sl@0: /* sl@0: ** 2008 February 16 sl@0: ** sl@0: ** The author disclaims copyright to this source code. In place of sl@0: ** a legal notice, here is a blessing: sl@0: ** sl@0: ** May you do good and not evil. sl@0: ** May you find forgiveness for yourself and forgive others. sl@0: ** May you share freely, never taking more than you give. sl@0: ** sl@0: ************************************************************************* sl@0: ** This file implements an object that represents a fixed-length sl@0: ** bitmap. Bits are numbered starting with 1. sl@0: ** sl@0: ** A bitmap is used to record what pages a database file have been sl@0: ** journalled during a transaction. Usually only a few pages are sl@0: ** journalled. So the bitmap is usually sparse and has low cardinality. sl@0: ** But sometimes (for example when during a DROP of a large table) most sl@0: ** or all of the pages get journalled. In those cases, the bitmap becomes sl@0: ** dense. The algorithm needs to handle both cases well. sl@0: ** sl@0: ** The size of the bitmap is fixed when the object is created. sl@0: ** sl@0: ** All bits are clear when the bitmap is created. Individual bits sl@0: ** may be set or cleared one at a time. sl@0: ** sl@0: ** Test operations are about 100 times more common that set operations. sl@0: ** Clear operations are exceedingly rare. There are usually between sl@0: ** 5 and 500 set operations per Bitvec object, though the number of sets can sl@0: ** sometimes grow into tens of thousands or larger. The size of the sl@0: ** Bitvec object is the number of pages in the database file at the sl@0: ** start of a transaction, and is thus usually less than a few thousand, sl@0: ** but can be as large as 2 billion for a really big database. sl@0: ** sl@0: ** @(#) $Id: bitvec.c,v 1.6 2008/06/20 14:59:51 danielk1977 Exp $ sl@0: */ sl@0: #include "sqliteInt.h" sl@0: sl@0: #define BITVEC_SZ 512 sl@0: /* Round the union size down to the nearest pointer boundary, since that's how sl@0: ** it will be aligned within the Bitvec struct. */ sl@0: #define BITVEC_USIZE (((BITVEC_SZ-12)/sizeof(Bitvec*))*sizeof(Bitvec*)) sl@0: #define BITVEC_NCHAR BITVEC_USIZE sl@0: #define BITVEC_NBIT (BITVEC_NCHAR*8) sl@0: #define BITVEC_NINT (BITVEC_USIZE/4) sl@0: #define BITVEC_MXHASH (BITVEC_NINT/2) sl@0: #define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *)) sl@0: sl@0: #define BITVEC_HASH(X) (((X)*37)%BITVEC_NINT) sl@0: sl@0: /* sl@0: ** A bitmap is an instance of the following structure. sl@0: ** sl@0: ** This bitmap records the existance of zero or more bits sl@0: ** with values between 1 and iSize, inclusive. sl@0: ** sl@0: ** There are three possible representations of the bitmap. sl@0: ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight sl@0: ** bitmap. The least significant bit is bit 1. sl@0: ** sl@0: ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is sl@0: ** a hash table that will hold up to BITVEC_MXHASH distinct values. sl@0: ** sl@0: ** Otherwise, the value i is redirected into one of BITVEC_NPTR sl@0: ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap sl@0: ** handles up to iDivisor separate values of i. apSub[0] holds sl@0: ** values between 1 and iDivisor. apSub[1] holds values between sl@0: ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between sl@0: ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized sl@0: ** to hold deal with values between 1 and iDivisor. sl@0: */ sl@0: struct Bitvec { sl@0: u32 iSize; /* Maximum bit index */ sl@0: u32 nSet; /* Number of bits that are set */ sl@0: u32 iDivisor; /* Number of bits handled by each apSub[] entry */ sl@0: union { sl@0: u8 aBitmap[BITVEC_NCHAR]; /* Bitmap representation */ sl@0: u32 aHash[BITVEC_NINT]; /* Hash table representation */ sl@0: Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ sl@0: } u; sl@0: }; sl@0: sl@0: /* sl@0: ** Create a new bitmap object able to handle bits between 0 and iSize, sl@0: ** inclusive. Return a pointer to the new object. Return NULL if sl@0: ** malloc fails. sl@0: */ sl@0: Bitvec *sqlite3BitvecCreate(u32 iSize){ sl@0: Bitvec *p; sl@0: assert( sizeof(*p)==BITVEC_SZ ); sl@0: p = sqlite3MallocZero( sizeof(*p) ); sl@0: if( p ){ sl@0: p->iSize = iSize; sl@0: } sl@0: return p; sl@0: } sl@0: sl@0: /* sl@0: ** Check to see if the i-th bit is set. Return true or false. sl@0: ** If p is NULL (if the bitmap has not been created) or if sl@0: ** i is out of range, then return false. sl@0: */ sl@0: int sqlite3BitvecTest(Bitvec *p, u32 i){ sl@0: if( p==0 ) return 0; sl@0: if( i>p->iSize || i==0 ) return 0; sl@0: if( p->iSize<=BITVEC_NBIT ){ sl@0: i--; sl@0: return (p->u.aBitmap[i/8] & (1<<(i&7)))!=0; sl@0: } sl@0: if( p->iDivisor>0 ){ sl@0: u32 bin = (i-1)/p->iDivisor; sl@0: i = (i-1)%p->iDivisor + 1; sl@0: return sqlite3BitvecTest(p->u.apSub[bin], i); sl@0: }else{ sl@0: u32 h = BITVEC_HASH(i); sl@0: while( p->u.aHash[h] ){ sl@0: if( p->u.aHash[h]==i ) return 1; sl@0: h++; sl@0: if( h>=BITVEC_NINT ) h = 0; sl@0: } sl@0: return 0; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Set the i-th bit. Return 0 on success and an error code if sl@0: ** anything goes wrong. sl@0: */ sl@0: int sqlite3BitvecSet(Bitvec *p, u32 i){ sl@0: u32 h; sl@0: assert( p!=0 ); sl@0: assert( i>0 ); sl@0: assert( i<=p->iSize ); sl@0: if( p->iSize<=BITVEC_NBIT ){ sl@0: i--; sl@0: p->u.aBitmap[i/8] |= 1 << (i&7); sl@0: return SQLITE_OK; sl@0: } sl@0: if( p->iDivisor ){ sl@0: u32 bin = (i-1)/p->iDivisor; sl@0: i = (i-1)%p->iDivisor + 1; sl@0: if( p->u.apSub[bin]==0 ){ sl@0: sqlite3BeginBenignMalloc(); sl@0: p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); sl@0: sqlite3EndBenignMalloc(); sl@0: if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM; sl@0: } sl@0: return sqlite3BitvecSet(p->u.apSub[bin], i); sl@0: } sl@0: h = BITVEC_HASH(i); sl@0: while( p->u.aHash[h] ){ sl@0: if( p->u.aHash[h]==i ) return SQLITE_OK; sl@0: h++; sl@0: if( h==BITVEC_NINT ) h = 0; sl@0: } sl@0: p->nSet++; sl@0: if( p->nSet>=BITVEC_MXHASH ){ sl@0: int j, rc; sl@0: u32 aiValues[BITVEC_NINT]; sl@0: memcpy(aiValues, p->u.aHash, sizeof(aiValues)); sl@0: memset(p->u.apSub, 0, sizeof(p->u.apSub[0])*BITVEC_NPTR); sl@0: p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; sl@0: rc = sqlite3BitvecSet(p, i); sl@0: for(j=0; ju.aHash[h] = i; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Clear the i-th bit. Return 0 on success and an error code if sl@0: ** anything goes wrong. sl@0: */ sl@0: void sqlite3BitvecClear(Bitvec *p, u32 i){ sl@0: assert( p!=0 ); sl@0: assert( i>0 ); sl@0: if( p->iSize<=BITVEC_NBIT ){ sl@0: i--; sl@0: p->u.aBitmap[i/8] &= ~(1 << (i&7)); sl@0: }else if( p->iDivisor ){ sl@0: u32 bin = (i-1)/p->iDivisor; sl@0: i = (i-1)%p->iDivisor + 1; sl@0: if( p->u.apSub[bin] ){ sl@0: sqlite3BitvecClear(p->u.apSub[bin], i); sl@0: } sl@0: }else{ sl@0: int j; sl@0: u32 aiValues[BITVEC_NINT]; sl@0: memcpy(aiValues, p->u.aHash, sizeof(aiValues)); sl@0: memset(p->u.aHash, 0, sizeof(p->u.aHash[0])*BITVEC_NINT); sl@0: p->nSet = 0; sl@0: for(j=0; jiDivisor ){ sl@0: int i; sl@0: for(i=0; iu.apSub[i]); sl@0: } sl@0: } sl@0: sqlite3_free(p); sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_BUILTIN_TEST sl@0: /* sl@0: ** Let V[] be an array of unsigned characters sufficient to hold sl@0: ** up to N bits. Let I be an integer between 0 and N. 0<=I>3] |= (1<<(I&7)) sl@0: #define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7)) sl@0: #define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0 sl@0: sl@0: /* sl@0: ** This routine runs an extensive test of the Bitvec code. sl@0: ** sl@0: ** The input is an array of integers that acts as a program sl@0: ** to test the Bitvec. The integers are opcodes followed sl@0: ** by 0, 1, or 3 operands, depending on the opcode. Another sl@0: ** opcode follows immediately after the last operand. sl@0: ** sl@0: ** There are 6 opcodes numbered from 0 through 5. 0 is the sl@0: ** "halt" opcode and causes the test to end. sl@0: ** sl@0: ** 0 Halt and return the number of errors sl@0: ** 1 N S X Set N bits beginning with S and incrementing by X sl@0: ** 2 N S X Clear N bits beginning with S and incrementing by X sl@0: ** 3 N Set N randomly chosen bits sl@0: ** 4 N Clear N randomly chosen bits sl@0: ** 5 N S X Set N bits from S increment X in array only, not in bitvec sl@0: ** sl@0: ** The opcodes 1 through 4 perform set and clear operations are performed sl@0: ** on both a Bitvec object and on a linear array of bits obtained from malloc. sl@0: ** Opcode 5 works on the linear array only, not on the Bitvec. sl@0: ** Opcode 5 is used to deliberately induce a fault in order to sl@0: ** confirm that error detection works. sl@0: ** sl@0: ** At the conclusion of the test the linear array is compared sl@0: ** against the Bitvec object. If there are any differences, sl@0: ** an error is returned. If they are the same, zero is returned. sl@0: ** sl@0: ** If a memory allocation error occurs, return -1. sl@0: */ sl@0: int sqlite3BitvecBuiltinTest(int sz, int *aOp){ sl@0: Bitvec *pBitvec = 0; sl@0: unsigned char *pV = 0; sl@0: int rc = -1; sl@0: int i, nx, pc, op; sl@0: sl@0: /* Allocate the Bitvec to be tested and a linear array of sl@0: ** bits to act as the reference */ sl@0: pBitvec = sqlite3BitvecCreate( sz ); sl@0: pV = sqlite3_malloc( (sz+7)/8 + 1 ); sl@0: if( pBitvec==0 || pV==0 ) goto bitvec_end; sl@0: memset(pV, 0, (sz+7)/8 + 1); sl@0: sl@0: /* Run the program */ sl@0: pc = 0; sl@0: while( (op = aOp[pc])!=0 ){ sl@0: switch( op ){ sl@0: case 1: sl@0: case 2: sl@0: case 5: { sl@0: nx = 4; sl@0: i = aOp[pc+2] - 1; sl@0: aOp[pc+2] += aOp[pc+3]; sl@0: break; sl@0: } sl@0: case 3: sl@0: case 4: sl@0: default: { sl@0: nx = 2; sl@0: sqlite3_randomness(sizeof(i), &i); sl@0: break; sl@0: } sl@0: } sl@0: if( (--aOp[pc+1]) > 0 ) nx = 0; sl@0: pc += nx; sl@0: i = (i & 0x7fffffff)%sz; sl@0: if( (op & 1)!=0 ){ sl@0: SETBIT(pV, (i+1)); sl@0: if( op!=5 ){ sl@0: if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end; sl@0: } sl@0: }else{ sl@0: CLEARBIT(pV, (i+1)); sl@0: sqlite3BitvecClear(pBitvec, i+1); sl@0: } sl@0: } sl@0: sl@0: /* Test to make sure the linear array exactly matches the sl@0: ** Bitvec object. Start with the assumption that they do sl@0: ** match (rc==0). Change rc to non-zero if a discrepancy sl@0: ** is found. sl@0: */ sl@0: rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1) sl@0: + sqlite3BitvecTest(pBitvec, 0); sl@0: for(i=1; i<=sz; i++){ sl@0: if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){ sl@0: rc = i; sl@0: break; sl@0: } sl@0: } sl@0: sl@0: /* Free allocated structure */ sl@0: bitvec_end: sl@0: sqlite3_free(pV); sl@0: sqlite3BitvecDestroy(pBitvec); sl@0: return rc; sl@0: } sl@0: #endif /* SQLITE_OMIT_BUILTIN_TEST */