os/ossrv/ossrv_pub/boost_apis/boost/rational.hpp
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
//  Boost rational.hpp header file  ------------------------------------------//
sl@0
     2
sl@0
     3
//  (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
sl@0
     4
//  distribute this software is granted provided this copyright notice appears
sl@0
     5
//  in all copies. This software is provided "as is" without express or
sl@0
     6
//  implied warranty, and with no claim as to its suitability for any purpose.
sl@0
     7
sl@0
     8
//  See http://www.boost.org/libs/rational for documentation.
sl@0
     9
sl@0
    10
//  Credits:
sl@0
    11
//  Thanks to the boost mailing list in general for useful comments.
sl@0
    12
//  Particular contributions included:
sl@0
    13
//    Andrew D Jewell, for reminding me to take care to avoid overflow
sl@0
    14
//    Ed Brey, for many comments, including picking up on some dreadful typos
sl@0
    15
//    Stephen Silver contributed the test suite and comments on user-defined
sl@0
    16
//    IntType
sl@0
    17
//    Nickolay Mladenov, for the implementation of operator+=
sl@0
    18
sl@0
    19
//  Revision History
sl@0
    20
//  20 Oct 06  Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz)
sl@0
    21
//  18 Oct 06  Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config
sl@0
    22
//             (Joaquín M López Muñoz)
sl@0
    23
//  27 Dec 05  Add Boolean conversion operator (Daryle Walker)
sl@0
    24
//  28 Sep 02  Use _left versions of operators from operators.hpp
sl@0
    25
//  05 Jul 01  Recode gcd(), avoiding std::swap (Helmut Zeisel)
sl@0
    26
//  03 Mar 01  Workarounds for Intel C++ 5.0 (David Abrahams)
sl@0
    27
//  05 Feb 01  Update operator>> to tighten up input syntax
sl@0
    28
//  05 Feb 01  Final tidy up of gcd code prior to the new release
sl@0
    29
//  27 Jan 01  Recode abs() without relying on abs(IntType)
sl@0
    30
//  21 Jan 01  Include Nickolay Mladenov's operator+= algorithm,
sl@0
    31
//             tidy up a number of areas, use newer features of operators.hpp
sl@0
    32
//             (reduces space overhead to zero), add operator!,
sl@0
    33
//             introduce explicit mixed-mode arithmetic operations
sl@0
    34
//  12 Jan 01  Include fixes to handle a user-defined IntType better
sl@0
    35
//  19 Nov 00  Throw on divide by zero in operator /= (John (EBo) David)
sl@0
    36
//  23 Jun 00  Incorporate changes from Mark Rodgers for Borland C++
sl@0
    37
//  22 Jun 00  Change _MSC_VER to BOOST_MSVC so other compilers are not
sl@0
    38
//             affected (Beman Dawes)
sl@0
    39
//   6 Mar 00  Fix operator-= normalization, #include <string> (Jens Maurer)
sl@0
    40
//  14 Dec 99  Modifications based on comments from the boost list
sl@0
    41
//  09 Dec 99  Initial Version (Paul Moore)
sl@0
    42
sl@0
    43
#ifndef BOOST_RATIONAL_HPP
sl@0
    44
#define BOOST_RATIONAL_HPP
sl@0
    45
sl@0
    46
#include <iostream>              // for std::istream and std::ostream
sl@0
    47
#include <iomanip>               // for std::noskipws
sl@0
    48
#include <stdexcept>             // for std::domain_error
sl@0
    49
#include <string>                // for std::string implicit constructor
sl@0
    50
#include <boost/operators.hpp>   // for boost::addable etc
sl@0
    51
#include <cstdlib>               // for std::abs
sl@0
    52
#include <boost/call_traits.hpp> // for boost::call_traits
sl@0
    53
#include <boost/config.hpp>      // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC
sl@0
    54
#include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND
sl@0
    55
sl@0
    56
namespace boost {
sl@0
    57
sl@0
    58
// Note: We use n and m as temporaries in this function, so there is no value
sl@0
    59
// in using const IntType& as we would only need to make a copy anyway...
sl@0
    60
template <typename IntType>
sl@0
    61
IntType gcd(IntType n, IntType m)
sl@0
    62
{
sl@0
    63
    // Avoid repeated construction
sl@0
    64
    IntType zero(0);
sl@0
    65
sl@0
    66
    // This is abs() - given the existence of broken compilers with Koenig
sl@0
    67
    // lookup issues and other problems, I code this explicitly. (Remember,
sl@0
    68
    // IntType may be a user-defined type).
sl@0
    69
    if (n < zero)
sl@0
    70
        n = -n;
sl@0
    71
    if (m < zero)
sl@0
    72
        m = -m;
sl@0
    73
sl@0
    74
    // As n and m are now positive, we can be sure that %= returns a
sl@0
    75
    // positive value (the standard guarantees this for built-in types,
sl@0
    76
    // and we require it of user-defined types).
sl@0
    77
    for(;;) {
sl@0
    78
      if(m == zero)
sl@0
    79
        return n;
sl@0
    80
      n %= m;
sl@0
    81
      if(n == zero)
sl@0
    82
        return m;
sl@0
    83
      m %= n;
sl@0
    84
    }
sl@0
    85
}
sl@0
    86
sl@0
    87
template <typename IntType>
sl@0
    88
IntType lcm(IntType n, IntType m)
sl@0
    89
{
sl@0
    90
    // Avoid repeated construction
sl@0
    91
    IntType zero(0);
sl@0
    92
sl@0
    93
    if (n == zero || m == zero)
sl@0
    94
        return zero;
sl@0
    95
sl@0
    96
    n /= gcd(n, m);
sl@0
    97
    n *= m;
sl@0
    98
sl@0
    99
    if (n < zero)
sl@0
   100
        n = -n;
sl@0
   101
    return n;
sl@0
   102
}
sl@0
   103
sl@0
   104
class bad_rational : public std::domain_error
sl@0
   105
{
sl@0
   106
public:
sl@0
   107
    explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
sl@0
   108
};
sl@0
   109
sl@0
   110
template <typename IntType>
sl@0
   111
class rational;
sl@0
   112
sl@0
   113
template <typename IntType>
sl@0
   114
rational<IntType> abs(const rational<IntType>& r);
sl@0
   115
sl@0
   116
template <typename IntType>
sl@0
   117
class rational :
sl@0
   118
    less_than_comparable < rational<IntType>,
sl@0
   119
    equality_comparable < rational<IntType>,
sl@0
   120
    less_than_comparable2 < rational<IntType>, IntType,
sl@0
   121
    equality_comparable2 < rational<IntType>, IntType,
sl@0
   122
    addable < rational<IntType>,
sl@0
   123
    subtractable < rational<IntType>,
sl@0
   124
    multipliable < rational<IntType>,
sl@0
   125
    dividable < rational<IntType>,
sl@0
   126
    addable2 < rational<IntType>, IntType,
sl@0
   127
    subtractable2 < rational<IntType>, IntType,
sl@0
   128
    subtractable2_left < rational<IntType>, IntType,
sl@0
   129
    multipliable2 < rational<IntType>, IntType,
sl@0
   130
    dividable2 < rational<IntType>, IntType,
sl@0
   131
    dividable2_left < rational<IntType>, IntType,
sl@0
   132
    incrementable < rational<IntType>,
sl@0
   133
    decrementable < rational<IntType>
sl@0
   134
    > > > > > > > > > > > > > > > >
sl@0
   135
{
sl@0
   136
    typedef typename boost::call_traits<IntType>::param_type param_type;
sl@0
   137
sl@0
   138
    struct helper { IntType parts[2]; };
sl@0
   139
    typedef IntType (helper::* bool_type)[2];
sl@0
   140
sl@0
   141
public:
sl@0
   142
    typedef IntType int_type;
sl@0
   143
    rational() : num(0), den(1) {}
sl@0
   144
    rational(param_type n) : num(n), den(1) {}
sl@0
   145
    rational(param_type n, param_type d) : num(n), den(d) { normalize(); }
sl@0
   146
sl@0
   147
    // Default copy constructor and assignment are fine
sl@0
   148
sl@0
   149
    // Add assignment from IntType
sl@0
   150
    rational& operator=(param_type n) { return assign(n, 1); }
sl@0
   151
sl@0
   152
    // Assign in place
sl@0
   153
    rational& assign(param_type n, param_type d);
sl@0
   154
sl@0
   155
    // Access to representation
sl@0
   156
    IntType numerator() const { return num; }
sl@0
   157
    IntType denominator() const { return den; }
sl@0
   158
sl@0
   159
    // Arithmetic assignment operators
sl@0
   160
    rational& operator+= (const rational& r);
sl@0
   161
    rational& operator-= (const rational& r);
sl@0
   162
    rational& operator*= (const rational& r);
sl@0
   163
    rational& operator/= (const rational& r);
sl@0
   164
sl@0
   165
    rational& operator+= (param_type i);
sl@0
   166
    rational& operator-= (param_type i);
sl@0
   167
    rational& operator*= (param_type i);
sl@0
   168
    rational& operator/= (param_type i);
sl@0
   169
sl@0
   170
    // Increment and decrement
sl@0
   171
    const rational& operator++();
sl@0
   172
    const rational& operator--();
sl@0
   173
sl@0
   174
    // Operator not
sl@0
   175
    bool operator!() const { return !num; }
sl@0
   176
sl@0
   177
    // Boolean conversion
sl@0
   178
    
sl@0
   179
#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
sl@0
   180
    // The "ISO C++ Template Parser" option in CW 8.3 chokes on the
sl@0
   181
    // following, hence we selectively disable that option for the
sl@0
   182
    // offending memfun.
sl@0
   183
#pragma parse_mfunc_templ off
sl@0
   184
#endif
sl@0
   185
sl@0
   186
    operator bool_type() const { return operator !() ? 0 : &helper::parts; }
sl@0
   187
sl@0
   188
#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
sl@0
   189
#pragma parse_mfunc_templ reset
sl@0
   190
#endif
sl@0
   191
sl@0
   192
    // Comparison operators
sl@0
   193
    bool operator< (const rational& r) const;
sl@0
   194
    bool operator== (const rational& r) const;
sl@0
   195
sl@0
   196
    bool operator< (param_type i) const;
sl@0
   197
    bool operator> (param_type i) const;
sl@0
   198
    bool operator== (param_type i) const;
sl@0
   199
sl@0
   200
private:
sl@0
   201
    // Implementation - numerator and denominator (normalized).
sl@0
   202
    // Other possibilities - separate whole-part, or sign, fields?
sl@0
   203
    IntType num;
sl@0
   204
    IntType den;
sl@0
   205
sl@0
   206
    // Representation note: Fractions are kept in normalized form at all
sl@0
   207
    // times. normalized form is defined as gcd(num,den) == 1 and den > 0.
sl@0
   208
    // In particular, note that the implementation of abs() below relies
sl@0
   209
    // on den always being positive.
sl@0
   210
    void normalize();
sl@0
   211
};
sl@0
   212
sl@0
   213
// Assign in place
sl@0
   214
template <typename IntType>
sl@0
   215
inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d)
sl@0
   216
{
sl@0
   217
    num = n;
sl@0
   218
    den = d;
sl@0
   219
    normalize();
sl@0
   220
    return *this;
sl@0
   221
}
sl@0
   222
sl@0
   223
// Unary plus and minus
sl@0
   224
template <typename IntType>
sl@0
   225
inline rational<IntType> operator+ (const rational<IntType>& r)
sl@0
   226
{
sl@0
   227
    return r;
sl@0
   228
}
sl@0
   229
sl@0
   230
template <typename IntType>
sl@0
   231
inline rational<IntType> operator- (const rational<IntType>& r)
sl@0
   232
{
sl@0
   233
    return rational<IntType>(-r.numerator(), r.denominator());
sl@0
   234
}
sl@0
   235
sl@0
   236
// Arithmetic assignment operators
sl@0
   237
template <typename IntType>
sl@0
   238
rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
sl@0
   239
{
sl@0
   240
    // This calculation avoids overflow, and minimises the number of expensive
sl@0
   241
    // calculations. Thanks to Nickolay Mladenov for this algorithm.
sl@0
   242
    //
sl@0
   243
    // Proof:
sl@0
   244
    // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
sl@0
   245
    // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
sl@0
   246
    //
sl@0
   247
    // The result is (a*d1 + c*b1) / (b1*d1*g).
sl@0
   248
    // Now we have to normalize this ratio.
sl@0
   249
    // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
sl@0
   250
    // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
sl@0
   251
    // But since gcd(a,b1)=1 we have h=1.
sl@0
   252
    // Similarly h|d1 leads to h=1.
sl@0
   253
    // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
sl@0
   254
    // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
sl@0
   255
    // Which proves that instead of normalizing the result, it is better to
sl@0
   256
    // divide num and den by gcd((a*d1 + c*b1), g)
sl@0
   257
sl@0
   258
    // Protect against self-modification
sl@0
   259
    IntType r_num = r.num;
sl@0
   260
    IntType r_den = r.den;
sl@0
   261
sl@0
   262
    IntType g = gcd(den, r_den);
sl@0
   263
    den /= g;  // = b1 from the calculations above
sl@0
   264
    num = num * (r_den / g) + r_num * den;
sl@0
   265
    g = gcd(num, g);
sl@0
   266
    num /= g;
sl@0
   267
    den *= r_den/g;
sl@0
   268
sl@0
   269
    return *this;
sl@0
   270
}
sl@0
   271
sl@0
   272
template <typename IntType>
sl@0
   273
rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
sl@0
   274
{
sl@0
   275
    // Protect against self-modification
sl@0
   276
    IntType r_num = r.num;
sl@0
   277
    IntType r_den = r.den;
sl@0
   278
sl@0
   279
    // This calculation avoids overflow, and minimises the number of expensive
sl@0
   280
    // calculations. It corresponds exactly to the += case above
sl@0
   281
    IntType g = gcd(den, r_den);
sl@0
   282
    den /= g;
sl@0
   283
    num = num * (r_den / g) - r_num * den;
sl@0
   284
    g = gcd(num, g);
sl@0
   285
    num /= g;
sl@0
   286
    den *= r_den/g;
sl@0
   287
sl@0
   288
    return *this;
sl@0
   289
}
sl@0
   290
sl@0
   291
template <typename IntType>
sl@0
   292
rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
sl@0
   293
{
sl@0
   294
    // Protect against self-modification
sl@0
   295
    IntType r_num = r.num;
sl@0
   296
    IntType r_den = r.den;
sl@0
   297
sl@0
   298
    // Avoid overflow and preserve normalization
sl@0
   299
    IntType gcd1 = gcd<IntType>(num, r_den);
sl@0
   300
    IntType gcd2 = gcd<IntType>(r_num, den);
sl@0
   301
    num = (num/gcd1) * (r_num/gcd2);
sl@0
   302
    den = (den/gcd2) * (r_den/gcd1);
sl@0
   303
    return *this;
sl@0
   304
}
sl@0
   305
sl@0
   306
template <typename IntType>
sl@0
   307
rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
sl@0
   308
{
sl@0
   309
    // Protect against self-modification
sl@0
   310
    IntType r_num = r.num;
sl@0
   311
    IntType r_den = r.den;
sl@0
   312
sl@0
   313
    // Avoid repeated construction
sl@0
   314
    IntType zero(0);
sl@0
   315
sl@0
   316
    // Trap division by zero
sl@0
   317
    if (r_num == zero)
sl@0
   318
        throw bad_rational();
sl@0
   319
    if (num == zero)
sl@0
   320
        return *this;
sl@0
   321
sl@0
   322
    // Avoid overflow and preserve normalization
sl@0
   323
    IntType gcd1 = gcd<IntType>(num, r_num);
sl@0
   324
    IntType gcd2 = gcd<IntType>(r_den, den);
sl@0
   325
    num = (num/gcd1) * (r_den/gcd2);
sl@0
   326
    den = (den/gcd2) * (r_num/gcd1);
sl@0
   327
sl@0
   328
    if (den < zero) {
sl@0
   329
        num = -num;
sl@0
   330
        den = -den;
sl@0
   331
    }
sl@0
   332
    return *this;
sl@0
   333
}
sl@0
   334
sl@0
   335
// Mixed-mode operators
sl@0
   336
template <typename IntType>
sl@0
   337
inline rational<IntType>&
sl@0
   338
rational<IntType>::operator+= (param_type i)
sl@0
   339
{
sl@0
   340
    return operator+= (rational<IntType>(i));
sl@0
   341
}
sl@0
   342
sl@0
   343
template <typename IntType>
sl@0
   344
inline rational<IntType>&
sl@0
   345
rational<IntType>::operator-= (param_type i)
sl@0
   346
{
sl@0
   347
    return operator-= (rational<IntType>(i));
sl@0
   348
}
sl@0
   349
sl@0
   350
template <typename IntType>
sl@0
   351
inline rational<IntType>&
sl@0
   352
rational<IntType>::operator*= (param_type i)
sl@0
   353
{
sl@0
   354
    return operator*= (rational<IntType>(i));
sl@0
   355
}
sl@0
   356
sl@0
   357
template <typename IntType>
sl@0
   358
inline rational<IntType>&
sl@0
   359
rational<IntType>::operator/= (param_type i)
sl@0
   360
{
sl@0
   361
    return operator/= (rational<IntType>(i));
sl@0
   362
}
sl@0
   363
sl@0
   364
// Increment and decrement
sl@0
   365
template <typename IntType>
sl@0
   366
inline const rational<IntType>& rational<IntType>::operator++()
sl@0
   367
{
sl@0
   368
    // This can never denormalise the fraction
sl@0
   369
    num += den;
sl@0
   370
    return *this;
sl@0
   371
}
sl@0
   372
sl@0
   373
template <typename IntType>
sl@0
   374
inline const rational<IntType>& rational<IntType>::operator--()
sl@0
   375
{
sl@0
   376
    // This can never denormalise the fraction
sl@0
   377
    num -= den;
sl@0
   378
    return *this;
sl@0
   379
}
sl@0
   380
sl@0
   381
// Comparison operators
sl@0
   382
template <typename IntType>
sl@0
   383
bool rational<IntType>::operator< (const rational<IntType>& r) const
sl@0
   384
{
sl@0
   385
    // Avoid repeated construction
sl@0
   386
    IntType zero(0);
sl@0
   387
sl@0
   388
    // If the two values have different signs, we don't need to do the
sl@0
   389
    // expensive calculations below. We take advantage here of the fact
sl@0
   390
    // that the denominator is always positive.
sl@0
   391
    if (num < zero && r.num >= zero) // -ve < +ve
sl@0
   392
        return true;
sl@0
   393
    if (num >= zero && r.num <= zero) // +ve or zero is not < -ve or zero
sl@0
   394
        return false;
sl@0
   395
sl@0
   396
    // Avoid overflow
sl@0
   397
    IntType gcd1 = gcd<IntType>(num, r.num);
sl@0
   398
    IntType gcd2 = gcd<IntType>(r.den, den);
sl@0
   399
    return (num/gcd1) * (r.den/gcd2) < (den/gcd2) * (r.num/gcd1);
sl@0
   400
}
sl@0
   401
sl@0
   402
template <typename IntType>
sl@0
   403
bool rational<IntType>::operator< (param_type i) const
sl@0
   404
{
sl@0
   405
    // Avoid repeated construction
sl@0
   406
    IntType zero(0);
sl@0
   407
sl@0
   408
    // If the two values have different signs, we don't need to do the
sl@0
   409
    // expensive calculations below. We take advantage here of the fact
sl@0
   410
    // that the denominator is always positive.
sl@0
   411
    if (num < zero && i >= zero) // -ve < +ve
sl@0
   412
        return true;
sl@0
   413
    if (num >= zero && i <= zero) // +ve or zero is not < -ve or zero
sl@0
   414
        return false;
sl@0
   415
sl@0
   416
    // Now, use the fact that n/d truncates towards zero as long as n and d
sl@0
   417
    // are both positive.
sl@0
   418
    // Divide instead of multiplying to avoid overflow issues. Of course,
sl@0
   419
    // division may be slower, but accuracy is more important than speed...
sl@0
   420
    if (num > zero)
sl@0
   421
        return (num/den) < i;
sl@0
   422
    else
sl@0
   423
        return -i < (-num/den);
sl@0
   424
}
sl@0
   425
sl@0
   426
template <typename IntType>
sl@0
   427
bool rational<IntType>::operator> (param_type i) const
sl@0
   428
{
sl@0
   429
    // Trap equality first
sl@0
   430
    if (num == i && den == IntType(1))
sl@0
   431
        return false;
sl@0
   432
sl@0
   433
    // Otherwise, we can use operator<
sl@0
   434
    return !operator<(i);
sl@0
   435
}
sl@0
   436
sl@0
   437
template <typename IntType>
sl@0
   438
inline bool rational<IntType>::operator== (const rational<IntType>& r) const
sl@0
   439
{
sl@0
   440
    return ((num == r.num) && (den == r.den));
sl@0
   441
}
sl@0
   442
sl@0
   443
template <typename IntType>
sl@0
   444
inline bool rational<IntType>::operator== (param_type i) const
sl@0
   445
{
sl@0
   446
    return ((den == IntType(1)) && (num == i));
sl@0
   447
}
sl@0
   448
sl@0
   449
// Normalisation
sl@0
   450
template <typename IntType>
sl@0
   451
void rational<IntType>::normalize()
sl@0
   452
{
sl@0
   453
    // Avoid repeated construction
sl@0
   454
    IntType zero(0);
sl@0
   455
sl@0
   456
    if (den == zero)
sl@0
   457
        throw bad_rational();
sl@0
   458
sl@0
   459
    // Handle the case of zero separately, to avoid division by zero
sl@0
   460
    if (num == zero) {
sl@0
   461
        den = IntType(1);
sl@0
   462
        return;
sl@0
   463
    }
sl@0
   464
sl@0
   465
    IntType g = gcd<IntType>(num, den);
sl@0
   466
sl@0
   467
    num /= g;
sl@0
   468
    den /= g;
sl@0
   469
sl@0
   470
    // Ensure that the denominator is positive
sl@0
   471
    if (den < zero) {
sl@0
   472
        num = -num;
sl@0
   473
        den = -den;
sl@0
   474
    }
sl@0
   475
}
sl@0
   476
sl@0
   477
namespace detail {
sl@0
   478
sl@0
   479
    // A utility class to reset the format flags for an istream at end
sl@0
   480
    // of scope, even in case of exceptions
sl@0
   481
    struct resetter {
sl@0
   482
        resetter(std::istream& is) : is_(is), f_(is.flags()) {}
sl@0
   483
        ~resetter() { is_.flags(f_); }
sl@0
   484
        std::istream& is_;
sl@0
   485
        std::istream::fmtflags f_;      // old GNU c++ lib has no ios_base
sl@0
   486
    };
sl@0
   487
sl@0
   488
}
sl@0
   489
sl@0
   490
// Input and output
sl@0
   491
template <typename IntType>
sl@0
   492
std::istream& operator>> (std::istream& is, rational<IntType>& r)
sl@0
   493
{
sl@0
   494
    IntType n = IntType(0), d = IntType(1);
sl@0
   495
    char c = 0;
sl@0
   496
    detail::resetter sentry(is);
sl@0
   497
sl@0
   498
    is >> n;
sl@0
   499
    c = is.get();
sl@0
   500
sl@0
   501
    if (c != '/')
sl@0
   502
        is.clear(std::istream::badbit);  // old GNU c++ lib has no ios_base
sl@0
   503
sl@0
   504
#if !defined(__GNUC__) || (defined(__GNUC__) && (__GNUC__ >= 3)) || defined __SGI_STL_PORT
sl@0
   505
    is >> std::noskipws;
sl@0
   506
#else
sl@0
   507
    is.unsetf(ios::skipws); // compiles, but seems to have no effect.
sl@0
   508
#endif
sl@0
   509
    is >> d;
sl@0
   510
sl@0
   511
    if (is)
sl@0
   512
        r.assign(n, d);
sl@0
   513
sl@0
   514
    return is;
sl@0
   515
}
sl@0
   516
sl@0
   517
// Add manipulators for output format?
sl@0
   518
template <typename IntType>
sl@0
   519
std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
sl@0
   520
{
sl@0
   521
    os << r.numerator() << '/' << r.denominator();
sl@0
   522
    return os;
sl@0
   523
}
sl@0
   524
sl@0
   525
// Type conversion
sl@0
   526
template <typename T, typename IntType>
sl@0
   527
inline T rational_cast(
sl@0
   528
    const rational<IntType>& src BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
sl@0
   529
{
sl@0
   530
    return static_cast<T>(src.numerator())/src.denominator();
sl@0
   531
}
sl@0
   532
sl@0
   533
// Do not use any abs() defined on IntType - it isn't worth it, given the
sl@0
   534
// difficulties involved (Koenig lookup required, there may not *be* an abs()
sl@0
   535
// defined, etc etc).
sl@0
   536
template <typename IntType>
sl@0
   537
inline rational<IntType> abs(const rational<IntType>& r)
sl@0
   538
{
sl@0
   539
    if (r.numerator() >= IntType(0))
sl@0
   540
        return r;
sl@0
   541
sl@0
   542
    return rational<IntType>(-r.numerator(), r.denominator());
sl@0
   543
}
sl@0
   544
sl@0
   545
} // namespace boost
sl@0
   546
sl@0
   547
#endif  // BOOST_RATIONAL_HPP
sl@0
   548