sl@0: // Boost rational.hpp header file ------------------------------------------// sl@0: sl@0: // (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and sl@0: // distribute this software is granted provided this copyright notice appears sl@0: // in all copies. This software is provided "as is" without express or sl@0: // implied warranty, and with no claim as to its suitability for any purpose. sl@0: sl@0: // See http://www.boost.org/libs/rational for documentation. sl@0: sl@0: // Credits: sl@0: // Thanks to the boost mailing list in general for useful comments. sl@0: // Particular contributions included: sl@0: // Andrew D Jewell, for reminding me to take care to avoid overflow sl@0: // Ed Brey, for many comments, including picking up on some dreadful typos sl@0: // Stephen Silver contributed the test suite and comments on user-defined sl@0: // IntType sl@0: // Nickolay Mladenov, for the implementation of operator+= sl@0: sl@0: // Revision History sl@0: // 20 Oct 06 Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz) sl@0: // 18 Oct 06 Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config sl@0: // (Joaquín M López Muñoz) sl@0: // 27 Dec 05 Add Boolean conversion operator (Daryle Walker) sl@0: // 28 Sep 02 Use _left versions of operators from operators.hpp sl@0: // 05 Jul 01 Recode gcd(), avoiding std::swap (Helmut Zeisel) sl@0: // 03 Mar 01 Workarounds for Intel C++ 5.0 (David Abrahams) sl@0: // 05 Feb 01 Update operator>> to tighten up input syntax sl@0: // 05 Feb 01 Final tidy up of gcd code prior to the new release sl@0: // 27 Jan 01 Recode abs() without relying on abs(IntType) sl@0: // 21 Jan 01 Include Nickolay Mladenov's operator+= algorithm, sl@0: // tidy up a number of areas, use newer features of operators.hpp sl@0: // (reduces space overhead to zero), add operator!, sl@0: // introduce explicit mixed-mode arithmetic operations sl@0: // 12 Jan 01 Include fixes to handle a user-defined IntType better sl@0: // 19 Nov 00 Throw on divide by zero in operator /= (John (EBo) David) sl@0: // 23 Jun 00 Incorporate changes from Mark Rodgers for Borland C++ sl@0: // 22 Jun 00 Change _MSC_VER to BOOST_MSVC so other compilers are not sl@0: // affected (Beman Dawes) sl@0: // 6 Mar 00 Fix operator-= normalization, #include (Jens Maurer) sl@0: // 14 Dec 99 Modifications based on comments from the boost list sl@0: // 09 Dec 99 Initial Version (Paul Moore) sl@0: sl@0: #ifndef BOOST_RATIONAL_HPP sl@0: #define BOOST_RATIONAL_HPP sl@0: sl@0: #include // for std::istream and std::ostream sl@0: #include // for std::noskipws sl@0: #include // for std::domain_error sl@0: #include // for std::string implicit constructor sl@0: #include // for boost::addable etc sl@0: #include // for std::abs sl@0: #include // for boost::call_traits sl@0: #include // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC sl@0: #include // for BOOST_WORKAROUND sl@0: sl@0: namespace boost { sl@0: sl@0: // Note: We use n and m as temporaries in this function, so there is no value sl@0: // in using const IntType& as we would only need to make a copy anyway... sl@0: template sl@0: IntType gcd(IntType n, IntType m) sl@0: { sl@0: // Avoid repeated construction sl@0: IntType zero(0); sl@0: sl@0: // This is abs() - given the existence of broken compilers with Koenig sl@0: // lookup issues and other problems, I code this explicitly. (Remember, sl@0: // IntType may be a user-defined type). sl@0: if (n < zero) sl@0: n = -n; sl@0: if (m < zero) sl@0: m = -m; sl@0: sl@0: // As n and m are now positive, we can be sure that %= returns a sl@0: // positive value (the standard guarantees this for built-in types, sl@0: // and we require it of user-defined types). sl@0: for(;;) { sl@0: if(m == zero) sl@0: return n; sl@0: n %= m; sl@0: if(n == zero) sl@0: return m; sl@0: m %= n; sl@0: } sl@0: } sl@0: sl@0: template sl@0: IntType lcm(IntType n, IntType m) sl@0: { sl@0: // Avoid repeated construction sl@0: IntType zero(0); sl@0: sl@0: if (n == zero || m == zero) sl@0: return zero; sl@0: sl@0: n /= gcd(n, m); sl@0: n *= m; sl@0: sl@0: if (n < zero) sl@0: n = -n; sl@0: return n; sl@0: } sl@0: sl@0: class bad_rational : public std::domain_error sl@0: { sl@0: public: sl@0: explicit bad_rational() : std::domain_error("bad rational: zero denominator") {} sl@0: }; sl@0: sl@0: template sl@0: class rational; sl@0: sl@0: template sl@0: rational abs(const rational& r); sl@0: sl@0: template sl@0: class rational : sl@0: less_than_comparable < rational, sl@0: equality_comparable < rational, sl@0: less_than_comparable2 < rational, IntType, sl@0: equality_comparable2 < rational, IntType, sl@0: addable < rational, sl@0: subtractable < rational, sl@0: multipliable < rational, sl@0: dividable < rational, sl@0: addable2 < rational, IntType, sl@0: subtractable2 < rational, IntType, sl@0: subtractable2_left < rational, IntType, sl@0: multipliable2 < rational, IntType, sl@0: dividable2 < rational, IntType, sl@0: dividable2_left < rational, IntType, sl@0: incrementable < rational, sl@0: decrementable < rational sl@0: > > > > > > > > > > > > > > > > sl@0: { sl@0: typedef typename boost::call_traits::param_type param_type; sl@0: sl@0: struct helper { IntType parts[2]; }; sl@0: typedef IntType (helper::* bool_type)[2]; sl@0: sl@0: public: sl@0: typedef IntType int_type; sl@0: rational() : num(0), den(1) {} sl@0: rational(param_type n) : num(n), den(1) {} sl@0: rational(param_type n, param_type d) : num(n), den(d) { normalize(); } sl@0: sl@0: // Default copy constructor and assignment are fine sl@0: sl@0: // Add assignment from IntType sl@0: rational& operator=(param_type n) { return assign(n, 1); } sl@0: sl@0: // Assign in place sl@0: rational& assign(param_type n, param_type d); sl@0: sl@0: // Access to representation sl@0: IntType numerator() const { return num; } sl@0: IntType denominator() const { return den; } sl@0: sl@0: // Arithmetic assignment operators sl@0: rational& operator+= (const rational& r); sl@0: rational& operator-= (const rational& r); sl@0: rational& operator*= (const rational& r); sl@0: rational& operator/= (const rational& r); sl@0: sl@0: rational& operator+= (param_type i); sl@0: rational& operator-= (param_type i); sl@0: rational& operator*= (param_type i); sl@0: rational& operator/= (param_type i); sl@0: sl@0: // Increment and decrement sl@0: const rational& operator++(); sl@0: const rational& operator--(); sl@0: sl@0: // Operator not sl@0: bool operator!() const { return !num; } sl@0: sl@0: // Boolean conversion sl@0: sl@0: #if BOOST_WORKAROUND(__MWERKS__,<=0x3003) sl@0: // The "ISO C++ Template Parser" option in CW 8.3 chokes on the sl@0: // following, hence we selectively disable that option for the sl@0: // offending memfun. sl@0: #pragma parse_mfunc_templ off sl@0: #endif sl@0: sl@0: operator bool_type() const { return operator !() ? 0 : &helper::parts; } sl@0: sl@0: #if BOOST_WORKAROUND(__MWERKS__,<=0x3003) sl@0: #pragma parse_mfunc_templ reset sl@0: #endif sl@0: sl@0: // Comparison operators sl@0: bool operator< (const rational& r) const; sl@0: bool operator== (const rational& r) const; sl@0: sl@0: bool operator< (param_type i) const; sl@0: bool operator> (param_type i) const; sl@0: bool operator== (param_type i) const; sl@0: sl@0: private: sl@0: // Implementation - numerator and denominator (normalized). sl@0: // Other possibilities - separate whole-part, or sign, fields? sl@0: IntType num; sl@0: IntType den; sl@0: sl@0: // Representation note: Fractions are kept in normalized form at all sl@0: // times. normalized form is defined as gcd(num,den) == 1 and den > 0. sl@0: // In particular, note that the implementation of abs() below relies sl@0: // on den always being positive. sl@0: void normalize(); sl@0: }; sl@0: sl@0: // Assign in place sl@0: template sl@0: inline rational& rational::assign(param_type n, param_type d) sl@0: { sl@0: num = n; sl@0: den = d; sl@0: normalize(); sl@0: return *this; sl@0: } sl@0: sl@0: // Unary plus and minus sl@0: template sl@0: inline rational operator+ (const rational& r) sl@0: { sl@0: return r; sl@0: } sl@0: sl@0: template sl@0: inline rational operator- (const rational& r) sl@0: { sl@0: return rational(-r.numerator(), r.denominator()); sl@0: } sl@0: sl@0: // Arithmetic assignment operators sl@0: template sl@0: rational& rational::operator+= (const rational& r) sl@0: { sl@0: // This calculation avoids overflow, and minimises the number of expensive sl@0: // calculations. Thanks to Nickolay Mladenov for this algorithm. sl@0: // sl@0: // Proof: sl@0: // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1. sl@0: // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1 sl@0: // sl@0: // The result is (a*d1 + c*b1) / (b1*d1*g). sl@0: // Now we have to normalize this ratio. sl@0: // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1 sl@0: // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a. sl@0: // But since gcd(a,b1)=1 we have h=1. sl@0: // Similarly h|d1 leads to h=1. sl@0: // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g sl@0: // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g) sl@0: // Which proves that instead of normalizing the result, it is better to sl@0: // divide num and den by gcd((a*d1 + c*b1), g) sl@0: sl@0: // Protect against self-modification sl@0: IntType r_num = r.num; sl@0: IntType r_den = r.den; sl@0: sl@0: IntType g = gcd(den, r_den); sl@0: den /= g; // = b1 from the calculations above sl@0: num = num * (r_den / g) + r_num * den; sl@0: g = gcd(num, g); sl@0: num /= g; sl@0: den *= r_den/g; sl@0: sl@0: return *this; sl@0: } sl@0: sl@0: template sl@0: rational& rational::operator-= (const rational& r) sl@0: { sl@0: // Protect against self-modification sl@0: IntType r_num = r.num; sl@0: IntType r_den = r.den; sl@0: sl@0: // This calculation avoids overflow, and minimises the number of expensive sl@0: // calculations. It corresponds exactly to the += case above sl@0: IntType g = gcd(den, r_den); sl@0: den /= g; sl@0: num = num * (r_den / g) - r_num * den; sl@0: g = gcd(num, g); sl@0: num /= g; sl@0: den *= r_den/g; sl@0: sl@0: return *this; sl@0: } sl@0: sl@0: template sl@0: rational& rational::operator*= (const rational& r) sl@0: { sl@0: // Protect against self-modification sl@0: IntType r_num = r.num; sl@0: IntType r_den = r.den; sl@0: sl@0: // Avoid overflow and preserve normalization sl@0: IntType gcd1 = gcd(num, r_den); sl@0: IntType gcd2 = gcd(r_num, den); sl@0: num = (num/gcd1) * (r_num/gcd2); sl@0: den = (den/gcd2) * (r_den/gcd1); sl@0: return *this; sl@0: } sl@0: sl@0: template sl@0: rational& rational::operator/= (const rational& r) sl@0: { sl@0: // Protect against self-modification sl@0: IntType r_num = r.num; sl@0: IntType r_den = r.den; sl@0: sl@0: // Avoid repeated construction sl@0: IntType zero(0); sl@0: sl@0: // Trap division by zero sl@0: if (r_num == zero) sl@0: throw bad_rational(); sl@0: if (num == zero) sl@0: return *this; sl@0: sl@0: // Avoid overflow and preserve normalization sl@0: IntType gcd1 = gcd(num, r_num); sl@0: IntType gcd2 = gcd(r_den, den); sl@0: num = (num/gcd1) * (r_den/gcd2); sl@0: den = (den/gcd2) * (r_num/gcd1); sl@0: sl@0: if (den < zero) { sl@0: num = -num; sl@0: den = -den; sl@0: } sl@0: return *this; sl@0: } sl@0: sl@0: // Mixed-mode operators sl@0: template sl@0: inline rational& sl@0: rational::operator+= (param_type i) sl@0: { sl@0: return operator+= (rational(i)); sl@0: } sl@0: sl@0: template sl@0: inline rational& sl@0: rational::operator-= (param_type i) sl@0: { sl@0: return operator-= (rational(i)); sl@0: } sl@0: sl@0: template sl@0: inline rational& sl@0: rational::operator*= (param_type i) sl@0: { sl@0: return operator*= (rational(i)); sl@0: } sl@0: sl@0: template sl@0: inline rational& sl@0: rational::operator/= (param_type i) sl@0: { sl@0: return operator/= (rational(i)); sl@0: } sl@0: sl@0: // Increment and decrement sl@0: template sl@0: inline const rational& rational::operator++() sl@0: { sl@0: // This can never denormalise the fraction sl@0: num += den; sl@0: return *this; sl@0: } sl@0: sl@0: template sl@0: inline const rational& rational::operator--() sl@0: { sl@0: // This can never denormalise the fraction sl@0: num -= den; sl@0: return *this; sl@0: } sl@0: sl@0: // Comparison operators sl@0: template sl@0: bool rational::operator< (const rational& r) const sl@0: { sl@0: // Avoid repeated construction sl@0: IntType zero(0); sl@0: sl@0: // If the two values have different signs, we don't need to do the sl@0: // expensive calculations below. We take advantage here of the fact sl@0: // that the denominator is always positive. sl@0: if (num < zero && r.num >= zero) // -ve < +ve sl@0: return true; sl@0: if (num >= zero && r.num <= zero) // +ve or zero is not < -ve or zero sl@0: return false; sl@0: sl@0: // Avoid overflow sl@0: IntType gcd1 = gcd(num, r.num); sl@0: IntType gcd2 = gcd(r.den, den); sl@0: return (num/gcd1) * (r.den/gcd2) < (den/gcd2) * (r.num/gcd1); sl@0: } sl@0: sl@0: template sl@0: bool rational::operator< (param_type i) const sl@0: { sl@0: // Avoid repeated construction sl@0: IntType zero(0); sl@0: sl@0: // If the two values have different signs, we don't need to do the sl@0: // expensive calculations below. We take advantage here of the fact sl@0: // that the denominator is always positive. sl@0: if (num < zero && i >= zero) // -ve < +ve sl@0: return true; sl@0: if (num >= zero && i <= zero) // +ve or zero is not < -ve or zero sl@0: return false; sl@0: sl@0: // Now, use the fact that n/d truncates towards zero as long as n and d sl@0: // are both positive. sl@0: // Divide instead of multiplying to avoid overflow issues. Of course, sl@0: // division may be slower, but accuracy is more important than speed... sl@0: if (num > zero) sl@0: return (num/den) < i; sl@0: else sl@0: return -i < (-num/den); sl@0: } sl@0: sl@0: template sl@0: bool rational::operator> (param_type i) const sl@0: { sl@0: // Trap equality first sl@0: if (num == i && den == IntType(1)) sl@0: return false; sl@0: sl@0: // Otherwise, we can use operator< sl@0: return !operator<(i); sl@0: } sl@0: sl@0: template sl@0: inline bool rational::operator== (const rational& r) const sl@0: { sl@0: return ((num == r.num) && (den == r.den)); sl@0: } sl@0: sl@0: template sl@0: inline bool rational::operator== (param_type i) const sl@0: { sl@0: return ((den == IntType(1)) && (num == i)); sl@0: } sl@0: sl@0: // Normalisation sl@0: template sl@0: void rational::normalize() sl@0: { sl@0: // Avoid repeated construction sl@0: IntType zero(0); sl@0: sl@0: if (den == zero) sl@0: throw bad_rational(); sl@0: sl@0: // Handle the case of zero separately, to avoid division by zero sl@0: if (num == zero) { sl@0: den = IntType(1); sl@0: return; sl@0: } sl@0: sl@0: IntType g = gcd(num, den); sl@0: sl@0: num /= g; sl@0: den /= g; sl@0: sl@0: // Ensure that the denominator is positive sl@0: if (den < zero) { sl@0: num = -num; sl@0: den = -den; sl@0: } sl@0: } sl@0: sl@0: namespace detail { sl@0: sl@0: // A utility class to reset the format flags for an istream at end sl@0: // of scope, even in case of exceptions sl@0: struct resetter { sl@0: resetter(std::istream& is) : is_(is), f_(is.flags()) {} sl@0: ~resetter() { is_.flags(f_); } sl@0: std::istream& is_; sl@0: std::istream::fmtflags f_; // old GNU c++ lib has no ios_base sl@0: }; sl@0: sl@0: } sl@0: sl@0: // Input and output sl@0: template sl@0: std::istream& operator>> (std::istream& is, rational& r) sl@0: { sl@0: IntType n = IntType(0), d = IntType(1); sl@0: char c = 0; sl@0: detail::resetter sentry(is); sl@0: sl@0: is >> n; sl@0: c = is.get(); sl@0: sl@0: if (c != '/') sl@0: is.clear(std::istream::badbit); // old GNU c++ lib has no ios_base sl@0: sl@0: #if !defined(__GNUC__) || (defined(__GNUC__) && (__GNUC__ >= 3)) || defined __SGI_STL_PORT sl@0: is >> std::noskipws; sl@0: #else sl@0: is.unsetf(ios::skipws); // compiles, but seems to have no effect. sl@0: #endif sl@0: is >> d; sl@0: sl@0: if (is) sl@0: r.assign(n, d); sl@0: sl@0: return is; sl@0: } sl@0: sl@0: // Add manipulators for output format? sl@0: template sl@0: std::ostream& operator<< (std::ostream& os, const rational& r) sl@0: { sl@0: os << r.numerator() << '/' << r.denominator(); sl@0: return os; sl@0: } sl@0: sl@0: // Type conversion sl@0: template sl@0: inline T rational_cast( sl@0: const rational& src BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T)) sl@0: { sl@0: return static_cast(src.numerator())/src.denominator(); sl@0: } sl@0: sl@0: // Do not use any abs() defined on IntType - it isn't worth it, given the sl@0: // difficulties involved (Koenig lookup required, there may not *be* an abs() sl@0: // defined, etc etc). sl@0: template sl@0: inline rational abs(const rational& r) sl@0: { sl@0: if (r.numerator() >= IntType(0)) sl@0: return r; sl@0: sl@0: return rational(-r.numerator(), r.denominator()); sl@0: } sl@0: sl@0: } // namespace boost sl@0: sl@0: #endif // BOOST_RATIONAL_HPP sl@0: