os/kernelhwsrv/kerneltest/e32test/buffer/t_huff.cpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/kernelhwsrv/kerneltest/e32test/buffer/t_huff.cpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,995 @@
     1.4 +// Copyright (c) 2004-2009 Nokia Corporation and/or its subsidiary(-ies).
     1.5 +// All rights reserved.
     1.6 +// This component and the accompanying materials are made available
     1.7 +// under the terms of the License "Eclipse Public License v1.0"
     1.8 +// which accompanies this distribution, and is available
     1.9 +// at the URL "http://www.eclipse.org/legal/epl-v10.html".
    1.10 +//
    1.11 +// Initial Contributors:
    1.12 +// Nokia Corporation - initial contribution.
    1.13 +//
    1.14 +// Contributors:
    1.15 +//
    1.16 +// Description:
    1.17 +// e32test/buffer/t_huff.cpp
    1.18 +// Overview:
    1.19 +// Test methods of the Huffman, TBitInput and TBitOutput classes.
    1.20 +// API Information:
    1.21 +// Huffman, TBitInput, TBitOutput
    1.22 +// Details:
    1.23 +// - Test and verify the results of TBitInput bit reading:
    1.24 +// - test and verify single bit reads, multiple bit reads and 32-bit reads
    1.25 +// - test and verify single bit reads and multiple bit reads from a 
    1.26 +// fractured input.
    1.27 +// - test and verify overrun reads
    1.28 +// - Test and verify the results of TBitOutput bit writing:
    1.29 +// - test and verify bitstream padding
    1.30 +// - test and verify single bit and multiple bit writes
    1.31 +// - test and verify overflow writes
    1.32 +// - Test and verify the results of a Huffman decoder using Huffman class 
    1.33 +// static methods, TBitOutput and TBitInput objects.
    1.34 +// - Test and verify the results of a Huffman generator for known distributions:
    1.35 +// flat, power-of-2 and Fibonacci.
    1.36 +// - Test and verify the results of a Huffman generator for random distributions:
    1.37 +// - generate random frequency distributions and verify:
    1.38 +// (a) the Huffman generator creates a mathematically 'optimal code'
    1.39 +// (b) the canonical encoding is canonical
    1.40 +// (c) the decoding tree correctly decodes each code
    1.41 +// (d) the encoding can be correctly externalised and internalised
    1.42 +// Platforms/Drives/Compatibility:
    1.43 +// All 
    1.44 +// Assumptions/Requirement/Pre-requisites:
    1.45 +// Failures and causes:
    1.46 +// Base Port information:
    1.47 +// 
    1.48 +//
    1.49 +
    1.50 +#include <e32test.h>
    1.51 +#include <e32math.h>
    1.52 +#include <e32huffman.h>
    1.53 +
    1.54 +RTest test(RProcess().FileName());
    1.55 +
    1.56 +const Uint64 KTestData=UI64LIT(0x6f1b09a7e8c523d4);
    1.57 +const TUint8 KTestBuffer[] = {0x6f,0x1b,0x09,0xa7,0xe8,0xc5,0x23,0xd4};
    1.58 +const TInt KTestBytes=sizeof(KTestBuffer);
    1.59 +const TInt KTestBits=KTestBytes*8;
    1.60 +
    1.61 +// Input stream: bit and multi-bit read tests with exhsautive buffer reload testing
    1.62 +
    1.63 +typedef TBool (*TestFn)(TBitInput& aIn, Uint64 aBits, TInt aCount);
    1.64 +
    1.65 +class TAlignedBitInput : public TBitInput
    1.66 +	{
    1.67 +public:
    1.68 +	TAlignedBitInput(const TUint8*,TInt,TInt);
    1.69 +private:
    1.70 +	void UnderflowL();
    1.71 +private:
    1.72 +	const TUint8* iRemainder;
    1.73 +	TInt iCount;
    1.74 +	};
    1.75 +
    1.76 +TAlignedBitInput::TAlignedBitInput(const TUint8* aPtr,TInt aCount,TInt aOffset)
    1.77 +	:TBitInput(aPtr,32-aOffset,aOffset), iRemainder(aPtr+4), iCount(aOffset+aCount-32)
    1.78 +	{}
    1.79 +
    1.80 +void TAlignedBitInput::UnderflowL()
    1.81 +	{
    1.82 +	if (!iRemainder)
    1.83 +		User::Leave(KErrUnderflow);
    1.84 +	else
    1.85 +		{
    1.86 +		Set(iRemainder,iCount);
    1.87 +		iRemainder=0;
    1.88 +		}
    1.89 +	}
    1.90 +
    1.91 +class TSplitBitInput : public TBitInput
    1.92 +	{
    1.93 +public:
    1.94 +	TSplitBitInput(const TUint8*,TInt,TInt,TInt);
    1.95 +private:
    1.96 +	void UnderflowL();
    1.97 +private:
    1.98 +	const TUint8* iBase;
    1.99 +	TInt iBlockSize;
   1.100 +	TInt iOffset;
   1.101 +	TInt iAvail;
   1.102 +	};
   1.103 +
   1.104 +TSplitBitInput::TSplitBitInput(const TUint8* aPtr,TInt aLength,TInt aOffset,TInt aSize)
   1.105 +	:TBitInput(aPtr,aSize,aOffset), iBase(aPtr), iBlockSize(aSize), iOffset(aOffset+aSize), iAvail(aLength-aSize)
   1.106 +	{}
   1.107 +
   1.108 +void TSplitBitInput::UnderflowL()
   1.109 +	{
   1.110 +	TInt len=Min(iBlockSize,iAvail);
   1.111 +	if (len==0)
   1.112 +		User::Leave(KErrUnderflow);
   1.113 +	Set(iBase,len,iOffset);
   1.114 +	iOffset+=len;
   1.115 +	iAvail-=len;
   1.116 +	}
   1.117 +
   1.118 +class TAlternateBitInput : public TBitInput
   1.119 +	{
   1.120 +public:
   1.121 +	TAlternateBitInput(const TUint8*,TInt,TInt);
   1.122 +private:
   1.123 +	void UnderflowL();
   1.124 +private:
   1.125 +	const TUint8* iBase;
   1.126 +	TInt iOffset;
   1.127 +	TInt iAvail;
   1.128 +	};
   1.129 +
   1.130 +TAlternateBitInput::TAlternateBitInput(const TUint8* aPtr,TInt aLength,TInt aOffset)
   1.131 +	:TBitInput(aPtr,1,aOffset), iBase(aPtr), iOffset(aOffset+2), iAvail(aLength-2)
   1.132 +	{}
   1.133 +
   1.134 +void TAlternateBitInput::UnderflowL()
   1.135 +	{
   1.136 +	if (iAvail<=0)
   1.137 +		User::Leave(KErrUnderflow);
   1.138 +	Set(iBase,1,iOffset);
   1.139 +	iOffset+=2;
   1.140 +	iAvail-=2;
   1.141 +	}
   1.142 +
   1.143 +void TestReader(TBitInput& aIn, TestFn aFunc, Uint64 aBits, TInt aCount)
   1.144 +	{
   1.145 +	TBool eof=EFalse;
   1.146 +	TRAPD(r,eof=aFunc(aIn,aBits,aCount));
   1.147 +	test (r==KErrNone);
   1.148 +	if (eof)
   1.149 +		{
   1.150 +		TRAP(r,aIn.ReadL());
   1.151 +		test (r==KErrUnderflow);
   1.152 +		}
   1.153 +	}
   1.154 +
   1.155 +void TestBits(TInt aOffset, TInt aCount, TestFn aFunc)
   1.156 +	{
   1.157 +	Uint64 bits=KTestData;
   1.158 +	if (aOffset)
   1.159 +		bits<<=aOffset;
   1.160 +	if (aCount<64)
   1.161 +		bits&=~((Uint64(1)<<(64-aCount))-1);
   1.162 +	// test with direct input
   1.163 +	TBitInput in1(KTestBuffer,aCount,aOffset);
   1.164 +	TestReader(in1,aFunc,bits,aCount);
   1.165 +	// test with aligned input
   1.166 +	if (aOffset<32 && aOffset+aCount>32)
   1.167 +		{
   1.168 +		TAlignedBitInput in2(KTestBuffer,aCount,aOffset);
   1.169 +		TestReader(in2,aFunc,bits,aCount);
   1.170 +		}
   1.171 +	// test with blocked input
   1.172 +	for (TInt block=aCount;--block>0;)
   1.173 +		{
   1.174 +		TSplitBitInput in3(KTestBuffer,aCount,aOffset,block);
   1.175 +		TestReader(in3,aFunc,bits,aCount);
   1.176 +		}
   1.177 +	}
   1.178 +
   1.179 +void TestAlternateBits(TInt aOffset, TInt aCount, TestFn aFunc)
   1.180 +	{
   1.181 +	Uint64 bits=0;
   1.182 +	TInt c=0;
   1.183 +	for (TInt ix=aOffset;ix<aOffset+aCount;ix+=2)
   1.184 +		{
   1.185 +		if (KTestData<<ix>>63)
   1.186 +			bits|=Uint64(1)<<(63-c);
   1.187 +		++c;
   1.188 +		}
   1.189 +	// test with alternate input
   1.190 +	TAlternateBitInput in1(KTestBuffer,aCount,aOffset);
   1.191 +	TestReader(in1,aFunc,bits,c);
   1.192 +	}
   1.193 +
   1.194 +void PermBits(TestFn aFunc, TInt aMinCount=1, TInt aMaxCount=64)
   1.195 +	{
   1.196 +	for (TInt offset=0;offset<KTestBits;++offset)
   1.197 +		for (TInt count=Min(KTestBits-offset,aMaxCount);count>=aMinCount;--count)
   1.198 +			TestBits(offset,count,aFunc);
   1.199 +	}
   1.200 +
   1.201 +void AlternateBits(TestFn aFunc, TInt aMinCount=1)
   1.202 +	{
   1.203 +	for (TInt offset=0;offset<KTestBits;++offset)
   1.204 +		for (TInt count=KTestBits-offset;count>=aMinCount;--count)
   1.205 +			TestAlternateBits(offset,count,aFunc);
   1.206 +	}
   1.207 +
   1.208 +TBool SingleBitRead(TBitInput& aIn, Uint64 aBits, TInt aCount)
   1.209 +	{
   1.210 +	while (--aCount>=0)
   1.211 +		{
   1.212 +		test (aIn.ReadL() == (aBits>>63));
   1.213 +		aBits<<=1;
   1.214 +		}
   1.215 +	return ETrue;
   1.216 +	}
   1.217 +
   1.218 +TBool MultiBitRead(TBitInput& aIn, Uint64 aBits, TInt aCount)
   1.219 +	{
   1.220 +	TInt c=aCount/2;
   1.221 +	TUint v=aIn.ReadL(c);
   1.222 +	if (c==0)
   1.223 +		test (v==0);
   1.224 +	else
   1.225 +		{
   1.226 +		test (v==TUint(aBits>>(64-c)));
   1.227 +		aBits<<=c;
   1.228 +		}
   1.229 +	c=aCount-c;
   1.230 +	v=aIn.ReadL(c);
   1.231 +	if (c==0)
   1.232 +		test (v==0);
   1.233 +	else
   1.234 +		test (v==TUint(aBits>>(64-c)));
   1.235 +	return ETrue;
   1.236 +	}
   1.237 +
   1.238 +TBool LongShortRead(TBitInput& aIn, Uint64 aBits, TInt aCount)
   1.239 +	{
   1.240 +	TUint v=aIn.ReadL(32);
   1.241 +	test (v==TUint(aBits>>32));
   1.242 +	aBits<<=32;
   1.243 +	TInt c=aCount-32;
   1.244 +	v=aIn.ReadL(c);
   1.245 +	if (c==0)
   1.246 +		test (v==0);
   1.247 +	else
   1.248 +		test (v==TUint(aBits>>(64-c)));
   1.249 +	return ETrue;
   1.250 +	}
   1.251 +
   1.252 +TBool ShortLongRead(TBitInput& aIn, Uint64 aBits, TInt aCount)
   1.253 +	{
   1.254 +	TInt c=aCount-32;
   1.255 +	TUint v=aIn.ReadL(c);
   1.256 +	if (c==0)
   1.257 +		test (v==0);
   1.258 +	else
   1.259 +		{
   1.260 +		test (v==TUint(aBits>>(64-c)));
   1.261 +		aBits<<=c;
   1.262 +		}
   1.263 +	v=aIn.ReadL(32);
   1.264 +	test (v==TUint(aBits>>32));
   1.265 +	return ETrue;
   1.266 +	}
   1.267 +
   1.268 +TBool EofRead(TBitInput& aIn, Uint64, TInt aCount)
   1.269 +	{
   1.270 +	TRAPD(r,aIn.ReadL(aCount+1));
   1.271 +	test(r==KErrUnderflow);
   1.272 +	return EFalse;
   1.273 +	}
   1.274 +
   1.275 +void TestBitReading()
   1.276 +	{
   1.277 +	test.Start(_L("Test single bit reads"));
   1.278 +	PermBits(&SingleBitRead);
   1.279 +	test.Next(_L("Test multi bit reads"));
   1.280 +	PermBits(&MultiBitRead);
   1.281 +	test.Next(_L("Test 32-bit reads"));
   1.282 +	PermBits(&LongShortRead,32);
   1.283 +	PermBits(&ShortLongRead,32);
   1.284 +	test.Next(_L("Test single bit reads (fractured input)"));
   1.285 +	AlternateBits(&SingleBitRead);
   1.286 +	test.Next(_L("Test multi bit reads (fractured input)"));
   1.287 +	AlternateBits(&MultiBitRead);
   1.288 +	test.Next(_L("Test overrun reads"));
   1.289 +	PermBits(&EofRead,1,31);
   1.290 +	test.End();
   1.291 +	}
   1.292 +
   1.293 +// Bit output testing (assumes bit input is correct)
   1.294 +
   1.295 +void TestPadding()
   1.296 +	{
   1.297 +	TUint8 buffer[4];
   1.298 +	TBitOutput out(buffer,4);
   1.299 +	test(out.Ptr()==buffer);
   1.300 +	test(out.BufferedBits()==0);
   1.301 +	out.PadL(0);
   1.302 +	test(out.Ptr()==buffer);
   1.303 +	test(out.BufferedBits()==0);
   1.304 +	out.WriteL(0,0);
   1.305 +	out.PadL(0);
   1.306 +	test(out.Ptr()==buffer);
   1.307 +	test(out.BufferedBits()==0);
   1.308 +
   1.309 +	TInt i;
   1.310 +	for (i=1;i<=8;++i)
   1.311 +		{
   1.312 +		out.Set(buffer,4);
   1.313 +		out.WriteL(0,i);
   1.314 +		test(out.BufferedBits()==(i%8));
   1.315 +		out.PadL(1);
   1.316 +		test(out.BufferedBits()==0);
   1.317 +		out.WriteL(0,i);
   1.318 +		test(out.BufferedBits()==(i%8));
   1.319 +		out.PadL(1);
   1.320 +		test(out.BufferedBits()==0);
   1.321 +		test (out.Ptr()==buffer+2);
   1.322 +		test (buffer[0]==(0xff>>i));
   1.323 +		test (buffer[1]==(0xff>>i));
   1.324 +		}
   1.325 +
   1.326 +	for (i=1;i<=8;++i)
   1.327 +		{
   1.328 +		out.Set(buffer,4);
   1.329 +		out.WriteL(0xff,i);
   1.330 +		out.PadL(0);
   1.331 +		test (out.Ptr()==buffer+1);
   1.332 +		test (buffer[0]==(0xff^(0xff>>i)));
   1.333 +		}
   1.334 +	}
   1.335 +
   1.336 +void TestBitWrites()
   1.337 +	{
   1.338 +	TUint8 buffer[KTestBytes];
   1.339 +	TBitOutput out(buffer,KTestBytes);
   1.340 +	TBitInput in(KTestBuffer,KTestBits);
   1.341 +	TInt i;
   1.342 +	for (i=KTestBits;--i>=0;)
   1.343 +		out.WriteL(in.ReadL(),1);
   1.344 +	test (Mem::Compare(buffer,KTestBytes,KTestBuffer,KTestBytes)==0);	
   1.345 +
   1.346 +	Mem::FillZ(buffer,KTestBytes);
   1.347 +	out.Set(buffer,KTestBytes);
   1.348 +	Uint64 bits=KTestData;
   1.349 +	for (i=KTestBits;--i>=0;)
   1.350 +		out.WriteL(TUint(bits>>i),1);
   1.351 +	test (Mem::Compare(buffer,KTestBytes,KTestBuffer,KTestBytes)==0);
   1.352 +	}
   1.353 +
   1.354 +void TestMultiBitWrites()
   1.355 +	{
   1.356 +	TInt i=0;
   1.357 +	for (TInt j=0;j<32;++j)
   1.358 +		for (TInt k=0;k<32;++k)
   1.359 +			{
   1.360 +			++i;
   1.361 +			if (i+j+k>KTestBits)
   1.362 +				i=0;
   1.363 +			TUint8 buffer[KTestBytes];
   1.364 +			TBitInput in(KTestBuffer,KTestBits);
   1.365 +			TBitOutput out(buffer,KTestBytes);
   1.366 +			in.ReadL(i);
   1.367 +			out.WriteL(in.ReadL(j),j);
   1.368 +			out.WriteL(in.ReadL(k),k);
   1.369 +			out.PadL(0);
   1.370 +			const TUint8* p=out.Ptr();
   1.371 +			test (p-buffer == (j+k+7)/8);
   1.372 +			Uint64 v=0;
   1.373 +			while (p>buffer)
   1.374 +				v=(v>>8) | Uint64(*--p)<<56;
   1.375 +			Uint64 res=KTestData;
   1.376 +			if (i+j+k<KTestBits)
   1.377 +				res>>=KTestBits-i-j-k;
   1.378 +			if (j+k<KTestBits)
   1.379 +				res<<=KTestBits-j-k;
   1.380 +			test (v==res);
   1.381 +			}
   1.382 +	}
   1.383 +
   1.384 +void TestAlternatingWrites()
   1.385 +	{
   1.386 +	const TInt KBufferSize=(1+32)*32;
   1.387 +	TUint8 buffer[(7+KBufferSize)/8];
   1.388 +	TBitOutput out(buffer,sizeof(buffer));
   1.389 +	TInt i;
   1.390 +	for (i=0;i<=32;++i)
   1.391 +		out.WriteL(i&1?0xffffffff:0,i);
   1.392 +	while (--i>=0)
   1.393 +		out.WriteL(i&1?0:0xffffffff,i);
   1.394 +	out.PadL(0);
   1.395 +	TBitInput in(buffer,KBufferSize);
   1.396 +	for (i=0;i<=32;++i)
   1.397 +		{
   1.398 +		TUint v=in.ReadL(i);
   1.399 +		if (i&1)
   1.400 +			test (v == (1u<<i)-1u);
   1.401 +		else
   1.402 +			test (v == 0);
   1.403 +		}
   1.404 +	while (--i>=0)
   1.405 +		{
   1.406 +		TUint v=in.ReadL(i);
   1.407 +		if (i&1)
   1.408 +			test (v == 0);
   1.409 +		else if (i==32)
   1.410 +			test (v == 0xffffffffu);
   1.411 +		else
   1.412 +			test (v == (1u<<i)-1u);
   1.413 +		}
   1.414 +	}
   1.415 +
   1.416 +class TOverflowOutput : public TBitOutput
   1.417 +	{
   1.418 +public:
   1.419 +	TOverflowOutput();
   1.420 +private:
   1.421 +	void OverflowL();
   1.422 +private:
   1.423 +	TUint8 iBuf[1];
   1.424 +	TInt iIx;
   1.425 +	};
   1.426 +
   1.427 +TOverflowOutput::TOverflowOutput()
   1.428 +	:iIx(0)
   1.429 +	{}
   1.430 +
   1.431 +void TOverflowOutput::OverflowL()
   1.432 +	{
   1.433 +	if (Ptr()!=0)
   1.434 +		{
   1.435 +		test (Ptr()-iBuf == 1);
   1.436 +		test (iBuf[0] == KTestBuffer[iIx]);
   1.437 +		if (++iIx==KTestBytes)
   1.438 +			User::Leave(KErrOverflow);
   1.439 +		}
   1.440 +	Set(iBuf,1);
   1.441 +	}
   1.442 +
   1.443 +void OverflowTestL(TBitOutput& out, TInt j)
   1.444 +	{
   1.445 +	for (;;) out.WriteL(0xffffffffu,j);
   1.446 +	}
   1.447 +
   1.448 +void TestOverflow()
   1.449 +	{
   1.450 +	test.Start(_L("Test default constructed output"));
   1.451 +	TBitOutput out;
   1.452 +	TInt i;
   1.453 +	for (i=1;i<=8;++i)
   1.454 +		{
   1.455 +		TRAPD(r,out.WriteL(1,1));
   1.456 +		if (i<8)
   1.457 +			{
   1.458 +			test (out.BufferedBits() == i);
   1.459 +			test (r == KErrNone);
   1.460 +			}
   1.461 +		else
   1.462 +			test (r == KErrOverflow);
   1.463 +		}
   1.464 +
   1.465 +	test.Next(_L("Test overflow does not overrun the buffer"));
   1.466 +	i=0;
   1.467 +	for (TInt j=1;j<=32;++j)
   1.468 +		{
   1.469 +		if (++i>KTestBytes)
   1.470 +			i=1;
   1.471 +		TUint8 buffer[KTestBytes+1];
   1.472 +		Mem::FillZ(buffer,sizeof(buffer));
   1.473 +		out.Set(buffer,i);
   1.474 +		TRAPD(r,OverflowTestL(out,j));
   1.475 +		test (r == KErrOverflow);
   1.476 +		TInt k=0;
   1.477 +		while (buffer[k]==0xff)
   1.478 +			{
   1.479 +			++k;
   1.480 +			test (k<TInt(sizeof(buffer)));
   1.481 +			}
   1.482 +		test (k <= i);
   1.483 +		test ((i-k)*8 < j);
   1.484 +		while (k<TInt(sizeof(buffer)))
   1.485 +			{
   1.486 +			test (buffer[k]==0);
   1.487 +			++k;
   1.488 +			}
   1.489 +		}
   1.490 +
   1.491 +	test.Next(_L("Test overflow handler"));
   1.492 +	TOverflowOutput vout;
   1.493 +	TBitInput in(KTestBuffer,KTestBits);
   1.494 +	for (i=KTestBits;--i>=0;)
   1.495 +		vout.WriteL(in.ReadL(),1);
   1.496 +	test(vout.BufferedBits() == 0);
   1.497 +	TRAPD(r,vout.WriteL(0,1));
   1.498 +	test (r == KErrNone);
   1.499 +	TRAP(r,vout.PadL(0));
   1.500 +	test (r == KErrOverflow);
   1.501 +	test.End();
   1.502 +	}
   1.503 +
   1.504 +void TestBitWriting()
   1.505 +	{
   1.506 +	test.Start(_L("Test padding"));
   1.507 +	TestPadding();
   1.508 +	test.Next(_L("Test bit writes"));
   1.509 +	TestBitWrites();
   1.510 +	test.Next(_L("Test multi-bit writes"));
   1.511 +	TestMultiBitWrites();
   1.512 +	TestAlternatingWrites();
   1.513 +	test.Next(_L("Test overflow writes"));
   1.514 +	TestOverflow();
   1.515 +	test.End();
   1.516 +	}
   1.517 +
   1.518 +// Huffman decode testing
   1.519 +#ifdef __ARMCC__
   1.520 +#pragma Onoinline
   1.521 +#endif
   1.522 +void Dummy(volatile TInt & /*x*/)
   1.523 +        {
   1.524 +	}
   1.525 +
   1.526 +void TestHuffmanL()
   1.527 +	{
   1.528 +	const TInt KTestBits=32*32;
   1.529 +
   1.530 +	// build the huffman decoding tree for
   1.531 +	// 0: '0'
   1.532 +	// 1: '10'
   1.533 +	// 2: '110' etc
   1.534 +	TUint32 huffman[Huffman::KMaxCodeLength+1];
   1.535 +	TInt i;
   1.536 +	for (i=0;i<Huffman::KMaxCodeLength;++i)
   1.537 +		huffman[i]=i+1;
   1.538 +	huffman[Huffman::KMaxCodeLength]=Huffman::KMaxCodeLength;
   1.539 +	Huffman::Decoding(huffman,Huffman::KMaxCodeLength+1,huffman);
   1.540 +
   1.541 +	TUint8 buffer[KTestBits/8];
   1.542 +	for (TInt sz=0;sz<Huffman::KMaxCodeLength;++sz)
   1.543 +		{
   1.544 +		const TInt rep=KTestBits/(sz+1);
   1.545 +		TBitOutput out(buffer,sizeof(buffer));
   1.546 +		for (i=0;i<rep;++i)
   1.547 +			{
   1.548 +			out.WriteL(0xffffffff,sz);
   1.549 +			out.WriteL(0,1);
   1.550 +			}
   1.551 +		out.PadL(1);
   1.552 +		for (TInt blk=1;blk<=64;++blk)
   1.553 +			{
   1.554 +			TSplitBitInput in(buffer,rep*(sz+1)-1,0,blk);
   1.555 +			for (i=0;i<rep-1;++i)
   1.556 +				{
   1.557 +				TInt v=-1;
   1.558 +				TRAPD(r,v=in.HuffmanL(huffman));
   1.559 +				test (r==KErrNone);
   1.560 +				test (sz==v);
   1.561 +				}
   1.562 +			volatile TInt v=-1;
   1.563 +		        Dummy(v);
   1.564 +			TRAPD(r, v=in.HuffmanL(huffman));
   1.565 +			test (v==-1);
   1.566 +			test (r==KErrUnderflow);
   1.567 +			}
   1.568 +		}
   1.569 +	}
   1.570 +
   1.571 +// Huffman generator testing with known but atypical distributions
   1.572 +
   1.573 +void FlatHuffman(TInt aMaxCount)
   1.574 +	{
   1.575 +	TUint32* tab=new TUint32[aMaxCount];
   1.576 +	test (tab!=NULL);
   1.577 +
   1.578 +	// test empty distribution
   1.579 +	Mem::FillZ(tab,sizeof(TUint32)*aMaxCount);
   1.580 +	TRAPD(r, Huffman::HuffmanL(tab,aMaxCount,tab));
   1.581 +	test (r==KErrNone);
   1.582 +	TInt i;
   1.583 +	for (i=0;i<aMaxCount;++i)
   1.584 +		test (tab[i]==0);
   1.585 +	Huffman::Decoding(tab,aMaxCount,tab);
   1.586 +
   1.587 +	// test single-symbol distribution
   1.588 +	Mem::FillZ(tab,sizeof(TUint32)*aMaxCount);
   1.589 +	tab[0]=100;
   1.590 +	TRAP(r, Huffman::HuffmanL(tab,aMaxCount,tab));
   1.591 +	test (r==KErrNone);
   1.592 +	test (tab[0]==1);
   1.593 +	for (i=1;i<aMaxCount;++i)
   1.594 +		test (tab[i]==0);
   1.595 +	Huffman::Decoding(tab,aMaxCount,tab,200);
   1.596 +	TUint8 bits=0;
   1.597 +	TBitInput in(&bits,1);
   1.598 +	test (in.HuffmanL(tab)==200);
   1.599 +
   1.600 +	// test flat distributions with 2..aMaxCount symbols
   1.601 +	TInt len=0;
   1.602 +	for (TInt c=2;c<aMaxCount;++c)
   1.603 +		{
   1.604 +		if ((2<<len)==c)
   1.605 +			++len;
   1.606 +		Mem::FillZ(tab,sizeof(TUint32)*aMaxCount);
   1.607 +		for (i=0;i<c;++i)
   1.608 +			tab[i]=100;
   1.609 +		TRAP(r, Huffman::HuffmanL(tab,aMaxCount,tab));
   1.610 +		test (r==KErrNone);
   1.611 +		TInt small=0;
   1.612 +		for (i=0;i<c;++i)
   1.613 +			{
   1.614 +			if (TInt(tab[i])==len)
   1.615 +				++small;
   1.616 +			else
   1.617 +				test (TInt(tab[i])==len+1);
   1.618 +			}
   1.619 +		for (;i<aMaxCount;++i)
   1.620 +			test (tab[i]==0);
   1.621 +		test (small == (2<<len)-c);
   1.622 +		}
   1.623 +
   1.624 +	delete [] tab;
   1.625 +	}
   1.626 +
   1.627 +void Power2Huffman()
   1.628 +//
   1.629 +// Test Huffman generator for the distribution 2^0,2^0,2^1,2^2,2^3,...
   1.630 +//
   1.631 +	{
   1.632 +	TUint32 tab[Huffman::KMaxCodeLength+2];
   1.633 +
   1.634 +	for (TInt c=1;c<=Huffman::KMaxCodeLength+1;c++)
   1.635 +		{
   1.636 +		tab[c]=tab[c-1]=1;
   1.637 +		TInt i;
   1.638 +		for (i=c-1;--i>=0;)
   1.639 +			tab[i]=2*tab[i+1];
   1.640 +
   1.641 +		TRAPD(r,Huffman::HuffmanL(tab,c+1,tab));
   1.642 +		if (c>Huffman::KMaxCodeLength)
   1.643 +			{
   1.644 +			test (r==KErrOverflow);
   1.645 +			continue;
   1.646 +			}
   1.647 +
   1.648 +		test (TInt(tab[c]) == c);
   1.649 +		for (i=0;i<c;++i)
   1.650 +			test (TInt(tab[i]) == i+1);
   1.651 +
   1.652 +		Huffman::Decoding(tab,c+1,tab);
   1.653 +		for (i=0;i<=c;++i)
   1.654 +			{
   1.655 +			TUint8 buf[4];
   1.656 +			TBitOutput out(buf,4);
   1.657 +			out.WriteL(0xffffffff,i);
   1.658 +			out.WriteL(0,1);
   1.659 +			out.PadL(1);
   1.660 +			TBitInput in(buf,Min(i+1,c));
   1.661 +			TInt ix=-1;
   1.662 +			TRAP(r, ix=in.HuffmanL(tab));
   1.663 +			test (r==KErrNone);
   1.664 +			test (ix==i);
   1.665 +			TRAP(r, in.HuffmanL(tab));
   1.666 +			test (r==KErrUnderflow);
   1.667 +			}
   1.668 +		}
   1.669 +	}
   1.670 +
   1.671 +void FibonacciHuffman()
   1.672 +//
   1.673 +// Test Huffman generator for the distribution 1,1,2,3,5,8,13,21,...
   1.674 +//
   1.675 +	{
   1.676 +	TUint32 tab[Huffman::KMaxCodeLength+2];
   1.677 +
   1.678 +	for (TInt c=1;c<=Huffman::KMaxCodeLength+1;c++)
   1.679 +		{
   1.680 +		tab[c]=tab[c-1]=1;
   1.681 +		TInt i;
   1.682 +		for (i=c-1;--i>=0;)
   1.683 +			tab[i]=tab[i+1]+tab[i+2];
   1.684 +
   1.685 +		TRAPD(r,Huffman::HuffmanL(tab,c+1,tab));
   1.686 +		if (c>Huffman::KMaxCodeLength)
   1.687 +			{
   1.688 +			test (r==KErrOverflow);
   1.689 +			continue;
   1.690 +			}
   1.691 +
   1.692 +		test (TInt(tab[c]) == c);
   1.693 +		for (i=0;i<c;++i)
   1.694 +			test (TInt(tab[i]) == i+1);
   1.695 +
   1.696 +		Huffman::Decoding(tab,c+1,tab);
   1.697 +		for (i=0;i<=c;++i)
   1.698 +			{
   1.699 +			TUint8 buf[4];
   1.700 +			TBitOutput out(buf,4);
   1.701 +			out.WriteL(0xffffffff,i);
   1.702 +			out.WriteL(0,1);
   1.703 +			out.PadL(1);
   1.704 +			TBitInput in(buf,Min(i+1,c));
   1.705 +			TInt ix=-1;
   1.706 +			TRAP(r, ix=in.HuffmanL(tab));
   1.707 +			test (r==KErrNone);
   1.708 +			test (ix==i);
   1.709 +			TRAP(r, in.HuffmanL(tab));
   1.710 +			test (r==KErrUnderflow);
   1.711 +			}
   1.712 +		}
   1.713 +	}
   1.714 +
   1.715 +void SpecificHuffman(TInt aMaxCount)
   1.716 +	{
   1.717 +	test.Start(_L("Flat distributions"));
   1.718 +	FlatHuffman(aMaxCount);
   1.719 +	test.Next(_L("Power-of-2 distributions"));
   1.720 +	Power2Huffman();
   1.721 +	test.Next(_L("Fibonacci distributions"));
   1.722 +	FibonacciHuffman();
   1.723 +	test.End();
   1.724 +	}
   1.725 +
   1.726 +// Huffman generator validity testing. Checking code properties for a sequence of random
   1.727 +// frequency distributions.
   1.728 +
   1.729 +TInt64 RSeed(KTestData);
   1.730 +
   1.731 +inline TInt Random(TInt aLimit)
   1.732 +	{return aLimit>0 ? (Math::Rand(RSeed)%aLimit) : 0;}
   1.733 +
   1.734 +void GenerateFreq(TUint32* aTable, TInt aCount, TInt aTotalFreq, TInt aVariance, TInt aZeros)
   1.735 +//
   1.736 +// Generate a random frequency table
   1.737 +//
   1.738 +	{
   1.739 +	for (TInt i=0;i<aCount;++i)
   1.740 +		{
   1.741 +		if (aZeros && Random(aCount-i)<aZeros)
   1.742 +			{
   1.743 +			aTable[i]=0;
   1.744 +			--aZeros;
   1.745 +			}
   1.746 +		else if (aCount-aZeros-i == 1)
   1.747 +			{
   1.748 +			aTable[i]=aTotalFreq;
   1.749 +			aTotalFreq=0;
   1.750 +			}
   1.751 +		else
   1.752 +			{
   1.753 +			TInt ave=aTotalFreq/(aCount-aZeros-i);
   1.754 +			if (aVariance==0)
   1.755 +				{
   1.756 +				aTable[i]=ave;
   1.757 +				aTotalFreq-=ave;
   1.758 +				}
   1.759 +			else
   1.760 +				{
   1.761 +				TInt var=I64INT(TInt64(ave)<<aVariance>>8);
   1.762 +				TInt min=Max(1,ave-var);
   1.763 +				TInt max=Min(1+aTotalFreq-(aCount-aZeros-i),ave+var);
   1.764 +				TInt f = max<=min ? ave : min+Random(max-min);
   1.765 +				aTable[i] = f;
   1.766 +				aTotalFreq-=f;
   1.767 +				}
   1.768 +			}
   1.769 +		}
   1.770 +	}
   1.771 +
   1.772 +TInt NumericalSort(const TUint32& aLeft, const TUint32& aRight)
   1.773 +	{
   1.774 +	return aLeft-aRight;
   1.775 +	}
   1.776 +
   1.777 +TInt64 VerifyOptimalCode(const TUint32* aFreq, const TUint32* aCode, TInt aCount, TInt aTotalFreqLog2)
   1.778 +//
   1.779 +// We can show tht the expected code length is at least as short as a Shannon-Fano encoding
   1.780 +//
   1.781 +	{
   1.782 +	TInt64 totalHuff=0;
   1.783 +	TInt64 totalSF=0;
   1.784 +	TInt i;
   1.785 +	for (i=0;i<aCount;++i)
   1.786 +		{
   1.787 +		TInt f=aFreq[i];
   1.788 +		TInt l=aCode[i];
   1.789 +		if (f == 0)
   1.790 +			{
   1.791 +			test (l == 0);
   1.792 +			continue;
   1.793 +			}
   1.794 +		totalHuff+=f*l;
   1.795 +		TInt s=1;
   1.796 +		while ((f<<s>>aTotalFreqLog2)!=1)
   1.797 +			++s;
   1.798 +		totalSF+=f*s;
   1.799 +		}
   1.800 +	test (totalHuff<=totalSF);
   1.801 +
   1.802 +	RPointerArray<TUint32> index(aCount);
   1.803 +	CleanupClosePushL(index);
   1.804 +	for (i=0;i<aCount;++i)
   1.805 +		{
   1.806 +		if (aFreq[i] != 0)
   1.807 +			User::LeaveIfError(index.InsertInOrderAllowRepeats(aFreq+i,&NumericalSort));
   1.808 +		}
   1.809 +
   1.810 +	TInt smin,smax;
   1.811 +	smin=smax=aCode[index[0]-aFreq];
   1.812 +	for (i=1;i<index.Count();++i)
   1.813 +		{
   1.814 +		TInt pix=index[i-1]-aFreq;
   1.815 +		TInt nix=index[i]-aFreq;
   1.816 +		TInt pf=aFreq[pix];
   1.817 +		TInt nf=aFreq[nix];
   1.818 +		TInt ps=aCode[pix];
   1.819 +		TInt ns=aCode[nix];
   1.820 +
   1.821 +		if (nf==pf)
   1.822 +			{
   1.823 +			smin=Min(smin,ns);
   1.824 +			smax=Max(smax,ns);
   1.825 +			test (smin==smax || smin+1==smax);
   1.826 +			}
   1.827 +		else
   1.828 +			{
   1.829 +			test (nf>pf);
   1.830 +			test (ns<=ps);
   1.831 +			smin=smax=ns;
   1.832 +			}
   1.833 +		}
   1.834 +	CleanupStack::PopAndDestroy();
   1.835 +
   1.836 +	return totalHuff;
   1.837 +	}
   1.838 +
   1.839 +TInt LexicalSort(const TUint32& aLeft, const TUint32& aRight)
   1.840 +	{
   1.841 +	const TUint32 KCodeMask=(1<<Huffman::KMaxCodeLength)-1;
   1.842 +	return (aLeft&KCodeMask)-(aRight&KCodeMask);
   1.843 +	}
   1.844 +
   1.845 +void VerifyCanonicalEncodingL(const TUint32* aCode, const TUint32* aEncode, TInt aCount)
   1.846 +//
   1.847 +// A canonical encoding assigns codes from '0' in increasing code length order, and
   1.848 +// in increasing index in the table for equal code length.
   1.849 +//
   1.850 +// Huffman is also a 'prefix-free' code, so we check this property of the encoding
   1.851 +//
   1.852 +	{
   1.853 +	TInt i;
   1.854 +	for (i=0;i<aCount;++i)
   1.855 +		test (aCode[i] == aEncode[i]>>Huffman::KMaxCodeLength);
   1.856 +
   1.857 +	RPointerArray<TUint32> index(aCount);
   1.858 +	CleanupClosePushL(index);
   1.859 +	for (i=0;i<aCount;++i)
   1.860 +		{
   1.861 +		if (aCode[i] != 0)
   1.862 +			User::LeaveIfError(index.InsertInOrder(aEncode+i,&LexicalSort));
   1.863 +		}
   1.864 +
   1.865 +	for (i=1;i<index.Count();++i)
   1.866 +		{
   1.867 +		TInt pix=index[i-1]-aEncode;
   1.868 +		TInt nix=index[i]-aEncode;
   1.869 +		test (aCode[pix]<=aCode[nix]);				// code lengths are always increasing
   1.870 +		test (aCode[pix]<aCode[nix] || pix<nix);	// same code length => index order preserved
   1.871 +
   1.872 +		// check that a code is not a prefix of the next one. This is sufficent for checking the
   1.873 +		// prefix condition as we have already sorted the codes in lexicographical order
   1.874 +		TUint32 pc=aEncode[pix]<<(32-Huffman::KMaxCodeLength);
   1.875 +		TUint32 nc=aEncode[nix]<<(32-Huffman::KMaxCodeLength);
   1.876 +		TInt plen=aCode[pix];
   1.877 +		test ((pc>>(32-plen)) != (nc>>(32-plen)));	// pc is not a prefix for nc
   1.878 +		}
   1.879 +	CleanupStack::PopAndDestroy(&index);
   1.880 +	}
   1.881 +
   1.882 +void VerifyCanonicalDecoding(const TUint32* aEncode, const TUint32* aDecode, TInt aCount, TInt aBase)
   1.883 +//
   1.884 +// We've checked the encoding is valid, so now we check that the decoding can correctly
   1.885 +// decode every code
   1.886 +//
   1.887 +	{
   1.888 +	TUint8 buffer[(Huffman::KMaxCodeLength+7)/8];
   1.889 +	TBitInput in;
   1.890 +	TBitOutput out;
   1.891 +
   1.892 +	while (--aCount>=0)
   1.893 +		{
   1.894 +		if (aEncode[aCount])
   1.895 +			{
   1.896 +			out.Set(buffer,sizeof(buffer));
   1.897 +			out.HuffmanL(aEncode[aCount]);
   1.898 +			out.PadL(0);
   1.899 +			in.Set(buffer,aEncode[aCount]>>Huffman::KMaxCodeLength);
   1.900 +			TInt v=-1;
   1.901 +			TRAPD(r,v=in.HuffmanL(aDecode));
   1.902 +			test (r==KErrNone);
   1.903 +			test (v==aCount+aBase);
   1.904 +			TRAP(r,in.ReadL());
   1.905 +			test (r==KErrUnderflow);
   1.906 +			}
   1.907 +		}
   1.908 +	}
   1.909 +
   1.910 +TInt TestExternalizeL(const TUint32* aCode, TUint8* aExtern, TUint32* aIntern, TInt aCount)
   1.911 +	{
   1.912 +	TBitOutput out(aExtern,aCount*4);
   1.913 +	Huffman::ExternalizeL(out,aCode,aCount);
   1.914 +	TInt bits=out.BufferedBits()+8*(out.Ptr()-aExtern);
   1.915 +	out.PadL(0);
   1.916 +	TBitInput in(aExtern,bits);
   1.917 +	TRAPD(r,Huffman::InternalizeL(in,aIntern,aCount));
   1.918 +	test (r == KErrNone);
   1.919 +	test (Mem::Compare((TUint8*)aCode,aCount*sizeof(TUint32),(TUint8*)aIntern,aCount*sizeof(TUint32)) == 0);
   1.920 +	TRAP(r,in.ReadL());
   1.921 +	test (r == KErrUnderflow);
   1.922 +	return bits;
   1.923 +	}
   1.924 +
   1.925 +void RandomHuffmanL(TInt aIter, TInt aMaxSymbols)
   1.926 +//
   1.927 +// generate random frequency distributions and verify
   1.928 +// (a) the Huffman generator creates a mathematically 'optimal code'
   1.929 +// (b) the canonical encoding is the canonical encoding
   1.930 +// (c) the decoding tree correctly decodes each code.
   1.931 +// (d) the encoding can be correctly externalised and internalised
   1.932 +//
   1.933 +	{
   1.934 +	TReal KLog2;
   1.935 +	Math::Ln(KLog2,2);
   1.936 +	const TInt KTotalFreqLog2=24;
   1.937 +	const TInt KTotalFreq=1<<KTotalFreqLog2;
   1.938 +
   1.939 +	while (--aIter >= 0)
   1.940 +		{
   1.941 +		TInt num=2+Random(aMaxSymbols-1);
   1.942 +
   1.943 +		TUint32* const freq = new(ELeave) TUint32[num*3];
   1.944 +		CleanupArrayDeletePushL(freq);
   1.945 +		TUint32* const code = freq+num;
   1.946 +		TUint32* const encoding = code+num;
   1.947 +		TUint32* const decoding = freq;
   1.948 +		TUint8* const exter = (TUint8*)encoding;
   1.949 +		TUint32* const intern = freq;
   1.950 +
   1.951 +		TInt var=Random(24);
   1.952 +		TInt zero=Random(num-2);
   1.953 +		GenerateFreq(freq,num,KTotalFreq,var,zero);
   1.954 +
   1.955 +		Huffman::HuffmanL(freq,num,code);
   1.956 +		VerifyOptimalCode(freq,code,num,KTotalFreqLog2);
   1.957 +
   1.958 +		Huffman::Encoding(code,num,encoding);
   1.959 +		VerifyCanonicalEncodingL(code,encoding,num);
   1.960 +
   1.961 +		TInt base=Random(Huffman::KMaxCodes-num);
   1.962 +		Huffman::Decoding(code,num,decoding,base);
   1.963 +		VerifyCanonicalDecoding(encoding,decoding,num,base);
   1.964 +
   1.965 +		TestExternalizeL(code,exter,intern,num);
   1.966 +		CleanupStack::PopAndDestroy();
   1.967 +		}
   1.968 +	}
   1.969 +
   1.970 +///
   1.971 +
   1.972 +void MainL()
   1.973 +	{
   1.974 +	test.Start(_L("Test Bit reader"));
   1.975 +	TestBitReading();
   1.976 +	test.Next(_L("Test Bit writer"));
   1.977 +	TestBitWriting();
   1.978 +	test.Next(_L("Test Huffman decoder"));
   1.979 +	TestHuffmanL();
   1.980 +	test.Next(_L("Test Huffman generator for known distributions"));
   1.981 +	SpecificHuffman(800);
   1.982 +	test.Next(_L("Test Huffman generator for random distributions"));
   1.983 +	TRAPD(r,RandomHuffmanL(1000,800));
   1.984 +	test (r==KErrNone);
   1.985 +	test.End();
   1.986 +	}
   1.987 +
   1.988 +TInt E32Main()
   1.989 +	{
   1.990 +	test.Title();
   1.991 +	CTrapCleanup* c=CTrapCleanup::New();
   1.992 +	test (c!=0);
   1.993 +	TRAPD(r,MainL());
   1.994 +	test (r==KErrNone);
   1.995 +	delete c;
   1.996 +	test.Close();
   1.997 +	return r;
   1.998 +	}