sl@0
|
1 |
/*
|
sl@0
|
2 |
** 2008 February 16
|
sl@0
|
3 |
**
|
sl@0
|
4 |
** The author disclaims copyright to this source code. In place of
|
sl@0
|
5 |
** a legal notice, here is a blessing:
|
sl@0
|
6 |
**
|
sl@0
|
7 |
** May you do good and not evil.
|
sl@0
|
8 |
** May you find forgiveness for yourself and forgive others.
|
sl@0
|
9 |
** May you share freely, never taking more than you give.
|
sl@0
|
10 |
**
|
sl@0
|
11 |
*************************************************************************
|
sl@0
|
12 |
** This file implements an object that represents a fixed-length
|
sl@0
|
13 |
** bitmap. Bits are numbered starting with 1.
|
sl@0
|
14 |
**
|
sl@0
|
15 |
** A bitmap is used to record what pages a database file have been
|
sl@0
|
16 |
** journalled during a transaction. Usually only a few pages are
|
sl@0
|
17 |
** journalled. So the bitmap is usually sparse and has low cardinality.
|
sl@0
|
18 |
** But sometimes (for example when during a DROP of a large table) most
|
sl@0
|
19 |
** or all of the pages get journalled. In those cases, the bitmap becomes
|
sl@0
|
20 |
** dense. The algorithm needs to handle both cases well.
|
sl@0
|
21 |
**
|
sl@0
|
22 |
** The size of the bitmap is fixed when the object is created.
|
sl@0
|
23 |
**
|
sl@0
|
24 |
** All bits are clear when the bitmap is created. Individual bits
|
sl@0
|
25 |
** may be set or cleared one at a time.
|
sl@0
|
26 |
**
|
sl@0
|
27 |
** Test operations are about 100 times more common that set operations.
|
sl@0
|
28 |
** Clear operations are exceedingly rare. There are usually between
|
sl@0
|
29 |
** 5 and 500 set operations per Bitvec object, though the number of sets can
|
sl@0
|
30 |
** sometimes grow into tens of thousands or larger. The size of the
|
sl@0
|
31 |
** Bitvec object is the number of pages in the database file at the
|
sl@0
|
32 |
** start of a transaction, and is thus usually less than a few thousand,
|
sl@0
|
33 |
** but can be as large as 2 billion for a really big database.
|
sl@0
|
34 |
**
|
sl@0
|
35 |
** @(#) $Id: bitvec.c,v 1.6 2008/06/20 14:59:51 danielk1977 Exp $
|
sl@0
|
36 |
*/
|
sl@0
|
37 |
#include "sqliteInt.h"
|
sl@0
|
38 |
|
sl@0
|
39 |
#define BITVEC_SZ 512
|
sl@0
|
40 |
/* Round the union size down to the nearest pointer boundary, since that's how
|
sl@0
|
41 |
** it will be aligned within the Bitvec struct. */
|
sl@0
|
42 |
#define BITVEC_USIZE (((BITVEC_SZ-12)/sizeof(Bitvec*))*sizeof(Bitvec*))
|
sl@0
|
43 |
#define BITVEC_NCHAR BITVEC_USIZE
|
sl@0
|
44 |
#define BITVEC_NBIT (BITVEC_NCHAR*8)
|
sl@0
|
45 |
#define BITVEC_NINT (BITVEC_USIZE/4)
|
sl@0
|
46 |
#define BITVEC_MXHASH (BITVEC_NINT/2)
|
sl@0
|
47 |
#define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *))
|
sl@0
|
48 |
|
sl@0
|
49 |
#define BITVEC_HASH(X) (((X)*37)%BITVEC_NINT)
|
sl@0
|
50 |
|
sl@0
|
51 |
/*
|
sl@0
|
52 |
** A bitmap is an instance of the following structure.
|
sl@0
|
53 |
**
|
sl@0
|
54 |
** This bitmap records the existance of zero or more bits
|
sl@0
|
55 |
** with values between 1 and iSize, inclusive.
|
sl@0
|
56 |
**
|
sl@0
|
57 |
** There are three possible representations of the bitmap.
|
sl@0
|
58 |
** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
|
sl@0
|
59 |
** bitmap. The least significant bit is bit 1.
|
sl@0
|
60 |
**
|
sl@0
|
61 |
** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
|
sl@0
|
62 |
** a hash table that will hold up to BITVEC_MXHASH distinct values.
|
sl@0
|
63 |
**
|
sl@0
|
64 |
** Otherwise, the value i is redirected into one of BITVEC_NPTR
|
sl@0
|
65 |
** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap
|
sl@0
|
66 |
** handles up to iDivisor separate values of i. apSub[0] holds
|
sl@0
|
67 |
** values between 1 and iDivisor. apSub[1] holds values between
|
sl@0
|
68 |
** iDivisor+1 and 2*iDivisor. apSub[N] holds values between
|
sl@0
|
69 |
** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized
|
sl@0
|
70 |
** to hold deal with values between 1 and iDivisor.
|
sl@0
|
71 |
*/
|
sl@0
|
72 |
struct Bitvec {
|
sl@0
|
73 |
u32 iSize; /* Maximum bit index */
|
sl@0
|
74 |
u32 nSet; /* Number of bits that are set */
|
sl@0
|
75 |
u32 iDivisor; /* Number of bits handled by each apSub[] entry */
|
sl@0
|
76 |
union {
|
sl@0
|
77 |
u8 aBitmap[BITVEC_NCHAR]; /* Bitmap representation */
|
sl@0
|
78 |
u32 aHash[BITVEC_NINT]; /* Hash table representation */
|
sl@0
|
79 |
Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */
|
sl@0
|
80 |
} u;
|
sl@0
|
81 |
};
|
sl@0
|
82 |
|
sl@0
|
83 |
/*
|
sl@0
|
84 |
** Create a new bitmap object able to handle bits between 0 and iSize,
|
sl@0
|
85 |
** inclusive. Return a pointer to the new object. Return NULL if
|
sl@0
|
86 |
** malloc fails.
|
sl@0
|
87 |
*/
|
sl@0
|
88 |
Bitvec *sqlite3BitvecCreate(u32 iSize){
|
sl@0
|
89 |
Bitvec *p;
|
sl@0
|
90 |
assert( sizeof(*p)==BITVEC_SZ );
|
sl@0
|
91 |
p = sqlite3MallocZero( sizeof(*p) );
|
sl@0
|
92 |
if( p ){
|
sl@0
|
93 |
p->iSize = iSize;
|
sl@0
|
94 |
}
|
sl@0
|
95 |
return p;
|
sl@0
|
96 |
}
|
sl@0
|
97 |
|
sl@0
|
98 |
/*
|
sl@0
|
99 |
** Check to see if the i-th bit is set. Return true or false.
|
sl@0
|
100 |
** If p is NULL (if the bitmap has not been created) or if
|
sl@0
|
101 |
** i is out of range, then return false.
|
sl@0
|
102 |
*/
|
sl@0
|
103 |
int sqlite3BitvecTest(Bitvec *p, u32 i){
|
sl@0
|
104 |
if( p==0 ) return 0;
|
sl@0
|
105 |
if( i>p->iSize || i==0 ) return 0;
|
sl@0
|
106 |
if( p->iSize<=BITVEC_NBIT ){
|
sl@0
|
107 |
i--;
|
sl@0
|
108 |
return (p->u.aBitmap[i/8] & (1<<(i&7)))!=0;
|
sl@0
|
109 |
}
|
sl@0
|
110 |
if( p->iDivisor>0 ){
|
sl@0
|
111 |
u32 bin = (i-1)/p->iDivisor;
|
sl@0
|
112 |
i = (i-1)%p->iDivisor + 1;
|
sl@0
|
113 |
return sqlite3BitvecTest(p->u.apSub[bin], i);
|
sl@0
|
114 |
}else{
|
sl@0
|
115 |
u32 h = BITVEC_HASH(i);
|
sl@0
|
116 |
while( p->u.aHash[h] ){
|
sl@0
|
117 |
if( p->u.aHash[h]==i ) return 1;
|
sl@0
|
118 |
h++;
|
sl@0
|
119 |
if( h>=BITVEC_NINT ) h = 0;
|
sl@0
|
120 |
}
|
sl@0
|
121 |
return 0;
|
sl@0
|
122 |
}
|
sl@0
|
123 |
}
|
sl@0
|
124 |
|
sl@0
|
125 |
/*
|
sl@0
|
126 |
** Set the i-th bit. Return 0 on success and an error code if
|
sl@0
|
127 |
** anything goes wrong.
|
sl@0
|
128 |
*/
|
sl@0
|
129 |
int sqlite3BitvecSet(Bitvec *p, u32 i){
|
sl@0
|
130 |
u32 h;
|
sl@0
|
131 |
assert( p!=0 );
|
sl@0
|
132 |
assert( i>0 );
|
sl@0
|
133 |
assert( i<=p->iSize );
|
sl@0
|
134 |
if( p->iSize<=BITVEC_NBIT ){
|
sl@0
|
135 |
i--;
|
sl@0
|
136 |
p->u.aBitmap[i/8] |= 1 << (i&7);
|
sl@0
|
137 |
return SQLITE_OK;
|
sl@0
|
138 |
}
|
sl@0
|
139 |
if( p->iDivisor ){
|
sl@0
|
140 |
u32 bin = (i-1)/p->iDivisor;
|
sl@0
|
141 |
i = (i-1)%p->iDivisor + 1;
|
sl@0
|
142 |
if( p->u.apSub[bin]==0 ){
|
sl@0
|
143 |
sqlite3BeginBenignMalloc();
|
sl@0
|
144 |
p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
|
sl@0
|
145 |
sqlite3EndBenignMalloc();
|
sl@0
|
146 |
if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
|
sl@0
|
147 |
}
|
sl@0
|
148 |
return sqlite3BitvecSet(p->u.apSub[bin], i);
|
sl@0
|
149 |
}
|
sl@0
|
150 |
h = BITVEC_HASH(i);
|
sl@0
|
151 |
while( p->u.aHash[h] ){
|
sl@0
|
152 |
if( p->u.aHash[h]==i ) return SQLITE_OK;
|
sl@0
|
153 |
h++;
|
sl@0
|
154 |
if( h==BITVEC_NINT ) h = 0;
|
sl@0
|
155 |
}
|
sl@0
|
156 |
p->nSet++;
|
sl@0
|
157 |
if( p->nSet>=BITVEC_MXHASH ){
|
sl@0
|
158 |
int j, rc;
|
sl@0
|
159 |
u32 aiValues[BITVEC_NINT];
|
sl@0
|
160 |
memcpy(aiValues, p->u.aHash, sizeof(aiValues));
|
sl@0
|
161 |
memset(p->u.apSub, 0, sizeof(p->u.apSub[0])*BITVEC_NPTR);
|
sl@0
|
162 |
p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
|
sl@0
|
163 |
rc = sqlite3BitvecSet(p, i);
|
sl@0
|
164 |
for(j=0; j<BITVEC_NINT; j++){
|
sl@0
|
165 |
if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
|
sl@0
|
166 |
}
|
sl@0
|
167 |
return rc;
|
sl@0
|
168 |
}
|
sl@0
|
169 |
p->u.aHash[h] = i;
|
sl@0
|
170 |
return SQLITE_OK;
|
sl@0
|
171 |
}
|
sl@0
|
172 |
|
sl@0
|
173 |
/*
|
sl@0
|
174 |
** Clear the i-th bit. Return 0 on success and an error code if
|
sl@0
|
175 |
** anything goes wrong.
|
sl@0
|
176 |
*/
|
sl@0
|
177 |
void sqlite3BitvecClear(Bitvec *p, u32 i){
|
sl@0
|
178 |
assert( p!=0 );
|
sl@0
|
179 |
assert( i>0 );
|
sl@0
|
180 |
if( p->iSize<=BITVEC_NBIT ){
|
sl@0
|
181 |
i--;
|
sl@0
|
182 |
p->u.aBitmap[i/8] &= ~(1 << (i&7));
|
sl@0
|
183 |
}else if( p->iDivisor ){
|
sl@0
|
184 |
u32 bin = (i-1)/p->iDivisor;
|
sl@0
|
185 |
i = (i-1)%p->iDivisor + 1;
|
sl@0
|
186 |
if( p->u.apSub[bin] ){
|
sl@0
|
187 |
sqlite3BitvecClear(p->u.apSub[bin], i);
|
sl@0
|
188 |
}
|
sl@0
|
189 |
}else{
|
sl@0
|
190 |
int j;
|
sl@0
|
191 |
u32 aiValues[BITVEC_NINT];
|
sl@0
|
192 |
memcpy(aiValues, p->u.aHash, sizeof(aiValues));
|
sl@0
|
193 |
memset(p->u.aHash, 0, sizeof(p->u.aHash[0])*BITVEC_NINT);
|
sl@0
|
194 |
p->nSet = 0;
|
sl@0
|
195 |
for(j=0; j<BITVEC_NINT; j++){
|
sl@0
|
196 |
if( aiValues[j] && aiValues[j]!=i ){
|
sl@0
|
197 |
sqlite3BitvecSet(p, aiValues[j]);
|
sl@0
|
198 |
}
|
sl@0
|
199 |
}
|
sl@0
|
200 |
}
|
sl@0
|
201 |
}
|
sl@0
|
202 |
|
sl@0
|
203 |
/*
|
sl@0
|
204 |
** Destroy a bitmap object. Reclaim all memory used.
|
sl@0
|
205 |
*/
|
sl@0
|
206 |
void sqlite3BitvecDestroy(Bitvec *p){
|
sl@0
|
207 |
if( p==0 ) return;
|
sl@0
|
208 |
if( p->iDivisor ){
|
sl@0
|
209 |
int i;
|
sl@0
|
210 |
for(i=0; i<BITVEC_NPTR; i++){
|
sl@0
|
211 |
sqlite3BitvecDestroy(p->u.apSub[i]);
|
sl@0
|
212 |
}
|
sl@0
|
213 |
}
|
sl@0
|
214 |
sqlite3_free(p);
|
sl@0
|
215 |
}
|
sl@0
|
216 |
|
sl@0
|
217 |
#ifndef SQLITE_OMIT_BUILTIN_TEST
|
sl@0
|
218 |
/*
|
sl@0
|
219 |
** Let V[] be an array of unsigned characters sufficient to hold
|
sl@0
|
220 |
** up to N bits. Let I be an integer between 0 and N. 0<=I<N.
|
sl@0
|
221 |
** Then the following macros can be used to set, clear, or test
|
sl@0
|
222 |
** individual bits within V.
|
sl@0
|
223 |
*/
|
sl@0
|
224 |
#define SETBIT(V,I) V[I>>3] |= (1<<(I&7))
|
sl@0
|
225 |
#define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7))
|
sl@0
|
226 |
#define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0
|
sl@0
|
227 |
|
sl@0
|
228 |
/*
|
sl@0
|
229 |
** This routine runs an extensive test of the Bitvec code.
|
sl@0
|
230 |
**
|
sl@0
|
231 |
** The input is an array of integers that acts as a program
|
sl@0
|
232 |
** to test the Bitvec. The integers are opcodes followed
|
sl@0
|
233 |
** by 0, 1, or 3 operands, depending on the opcode. Another
|
sl@0
|
234 |
** opcode follows immediately after the last operand.
|
sl@0
|
235 |
**
|
sl@0
|
236 |
** There are 6 opcodes numbered from 0 through 5. 0 is the
|
sl@0
|
237 |
** "halt" opcode and causes the test to end.
|
sl@0
|
238 |
**
|
sl@0
|
239 |
** 0 Halt and return the number of errors
|
sl@0
|
240 |
** 1 N S X Set N bits beginning with S and incrementing by X
|
sl@0
|
241 |
** 2 N S X Clear N bits beginning with S and incrementing by X
|
sl@0
|
242 |
** 3 N Set N randomly chosen bits
|
sl@0
|
243 |
** 4 N Clear N randomly chosen bits
|
sl@0
|
244 |
** 5 N S X Set N bits from S increment X in array only, not in bitvec
|
sl@0
|
245 |
**
|
sl@0
|
246 |
** The opcodes 1 through 4 perform set and clear operations are performed
|
sl@0
|
247 |
** on both a Bitvec object and on a linear array of bits obtained from malloc.
|
sl@0
|
248 |
** Opcode 5 works on the linear array only, not on the Bitvec.
|
sl@0
|
249 |
** Opcode 5 is used to deliberately induce a fault in order to
|
sl@0
|
250 |
** confirm that error detection works.
|
sl@0
|
251 |
**
|
sl@0
|
252 |
** At the conclusion of the test the linear array is compared
|
sl@0
|
253 |
** against the Bitvec object. If there are any differences,
|
sl@0
|
254 |
** an error is returned. If they are the same, zero is returned.
|
sl@0
|
255 |
**
|
sl@0
|
256 |
** If a memory allocation error occurs, return -1.
|
sl@0
|
257 |
*/
|
sl@0
|
258 |
int sqlite3BitvecBuiltinTest(int sz, int *aOp){
|
sl@0
|
259 |
Bitvec *pBitvec = 0;
|
sl@0
|
260 |
unsigned char *pV = 0;
|
sl@0
|
261 |
int rc = -1;
|
sl@0
|
262 |
int i, nx, pc, op;
|
sl@0
|
263 |
|
sl@0
|
264 |
/* Allocate the Bitvec to be tested and a linear array of
|
sl@0
|
265 |
** bits to act as the reference */
|
sl@0
|
266 |
pBitvec = sqlite3BitvecCreate( sz );
|
sl@0
|
267 |
pV = sqlite3_malloc( (sz+7)/8 + 1 );
|
sl@0
|
268 |
if( pBitvec==0 || pV==0 ) goto bitvec_end;
|
sl@0
|
269 |
memset(pV, 0, (sz+7)/8 + 1);
|
sl@0
|
270 |
|
sl@0
|
271 |
/* Run the program */
|
sl@0
|
272 |
pc = 0;
|
sl@0
|
273 |
while( (op = aOp[pc])!=0 ){
|
sl@0
|
274 |
switch( op ){
|
sl@0
|
275 |
case 1:
|
sl@0
|
276 |
case 2:
|
sl@0
|
277 |
case 5: {
|
sl@0
|
278 |
nx = 4;
|
sl@0
|
279 |
i = aOp[pc+2] - 1;
|
sl@0
|
280 |
aOp[pc+2] += aOp[pc+3];
|
sl@0
|
281 |
break;
|
sl@0
|
282 |
}
|
sl@0
|
283 |
case 3:
|
sl@0
|
284 |
case 4:
|
sl@0
|
285 |
default: {
|
sl@0
|
286 |
nx = 2;
|
sl@0
|
287 |
sqlite3_randomness(sizeof(i), &i);
|
sl@0
|
288 |
break;
|
sl@0
|
289 |
}
|
sl@0
|
290 |
}
|
sl@0
|
291 |
if( (--aOp[pc+1]) > 0 ) nx = 0;
|
sl@0
|
292 |
pc += nx;
|
sl@0
|
293 |
i = (i & 0x7fffffff)%sz;
|
sl@0
|
294 |
if( (op & 1)!=0 ){
|
sl@0
|
295 |
SETBIT(pV, (i+1));
|
sl@0
|
296 |
if( op!=5 ){
|
sl@0
|
297 |
if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
|
sl@0
|
298 |
}
|
sl@0
|
299 |
}else{
|
sl@0
|
300 |
CLEARBIT(pV, (i+1));
|
sl@0
|
301 |
sqlite3BitvecClear(pBitvec, i+1);
|
sl@0
|
302 |
}
|
sl@0
|
303 |
}
|
sl@0
|
304 |
|
sl@0
|
305 |
/* Test to make sure the linear array exactly matches the
|
sl@0
|
306 |
** Bitvec object. Start with the assumption that they do
|
sl@0
|
307 |
** match (rc==0). Change rc to non-zero if a discrepancy
|
sl@0
|
308 |
** is found.
|
sl@0
|
309 |
*/
|
sl@0
|
310 |
rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
|
sl@0
|
311 |
+ sqlite3BitvecTest(pBitvec, 0);
|
sl@0
|
312 |
for(i=1; i<=sz; i++){
|
sl@0
|
313 |
if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
|
sl@0
|
314 |
rc = i;
|
sl@0
|
315 |
break;
|
sl@0
|
316 |
}
|
sl@0
|
317 |
}
|
sl@0
|
318 |
|
sl@0
|
319 |
/* Free allocated structure */
|
sl@0
|
320 |
bitvec_end:
|
sl@0
|
321 |
sqlite3_free(pV);
|
sl@0
|
322 |
sqlite3BitvecDestroy(pBitvec);
|
sl@0
|
323 |
return rc;
|
sl@0
|
324 |
}
|
sl@0
|
325 |
#endif /* SQLITE_OMIT_BUILTIN_TEST */
|