sl@0
|
1 |
// Boost rational.hpp header file ------------------------------------------//
|
sl@0
|
2 |
|
sl@0
|
3 |
// (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
|
sl@0
|
4 |
// distribute this software is granted provided this copyright notice appears
|
sl@0
|
5 |
// in all copies. This software is provided "as is" without express or
|
sl@0
|
6 |
// implied warranty, and with no claim as to its suitability for any purpose.
|
sl@0
|
7 |
|
sl@0
|
8 |
// See http://www.boost.org/libs/rational for documentation.
|
sl@0
|
9 |
|
sl@0
|
10 |
// Credits:
|
sl@0
|
11 |
// Thanks to the boost mailing list in general for useful comments.
|
sl@0
|
12 |
// Particular contributions included:
|
sl@0
|
13 |
// Andrew D Jewell, for reminding me to take care to avoid overflow
|
sl@0
|
14 |
// Ed Brey, for many comments, including picking up on some dreadful typos
|
sl@0
|
15 |
// Stephen Silver contributed the test suite and comments on user-defined
|
sl@0
|
16 |
// IntType
|
sl@0
|
17 |
// Nickolay Mladenov, for the implementation of operator+=
|
sl@0
|
18 |
|
sl@0
|
19 |
// Revision History
|
sl@0
|
20 |
// 20 Oct 06 Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz)
|
sl@0
|
21 |
// 18 Oct 06 Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config
|
sl@0
|
22 |
// (Joaquín M López Muñoz)
|
sl@0
|
23 |
// 27 Dec 05 Add Boolean conversion operator (Daryle Walker)
|
sl@0
|
24 |
// 28 Sep 02 Use _left versions of operators from operators.hpp
|
sl@0
|
25 |
// 05 Jul 01 Recode gcd(), avoiding std::swap (Helmut Zeisel)
|
sl@0
|
26 |
// 03 Mar 01 Workarounds for Intel C++ 5.0 (David Abrahams)
|
sl@0
|
27 |
// 05 Feb 01 Update operator>> to tighten up input syntax
|
sl@0
|
28 |
// 05 Feb 01 Final tidy up of gcd code prior to the new release
|
sl@0
|
29 |
// 27 Jan 01 Recode abs() without relying on abs(IntType)
|
sl@0
|
30 |
// 21 Jan 01 Include Nickolay Mladenov's operator+= algorithm,
|
sl@0
|
31 |
// tidy up a number of areas, use newer features of operators.hpp
|
sl@0
|
32 |
// (reduces space overhead to zero), add operator!,
|
sl@0
|
33 |
// introduce explicit mixed-mode arithmetic operations
|
sl@0
|
34 |
// 12 Jan 01 Include fixes to handle a user-defined IntType better
|
sl@0
|
35 |
// 19 Nov 00 Throw on divide by zero in operator /= (John (EBo) David)
|
sl@0
|
36 |
// 23 Jun 00 Incorporate changes from Mark Rodgers for Borland C++
|
sl@0
|
37 |
// 22 Jun 00 Change _MSC_VER to BOOST_MSVC so other compilers are not
|
sl@0
|
38 |
// affected (Beman Dawes)
|
sl@0
|
39 |
// 6 Mar 00 Fix operator-= normalization, #include <string> (Jens Maurer)
|
sl@0
|
40 |
// 14 Dec 99 Modifications based on comments from the boost list
|
sl@0
|
41 |
// 09 Dec 99 Initial Version (Paul Moore)
|
sl@0
|
42 |
|
sl@0
|
43 |
#ifndef BOOST_RATIONAL_HPP
|
sl@0
|
44 |
#define BOOST_RATIONAL_HPP
|
sl@0
|
45 |
|
sl@0
|
46 |
#include <iostream> // for std::istream and std::ostream
|
sl@0
|
47 |
#include <iomanip> // for std::noskipws
|
sl@0
|
48 |
#include <stdexcept> // for std::domain_error
|
sl@0
|
49 |
#include <string> // for std::string implicit constructor
|
sl@0
|
50 |
#include <boost/operators.hpp> // for boost::addable etc
|
sl@0
|
51 |
#include <cstdlib> // for std::abs
|
sl@0
|
52 |
#include <boost/call_traits.hpp> // for boost::call_traits
|
sl@0
|
53 |
#include <boost/config.hpp> // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC
|
sl@0
|
54 |
#include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND
|
sl@0
|
55 |
|
sl@0
|
56 |
namespace boost {
|
sl@0
|
57 |
|
sl@0
|
58 |
// Note: We use n and m as temporaries in this function, so there is no value
|
sl@0
|
59 |
// in using const IntType& as we would only need to make a copy anyway...
|
sl@0
|
60 |
template <typename IntType>
|
sl@0
|
61 |
IntType gcd(IntType n, IntType m)
|
sl@0
|
62 |
{
|
sl@0
|
63 |
// Avoid repeated construction
|
sl@0
|
64 |
IntType zero(0);
|
sl@0
|
65 |
|
sl@0
|
66 |
// This is abs() - given the existence of broken compilers with Koenig
|
sl@0
|
67 |
// lookup issues and other problems, I code this explicitly. (Remember,
|
sl@0
|
68 |
// IntType may be a user-defined type).
|
sl@0
|
69 |
if (n < zero)
|
sl@0
|
70 |
n = -n;
|
sl@0
|
71 |
if (m < zero)
|
sl@0
|
72 |
m = -m;
|
sl@0
|
73 |
|
sl@0
|
74 |
// As n and m are now positive, we can be sure that %= returns a
|
sl@0
|
75 |
// positive value (the standard guarantees this for built-in types,
|
sl@0
|
76 |
// and we require it of user-defined types).
|
sl@0
|
77 |
for(;;) {
|
sl@0
|
78 |
if(m == zero)
|
sl@0
|
79 |
return n;
|
sl@0
|
80 |
n %= m;
|
sl@0
|
81 |
if(n == zero)
|
sl@0
|
82 |
return m;
|
sl@0
|
83 |
m %= n;
|
sl@0
|
84 |
}
|
sl@0
|
85 |
}
|
sl@0
|
86 |
|
sl@0
|
87 |
template <typename IntType>
|
sl@0
|
88 |
IntType lcm(IntType n, IntType m)
|
sl@0
|
89 |
{
|
sl@0
|
90 |
// Avoid repeated construction
|
sl@0
|
91 |
IntType zero(0);
|
sl@0
|
92 |
|
sl@0
|
93 |
if (n == zero || m == zero)
|
sl@0
|
94 |
return zero;
|
sl@0
|
95 |
|
sl@0
|
96 |
n /= gcd(n, m);
|
sl@0
|
97 |
n *= m;
|
sl@0
|
98 |
|
sl@0
|
99 |
if (n < zero)
|
sl@0
|
100 |
n = -n;
|
sl@0
|
101 |
return n;
|
sl@0
|
102 |
}
|
sl@0
|
103 |
|
sl@0
|
104 |
class bad_rational : public std::domain_error
|
sl@0
|
105 |
{
|
sl@0
|
106 |
public:
|
sl@0
|
107 |
explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
|
sl@0
|
108 |
};
|
sl@0
|
109 |
|
sl@0
|
110 |
template <typename IntType>
|
sl@0
|
111 |
class rational;
|
sl@0
|
112 |
|
sl@0
|
113 |
template <typename IntType>
|
sl@0
|
114 |
rational<IntType> abs(const rational<IntType>& r);
|
sl@0
|
115 |
|
sl@0
|
116 |
template <typename IntType>
|
sl@0
|
117 |
class rational :
|
sl@0
|
118 |
less_than_comparable < rational<IntType>,
|
sl@0
|
119 |
equality_comparable < rational<IntType>,
|
sl@0
|
120 |
less_than_comparable2 < rational<IntType>, IntType,
|
sl@0
|
121 |
equality_comparable2 < rational<IntType>, IntType,
|
sl@0
|
122 |
addable < rational<IntType>,
|
sl@0
|
123 |
subtractable < rational<IntType>,
|
sl@0
|
124 |
multipliable < rational<IntType>,
|
sl@0
|
125 |
dividable < rational<IntType>,
|
sl@0
|
126 |
addable2 < rational<IntType>, IntType,
|
sl@0
|
127 |
subtractable2 < rational<IntType>, IntType,
|
sl@0
|
128 |
subtractable2_left < rational<IntType>, IntType,
|
sl@0
|
129 |
multipliable2 < rational<IntType>, IntType,
|
sl@0
|
130 |
dividable2 < rational<IntType>, IntType,
|
sl@0
|
131 |
dividable2_left < rational<IntType>, IntType,
|
sl@0
|
132 |
incrementable < rational<IntType>,
|
sl@0
|
133 |
decrementable < rational<IntType>
|
sl@0
|
134 |
> > > > > > > > > > > > > > > >
|
sl@0
|
135 |
{
|
sl@0
|
136 |
typedef typename boost::call_traits<IntType>::param_type param_type;
|
sl@0
|
137 |
|
sl@0
|
138 |
struct helper { IntType parts[2]; };
|
sl@0
|
139 |
typedef IntType (helper::* bool_type)[2];
|
sl@0
|
140 |
|
sl@0
|
141 |
public:
|
sl@0
|
142 |
typedef IntType int_type;
|
sl@0
|
143 |
rational() : num(0), den(1) {}
|
sl@0
|
144 |
rational(param_type n) : num(n), den(1) {}
|
sl@0
|
145 |
rational(param_type n, param_type d) : num(n), den(d) { normalize(); }
|
sl@0
|
146 |
|
sl@0
|
147 |
// Default copy constructor and assignment are fine
|
sl@0
|
148 |
|
sl@0
|
149 |
// Add assignment from IntType
|
sl@0
|
150 |
rational& operator=(param_type n) { return assign(n, 1); }
|
sl@0
|
151 |
|
sl@0
|
152 |
// Assign in place
|
sl@0
|
153 |
rational& assign(param_type n, param_type d);
|
sl@0
|
154 |
|
sl@0
|
155 |
// Access to representation
|
sl@0
|
156 |
IntType numerator() const { return num; }
|
sl@0
|
157 |
IntType denominator() const { return den; }
|
sl@0
|
158 |
|
sl@0
|
159 |
// Arithmetic assignment operators
|
sl@0
|
160 |
rational& operator+= (const rational& r);
|
sl@0
|
161 |
rational& operator-= (const rational& r);
|
sl@0
|
162 |
rational& operator*= (const rational& r);
|
sl@0
|
163 |
rational& operator/= (const rational& r);
|
sl@0
|
164 |
|
sl@0
|
165 |
rational& operator+= (param_type i);
|
sl@0
|
166 |
rational& operator-= (param_type i);
|
sl@0
|
167 |
rational& operator*= (param_type i);
|
sl@0
|
168 |
rational& operator/= (param_type i);
|
sl@0
|
169 |
|
sl@0
|
170 |
// Increment and decrement
|
sl@0
|
171 |
const rational& operator++();
|
sl@0
|
172 |
const rational& operator--();
|
sl@0
|
173 |
|
sl@0
|
174 |
// Operator not
|
sl@0
|
175 |
bool operator!() const { return !num; }
|
sl@0
|
176 |
|
sl@0
|
177 |
// Boolean conversion
|
sl@0
|
178 |
|
sl@0
|
179 |
#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
|
sl@0
|
180 |
// The "ISO C++ Template Parser" option in CW 8.3 chokes on the
|
sl@0
|
181 |
// following, hence we selectively disable that option for the
|
sl@0
|
182 |
// offending memfun.
|
sl@0
|
183 |
#pragma parse_mfunc_templ off
|
sl@0
|
184 |
#endif
|
sl@0
|
185 |
|
sl@0
|
186 |
operator bool_type() const { return operator !() ? 0 : &helper::parts; }
|
sl@0
|
187 |
|
sl@0
|
188 |
#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
|
sl@0
|
189 |
#pragma parse_mfunc_templ reset
|
sl@0
|
190 |
#endif
|
sl@0
|
191 |
|
sl@0
|
192 |
// Comparison operators
|
sl@0
|
193 |
bool operator< (const rational& r) const;
|
sl@0
|
194 |
bool operator== (const rational& r) const;
|
sl@0
|
195 |
|
sl@0
|
196 |
bool operator< (param_type i) const;
|
sl@0
|
197 |
bool operator> (param_type i) const;
|
sl@0
|
198 |
bool operator== (param_type i) const;
|
sl@0
|
199 |
|
sl@0
|
200 |
private:
|
sl@0
|
201 |
// Implementation - numerator and denominator (normalized).
|
sl@0
|
202 |
// Other possibilities - separate whole-part, or sign, fields?
|
sl@0
|
203 |
IntType num;
|
sl@0
|
204 |
IntType den;
|
sl@0
|
205 |
|
sl@0
|
206 |
// Representation note: Fractions are kept in normalized form at all
|
sl@0
|
207 |
// times. normalized form is defined as gcd(num,den) == 1 and den > 0.
|
sl@0
|
208 |
// In particular, note that the implementation of abs() below relies
|
sl@0
|
209 |
// on den always being positive.
|
sl@0
|
210 |
void normalize();
|
sl@0
|
211 |
};
|
sl@0
|
212 |
|
sl@0
|
213 |
// Assign in place
|
sl@0
|
214 |
template <typename IntType>
|
sl@0
|
215 |
inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d)
|
sl@0
|
216 |
{
|
sl@0
|
217 |
num = n;
|
sl@0
|
218 |
den = d;
|
sl@0
|
219 |
normalize();
|
sl@0
|
220 |
return *this;
|
sl@0
|
221 |
}
|
sl@0
|
222 |
|
sl@0
|
223 |
// Unary plus and minus
|
sl@0
|
224 |
template <typename IntType>
|
sl@0
|
225 |
inline rational<IntType> operator+ (const rational<IntType>& r)
|
sl@0
|
226 |
{
|
sl@0
|
227 |
return r;
|
sl@0
|
228 |
}
|
sl@0
|
229 |
|
sl@0
|
230 |
template <typename IntType>
|
sl@0
|
231 |
inline rational<IntType> operator- (const rational<IntType>& r)
|
sl@0
|
232 |
{
|
sl@0
|
233 |
return rational<IntType>(-r.numerator(), r.denominator());
|
sl@0
|
234 |
}
|
sl@0
|
235 |
|
sl@0
|
236 |
// Arithmetic assignment operators
|
sl@0
|
237 |
template <typename IntType>
|
sl@0
|
238 |
rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
|
sl@0
|
239 |
{
|
sl@0
|
240 |
// This calculation avoids overflow, and minimises the number of expensive
|
sl@0
|
241 |
// calculations. Thanks to Nickolay Mladenov for this algorithm.
|
sl@0
|
242 |
//
|
sl@0
|
243 |
// Proof:
|
sl@0
|
244 |
// We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
|
sl@0
|
245 |
// Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
|
sl@0
|
246 |
//
|
sl@0
|
247 |
// The result is (a*d1 + c*b1) / (b1*d1*g).
|
sl@0
|
248 |
// Now we have to normalize this ratio.
|
sl@0
|
249 |
// Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
|
sl@0
|
250 |
// If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
|
sl@0
|
251 |
// But since gcd(a,b1)=1 we have h=1.
|
sl@0
|
252 |
// Similarly h|d1 leads to h=1.
|
sl@0
|
253 |
// So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
|
sl@0
|
254 |
// Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
|
sl@0
|
255 |
// Which proves that instead of normalizing the result, it is better to
|
sl@0
|
256 |
// divide num and den by gcd((a*d1 + c*b1), g)
|
sl@0
|
257 |
|
sl@0
|
258 |
// Protect against self-modification
|
sl@0
|
259 |
IntType r_num = r.num;
|
sl@0
|
260 |
IntType r_den = r.den;
|
sl@0
|
261 |
|
sl@0
|
262 |
IntType g = gcd(den, r_den);
|
sl@0
|
263 |
den /= g; // = b1 from the calculations above
|
sl@0
|
264 |
num = num * (r_den / g) + r_num * den;
|
sl@0
|
265 |
g = gcd(num, g);
|
sl@0
|
266 |
num /= g;
|
sl@0
|
267 |
den *= r_den/g;
|
sl@0
|
268 |
|
sl@0
|
269 |
return *this;
|
sl@0
|
270 |
}
|
sl@0
|
271 |
|
sl@0
|
272 |
template <typename IntType>
|
sl@0
|
273 |
rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
|
sl@0
|
274 |
{
|
sl@0
|
275 |
// Protect against self-modification
|
sl@0
|
276 |
IntType r_num = r.num;
|
sl@0
|
277 |
IntType r_den = r.den;
|
sl@0
|
278 |
|
sl@0
|
279 |
// This calculation avoids overflow, and minimises the number of expensive
|
sl@0
|
280 |
// calculations. It corresponds exactly to the += case above
|
sl@0
|
281 |
IntType g = gcd(den, r_den);
|
sl@0
|
282 |
den /= g;
|
sl@0
|
283 |
num = num * (r_den / g) - r_num * den;
|
sl@0
|
284 |
g = gcd(num, g);
|
sl@0
|
285 |
num /= g;
|
sl@0
|
286 |
den *= r_den/g;
|
sl@0
|
287 |
|
sl@0
|
288 |
return *this;
|
sl@0
|
289 |
}
|
sl@0
|
290 |
|
sl@0
|
291 |
template <typename IntType>
|
sl@0
|
292 |
rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
|
sl@0
|
293 |
{
|
sl@0
|
294 |
// Protect against self-modification
|
sl@0
|
295 |
IntType r_num = r.num;
|
sl@0
|
296 |
IntType r_den = r.den;
|
sl@0
|
297 |
|
sl@0
|
298 |
// Avoid overflow and preserve normalization
|
sl@0
|
299 |
IntType gcd1 = gcd<IntType>(num, r_den);
|
sl@0
|
300 |
IntType gcd2 = gcd<IntType>(r_num, den);
|
sl@0
|
301 |
num = (num/gcd1) * (r_num/gcd2);
|
sl@0
|
302 |
den = (den/gcd2) * (r_den/gcd1);
|
sl@0
|
303 |
return *this;
|
sl@0
|
304 |
}
|
sl@0
|
305 |
|
sl@0
|
306 |
template <typename IntType>
|
sl@0
|
307 |
rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
|
sl@0
|
308 |
{
|
sl@0
|
309 |
// Protect against self-modification
|
sl@0
|
310 |
IntType r_num = r.num;
|
sl@0
|
311 |
IntType r_den = r.den;
|
sl@0
|
312 |
|
sl@0
|
313 |
// Avoid repeated construction
|
sl@0
|
314 |
IntType zero(0);
|
sl@0
|
315 |
|
sl@0
|
316 |
// Trap division by zero
|
sl@0
|
317 |
if (r_num == zero)
|
sl@0
|
318 |
throw bad_rational();
|
sl@0
|
319 |
if (num == zero)
|
sl@0
|
320 |
return *this;
|
sl@0
|
321 |
|
sl@0
|
322 |
// Avoid overflow and preserve normalization
|
sl@0
|
323 |
IntType gcd1 = gcd<IntType>(num, r_num);
|
sl@0
|
324 |
IntType gcd2 = gcd<IntType>(r_den, den);
|
sl@0
|
325 |
num = (num/gcd1) * (r_den/gcd2);
|
sl@0
|
326 |
den = (den/gcd2) * (r_num/gcd1);
|
sl@0
|
327 |
|
sl@0
|
328 |
if (den < zero) {
|
sl@0
|
329 |
num = -num;
|
sl@0
|
330 |
den = -den;
|
sl@0
|
331 |
}
|
sl@0
|
332 |
return *this;
|
sl@0
|
333 |
}
|
sl@0
|
334 |
|
sl@0
|
335 |
// Mixed-mode operators
|
sl@0
|
336 |
template <typename IntType>
|
sl@0
|
337 |
inline rational<IntType>&
|
sl@0
|
338 |
rational<IntType>::operator+= (param_type i)
|
sl@0
|
339 |
{
|
sl@0
|
340 |
return operator+= (rational<IntType>(i));
|
sl@0
|
341 |
}
|
sl@0
|
342 |
|
sl@0
|
343 |
template <typename IntType>
|
sl@0
|
344 |
inline rational<IntType>&
|
sl@0
|
345 |
rational<IntType>::operator-= (param_type i)
|
sl@0
|
346 |
{
|
sl@0
|
347 |
return operator-= (rational<IntType>(i));
|
sl@0
|
348 |
}
|
sl@0
|
349 |
|
sl@0
|
350 |
template <typename IntType>
|
sl@0
|
351 |
inline rational<IntType>&
|
sl@0
|
352 |
rational<IntType>::operator*= (param_type i)
|
sl@0
|
353 |
{
|
sl@0
|
354 |
return operator*= (rational<IntType>(i));
|
sl@0
|
355 |
}
|
sl@0
|
356 |
|
sl@0
|
357 |
template <typename IntType>
|
sl@0
|
358 |
inline rational<IntType>&
|
sl@0
|
359 |
rational<IntType>::operator/= (param_type i)
|
sl@0
|
360 |
{
|
sl@0
|
361 |
return operator/= (rational<IntType>(i));
|
sl@0
|
362 |
}
|
sl@0
|
363 |
|
sl@0
|
364 |
// Increment and decrement
|
sl@0
|
365 |
template <typename IntType>
|
sl@0
|
366 |
inline const rational<IntType>& rational<IntType>::operator++()
|
sl@0
|
367 |
{
|
sl@0
|
368 |
// This can never denormalise the fraction
|
sl@0
|
369 |
num += den;
|
sl@0
|
370 |
return *this;
|
sl@0
|
371 |
}
|
sl@0
|
372 |
|
sl@0
|
373 |
template <typename IntType>
|
sl@0
|
374 |
inline const rational<IntType>& rational<IntType>::operator--()
|
sl@0
|
375 |
{
|
sl@0
|
376 |
// This can never denormalise the fraction
|
sl@0
|
377 |
num -= den;
|
sl@0
|
378 |
return *this;
|
sl@0
|
379 |
}
|
sl@0
|
380 |
|
sl@0
|
381 |
// Comparison operators
|
sl@0
|
382 |
template <typename IntType>
|
sl@0
|
383 |
bool rational<IntType>::operator< (const rational<IntType>& r) const
|
sl@0
|
384 |
{
|
sl@0
|
385 |
// Avoid repeated construction
|
sl@0
|
386 |
IntType zero(0);
|
sl@0
|
387 |
|
sl@0
|
388 |
// If the two values have different signs, we don't need to do the
|
sl@0
|
389 |
// expensive calculations below. We take advantage here of the fact
|
sl@0
|
390 |
// that the denominator is always positive.
|
sl@0
|
391 |
if (num < zero && r.num >= zero) // -ve < +ve
|
sl@0
|
392 |
return true;
|
sl@0
|
393 |
if (num >= zero && r.num <= zero) // +ve or zero is not < -ve or zero
|
sl@0
|
394 |
return false;
|
sl@0
|
395 |
|
sl@0
|
396 |
// Avoid overflow
|
sl@0
|
397 |
IntType gcd1 = gcd<IntType>(num, r.num);
|
sl@0
|
398 |
IntType gcd2 = gcd<IntType>(r.den, den);
|
sl@0
|
399 |
return (num/gcd1) * (r.den/gcd2) < (den/gcd2) * (r.num/gcd1);
|
sl@0
|
400 |
}
|
sl@0
|
401 |
|
sl@0
|
402 |
template <typename IntType>
|
sl@0
|
403 |
bool rational<IntType>::operator< (param_type i) const
|
sl@0
|
404 |
{
|
sl@0
|
405 |
// Avoid repeated construction
|
sl@0
|
406 |
IntType zero(0);
|
sl@0
|
407 |
|
sl@0
|
408 |
// If the two values have different signs, we don't need to do the
|
sl@0
|
409 |
// expensive calculations below. We take advantage here of the fact
|
sl@0
|
410 |
// that the denominator is always positive.
|
sl@0
|
411 |
if (num < zero && i >= zero) // -ve < +ve
|
sl@0
|
412 |
return true;
|
sl@0
|
413 |
if (num >= zero && i <= zero) // +ve or zero is not < -ve or zero
|
sl@0
|
414 |
return false;
|
sl@0
|
415 |
|
sl@0
|
416 |
// Now, use the fact that n/d truncates towards zero as long as n and d
|
sl@0
|
417 |
// are both positive.
|
sl@0
|
418 |
// Divide instead of multiplying to avoid overflow issues. Of course,
|
sl@0
|
419 |
// division may be slower, but accuracy is more important than speed...
|
sl@0
|
420 |
if (num > zero)
|
sl@0
|
421 |
return (num/den) < i;
|
sl@0
|
422 |
else
|
sl@0
|
423 |
return -i < (-num/den);
|
sl@0
|
424 |
}
|
sl@0
|
425 |
|
sl@0
|
426 |
template <typename IntType>
|
sl@0
|
427 |
bool rational<IntType>::operator> (param_type i) const
|
sl@0
|
428 |
{
|
sl@0
|
429 |
// Trap equality first
|
sl@0
|
430 |
if (num == i && den == IntType(1))
|
sl@0
|
431 |
return false;
|
sl@0
|
432 |
|
sl@0
|
433 |
// Otherwise, we can use operator<
|
sl@0
|
434 |
return !operator<(i);
|
sl@0
|
435 |
}
|
sl@0
|
436 |
|
sl@0
|
437 |
template <typename IntType>
|
sl@0
|
438 |
inline bool rational<IntType>::operator== (const rational<IntType>& r) const
|
sl@0
|
439 |
{
|
sl@0
|
440 |
return ((num == r.num) && (den == r.den));
|
sl@0
|
441 |
}
|
sl@0
|
442 |
|
sl@0
|
443 |
template <typename IntType>
|
sl@0
|
444 |
inline bool rational<IntType>::operator== (param_type i) const
|
sl@0
|
445 |
{
|
sl@0
|
446 |
return ((den == IntType(1)) && (num == i));
|
sl@0
|
447 |
}
|
sl@0
|
448 |
|
sl@0
|
449 |
// Normalisation
|
sl@0
|
450 |
template <typename IntType>
|
sl@0
|
451 |
void rational<IntType>::normalize()
|
sl@0
|
452 |
{
|
sl@0
|
453 |
// Avoid repeated construction
|
sl@0
|
454 |
IntType zero(0);
|
sl@0
|
455 |
|
sl@0
|
456 |
if (den == zero)
|
sl@0
|
457 |
throw bad_rational();
|
sl@0
|
458 |
|
sl@0
|
459 |
// Handle the case of zero separately, to avoid division by zero
|
sl@0
|
460 |
if (num == zero) {
|
sl@0
|
461 |
den = IntType(1);
|
sl@0
|
462 |
return;
|
sl@0
|
463 |
}
|
sl@0
|
464 |
|
sl@0
|
465 |
IntType g = gcd<IntType>(num, den);
|
sl@0
|
466 |
|
sl@0
|
467 |
num /= g;
|
sl@0
|
468 |
den /= g;
|
sl@0
|
469 |
|
sl@0
|
470 |
// Ensure that the denominator is positive
|
sl@0
|
471 |
if (den < zero) {
|
sl@0
|
472 |
num = -num;
|
sl@0
|
473 |
den = -den;
|
sl@0
|
474 |
}
|
sl@0
|
475 |
}
|
sl@0
|
476 |
|
sl@0
|
477 |
namespace detail {
|
sl@0
|
478 |
|
sl@0
|
479 |
// A utility class to reset the format flags for an istream at end
|
sl@0
|
480 |
// of scope, even in case of exceptions
|
sl@0
|
481 |
struct resetter {
|
sl@0
|
482 |
resetter(std::istream& is) : is_(is), f_(is.flags()) {}
|
sl@0
|
483 |
~resetter() { is_.flags(f_); }
|
sl@0
|
484 |
std::istream& is_;
|
sl@0
|
485 |
std::istream::fmtflags f_; // old GNU c++ lib has no ios_base
|
sl@0
|
486 |
};
|
sl@0
|
487 |
|
sl@0
|
488 |
}
|
sl@0
|
489 |
|
sl@0
|
490 |
// Input and output
|
sl@0
|
491 |
template <typename IntType>
|
sl@0
|
492 |
std::istream& operator>> (std::istream& is, rational<IntType>& r)
|
sl@0
|
493 |
{
|
sl@0
|
494 |
IntType n = IntType(0), d = IntType(1);
|
sl@0
|
495 |
char c = 0;
|
sl@0
|
496 |
detail::resetter sentry(is);
|
sl@0
|
497 |
|
sl@0
|
498 |
is >> n;
|
sl@0
|
499 |
c = is.get();
|
sl@0
|
500 |
|
sl@0
|
501 |
if (c != '/')
|
sl@0
|
502 |
is.clear(std::istream::badbit); // old GNU c++ lib has no ios_base
|
sl@0
|
503 |
|
sl@0
|
504 |
#if !defined(__GNUC__) || (defined(__GNUC__) && (__GNUC__ >= 3)) || defined __SGI_STL_PORT
|
sl@0
|
505 |
is >> std::noskipws;
|
sl@0
|
506 |
#else
|
sl@0
|
507 |
is.unsetf(ios::skipws); // compiles, but seems to have no effect.
|
sl@0
|
508 |
#endif
|
sl@0
|
509 |
is >> d;
|
sl@0
|
510 |
|
sl@0
|
511 |
if (is)
|
sl@0
|
512 |
r.assign(n, d);
|
sl@0
|
513 |
|
sl@0
|
514 |
return is;
|
sl@0
|
515 |
}
|
sl@0
|
516 |
|
sl@0
|
517 |
// Add manipulators for output format?
|
sl@0
|
518 |
template <typename IntType>
|
sl@0
|
519 |
std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
|
sl@0
|
520 |
{
|
sl@0
|
521 |
os << r.numerator() << '/' << r.denominator();
|
sl@0
|
522 |
return os;
|
sl@0
|
523 |
}
|
sl@0
|
524 |
|
sl@0
|
525 |
// Type conversion
|
sl@0
|
526 |
template <typename T, typename IntType>
|
sl@0
|
527 |
inline T rational_cast(
|
sl@0
|
528 |
const rational<IntType>& src BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
|
sl@0
|
529 |
{
|
sl@0
|
530 |
return static_cast<T>(src.numerator())/src.denominator();
|
sl@0
|
531 |
}
|
sl@0
|
532 |
|
sl@0
|
533 |
// Do not use any abs() defined on IntType - it isn't worth it, given the
|
sl@0
|
534 |
// difficulties involved (Koenig lookup required, there may not *be* an abs()
|
sl@0
|
535 |
// defined, etc etc).
|
sl@0
|
536 |
template <typename IntType>
|
sl@0
|
537 |
inline rational<IntType> abs(const rational<IntType>& r)
|
sl@0
|
538 |
{
|
sl@0
|
539 |
if (r.numerator() >= IntType(0))
|
sl@0
|
540 |
return r;
|
sl@0
|
541 |
|
sl@0
|
542 |
return rational<IntType>(-r.numerator(), r.denominator());
|
sl@0
|
543 |
}
|
sl@0
|
544 |
|
sl@0
|
545 |
} // namespace boost
|
sl@0
|
546 |
|
sl@0
|
547 |
#endif // BOOST_RATIONAL_HPP
|
sl@0
|
548 |
|