Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements an object that represents a fixed-length
13 ** bitmap. Bits are numbered starting with 1.
15 ** A bitmap is used to record what pages a database file have been
16 ** journalled during a transaction. Usually only a few pages are
17 ** journalled. So the bitmap is usually sparse and has low cardinality.
18 ** But sometimes (for example when during a DROP of a large table) most
19 ** or all of the pages get journalled. In those cases, the bitmap becomes
20 ** dense. The algorithm needs to handle both cases well.
22 ** The size of the bitmap is fixed when the object is created.
24 ** All bits are clear when the bitmap is created. Individual bits
25 ** may be set or cleared one at a time.
27 ** Test operations are about 100 times more common that set operations.
28 ** Clear operations are exceedingly rare. There are usually between
29 ** 5 and 500 set operations per Bitvec object, though the number of sets can
30 ** sometimes grow into tens of thousands or larger. The size of the
31 ** Bitvec object is the number of pages in the database file at the
32 ** start of a transaction, and is thus usually less than a few thousand,
33 ** but can be as large as 2 billion for a really big database.
35 ** @(#) $Id: bitvec.c,v 1.6 2008/06/20 14:59:51 danielk1977 Exp $
37 #include "sqliteInt.h"
40 /* Round the union size down to the nearest pointer boundary, since that's how
41 ** it will be aligned within the Bitvec struct. */
42 #define BITVEC_USIZE (((BITVEC_SZ-12)/sizeof(Bitvec*))*sizeof(Bitvec*))
43 #define BITVEC_NCHAR BITVEC_USIZE
44 #define BITVEC_NBIT (BITVEC_NCHAR*8)
45 #define BITVEC_NINT (BITVEC_USIZE/4)
46 #define BITVEC_MXHASH (BITVEC_NINT/2)
47 #define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *))
49 #define BITVEC_HASH(X) (((X)*37)%BITVEC_NINT)
52 ** A bitmap is an instance of the following structure.
54 ** This bitmap records the existance of zero or more bits
55 ** with values between 1 and iSize, inclusive.
57 ** There are three possible representations of the bitmap.
58 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
59 ** bitmap. The least significant bit is bit 1.
61 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
62 ** a hash table that will hold up to BITVEC_MXHASH distinct values.
64 ** Otherwise, the value i is redirected into one of BITVEC_NPTR
65 ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap
66 ** handles up to iDivisor separate values of i. apSub[0] holds
67 ** values between 1 and iDivisor. apSub[1] holds values between
68 ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between
69 ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized
70 ** to hold deal with values between 1 and iDivisor.
73 u32 iSize; /* Maximum bit index */
74 u32 nSet; /* Number of bits that are set */
75 u32 iDivisor; /* Number of bits handled by each apSub[] entry */
77 u8 aBitmap[BITVEC_NCHAR]; /* Bitmap representation */
78 u32 aHash[BITVEC_NINT]; /* Hash table representation */
79 Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */
84 ** Create a new bitmap object able to handle bits between 0 and iSize,
85 ** inclusive. Return a pointer to the new object. Return NULL if
88 Bitvec *sqlite3BitvecCreate(u32 iSize){
90 assert( sizeof(*p)==BITVEC_SZ );
91 p = sqlite3MallocZero( sizeof(*p) );
99 ** Check to see if the i-th bit is set. Return true or false.
100 ** If p is NULL (if the bitmap has not been created) or if
101 ** i is out of range, then return false.
103 int sqlite3BitvecTest(Bitvec *p, u32 i){
105 if( i>p->iSize || i==0 ) return 0;
106 if( p->iSize<=BITVEC_NBIT ){
108 return (p->u.aBitmap[i/8] & (1<<(i&7)))!=0;
111 u32 bin = (i-1)/p->iDivisor;
112 i = (i-1)%p->iDivisor + 1;
113 return sqlite3BitvecTest(p->u.apSub[bin], i);
115 u32 h = BITVEC_HASH(i);
116 while( p->u.aHash[h] ){
117 if( p->u.aHash[h]==i ) return 1;
119 if( h>=BITVEC_NINT ) h = 0;
126 ** Set the i-th bit. Return 0 on success and an error code if
127 ** anything goes wrong.
129 int sqlite3BitvecSet(Bitvec *p, u32 i){
133 assert( i<=p->iSize );
134 if( p->iSize<=BITVEC_NBIT ){
136 p->u.aBitmap[i/8] |= 1 << (i&7);
140 u32 bin = (i-1)/p->iDivisor;
141 i = (i-1)%p->iDivisor + 1;
142 if( p->u.apSub[bin]==0 ){
143 sqlite3BeginBenignMalloc();
144 p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
145 sqlite3EndBenignMalloc();
146 if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
148 return sqlite3BitvecSet(p->u.apSub[bin], i);
151 while( p->u.aHash[h] ){
152 if( p->u.aHash[h]==i ) return SQLITE_OK;
154 if( h==BITVEC_NINT ) h = 0;
157 if( p->nSet>=BITVEC_MXHASH ){
159 u32 aiValues[BITVEC_NINT];
160 memcpy(aiValues, p->u.aHash, sizeof(aiValues));
161 memset(p->u.apSub, 0, sizeof(p->u.apSub[0])*BITVEC_NPTR);
162 p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
163 rc = sqlite3BitvecSet(p, i);
164 for(j=0; j<BITVEC_NINT; j++){
165 if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
174 ** Clear the i-th bit. Return 0 on success and an error code if
175 ** anything goes wrong.
177 void sqlite3BitvecClear(Bitvec *p, u32 i){
180 if( p->iSize<=BITVEC_NBIT ){
182 p->u.aBitmap[i/8] &= ~(1 << (i&7));
183 }else if( p->iDivisor ){
184 u32 bin = (i-1)/p->iDivisor;
185 i = (i-1)%p->iDivisor + 1;
186 if( p->u.apSub[bin] ){
187 sqlite3BitvecClear(p->u.apSub[bin], i);
191 u32 aiValues[BITVEC_NINT];
192 memcpy(aiValues, p->u.aHash, sizeof(aiValues));
193 memset(p->u.aHash, 0, sizeof(p->u.aHash[0])*BITVEC_NINT);
195 for(j=0; j<BITVEC_NINT; j++){
196 if( aiValues[j] && aiValues[j]!=i ){
197 sqlite3BitvecSet(p, aiValues[j]);
204 ** Destroy a bitmap object. Reclaim all memory used.
206 void sqlite3BitvecDestroy(Bitvec *p){
210 for(i=0; i<BITVEC_NPTR; i++){
211 sqlite3BitvecDestroy(p->u.apSub[i]);
217 #ifndef SQLITE_OMIT_BUILTIN_TEST
219 ** Let V[] be an array of unsigned characters sufficient to hold
220 ** up to N bits. Let I be an integer between 0 and N. 0<=I<N.
221 ** Then the following macros can be used to set, clear, or test
222 ** individual bits within V.
224 #define SETBIT(V,I) V[I>>3] |= (1<<(I&7))
225 #define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7))
226 #define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0
229 ** This routine runs an extensive test of the Bitvec code.
231 ** The input is an array of integers that acts as a program
232 ** to test the Bitvec. The integers are opcodes followed
233 ** by 0, 1, or 3 operands, depending on the opcode. Another
234 ** opcode follows immediately after the last operand.
236 ** There are 6 opcodes numbered from 0 through 5. 0 is the
237 ** "halt" opcode and causes the test to end.
239 ** 0 Halt and return the number of errors
240 ** 1 N S X Set N bits beginning with S and incrementing by X
241 ** 2 N S X Clear N bits beginning with S and incrementing by X
242 ** 3 N Set N randomly chosen bits
243 ** 4 N Clear N randomly chosen bits
244 ** 5 N S X Set N bits from S increment X in array only, not in bitvec
246 ** The opcodes 1 through 4 perform set and clear operations are performed
247 ** on both a Bitvec object and on a linear array of bits obtained from malloc.
248 ** Opcode 5 works on the linear array only, not on the Bitvec.
249 ** Opcode 5 is used to deliberately induce a fault in order to
250 ** confirm that error detection works.
252 ** At the conclusion of the test the linear array is compared
253 ** against the Bitvec object. If there are any differences,
254 ** an error is returned. If they are the same, zero is returned.
256 ** If a memory allocation error occurs, return -1.
258 int sqlite3BitvecBuiltinTest(int sz, int *aOp){
260 unsigned char *pV = 0;
264 /* Allocate the Bitvec to be tested and a linear array of
265 ** bits to act as the reference */
266 pBitvec = sqlite3BitvecCreate( sz );
267 pV = sqlite3_malloc( (sz+7)/8 + 1 );
268 if( pBitvec==0 || pV==0 ) goto bitvec_end;
269 memset(pV, 0, (sz+7)/8 + 1);
271 /* Run the program */
273 while( (op = aOp[pc])!=0 ){
280 aOp[pc+2] += aOp[pc+3];
287 sqlite3_randomness(sizeof(i), &i);
291 if( (--aOp[pc+1]) > 0 ) nx = 0;
293 i = (i & 0x7fffffff)%sz;
297 if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
301 sqlite3BitvecClear(pBitvec, i+1);
305 /* Test to make sure the linear array exactly matches the
306 ** Bitvec object. Start with the assumption that they do
307 ** match (rc==0). Change rc to non-zero if a discrepancy
310 rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
311 + sqlite3BitvecTest(pBitvec, 0);
312 for(i=1; i<=sz; i++){
313 if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
319 /* Free allocated structure */
322 sqlite3BitvecDestroy(pBitvec);
325 #endif /* SQLITE_OMIT_BUILTIN_TEST */