os/ossrv/ossrv_pub/boost_apis/boost/rational.hpp
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 //  Boost rational.hpp header file  ------------------------------------------//
     2 
     3 //  (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
     4 //  distribute this software is granted provided this copyright notice appears
     5 //  in all copies. This software is provided "as is" without express or
     6 //  implied warranty, and with no claim as to its suitability for any purpose.
     7 
     8 //  See http://www.boost.org/libs/rational for documentation.
     9 
    10 //  Credits:
    11 //  Thanks to the boost mailing list in general for useful comments.
    12 //  Particular contributions included:
    13 //    Andrew D Jewell, for reminding me to take care to avoid overflow
    14 //    Ed Brey, for many comments, including picking up on some dreadful typos
    15 //    Stephen Silver contributed the test suite and comments on user-defined
    16 //    IntType
    17 //    Nickolay Mladenov, for the implementation of operator+=
    18 
    19 //  Revision History
    20 //  20 Oct 06  Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz)
    21 //  18 Oct 06  Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config
    22 //             (Joaquín M López Muñoz)
    23 //  27 Dec 05  Add Boolean conversion operator (Daryle Walker)
    24 //  28 Sep 02  Use _left versions of operators from operators.hpp
    25 //  05 Jul 01  Recode gcd(), avoiding std::swap (Helmut Zeisel)
    26 //  03 Mar 01  Workarounds for Intel C++ 5.0 (David Abrahams)
    27 //  05 Feb 01  Update operator>> to tighten up input syntax
    28 //  05 Feb 01  Final tidy up of gcd code prior to the new release
    29 //  27 Jan 01  Recode abs() without relying on abs(IntType)
    30 //  21 Jan 01  Include Nickolay Mladenov's operator+= algorithm,
    31 //             tidy up a number of areas, use newer features of operators.hpp
    32 //             (reduces space overhead to zero), add operator!,
    33 //             introduce explicit mixed-mode arithmetic operations
    34 //  12 Jan 01  Include fixes to handle a user-defined IntType better
    35 //  19 Nov 00  Throw on divide by zero in operator /= (John (EBo) David)
    36 //  23 Jun 00  Incorporate changes from Mark Rodgers for Borland C++
    37 //  22 Jun 00  Change _MSC_VER to BOOST_MSVC so other compilers are not
    38 //             affected (Beman Dawes)
    39 //   6 Mar 00  Fix operator-= normalization, #include <string> (Jens Maurer)
    40 //  14 Dec 99  Modifications based on comments from the boost list
    41 //  09 Dec 99  Initial Version (Paul Moore)
    42 
    43 #ifndef BOOST_RATIONAL_HPP
    44 #define BOOST_RATIONAL_HPP
    45 
    46 #include <iostream>              // for std::istream and std::ostream
    47 #include <iomanip>               // for std::noskipws
    48 #include <stdexcept>             // for std::domain_error
    49 #include <string>                // for std::string implicit constructor
    50 #include <boost/operators.hpp>   // for boost::addable etc
    51 #include <cstdlib>               // for std::abs
    52 #include <boost/call_traits.hpp> // for boost::call_traits
    53 #include <boost/config.hpp>      // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC
    54 #include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND
    55 
    56 namespace boost {
    57 
    58 // Note: We use n and m as temporaries in this function, so there is no value
    59 // in using const IntType& as we would only need to make a copy anyway...
    60 template <typename IntType>
    61 IntType gcd(IntType n, IntType m)
    62 {
    63     // Avoid repeated construction
    64     IntType zero(0);
    65 
    66     // This is abs() - given the existence of broken compilers with Koenig
    67     // lookup issues and other problems, I code this explicitly. (Remember,
    68     // IntType may be a user-defined type).
    69     if (n < zero)
    70         n = -n;
    71     if (m < zero)
    72         m = -m;
    73 
    74     // As n and m are now positive, we can be sure that %= returns a
    75     // positive value (the standard guarantees this for built-in types,
    76     // and we require it of user-defined types).
    77     for(;;) {
    78       if(m == zero)
    79         return n;
    80       n %= m;
    81       if(n == zero)
    82         return m;
    83       m %= n;
    84     }
    85 }
    86 
    87 template <typename IntType>
    88 IntType lcm(IntType n, IntType m)
    89 {
    90     // Avoid repeated construction
    91     IntType zero(0);
    92 
    93     if (n == zero || m == zero)
    94         return zero;
    95 
    96     n /= gcd(n, m);
    97     n *= m;
    98 
    99     if (n < zero)
   100         n = -n;
   101     return n;
   102 }
   103 
   104 class bad_rational : public std::domain_error
   105 {
   106 public:
   107     explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
   108 };
   109 
   110 template <typename IntType>
   111 class rational;
   112 
   113 template <typename IntType>
   114 rational<IntType> abs(const rational<IntType>& r);
   115 
   116 template <typename IntType>
   117 class rational :
   118     less_than_comparable < rational<IntType>,
   119     equality_comparable < rational<IntType>,
   120     less_than_comparable2 < rational<IntType>, IntType,
   121     equality_comparable2 < rational<IntType>, IntType,
   122     addable < rational<IntType>,
   123     subtractable < rational<IntType>,
   124     multipliable < rational<IntType>,
   125     dividable < rational<IntType>,
   126     addable2 < rational<IntType>, IntType,
   127     subtractable2 < rational<IntType>, IntType,
   128     subtractable2_left < rational<IntType>, IntType,
   129     multipliable2 < rational<IntType>, IntType,
   130     dividable2 < rational<IntType>, IntType,
   131     dividable2_left < rational<IntType>, IntType,
   132     incrementable < rational<IntType>,
   133     decrementable < rational<IntType>
   134     > > > > > > > > > > > > > > > >
   135 {
   136     typedef typename boost::call_traits<IntType>::param_type param_type;
   137 
   138     struct helper { IntType parts[2]; };
   139     typedef IntType (helper::* bool_type)[2];
   140 
   141 public:
   142     typedef IntType int_type;
   143     rational() : num(0), den(1) {}
   144     rational(param_type n) : num(n), den(1) {}
   145     rational(param_type n, param_type d) : num(n), den(d) { normalize(); }
   146 
   147     // Default copy constructor and assignment are fine
   148 
   149     // Add assignment from IntType
   150     rational& operator=(param_type n) { return assign(n, 1); }
   151 
   152     // Assign in place
   153     rational& assign(param_type n, param_type d);
   154 
   155     // Access to representation
   156     IntType numerator() const { return num; }
   157     IntType denominator() const { return den; }
   158 
   159     // Arithmetic assignment operators
   160     rational& operator+= (const rational& r);
   161     rational& operator-= (const rational& r);
   162     rational& operator*= (const rational& r);
   163     rational& operator/= (const rational& r);
   164 
   165     rational& operator+= (param_type i);
   166     rational& operator-= (param_type i);
   167     rational& operator*= (param_type i);
   168     rational& operator/= (param_type i);
   169 
   170     // Increment and decrement
   171     const rational& operator++();
   172     const rational& operator--();
   173 
   174     // Operator not
   175     bool operator!() const { return !num; }
   176 
   177     // Boolean conversion
   178     
   179 #if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
   180     // The "ISO C++ Template Parser" option in CW 8.3 chokes on the
   181     // following, hence we selectively disable that option for the
   182     // offending memfun.
   183 #pragma parse_mfunc_templ off
   184 #endif
   185 
   186     operator bool_type() const { return operator !() ? 0 : &helper::parts; }
   187 
   188 #if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
   189 #pragma parse_mfunc_templ reset
   190 #endif
   191 
   192     // Comparison operators
   193     bool operator< (const rational& r) const;
   194     bool operator== (const rational& r) const;
   195 
   196     bool operator< (param_type i) const;
   197     bool operator> (param_type i) const;
   198     bool operator== (param_type i) const;
   199 
   200 private:
   201     // Implementation - numerator and denominator (normalized).
   202     // Other possibilities - separate whole-part, or sign, fields?
   203     IntType num;
   204     IntType den;
   205 
   206     // Representation note: Fractions are kept in normalized form at all
   207     // times. normalized form is defined as gcd(num,den) == 1 and den > 0.
   208     // In particular, note that the implementation of abs() below relies
   209     // on den always being positive.
   210     void normalize();
   211 };
   212 
   213 // Assign in place
   214 template <typename IntType>
   215 inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d)
   216 {
   217     num = n;
   218     den = d;
   219     normalize();
   220     return *this;
   221 }
   222 
   223 // Unary plus and minus
   224 template <typename IntType>
   225 inline rational<IntType> operator+ (const rational<IntType>& r)
   226 {
   227     return r;
   228 }
   229 
   230 template <typename IntType>
   231 inline rational<IntType> operator- (const rational<IntType>& r)
   232 {
   233     return rational<IntType>(-r.numerator(), r.denominator());
   234 }
   235 
   236 // Arithmetic assignment operators
   237 template <typename IntType>
   238 rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
   239 {
   240     // This calculation avoids overflow, and minimises the number of expensive
   241     // calculations. Thanks to Nickolay Mladenov for this algorithm.
   242     //
   243     // Proof:
   244     // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
   245     // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
   246     //
   247     // The result is (a*d1 + c*b1) / (b1*d1*g).
   248     // Now we have to normalize this ratio.
   249     // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
   250     // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
   251     // But since gcd(a,b1)=1 we have h=1.
   252     // Similarly h|d1 leads to h=1.
   253     // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
   254     // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
   255     // Which proves that instead of normalizing the result, it is better to
   256     // divide num and den by gcd((a*d1 + c*b1), g)
   257 
   258     // Protect against self-modification
   259     IntType r_num = r.num;
   260     IntType r_den = r.den;
   261 
   262     IntType g = gcd(den, r_den);
   263     den /= g;  // = b1 from the calculations above
   264     num = num * (r_den / g) + r_num * den;
   265     g = gcd(num, g);
   266     num /= g;
   267     den *= r_den/g;
   268 
   269     return *this;
   270 }
   271 
   272 template <typename IntType>
   273 rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
   274 {
   275     // Protect against self-modification
   276     IntType r_num = r.num;
   277     IntType r_den = r.den;
   278 
   279     // This calculation avoids overflow, and minimises the number of expensive
   280     // calculations. It corresponds exactly to the += case above
   281     IntType g = gcd(den, r_den);
   282     den /= g;
   283     num = num * (r_den / g) - r_num * den;
   284     g = gcd(num, g);
   285     num /= g;
   286     den *= r_den/g;
   287 
   288     return *this;
   289 }
   290 
   291 template <typename IntType>
   292 rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
   293 {
   294     // Protect against self-modification
   295     IntType r_num = r.num;
   296     IntType r_den = r.den;
   297 
   298     // Avoid overflow and preserve normalization
   299     IntType gcd1 = gcd<IntType>(num, r_den);
   300     IntType gcd2 = gcd<IntType>(r_num, den);
   301     num = (num/gcd1) * (r_num/gcd2);
   302     den = (den/gcd2) * (r_den/gcd1);
   303     return *this;
   304 }
   305 
   306 template <typename IntType>
   307 rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
   308 {
   309     // Protect against self-modification
   310     IntType r_num = r.num;
   311     IntType r_den = r.den;
   312 
   313     // Avoid repeated construction
   314     IntType zero(0);
   315 
   316     // Trap division by zero
   317     if (r_num == zero)
   318         throw bad_rational();
   319     if (num == zero)
   320         return *this;
   321 
   322     // Avoid overflow and preserve normalization
   323     IntType gcd1 = gcd<IntType>(num, r_num);
   324     IntType gcd2 = gcd<IntType>(r_den, den);
   325     num = (num/gcd1) * (r_den/gcd2);
   326     den = (den/gcd2) * (r_num/gcd1);
   327 
   328     if (den < zero) {
   329         num = -num;
   330         den = -den;
   331     }
   332     return *this;
   333 }
   334 
   335 // Mixed-mode operators
   336 template <typename IntType>
   337 inline rational<IntType>&
   338 rational<IntType>::operator+= (param_type i)
   339 {
   340     return operator+= (rational<IntType>(i));
   341 }
   342 
   343 template <typename IntType>
   344 inline rational<IntType>&
   345 rational<IntType>::operator-= (param_type i)
   346 {
   347     return operator-= (rational<IntType>(i));
   348 }
   349 
   350 template <typename IntType>
   351 inline rational<IntType>&
   352 rational<IntType>::operator*= (param_type i)
   353 {
   354     return operator*= (rational<IntType>(i));
   355 }
   356 
   357 template <typename IntType>
   358 inline rational<IntType>&
   359 rational<IntType>::operator/= (param_type i)
   360 {
   361     return operator/= (rational<IntType>(i));
   362 }
   363 
   364 // Increment and decrement
   365 template <typename IntType>
   366 inline const rational<IntType>& rational<IntType>::operator++()
   367 {
   368     // This can never denormalise the fraction
   369     num += den;
   370     return *this;
   371 }
   372 
   373 template <typename IntType>
   374 inline const rational<IntType>& rational<IntType>::operator--()
   375 {
   376     // This can never denormalise the fraction
   377     num -= den;
   378     return *this;
   379 }
   380 
   381 // Comparison operators
   382 template <typename IntType>
   383 bool rational<IntType>::operator< (const rational<IntType>& r) const
   384 {
   385     // Avoid repeated construction
   386     IntType zero(0);
   387 
   388     // If the two values have different signs, we don't need to do the
   389     // expensive calculations below. We take advantage here of the fact
   390     // that the denominator is always positive.
   391     if (num < zero && r.num >= zero) // -ve < +ve
   392         return true;
   393     if (num >= zero && r.num <= zero) // +ve or zero is not < -ve or zero
   394         return false;
   395 
   396     // Avoid overflow
   397     IntType gcd1 = gcd<IntType>(num, r.num);
   398     IntType gcd2 = gcd<IntType>(r.den, den);
   399     return (num/gcd1) * (r.den/gcd2) < (den/gcd2) * (r.num/gcd1);
   400 }
   401 
   402 template <typename IntType>
   403 bool rational<IntType>::operator< (param_type i) const
   404 {
   405     // Avoid repeated construction
   406     IntType zero(0);
   407 
   408     // If the two values have different signs, we don't need to do the
   409     // expensive calculations below. We take advantage here of the fact
   410     // that the denominator is always positive.
   411     if (num < zero && i >= zero) // -ve < +ve
   412         return true;
   413     if (num >= zero && i <= zero) // +ve or zero is not < -ve or zero
   414         return false;
   415 
   416     // Now, use the fact that n/d truncates towards zero as long as n and d
   417     // are both positive.
   418     // Divide instead of multiplying to avoid overflow issues. Of course,
   419     // division may be slower, but accuracy is more important than speed...
   420     if (num > zero)
   421         return (num/den) < i;
   422     else
   423         return -i < (-num/den);
   424 }
   425 
   426 template <typename IntType>
   427 bool rational<IntType>::operator> (param_type i) const
   428 {
   429     // Trap equality first
   430     if (num == i && den == IntType(1))
   431         return false;
   432 
   433     // Otherwise, we can use operator<
   434     return !operator<(i);
   435 }
   436 
   437 template <typename IntType>
   438 inline bool rational<IntType>::operator== (const rational<IntType>& r) const
   439 {
   440     return ((num == r.num) && (den == r.den));
   441 }
   442 
   443 template <typename IntType>
   444 inline bool rational<IntType>::operator== (param_type i) const
   445 {
   446     return ((den == IntType(1)) && (num == i));
   447 }
   448 
   449 // Normalisation
   450 template <typename IntType>
   451 void rational<IntType>::normalize()
   452 {
   453     // Avoid repeated construction
   454     IntType zero(0);
   455 
   456     if (den == zero)
   457         throw bad_rational();
   458 
   459     // Handle the case of zero separately, to avoid division by zero
   460     if (num == zero) {
   461         den = IntType(1);
   462         return;
   463     }
   464 
   465     IntType g = gcd<IntType>(num, den);
   466 
   467     num /= g;
   468     den /= g;
   469 
   470     // Ensure that the denominator is positive
   471     if (den < zero) {
   472         num = -num;
   473         den = -den;
   474     }
   475 }
   476 
   477 namespace detail {
   478 
   479     // A utility class to reset the format flags for an istream at end
   480     // of scope, even in case of exceptions
   481     struct resetter {
   482         resetter(std::istream& is) : is_(is), f_(is.flags()) {}
   483         ~resetter() { is_.flags(f_); }
   484         std::istream& is_;
   485         std::istream::fmtflags f_;      // old GNU c++ lib has no ios_base
   486     };
   487 
   488 }
   489 
   490 // Input and output
   491 template <typename IntType>
   492 std::istream& operator>> (std::istream& is, rational<IntType>& r)
   493 {
   494     IntType n = IntType(0), d = IntType(1);
   495     char c = 0;
   496     detail::resetter sentry(is);
   497 
   498     is >> n;
   499     c = is.get();
   500 
   501     if (c != '/')
   502         is.clear(std::istream::badbit);  // old GNU c++ lib has no ios_base
   503 
   504 #if !defined(__GNUC__) || (defined(__GNUC__) && (__GNUC__ >= 3)) || defined __SGI_STL_PORT
   505     is >> std::noskipws;
   506 #else
   507     is.unsetf(ios::skipws); // compiles, but seems to have no effect.
   508 #endif
   509     is >> d;
   510 
   511     if (is)
   512         r.assign(n, d);
   513 
   514     return is;
   515 }
   516 
   517 // Add manipulators for output format?
   518 template <typename IntType>
   519 std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
   520 {
   521     os << r.numerator() << '/' << r.denominator();
   522     return os;
   523 }
   524 
   525 // Type conversion
   526 template <typename T, typename IntType>
   527 inline T rational_cast(
   528     const rational<IntType>& src BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
   529 {
   530     return static_cast<T>(src.numerator())/src.denominator();
   531 }
   532 
   533 // Do not use any abs() defined on IntType - it isn't worth it, given the
   534 // difficulties involved (Koenig lookup required, there may not *be* an abs()
   535 // defined, etc etc).
   536 template <typename IntType>
   537 inline rational<IntType> abs(const rational<IntType>& r)
   538 {
   539     if (r.numerator() >= IntType(0))
   540         return r;
   541 
   542     return rational<IntType>(-r.numerator(), r.denominator());
   543 }
   544 
   545 } // namespace boost
   546 
   547 #endif  // BOOST_RATIONAL_HPP
   548