epoc32/include/stdapis/boost/math/special_functions/acosh.hpp
branchSymbian2
changeset 3 e1b950c65cb4
parent 2 2fe1408b6811
child 4 837f303aceeb
     1.1 --- a/epoc32/include/stdapis/boost/math/special_functions/acosh.hpp	Tue Mar 16 16:12:26 2010 +0000
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,198 +0,0 @@
     1.4 -//    boost asinh.hpp header file
     1.5 -
     1.6 -//  (C) Copyright Eric Ford 2001 & Hubert Holin.
     1.7 -//  Distributed under the Boost Software License, Version 1.0. (See
     1.8 -//  accompanying file LICENSE_1_0.txt or copy at
     1.9 -//  http://www.boost.org/LICENSE_1_0.txt)
    1.10 -
    1.11 -// See http://www.boost.org for updates, documentation, and revision history.
    1.12 -
    1.13 -#ifndef BOOST_ACOSH_HPP
    1.14 -#define BOOST_ACOSH_HPP
    1.15 -
    1.16 -
    1.17 -#include <cmath>
    1.18 -#include <limits>
    1.19 -#include <string>
    1.20 -#include <stdexcept>
    1.21 -
    1.22 -
    1.23 -#include <boost/config.hpp>
    1.24 -
    1.25 -
    1.26 -// This is the inverse of the hyperbolic cosine function.
    1.27 -
    1.28 -namespace boost
    1.29 -{
    1.30 -    namespace math
    1.31 -    {
    1.32 -#if defined(__GNUC__) && (__GNUC__ < 3)
    1.33 -        // gcc 2.x ignores function scope using declarations,
    1.34 -        // put them in the scope of the enclosing namespace instead:
    1.35 -        
    1.36 -        using    ::std::abs;
    1.37 -        using    ::std::sqrt;
    1.38 -        using    ::std::log;
    1.39 -        
    1.40 -        using    ::std::numeric_limits;
    1.41 -#endif
    1.42 -        
    1.43 -#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
    1.44 -        // This is the main fare
    1.45 -        
    1.46 -        template<typename T>
    1.47 -        inline T    acosh(const T x)
    1.48 -        {
    1.49 -            using    ::std::abs;
    1.50 -            using    ::std::sqrt;
    1.51 -            using    ::std::log;
    1.52 -            
    1.53 -            using    ::std::numeric_limits;
    1.54 -            
    1.55 -            
    1.56 -            T const    one = static_cast<T>(1);
    1.57 -            T const    two = static_cast<T>(2);
    1.58 -            
    1.59 -            static T const    taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
    1.60 -            static T const    taylor_n_bound = sqrt(taylor_2_bound);
    1.61 -            static T const    upper_taylor_2_bound = one/taylor_2_bound;
    1.62 -            
    1.63 -            if        (x < one)
    1.64 -            {
    1.65 -                if    (numeric_limits<T>::has_quiet_NaN)
    1.66 -                {
    1.67 -                    return(numeric_limits<T>::quiet_NaN());
    1.68 -                }
    1.69 -                else
    1.70 -                {
    1.71 -                    ::std::string        error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!");
    1.72 -                    ::std::domain_error  bad_argument(error_reporting);
    1.73 -                    
    1.74 -                    throw(bad_argument);
    1.75 -                }
    1.76 -            }
    1.77 -            else if    (x >= taylor_n_bound)
    1.78 -            {
    1.79 -                if    (x > upper_taylor_2_bound)
    1.80 -                {
    1.81 -                    // approximation by laurent series in 1/x at 0+ order from -1 to 0
    1.82 -                    return( log( x*two) );
    1.83 -                }
    1.84 -                else
    1.85 -                {
    1.86 -                    return( log( x + sqrt(x*x-one) ) );
    1.87 -                }
    1.88 -            }
    1.89 -            else
    1.90 -            {
    1.91 -                T    y = sqrt(x-one);
    1.92 -                
    1.93 -                // approximation by taylor series in y at 0 up to order 2
    1.94 -                T    result = y;
    1.95 -                
    1.96 -                if    (y >= taylor_2_bound)
    1.97 -                {
    1.98 -                    T    y3 = y*y*y;
    1.99 -                    
   1.100 -                    // approximation by taylor series in y at 0 up to order 4
   1.101 -                    result -= y3/static_cast<T>(12);
   1.102 -                }
   1.103 -                
   1.104 -                return(sqrt(static_cast<T>(2))*result);
   1.105 -            }
   1.106 -        }
   1.107 -#else
   1.108 -        // These are implementation details (for main fare see below)
   1.109 -        
   1.110 -        namespace detail
   1.111 -        {
   1.112 -            template    <
   1.113 -                            typename T,
   1.114 -                            bool QuietNanSupported
   1.115 -                        >
   1.116 -            struct    acosh_helper2_t
   1.117 -            {
   1.118 -                static T    get_NaN()
   1.119 -                {
   1.120 -                    return(::std::numeric_limits<T>::quiet_NaN());
   1.121 -                }
   1.122 -            };  // boost::detail::acosh_helper2_t
   1.123 -            
   1.124 -            
   1.125 -            template<typename T>
   1.126 -            struct    acosh_helper2_t<T, false>
   1.127 -            {
   1.128 -                static T    get_NaN()
   1.129 -                {
   1.130 -                    ::std::string        error_reporting("Argument to acosh is greater than or equal to +1!");
   1.131 -                    ::std::domain_error  bad_argument(error_reporting);
   1.132 -                    
   1.133 -                    throw(bad_argument);
   1.134 -                }
   1.135 -            };  // boost::detail::acosh_helper2_t
   1.136 -        
   1.137 -        }  // boost::detail
   1.138 -        
   1.139 -        
   1.140 -        // This is the main fare
   1.141 -        
   1.142 -        template<typename T>
   1.143 -        inline T    acosh(const T x)
   1.144 -        {
   1.145 -            using    ::std::abs;
   1.146 -            using    ::std::sqrt;
   1.147 -            using    ::std::log;
   1.148 -            
   1.149 -            using    ::std::numeric_limits;
   1.150 -            
   1.151 -            typedef    detail::acosh_helper2_t<T, std::numeric_limits<T>::has_quiet_NaN>    helper2_type;
   1.152 -            
   1.153 -            
   1.154 -            T const    one = static_cast<T>(1);
   1.155 -            T const    two = static_cast<T>(2);
   1.156 -            
   1.157 -            static T const    taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
   1.158 -            static T const    taylor_n_bound = sqrt(taylor_2_bound);
   1.159 -            static T const    upper_taylor_2_bound = one/taylor_2_bound;
   1.160 -            
   1.161 -            if        (x < one)
   1.162 -            {
   1.163 -                return(helper2_type::get_NaN());
   1.164 -            }
   1.165 -            else if    (x >= taylor_n_bound)
   1.166 -            {
   1.167 -                if    (x > upper_taylor_2_bound)
   1.168 -                {
   1.169 -                    // approximation by laurent series in 1/x at 0+ order from -1 to 0
   1.170 -                    return( log( x*two) );
   1.171 -                }
   1.172 -                else
   1.173 -                {
   1.174 -                    return( log( x + sqrt(x*x-one) ) );
   1.175 -                }
   1.176 -            }
   1.177 -            else
   1.178 -            {
   1.179 -                T    y = sqrt(x-one);
   1.180 -                
   1.181 -                // approximation by taylor series in y at 0 up to order 2
   1.182 -                T    result = y;
   1.183 -                
   1.184 -                if    (y >= taylor_2_bound)
   1.185 -                {
   1.186 -                    T    y3 = y*y*y;
   1.187 -                    
   1.188 -                    // approximation by taylor series in y at 0 up to order 4
   1.189 -                    result -= y3/static_cast<T>(12);
   1.190 -                }
   1.191 -                
   1.192 -                return(sqrt(static_cast<T>(2))*result);
   1.193 -            }
   1.194 -        }
   1.195 -#endif /* defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) */
   1.196 -    }
   1.197 -}
   1.198 -
   1.199 -#endif /* BOOST_ACOSH_HPP */
   1.200 -
   1.201 -