Update contrib.
1 // Boost rational.hpp header file ------------------------------------------//
3 // (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
4 // distribute this software is granted provided this copyright notice appears
5 // in all copies. This software is provided "as is" without express or
6 // implied warranty, and with no claim as to its suitability for any purpose.
8 // See http://www.boost.org/libs/rational for documentation.
11 // Thanks to the boost mailing list in general for useful comments.
12 // Particular contributions included:
13 // Andrew D Jewell, for reminding me to take care to avoid overflow
14 // Ed Brey, for many comments, including picking up on some dreadful typos
15 // Stephen Silver contributed the test suite and comments on user-defined
17 // Nickolay Mladenov, for the implementation of operator+=
20 // 20 Oct 06 Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz)
21 // 18 Oct 06 Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config
22 // (Joaquín M López Muñoz)
23 // 27 Dec 05 Add Boolean conversion operator (Daryle Walker)
24 // 28 Sep 02 Use _left versions of operators from operators.hpp
25 // 05 Jul 01 Recode gcd(), avoiding std::swap (Helmut Zeisel)
26 // 03 Mar 01 Workarounds for Intel C++ 5.0 (David Abrahams)
27 // 05 Feb 01 Update operator>> to tighten up input syntax
28 // 05 Feb 01 Final tidy up of gcd code prior to the new release
29 // 27 Jan 01 Recode abs() without relying on abs(IntType)
30 // 21 Jan 01 Include Nickolay Mladenov's operator+= algorithm,
31 // tidy up a number of areas, use newer features of operators.hpp
32 // (reduces space overhead to zero), add operator!,
33 // introduce explicit mixed-mode arithmetic operations
34 // 12 Jan 01 Include fixes to handle a user-defined IntType better
35 // 19 Nov 00 Throw on divide by zero in operator /= (John (EBo) David)
36 // 23 Jun 00 Incorporate changes from Mark Rodgers for Borland C++
37 // 22 Jun 00 Change _MSC_VER to BOOST_MSVC so other compilers are not
38 // affected (Beman Dawes)
39 // 6 Mar 00 Fix operator-= normalization, #include <string> (Jens Maurer)
40 // 14 Dec 99 Modifications based on comments from the boost list
41 // 09 Dec 99 Initial Version (Paul Moore)
43 #ifndef BOOST_RATIONAL_HPP
44 #define BOOST_RATIONAL_HPP
46 #include <iostream> // for std::istream and std::ostream
47 #include <iomanip> // for std::noskipws
48 #include <stdexcept> // for std::domain_error
49 #include <string> // for std::string implicit constructor
50 #include <boost/operators.hpp> // for boost::addable etc
51 #include <cstdlib> // for std::abs
52 #include <boost/call_traits.hpp> // for boost::call_traits
53 #include <boost/config.hpp> // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC
54 #include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND
58 // Note: We use n and m as temporaries in this function, so there is no value
59 // in using const IntType& as we would only need to make a copy anyway...
60 template <typename IntType>
61 IntType gcd(IntType n, IntType m)
63 // Avoid repeated construction
66 // This is abs() - given the existence of broken compilers with Koenig
67 // lookup issues and other problems, I code this explicitly. (Remember,
68 // IntType may be a user-defined type).
74 // As n and m are now positive, we can be sure that %= returns a
75 // positive value (the standard guarantees this for built-in types,
76 // and we require it of user-defined types).
87 template <typename IntType>
88 IntType lcm(IntType n, IntType m)
90 // Avoid repeated construction
93 if (n == zero || m == zero)
104 class bad_rational : public std::domain_error
107 explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
110 template <typename IntType>
113 template <typename IntType>
114 rational<IntType> abs(const rational<IntType>& r);
116 template <typename IntType>
118 less_than_comparable < rational<IntType>,
119 equality_comparable < rational<IntType>,
120 less_than_comparable2 < rational<IntType>, IntType,
121 equality_comparable2 < rational<IntType>, IntType,
122 addable < rational<IntType>,
123 subtractable < rational<IntType>,
124 multipliable < rational<IntType>,
125 dividable < rational<IntType>,
126 addable2 < rational<IntType>, IntType,
127 subtractable2 < rational<IntType>, IntType,
128 subtractable2_left < rational<IntType>, IntType,
129 multipliable2 < rational<IntType>, IntType,
130 dividable2 < rational<IntType>, IntType,
131 dividable2_left < rational<IntType>, IntType,
132 incrementable < rational<IntType>,
133 decrementable < rational<IntType>
134 > > > > > > > > > > > > > > > >
136 typedef typename boost::call_traits<IntType>::param_type param_type;
138 struct helper { IntType parts[2]; };
139 typedef IntType (helper::* bool_type)[2];
142 typedef IntType int_type;
143 rational() : num(0), den(1) {}
144 rational(param_type n) : num(n), den(1) {}
145 rational(param_type n, param_type d) : num(n), den(d) { normalize(); }
147 // Default copy constructor and assignment are fine
149 // Add assignment from IntType
150 rational& operator=(param_type n) { return assign(n, 1); }
153 rational& assign(param_type n, param_type d);
155 // Access to representation
156 IntType numerator() const { return num; }
157 IntType denominator() const { return den; }
159 // Arithmetic assignment operators
160 rational& operator+= (const rational& r);
161 rational& operator-= (const rational& r);
162 rational& operator*= (const rational& r);
163 rational& operator/= (const rational& r);
165 rational& operator+= (param_type i);
166 rational& operator-= (param_type i);
167 rational& operator*= (param_type i);
168 rational& operator/= (param_type i);
170 // Increment and decrement
171 const rational& operator++();
172 const rational& operator--();
175 bool operator!() const { return !num; }
177 // Boolean conversion
179 #if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
180 // The "ISO C++ Template Parser" option in CW 8.3 chokes on the
181 // following, hence we selectively disable that option for the
183 #pragma parse_mfunc_templ off
186 operator bool_type() const { return operator !() ? 0 : &helper::parts; }
188 #if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
189 #pragma parse_mfunc_templ reset
192 // Comparison operators
193 bool operator< (const rational& r) const;
194 bool operator== (const rational& r) const;
196 bool operator< (param_type i) const;
197 bool operator> (param_type i) const;
198 bool operator== (param_type i) const;
201 // Implementation - numerator and denominator (normalized).
202 // Other possibilities - separate whole-part, or sign, fields?
206 // Representation note: Fractions are kept in normalized form at all
207 // times. normalized form is defined as gcd(num,den) == 1 and den > 0.
208 // In particular, note that the implementation of abs() below relies
209 // on den always being positive.
214 template <typename IntType>
215 inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d)
223 // Unary plus and minus
224 template <typename IntType>
225 inline rational<IntType> operator+ (const rational<IntType>& r)
230 template <typename IntType>
231 inline rational<IntType> operator- (const rational<IntType>& r)
233 return rational<IntType>(-r.numerator(), r.denominator());
236 // Arithmetic assignment operators
237 template <typename IntType>
238 rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
240 // This calculation avoids overflow, and minimises the number of expensive
241 // calculations. Thanks to Nickolay Mladenov for this algorithm.
244 // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
245 // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
247 // The result is (a*d1 + c*b1) / (b1*d1*g).
248 // Now we have to normalize this ratio.
249 // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
250 // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
251 // But since gcd(a,b1)=1 we have h=1.
252 // Similarly h|d1 leads to h=1.
253 // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
254 // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
255 // Which proves that instead of normalizing the result, it is better to
256 // divide num and den by gcd((a*d1 + c*b1), g)
258 // Protect against self-modification
259 IntType r_num = r.num;
260 IntType r_den = r.den;
262 IntType g = gcd(den, r_den);
263 den /= g; // = b1 from the calculations above
264 num = num * (r_den / g) + r_num * den;
272 template <typename IntType>
273 rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
275 // Protect against self-modification
276 IntType r_num = r.num;
277 IntType r_den = r.den;
279 // This calculation avoids overflow, and minimises the number of expensive
280 // calculations. It corresponds exactly to the += case above
281 IntType g = gcd(den, r_den);
283 num = num * (r_den / g) - r_num * den;
291 template <typename IntType>
292 rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
294 // Protect against self-modification
295 IntType r_num = r.num;
296 IntType r_den = r.den;
298 // Avoid overflow and preserve normalization
299 IntType gcd1 = gcd<IntType>(num, r_den);
300 IntType gcd2 = gcd<IntType>(r_num, den);
301 num = (num/gcd1) * (r_num/gcd2);
302 den = (den/gcd2) * (r_den/gcd1);
306 template <typename IntType>
307 rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
309 // Protect against self-modification
310 IntType r_num = r.num;
311 IntType r_den = r.den;
313 // Avoid repeated construction
316 // Trap division by zero
318 throw bad_rational();
322 // Avoid overflow and preserve normalization
323 IntType gcd1 = gcd<IntType>(num, r_num);
324 IntType gcd2 = gcd<IntType>(r_den, den);
325 num = (num/gcd1) * (r_den/gcd2);
326 den = (den/gcd2) * (r_num/gcd1);
335 // Mixed-mode operators
336 template <typename IntType>
337 inline rational<IntType>&
338 rational<IntType>::operator+= (param_type i)
340 return operator+= (rational<IntType>(i));
343 template <typename IntType>
344 inline rational<IntType>&
345 rational<IntType>::operator-= (param_type i)
347 return operator-= (rational<IntType>(i));
350 template <typename IntType>
351 inline rational<IntType>&
352 rational<IntType>::operator*= (param_type i)
354 return operator*= (rational<IntType>(i));
357 template <typename IntType>
358 inline rational<IntType>&
359 rational<IntType>::operator/= (param_type i)
361 return operator/= (rational<IntType>(i));
364 // Increment and decrement
365 template <typename IntType>
366 inline const rational<IntType>& rational<IntType>::operator++()
368 // This can never denormalise the fraction
373 template <typename IntType>
374 inline const rational<IntType>& rational<IntType>::operator--()
376 // This can never denormalise the fraction
381 // Comparison operators
382 template <typename IntType>
383 bool rational<IntType>::operator< (const rational<IntType>& r) const
385 // Avoid repeated construction
388 // If the two values have different signs, we don't need to do the
389 // expensive calculations below. We take advantage here of the fact
390 // that the denominator is always positive.
391 if (num < zero && r.num >= zero) // -ve < +ve
393 if (num >= zero && r.num <= zero) // +ve or zero is not < -ve or zero
397 IntType gcd1 = gcd<IntType>(num, r.num);
398 IntType gcd2 = gcd<IntType>(r.den, den);
399 return (num/gcd1) * (r.den/gcd2) < (den/gcd2) * (r.num/gcd1);
402 template <typename IntType>
403 bool rational<IntType>::operator< (param_type i) const
405 // Avoid repeated construction
408 // If the two values have different signs, we don't need to do the
409 // expensive calculations below. We take advantage here of the fact
410 // that the denominator is always positive.
411 if (num < zero && i >= zero) // -ve < +ve
413 if (num >= zero && i <= zero) // +ve or zero is not < -ve or zero
416 // Now, use the fact that n/d truncates towards zero as long as n and d
417 // are both positive.
418 // Divide instead of multiplying to avoid overflow issues. Of course,
419 // division may be slower, but accuracy is more important than speed...
421 return (num/den) < i;
423 return -i < (-num/den);
426 template <typename IntType>
427 bool rational<IntType>::operator> (param_type i) const
429 // Trap equality first
430 if (num == i && den == IntType(1))
433 // Otherwise, we can use operator<
434 return !operator<(i);
437 template <typename IntType>
438 inline bool rational<IntType>::operator== (const rational<IntType>& r) const
440 return ((num == r.num) && (den == r.den));
443 template <typename IntType>
444 inline bool rational<IntType>::operator== (param_type i) const
446 return ((den == IntType(1)) && (num == i));
450 template <typename IntType>
451 void rational<IntType>::normalize()
453 // Avoid repeated construction
457 throw bad_rational();
459 // Handle the case of zero separately, to avoid division by zero
465 IntType g = gcd<IntType>(num, den);
470 // Ensure that the denominator is positive
479 // A utility class to reset the format flags for an istream at end
480 // of scope, even in case of exceptions
482 resetter(std::istream& is) : is_(is), f_(is.flags()) {}
483 ~resetter() { is_.flags(f_); }
485 std::istream::fmtflags f_; // old GNU c++ lib has no ios_base
491 template <typename IntType>
492 std::istream& operator>> (std::istream& is, rational<IntType>& r)
494 IntType n = IntType(0), d = IntType(1);
496 detail::resetter sentry(is);
502 is.clear(std::istream::badbit); // old GNU c++ lib has no ios_base
504 #if !defined(__GNUC__) || (defined(__GNUC__) && (__GNUC__ >= 3)) || defined __SGI_STL_PORT
507 is.unsetf(ios::skipws); // compiles, but seems to have no effect.
517 // Add manipulators for output format?
518 template <typename IntType>
519 std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
521 os << r.numerator() << '/' << r.denominator();
526 template <typename T, typename IntType>
527 inline T rational_cast(
528 const rational<IntType>& src BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
530 return static_cast<T>(src.numerator())/src.denominator();
533 // Do not use any abs() defined on IntType - it isn't worth it, given the
534 // difficulties involved (Koenig lookup required, there may not *be* an abs()
535 // defined, etc etc).
536 template <typename IntType>
537 inline rational<IntType> abs(const rational<IntType>& r)
539 if (r.numerator() >= IntType(0))
542 return rational<IntType>(-r.numerator(), r.denominator());
547 #endif // BOOST_RATIONAL_HPP