFn aFunc, TInt aMinCount=1)
sl@0
   199
	{
sl@0
   200
	for (TInt offset=0;offset<KTestBits;++offset)
sl@0
   201
		for (TInt count=KTestBits-offset;count>=aMinCount;--count)
sl@0
   202
			TestAlternateBits(offset,count,aFunc);
sl@0
   203
	}
sl@0
   204
sl@0
   205
TBool SingleBitRead(TBitInput& aIn, Uint64 aBits, TInt aCount)
sl@0
   206
	{
sl@0
   207
	while (--aCount>=0)
sl@0
   208
		{
sl@0
   209
		test (aIn.ReadL() == (aBits>>63));
sl@0
   210
		aBits<<=1;
sl@0
   211
		}
sl@0
   212
	return ETrue;
sl@0
   213
	}
sl@0
   214
sl@0
   215
TBool MultiBitRead(TBitInput& aIn, Uint64 aBits, TInt aCount)
sl@0
   216
	{
sl@0
   217
	TInt c=aCount/2;
sl@0
   218
	TUint v=aIn.ReadL(c);
sl@0
   219
	if (c==0)
sl@0
   220
		test (v==0);
sl@0
   221
	else
sl@0
   222
		{
sl@0
   223
		test (v==TUint(aBits>>(64-c)));
sl@0
   224
		aBits<<=c;
sl@0
   225
		}
sl@0
   226
	c=aCount-c;
sl@0
   227
	v=aIn.ReadL(c);
sl@0
   228
	if (c==0)
sl@0
   229
		test (v==0);
sl@0
   230
	else
sl@0
   231
		test (v==TUint(aBits>>(64-c)));
sl@0
   232
	return ETrue;
sl@0
   233
	}
sl@0
   234
sl@0
   235
TBool LongShortRead(TBitInput& aIn, Uint64 aBits, TInt aCount)
sl@0
   236
	{
sl@0
   237
	TUint v=aIn.ReadL(32);
sl@0
   238
	test (v==TUint(aBits>>32));
sl@0
   239
	aBits<<=32;
sl@0
   240
	TInt c=aCount-32;
sl@0
   241
	v=aIn.ReadL(c);
sl@0
   242
	if (c==0)
sl@0
   243
		test (v==0);
sl@0
   244
	else
sl@0
   245
		test (v==TUint(aBits>>(64-c)));
sl@0
   246
	return ETrue;
sl@0
   247
	}
sl@0
   248
sl@0
   249
TBool ShortLongRead(TBitInput& aIn, Uint64 aBits, TInt aCount)
sl@0
   250
	{
sl@0
   251
	TInt c=aCount-32;
sl@0
   252
	TUint v=aIn.ReadL(c);
sl@0
   253
	if (c==0)
sl@0
   254
		test (v==0);
sl@0
   255
	else
sl@0
   256
		{
sl@0
   257
		test (v==TUint(aBits>>(64-c)));
sl@0
   258
		aBits<<=c;
sl@0
   259
		}
sl@0
   260
	v=aIn.ReadL(32);
sl@0
   261
	test (v==TUint(aBits>>32));
sl@0
   262
	return ETrue;
sl@0
   263
	}
sl@0
   264
sl@0
   265
TBool EofRead(TBitInput& aIn, Uint64, TInt aCount)
sl@0
   266
	{
sl@0
   267
	TRAPD(r,aIn.ReadL(aCount+1));
sl@0
   268
	test(r==KErrUnderflow);
sl@0
   269
	return EFalse;
sl@0
   270
	}
sl@0
   271
sl@0
   272
void TestBitReading()
sl@0
   273
	{
sl@0
   274
	test.Start(_L("Test single bit reads"));
sl@0
   275
	PermBits(&SingleBitRead);
sl@0
   276
	test.Next(_L("Test multi bit reads"));
sl@0
   277
	PermBits(&MultiBitRead);
sl@0
   278
	test.Next(_L("Test 32-bit reads"));
sl@0
   279
	PermBits(&LongShortRead,32);
sl@0
   280
	PermBits(&ShortLongRead,32);
sl@0
   281
	test.Next(_L("Test single bit reads (fractured input)"));
sl@0
   282
	AlternateBits(&SingleBitRead);
sl@0
   283
	test.Next(_L("Test multi bit reads (fractured input)"));
sl@0
   284
	AlternateBits(&MultiBitRead);
sl@0
   285
	test.Next(_L("Test overrun reads"));
sl@0
   286
	PermBits(&EofRead,1,31);
sl@0
   287
	test.End();
sl@0
   288
	}
sl@0
   289
sl@0
   290
// Bit output testing (assumes bit input is correct)
sl@0
   291
sl@0
   292
void TestPadding()
sl@0
   293
	{
sl@0
   294
	TUint8 buffer[4];
sl@0
   295
	TBitOutput out(buffer,4);
sl@0
   296
	test(out.Ptr()==buffer);
sl@0
   297
	test(out.BufferedBits()==0);
sl@0
   298
	out.PadL(0);
sl@0
   299
	test(out.Ptr()==buffer);
sl@0
   300
	test(out.BufferedBits()==0);
sl@0
   301
	out.WriteL(0,0);
sl@0
   302
	out.PadL(0);
sl@0
   303
	test(out.Ptr()==buffer);
sl@0
   304
	test(out.BufferedBits()==0);
sl@0
   305
sl@0
   306
	TInt i;
sl@0
   307
	for (i=1;i<=8;++i)
sl@0
   308
		{
sl@0
   309
		out.Set(buffer,4);
sl@0
   310
		out.WriteL(0,i);
sl@0
   311
		test(out.BufferedBits()==(i%8));
sl@0
   312
		out.PadL(1);
sl@0
   313
		test(out.BufferedBits()==0);
sl@0
   314
		out.WriteL(0,i);
sl@0
   315
		test(out.BufferedBits()==(i%8));
sl@0
   316
		out.PadL(1);
sl@0
   317
		test(out.BufferedBits()==0);
sl@0
   318
		test (out.Ptr()==buffer+2);
sl@0
   319
		test (buffer[0]==(0xff>>i));
sl@0
   320
		test (buffer[1]==(0xff>>i));
sl@0
   321
		}
sl@0
   322
sl@0
   323
	for (i=1;i<=8;++i)
sl@0
   324
		{
sl@0
   325
		out.Set(buffer,4);
sl@0
   326
		out.WriteL(0xff,i);
sl@0
   327
		out.PadL(0);
sl@0
   328
		test (out.Ptr()==buffer+1);
sl@0
   329
		test (buffer[0]==(0xff^(0xff>>i)));
sl@0
   330
		}
sl@0
   331
	}
sl@0
   332
sl@0
   333
void TestBitWrites()
sl@0
   334
	{
sl@0
   335
	TUint8 buffer[KTestBytes];
sl@0
   336
	TBitOutput out(buffer,KTestBytes);
sl@0
   337
	TBitInput in(KTestBuffer,KTestBits);
sl@0
   338
	TInt i;
sl@0
   339
	for (i=KTestBits;--i>=0;)
sl@0
   340
		out.WriteL(in.ReadL(),1);
sl@0
   341
	test (Mem::Compare(buffer,KTestBytes,KTestBuffer,KTestBytes)==0);	
sl@0
   342
sl@0
   343
	Mem::FillZ(buffer,KTestBytes);
sl@0
   344
	out.Set(buffer,KTestBytes);
sl@0
   345
	Uint64 bits=KTestData;
sl@0
   346
	for (i=KTestBits;--i>=0;)
sl@0
   347
		out.WriteL(TUint(bits>>i),1);
sl@0
   348
	test (Mem::Compare(buffer,KTestBytes,KTestBuffer,KTestBytes)==0);
sl@0
   349
	}
sl@0
   350
sl@0
   351
void TestMultiBitWrites()
sl@0
   352
	{
sl@0
   353
	TInt i=0;
sl@0
   354
	for (TInt j=0;j<32;++j)
sl@0
   355
		for (TInt k=0;k<32;++k)
sl@0
   356
			{
sl@0
   357
			++i;
sl@0
   358
			if (i+j+k>KTestBits)
sl@0
   359
				i=0;
sl@0
   360
			TUint8 buffer[KTestBytes];
sl@0
   361
			TBitInput in(KTestBuffer,KTestBits);
sl@0
   362
			TBitOutput out(buffer,KTestBytes);
sl@0
   363
			in.ReadL(i);
sl@0
   364
			out.WriteL(in.ReadL(j),j);
sl@0
   365
			out.WriteL(in.ReadL(k),k);
sl@0
   366
			out.PadL(0);
sl@0
   367
			const TUint8* p=out.Ptr();
sl@0
   368
			test (p-buffer == (j+k+7)/8);
sl@0
   369
			Uint64 v=0;
sl@0
   370
			while (p>buffer)
sl@0
   371
				v=(v>>8) | Uint64(*--p)<<56;
sl@0
   372
			Uint64 res=KTestData;
sl@0
   373
			if (i+j+k<KTestBits)
sl@0
   374
				res>>=KTestBits-i-j-k;
sl@0
   375
			if (j+k<KTestBits)
sl@0
   376
				res<<=KTestBits-j-k;
sl@0
   377
			test (v==res);
sl@0
   378
			}
sl@0
   379
	}
sl@0
   380
sl@0
   381
void TestAlternatingWrites()
sl@0
   382
	{
sl@0
   383
	const TInt KBufferSize=(1+32)*32;
sl@0
   384
	TUint8 buffer[(7+KBufferSize)/8];
sl@0
   385
	TBitOutput out(buffer,sizeof(buffer));
sl@0
   386
	TInt i;
sl@0
   387
	for (i=0;i<=32;++i)
sl@0
   388
		out.WriteL(i&1?0xffffffff:0,i);
sl@0
   389
	while (--i>=0)
sl@0
   390
		out.WriteL(i&1?0:0xffffffff,i);
sl@0
   391
	out.PadL(0);
sl@0
   392
	TBitInput in(buffer,KBufferSize);
sl@0
   393
	for (i=0;i<=32;++i)
sl@0
   394
		{
sl@0
   395
		TUint v=in.ReadL(i);
sl@0
   396
		if (i&1)
sl@0
   397
			test (v == (1u<<i)-1u);
sl@0
   398
		else
sl@0
   399
			test (v == 0);
sl@0
   400
		}
sl@0
   401
	while (--i>=0)
sl@0
   402
		{
sl@0
   403
		TUint v=in.ReadL(i);
sl@0
   404
		if (i&1)
sl@0
   405
			test (v == 0);
sl@0
   406
		else if (i==32)
sl@0
   407
			test (v == 0xffffffffu);
sl@0
   408
		else
sl@0
   409
			test (v == (1u<<i)-1u);
sl@0
   410
		}
sl@0
   411
	}
sl@0
   412
sl@0
   413
class TOverflowOutput : public TBitOutput
sl@0
   414
	{
sl@0
   415
public:
sl@0
   416
	TOverflowOutput();
sl@0
   417
private:
sl@0
   418
	void OverflowL();
sl@0
   419
private:
sl@0
   420
	TUint8 iBuf[1];
sl@0
   421
	TInt iIx;
sl@0
   422
	};
sl@0
   423
sl@0
   424
TOverflowOutput::TOverflowOutput()
sl@0
   425
	:iIx(0)
sl@0
   426
	{}
sl@0
   427
sl@0
   428
void TOverflowOutput::OverflowL()
sl@0
   429
	{
sl@0
   430
	if (Ptr()!=0)
sl@0
   431
		{
sl@0
   432
		test (Ptr()-iBuf == 1);
sl@0
   433
		test (iBuf[0] == KTestBuffer[iIx]);
sl@0
   434
		if (++iIx==KTestBytes)
sl@0
   435
			User::Leave(KErrOverflow);
sl@0
   436
		}
sl@0
   437
	Set(iBuf,1);
sl@0
   438
	}
sl@0
   439
sl@0
   440
void OverflowTestL(TBitOutput& out, TInt j)
sl@0
   441
	{
sl@0
   442
	for (;;) out.WriteL(0xffffffffu,j);
sl@0
   443
	}
sl@0
   444
sl@0
   445
void TestOverflow()
sl@0
   446
	{
sl@0
   447
	test.Start(_L("Test default constructed output"));
sl@0
   448
	TBitOutput out;
sl@0
   449
	TInt i;
sl@0
   450
	for (i=1;i<=8;++i)
sl@0
   451
		{
sl@0
   452
		TRAPD(r,out.WriteL(1,1));
sl@0
   453
		if (i<8)
sl@0
   454
			{
sl@0
   455
			test (out.BufferedBits() == i);
sl@0
   456
			test (r == KErrNone);
sl@0
   457
			}
sl@0
   458
		else
sl@0
   459
			test (r == KErrOverflow);
sl@0
   460
		}
sl@0
   461
sl@0
   462
	test.Next(_L("Test overflow does not overrun the buffer"));
sl@0
   463
	i=0;
sl@0
   464
	for (TInt j=1;j<=32;++j)
sl@0
   465
		{
sl@0
   466
		if (++i>KTestBytes)
sl@0
   467
			i=1;
sl@0
   468
		TUint8 buffer[KTestBytes+1];
sl@0
   469
		Mem::FillZ(buffer,sizeof(buffer));
sl@0
   470
		out.Set(buffer,i);
sl@0
   471
		TRAPD(r,OverflowTestL(out,j));
sl@0
   472
		test (r == KErrOverflow);
sl@0
   473
		TInt k=0;
sl@0
   474
		while (buffer[k]==0xff)
sl@0
   475
			{
sl@0
   476
			++k;
sl@0
   477
			test (k<TInt(sizeof(buffer)));
sl@0
   478
			}
sl@0
   479
		test (k <= i);
sl@0
   480
		test ((i-k)*8 < j);
sl@0
   481
		while (k<TInt(sizeof(buffer)))
sl@0
   482
			{
sl@0
   483
			test (buffer[k]==0);
sl@0
   484
			++k;
sl@0
   485
			}
sl@0
   486
		}
sl@0
   487
sl@0
   488
	test.Next(_L("Test overflow handler"));
sl@0
   489
	TOverflowOutput vout;
sl@0
   490
	TBitInput in(KTestBuffer,KTestBits);
sl@0
   491
	for (i=KTestBits;--i>=0;)
sl@0
   492
		vout.WriteL(in.ReadL(),1);
sl@0
   493
	test(vout.BufferedBits() == 0);
sl@0
   494
	TRAPD(r,vout.WriteL(0,1));
sl@0
   495
	test (r == KErrNone);
sl@0
   496
	TRAP(r,vout.PadL(0));
sl@0
   497
	test (r == KErrOverflow);
sl@0
   498
	test.End();
sl@0
   499
	}
sl@0
   500
sl@0
   501
void TestBitWriting()
sl@0
   502
	{
sl@0
   503
	test.Start(_L("Test padding"));
sl@0
   504
	TestPadding();
sl@0
   505
	test.Next(_L("Test bit writes"));
sl@0
   506
	TestBitWrites();
sl@0
   507
	test.Next(_L("Test multi-bit writes"));
sl@0
   508
	TestMultiBitWrites();
sl@0
   509
	TestAlternatingWrites();
sl@0
   510
	test.Next(_L("Test overflow writes"));
sl@0
   511
	TestOverflow();
sl@0
   512
	test.End();
sl@0
   513
	}
sl@0
   514
sl@0
   515
// Huffman decode testing
sl@0
   516
#ifdef __ARMCC__
sl@0
   517
#pragma Onoinline
sl@0
   518
#endif
sl@0
   519
void Dummy(volatile TInt & /*x*/)
sl@0
   520
        {
sl@0
   521
	}
sl@0
   522
sl@0
   523
void TestHuffmanL()
sl@0
   524
	{
sl@0
   525
	const TInt KTestBits=32*32;
sl@0
   526
sl@0
   527
	// build the huffman decoding tree for
sl@0
   528
	// 0: '0'
sl@0
   529
	// 1: '10'
sl@0
   530
	// 2: '110' etc
sl@0
   531
	TUint32 huffman[Huffman::KMaxCodeLength+1];
sl@0
   532
	TInt i;
sl@0
   533
	for (i=0;i<Huffman::KMaxCodeLength;++i)
sl@0
   534
		huffman[i]=i+1;
sl@0
   535
	huffman[Huffman::KMaxCodeLength]=Huffman::KMaxCodeLength;
sl@0
   536
	Huffman::Decoding(huffman,Huffman::KMaxCodeLength+1,huffman);
sl@0
   537
sl@0
   538
	TUint8 buffer[KTestBits/8];
sl@0
   539
	for (TInt sz=0;sz<Huffman::KMaxCodeLength;++sz)
sl@0
   540
		{
sl@0
   541
		const TInt rep=KTestBits/(sz+1);
sl@0
   542
		TBitOutput out(buffer,sizeof(buffer));
sl@0
   543
		for (i=0;i<rep;++i)
sl@0
   544
			{
sl@0
   545
			out.WriteL(0xffffffff,sz);
sl@0
   546
			out.WriteL(0,1);
sl@0
   547
			}
sl@0
   548
		out.PadL(1);
sl@0
   549
		for (TInt blk=1;blk<=64;++blk)
sl@0
   550
			{
sl@0
   551
			TSplitBitInput in(buffer,rep*(sz+1)-1,0,blk);
sl@0
   552
			for (i=0;i<rep-1;++i)
sl@0
   553
				{
sl@0
   554
				TInt v=-1;
sl@0
   555
				TRAPD(r,v=in.HuffmanL(huffman));
sl@0
   556
				test (r==KErrNone);
sl@0
   557
				test (sz==v);
sl@0
   558
				}
sl@0
   559
			volatile TInt v=-1;
sl@0
   560
		        Dummy(v);
sl@0
   561
			TRAPD(r, v=in.HuffmanL(huffman));
sl@0
   562
			test (v==-1);
sl@0
   563
			test (r==KErrUnderflow);
sl@0
   564
			}
sl@0
   565
		}
sl@0
   566
	}
sl@0
   567
sl@0
   568
// Huffman generator testing with known but atypical distributions
sl@0
   569
sl@0
   570
void FlatHuffman(TInt aMaxCount)
sl@0
   571
	{
sl@0
   572
	TUint32* tab=new TUint32[aMaxCount];
sl@0
   573
	test (tab!=NULL);
sl@0
   574
sl@0
   575
	// test empty distribution
sl@0
   576
	Mem::FillZ(tab,sizeof(TUint32)*aMaxCount);
sl@0
   577
	TRAPD(r, Huffman::HuffmanL(tab,aMaxCount,tab));
sl@0
   578
	test (r==KErrNone);
sl@0
   579
	TInt i;
sl@0
   580
	for (i=0;i<aMaxCount;++i)
sl@0
   581
		test (tab[i]==0);
sl@0
   582
	Huffman::Decoding(tab,aMaxCount,tab);
sl@0
   583
sl@0
   584
	// test single-symbol distribution
sl@0
   585
	Mem::FillZ(tab,sizeof(TUint32)*aMaxCount);
sl@0
   586
	tab[0]=100;
sl@0
   587
	TRAP(r, Huffman::HuffmanL(tab,aMaxCount,tab));
sl@0
   588
	test (r==KErrNone);
sl@0
   589
	test (tab[0]==1);
sl@0
   590
	for (i=1;i<aMaxCount;++i)
sl@0
   591
		test (tab[i]==0);
sl@0
   592
	Huffman::Decoding(tab,aMaxCount,tab,200);
sl@0
   593
	TUint8 bits=0;
sl@0
   594
	TBitInput in(&bits,1);
sl@0
   595
	test (in.HuffmanL(tab)==200);
sl@0
   596
sl@0
   597
	// test flat distributions with 2..aMaxCount symbols
sl@0
   598
	TInt len=0;
sl@0
   599
	for (TInt c=2;c<aMaxCount;++c)
sl@0
   600
		{
sl@0
   601
		if ((2<<len)==c)
sl@0
   602
			++len;
sl@0
   603
		Mem::FillZ(tab,sizeof(TUint32)*aMaxCount);
sl@0
   604
		for (i=0;i<c;++i)
sl@0
   605
			tab[i]=100;
sl@0
   606
		TRAP(r, Huffman::HuffmanL(tab,aMaxCount,tab));
sl@0
   607
		test (r==KErrNone);
sl@0
   608
		TInt small=0;
sl@0
   609
		for (i=0;i<c;++i)
sl@0
   610
			{
sl@0
   611
			if (TInt(tab[i])==len)
sl@0
   612
				++small;
sl@0
   613
			else
sl@0
   614
				test (TInt(tab[i])==len+1);
sl@0
   615
			}
sl@0
   616
		for (;i<aMaxCount;++i)
sl@0
   617
			test (tab[i]==0);
sl@0
   618
		test (small == (2<<len)-c);
sl@0
   619
		}
sl@0
   620
sl@0
   621
	delete [] tab;
sl@0
   622
	}
sl@0
   623
sl@0
   624
void Power2Huffman()
sl@0
   625
//
sl@0
   626
// Test Huffman generator for the distribution 2^0,2^0,2^1,2^2,2^3,...
sl@0
   627
//
sl@0
   628
	{
sl@0
   629
	TUint32 tab[Huffman::KMaxCodeLength+2];
sl@0
   630
sl@0
   631
	for (TInt c=1;c<=Huffman::KMaxCodeLength+1;c++)
sl@0
   632
		{
sl@0
   633
		tab[c]=tab[c-1]=1;
sl@0
   634
		TInt i;
sl@0
   635
		for (i=c-1;--i>=0;)
sl@0
   636
			tab[i]=2*tab[i+1];
sl@0
   637
sl@0
   638
		TRAPD(r,Huffman::HuffmanL(tab,c+1,tab));
sl@0
   639
		if (c>Huffman::KMaxCodeLength)
sl@0
   640
			{
sl@0
   641
			test (r==KErrOverflow);
sl@0
   642
			continue;
sl@0
   643
			}
sl@0
   644
sl@0
   645
		test (TInt(tab[c]) == c);
sl@0
   646
		for (i=0;i<c;++i)
sl@0
   647
			test (TInt(tab[i]) == i+1);
sl@0
   648
sl@0
   649
		Huffman::Decoding(tab,c+1,tab);
sl@0
   650
		for (i=0;i<=c;++i)
sl@0
   651
			{
sl@0
   652
			TUint8 buf[4];
sl@0
   653
			TBitOutput out(buf,4);
sl@0
   654
			out.WriteL(0xffffffff,i);
sl@0
   655
			out.WriteL(0,1);
sl@0
   656
			out.PadL(1);
sl@0
   657
			TBitInput in(buf,Min(i+1,c));
sl@0
   658
			TInt ix=-1;
sl@0
   659
			TRAP(r, ix=in.HuffmanL(tab));
sl@0
   660
			test (r==KErrNone);
sl@0
   661
			test (ix==i);
sl@0
   662
			TRAP(r, in.HuffmanL(tab));
sl@0
   663
			test (r==KErrUnderflow);
sl@0
   664
			}
sl@0
   665
		}
sl@0
   666
	}
sl@0
   667
sl@0
   668
void FibonacciHuffman()
sl@0
   669
//
sl@0
   670
// Test Huffman generator for the distribution 1,1,2,3,5,8,13,21,...
sl@0
   671
//
sl@0
   672
	{
sl@0
   673
	TUint32 tab[Huffman::KMaxCodeLength+2];
sl@0
   674
sl@0
   675
	for (TInt c=1;c<=Huffman::KMaxCodeLength+1;c++)
sl@0
   676
		{
sl@0
   677
		tab[c]=tab[c-1]=1;
sl@0
   678
		TInt i;
sl@0
   679
		for (i=c-1;--i>=0;)
sl@0
   680
			tab[i]=tab[i+1]+tab[i+2];
sl@0
   681
sl@0
   682
		TRAPD(r,Huffman::HuffmanL(tab,c+1,tab));
sl@0
   683
		if (c>Huffman::KMaxCodeLength)
sl@0
   684
			{
sl@0
   685
			test (r==KErrOverflow);
sl@0
   686
			continue;
sl@0
   687
			}
sl@0
   688
sl@0
   689
		test (TInt(tab[c]) == c);
sl@0
   690
		for (i=0;i<c;++i)
sl@0
   691
			test (TInt(tab[i]) == i+1);
sl@0
   692
sl@0
   693
		Huffman::Decoding(tab,c+1,tab);
sl@0
   694
		for (i=0;i<=c;++i)
sl@0
   695
			{
sl@0
   696
			TUint8 buf[4];
sl@0
   697
			TBitOutput out(buf,4);
sl@0
   698
			out.WriteL(0xffffffff,i);
sl@0
   699
			out.WriteL(0,1);
sl@0
   700
			out.PadL(1);
sl@0
   701
			TBitInput in(buf,Min(i+1,c));
sl@0
   702
			TInt ix=-1;
sl@0
   703
			TRAP(r, ix=in.HuffmanL(tab));
sl@0
   704
			test (r==KErrNone);
sl@0
   705
			test (ix==i);
sl@0
   706
			TRAP(r, in.HuffmanL(tab));
sl@0
   707
			test (r==KErrUnderflow);
sl@0
   708
			}
sl@0
   709
		}
sl@0
   710
	}
sl@0
   711
sl@0
   712
void SpecificHuffman(TInt aMaxCount)
sl@0
   713
	{
sl@0
   714
	test.Start(_L("Flat distributions"));
sl@0
   715
	FlatHuffman(aMaxCount);
sl@0
   716
	test.Next(_L("Power-of-2 distributions"));
sl@0
   717
	Power2Huffman();
sl@0
   718
	test.Next(_L("Fibonacci distributions"));
sl@0
   719
	FibonacciHuffman();
sl@0
   720
	test.End();
sl@0
   721
	}
sl@0
   722
sl@0
   723
// Huffman generator validity testing. Checking code properties for a sequence of random
sl@0
   724
// frequency distributions.
sl@0
   725
sl@0
   726
TInt64 RSeed(KTestData);
sl@0
   727
sl@0
   728
inline TInt Random(TInt aLimit)
sl@0
   729
	{return aLimit>0 ? (Math::Rand(RSeed)%aLimit) : 0;}
sl@0
   730
sl@0
   731
void GenerateFreq(TUint32* aTable, TInt aCount, TInt aTotalFreq, TInt aVariance, TInt aZeros)
sl@0
   732
//
sl@0
   733
// Generate a random frequency table
sl@0
   734
//
sl@0
   735
	{
sl@0
   736
	for (TInt i=0;i<aCount;++i)
sl@0
   737
		{
sl@0
   738
		if (aZeros && Random(aCount-i)<aZeros)
sl@0
   739
			{
sl@0
   740
			aTable[i]=0;
sl@0
   741
			--aZeros;
sl@0
   742
			}
sl@0
   743
		else if (aCount-aZeros-i == 1)
sl@0
   744
			{
sl@0
   745
			aTable[i]=aTotalFreq;
sl@0
   746
			aTotalFreq=0;
sl@0
   747
			}
sl@0
   748
		else
sl@0
   749
			{
sl@0
   750
			TInt ave=aTotalFreq/(aCount-aZeros-i);
sl@0
   751
			if (aVariance==0)
sl@0
   752
				{
sl@0
   753
				aTable[i]=ave;
sl@0
   754
				aTotalFreq-=ave;
sl@0
   755
				}
sl@0
   756
			else
sl@0
   757
				{
sl@0
   758
				TInt var=I64INT(TInt64(ave)<<aVariance>>8);
sl@0
   759
				TInt min=Max(1,ave-var);
sl@0
   760
				TInt max=Min(1+aTotalFreq-(aCount-aZeros-i),ave+var);
sl@0
   761
				TInt f = max<=min ? ave : min+Random(max-min);
sl@0
   762
				aTable[i] = f;
sl@0
   763
				aTotalFreq-=f;
sl@0
   764
				}
sl@0
   765
			}
sl@0
   766
		}
sl@0
   767
	}
sl@0
   768
sl@0
   769
TInt NumericalSort(const TUint32& aLeft, const TUint32& aRight)
sl@0
   770
	{
sl@0
   771
	return aLeft-aRight;
sl@0
   772
	}
sl@0
   773
sl@0
   774
TInt64 VerifyOptimalCode(const TUint32* aFreq, const TUint32* aCode, TInt aCount, TInt aTotalFreqLog2)
sl@0
   775
//
sl@0
   776
// We can show tht the expected code length is at least as short as a Shannon-Fano encoding
sl@0
   777
//
sl@0
   778
	{
sl@0
   779
	TInt64 totalHuff=0;
sl@0
   780
	TInt64 totalSF=0;
sl@0
   781
	TInt i;
sl@0
   782
	for (i=0;i<aCount;++i)
sl@0
   783
		{
sl@0
   784
		TInt f=aFreq[i];
sl@0
   785
		TInt l=aCode[i];
sl@0
   786
		if (f == 0)
sl@0
   787
			{
sl@0
   788
			test (l == 0);
sl@0
   789
			continue;
sl@0
   790
			}
sl@0
   791
		totalHuff+=f*l;
sl@0
   792
		TInt s=1;
sl@0
   793
		while ((f<<s>>aTotalFreqLog2)!=1)
sl@0
   794
			++s;
sl@0
   795
		totalSF+=f*s;
sl@0
   796
		}
sl@0
   797
	test (totalHuff<=totalSF);
sl@0
   798
sl@0
   799
	RPointerArray<TUint32> index(aCount);
sl@0
   800
	CleanupClosePushL(index);
sl@0
   801
	for (i=0;i<aCount;++i)
sl@0
   802
		{
sl@0
   803
		if (aFreq[i] != 0)
sl@0
   804
			User::LeaveIfError(index.InsertInOrderAllowRepeats(aFreq+i,&NumericalSort));
sl@0
   805
		}
sl@0
   806
sl@0
   807
	TInt smin,smax;
sl@0
   808
	smin=smax=aCode[index[0]-aFreq];
sl@0
   809
	for (i=1;i<index.Count();++i)
sl@0
   810
		{
sl@0
   811
		TInt pix=index[i-1]-aFreq;
sl@0
   812
		TInt nix=index[i]-aFreq;
sl@0
   813
		TInt pf=aFreq[pix];
sl@0
   814
		TInt nf=aFreq[nix];
sl@0
   815
		TInt ps=aCode[pix];
sl@0
   816
		TInt ns=aCode[nix];
sl@0
   817
sl@0
   818
		if (nf==pf)
sl@0
   819
			{
sl@0
   820
			smin=Min(smin,ns);
sl@0
   821
			smax=Max(smax,ns);
sl@0
   822
			test (smin==smax || smin+1==smax);
sl@0
   823
			}
sl@0
   824
		else
sl@0
   825
			{
sl@0
   826
			test (nf>pf);
sl@0
   827
			test (ns<=ps);
sl@0
   828
			smin=smax=ns;
sl@0
   829
			}
sl@0
   830
		}
sl@0
   831
	CleanupStack::PopAndDestroy();
sl@0
   832
sl@0
   833
	return totalHuff;
sl@0
   834
	}
sl@0
   835
sl@0
   836
TInt LexicalSort(const TUint32& aLeft, const TUint32& aRight)
sl@0
   837
	{
sl@0
   838
	const TUint32 KCodeMask=(1<<Huffman::KMaxCodeLength)-1;
sl@0
   839
	return (aLeft&KCodeMask)-(aRight&KCodeMask);
sl@0
   840
	}
sl@0
   841
sl@0
   842
void VerifyCanonicalEncodingL(const TUint32* aCode, const TUint32* aEncode, TInt aCount)
sl@0
   843
//
sl@0
   844
// A canonical encoding assigns codes from '0' in increasing code length order, and
sl@0
   845
// in increasing index in the table for equal code length.
sl@0
   846
//
sl@0
   847
// Huffman is also a 'prefix-free' code, so we check this property of the encoding
sl@0
   848
//
sl@0
   849
	{
sl@0
   850
	TInt i;
sl@0
   851
	for (i=0;i<aCount;++i)
sl@0
   852
		test (aCode[i] == aEncode[i]>>Huffman::KMaxCodeLength);
sl@0
   853
sl@0
   854
	RPointerArray<TUint32> index(aCount);
sl@0
   855
	CleanupClosePushL(index);
sl@0
   856
	for (i=0;i<aCount;++i)
sl@0
   857
		{
sl@0
   858
		if (aCode[i] != 0)
sl@0
   859
			User::LeaveIfError(index.InsertInOrder(aEncode+i,&LexicalSort));
sl@0
   860
		}
sl@0
   861
sl@0
   862
	for (i=1;i<index.Count();++i)
sl@0
   863
		{
sl@0
   864
		TInt pix=index[i-1]-aEncode;
sl@0
   865
		TInt nix=index[i]-aEncode;
sl@0
   866
		test (aCode[pix]<=aCode[nix]);				// code lengths are always increasing
sl@0
   867
		test (aCode[pix]<aCode[nix] || pix<nix);	// same code length => index order preserved
sl@0
   868
sl@0
   869
		// check that a code is not a prefix of the next one. This is sufficent for checking the
sl@0
   870
		// prefix condition as we have already sorted the codes in lexicographical order
sl@0
   871
		TUint32 pc=aEncode[pix]<<(32-Huffman::KMaxCodeLength);
sl@0
   872
		TUint32 nc=aEncode[nix]<<(32-Huffman::KMaxCodeLength);
sl@0
   873
		TInt plen=aCode[pix];
sl@0
   874
		test ((pc>>(32-plen)) != (nc>>(32-plen)));	// pc is not a prefix for nc
sl@0
   875
		}
sl@0
   876
	CleanupStack::PopAndDestroy(&index);
sl@0
   877
	}
sl@0
   878
sl@0
   879
void VerifyCanonicalDecoding(const TUint32* aEncode, const TUint32* aDecode, TInt aCount, TInt aBase)
sl@0
   880
//
sl@0
   881
// We've checked the encoding is valid, so now we check that the decoding can correctly
sl@0
   882
// decode every code
sl@0
   883
//
sl@0
   884
	{
sl@0
   885
	TUint8 buffer[(Huffman::KMaxCodeLength+7)/8];
sl@0
   886
	TBitInput in;
sl@0
   887
	TBitOutput out;
sl@0
   888
sl@0
   889
	while (--aCount>=0)
sl@0
   890
		{
sl@0
   891
		if (aEncode[aCount])
sl@0
   892
			{
sl@0
   893
			out.Set(buffer,sizeof(buffer));
sl@0
   894
			out.HuffmanL(aEncode[aCount]);
sl@0
   895
			out.PadL(0);
sl@0
   896
			in.Set(buffer,aEncode[aCount]>>Huffman::KMaxCodeLength);
sl@0
   897
			TInt v=-1;
sl@0
   898
			TRAPD(r,v=in.HuffmanL(aDecode));
sl@0
   899
			test (r==KErrNone);
sl@0
   900
			test (v==aCount+aBase);
sl@0
   901
			TRAP(r,in.ReadL());
sl@0
   902
			test (r==KErrUnderflow);
sl@0
   903
			}
sl@0
   904
		}
sl@0
   905
	}
sl@0
   906
sl@0
   907
TInt TestExternalizeL(const TUint32* aCode, TUint8* aExtern, TUint32* aIntern, TInt aCount)
sl@0
   908
	{
sl@0
   909
	TBitOutput out(aExtern,aCount*4);
sl@0
   910
	Huffman::ExternalizeL(out,aCode,aCount);
sl@0
   911
	TInt bits=out.BufferedBits()+8*(out.Ptr()-aExtern);
sl@0
   912
	out.PadL(0);
sl@0
   913
	TBitInput in(aExtern,bits);
sl@0
   914
	TRAPD(r,Huffman::InternalizeL(in,aIntern,aCount));
sl@0
   915
	test (r == KErrNone);
sl@0
   916
	test (Mem::Compare((TUint8*)aCode,aCount*sizeof(TUint32),(TUint8*)aIntern,aCount*sizeof(TUint32)) == 0);
sl@0
   917
	TRAP(r,in.ReadL());
sl@0
   918
	test (r == KErrUnderflow);
sl@0
   919
	return bits;
sl@0
   920
	}
sl@0
   921
sl@0
   922
void RandomHuffmanL(TInt aIter, TInt aMaxSymbols)
sl@0
   923
//
sl@0
   924
// generate random frequency distributions and verify
sl@0
   925
// (a) the Huffman generator creates a mathematically 'optimal code'
sl@0
   926
// (b) the canonical encoding is the canonical encoding
sl@0
   927
// (c) the decoding tree correctly decodes each code.
sl@0
   928
// (d) the encoding can be correctly externalised and internalised
sl@0
   929
//
sl@0
   930
	{
sl@0
   931
	TReal KLog2;
sl@0
   932
	Math::Ln(KLog2,2);
sl@0
   933
	const TInt KTotalFreqLog2=24;
sl@0
   934
	const TInt KTotalFreq=1<<KTotalFreqLog2;
sl@0
   935
sl@0
   936
	while (--aIter >= 0)
sl@0
   937
		{
sl@0
   938
		TInt num=2+Random(aMaxSymbols-1);
sl@0
   939
sl@0
   940
		TUint32* const freq = new(ELeave) TUint32[num*3];
sl@0
   941
		CleanupArrayDeletePushL(freq);
sl@0
   942
		TUint32* const code = freq+num;
sl@0
   943
		TUint32* const encoding = code+num;
sl@0
   944
		TUint32* const decoding = freq;
sl@0
   945
		TUint8* const exter = (TUint8*)encoding;
sl@0
   946
		TUint32* const intern = freq;
sl@0
   947
sl@0
   948
		TInt var=Random(24);
sl@0
   949
		TInt zero=Random(num-2);
sl@0
   950
		GenerateFreq(freq,num,KTotalFreq,var,zero);
sl@0
   951
sl@0
   952
		Huffman::HuffmanL(freq,num,code);
sl@0
   953
		VerifyOptimalCode(freq,code,num,KTotalFreqLog2);
sl@0
   954
sl@0
   955
		Huffman::Encoding(code,num,encoding);
sl@0
   956
		VerifyCanonicalEncodingL(code,encoding,num);
sl@0
   957
sl@0
   958
		TInt base=Random(Huffman::KMaxCodes-num);
sl@0
   959
		Huffman::Decoding(code,num,decoding,base);
sl@0
   960
		VerifyCanonicalDecoding(encoding,decoding,num,base);
sl@0
   961
sl@0
   962
		TestExternalizeL(code,exter,intern,num);
sl@0
   963
		CleanupStack::PopAndDestroy();
sl@0
   964
		}
sl@0
   965
	}
sl@0
   966
sl@0
   967
///
sl@0
   968
sl@0
   969
void MainL()
sl@0
   970
	{
sl@0
   971
	test.Start(_L("Test Bit reader"));
sl@0
   972
	TestBitReading();
sl@0
   973
	test.Next(_L("Test Bit writer"));
sl@0
   974
	TestBitWriting();
sl@0
   975
	test.Next(_L("Test Huffman decoder"));
sl@0
   976
	TestHuffmanL();
sl@0
   977
	test.Next(_L("Test Huffman generator for known distributions"));
sl@0
   978
	SpecificHuffman(800);
sl@0
   979
	test.Next(_L("Test Huffman generator for random distributions"));
sl@0
   980
	TRAPD(r,RandomHuffmanL(1000,800));
sl@0
   981
	test (r==KErrNone);
sl@0
   982
	test.End();
sl@0
   983
	}
sl@0
   984
sl@0
   985
TInt E32Main()
sl@0
   986
	{
sl@0
   987
	test.Title();
sl@0
   988
	CTrapCleanup* c=CTrapCleanup::New();
sl@0
   989
	test (c!=0);
sl@0
   990
	TRAPD(r,MainL());
sl@0
   991
	test (r==KErrNone);
sl@0
   992
	delete c;
sl@0
   993
	test.Close();
sl@0
   994
	return r;
sl@0
   995
	}