diff -r 2fe1408b6811 -r e1b950c65cb4 epoc32/include/stdapis/boost/math/special_functions/acosh.hpp --- a/epoc32/include/stdapis/boost/math/special_functions/acosh.hpp Tue Mar 16 16:12:26 2010 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,198 +0,0 @@ -// boost asinh.hpp header file - -// (C) Copyright Eric Ford 2001 & Hubert Holin. -// Distributed under the Boost Software License, Version 1.0. (See -// accompanying file LICENSE_1_0.txt or copy at -// http://www.boost.org/LICENSE_1_0.txt) - -// See http://www.boost.org for updates, documentation, and revision history. - -#ifndef BOOST_ACOSH_HPP -#define BOOST_ACOSH_HPP - - -#include -#include -#include -#include - - -#include - - -// This is the inverse of the hyperbolic cosine function. - -namespace boost -{ - namespace math - { -#if defined(__GNUC__) && (__GNUC__ < 3) - // gcc 2.x ignores function scope using declarations, - // put them in the scope of the enclosing namespace instead: - - using ::std::abs; - using ::std::sqrt; - using ::std::log; - - using ::std::numeric_limits; -#endif - -#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) - // This is the main fare - - template - inline T acosh(const T x) - { - using ::std::abs; - using ::std::sqrt; - using ::std::log; - - using ::std::numeric_limits; - - - T const one = static_cast(1); - T const two = static_cast(2); - - static T const taylor_2_bound = sqrt(numeric_limits::epsilon()); - static T const taylor_n_bound = sqrt(taylor_2_bound); - static T const upper_taylor_2_bound = one/taylor_2_bound; - - if (x < one) - { - if (numeric_limits::has_quiet_NaN) - { - return(numeric_limits::quiet_NaN()); - } - else - { - ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!"); - ::std::domain_error bad_argument(error_reporting); - - throw(bad_argument); - } - } - else if (x >= taylor_n_bound) - { - if (x > upper_taylor_2_bound) - { - // approximation by laurent series in 1/x at 0+ order from -1 to 0 - return( log( x*two) ); - } - else - { - return( log( x + sqrt(x*x-one) ) ); - } - } - else - { - T y = sqrt(x-one); - - // approximation by taylor series in y at 0 up to order 2 - T result = y; - - if (y >= taylor_2_bound) - { - T y3 = y*y*y; - - // approximation by taylor series in y at 0 up to order 4 - result -= y3/static_cast(12); - } - - return(sqrt(static_cast(2))*result); - } - } -#else - // These are implementation details (for main fare see below) - - namespace detail - { - template < - typename T, - bool QuietNanSupported - > - struct acosh_helper2_t - { - static T get_NaN() - { - return(::std::numeric_limits::quiet_NaN()); - } - }; // boost::detail::acosh_helper2_t - - - template - struct acosh_helper2_t - { - static T get_NaN() - { - ::std::string error_reporting("Argument to acosh is greater than or equal to +1!"); - ::std::domain_error bad_argument(error_reporting); - - throw(bad_argument); - } - }; // boost::detail::acosh_helper2_t - - } // boost::detail - - - // This is the main fare - - template - inline T acosh(const T x) - { - using ::std::abs; - using ::std::sqrt; - using ::std::log; - - using ::std::numeric_limits; - - typedef detail::acosh_helper2_t::has_quiet_NaN> helper2_type; - - - T const one = static_cast(1); - T const two = static_cast(2); - - static T const taylor_2_bound = sqrt(numeric_limits::epsilon()); - static T const taylor_n_bound = sqrt(taylor_2_bound); - static T const upper_taylor_2_bound = one/taylor_2_bound; - - if (x < one) - { - return(helper2_type::get_NaN()); - } - else if (x >= taylor_n_bound) - { - if (x > upper_taylor_2_bound) - { - // approximation by laurent series in 1/x at 0+ order from -1 to 0 - return( log( x*two) ); - } - else - { - return( log( x + sqrt(x*x-one) ) ); - } - } - else - { - T y = sqrt(x-one); - - // approximation by taylor series in y at 0 up to order 2 - T result = y; - - if (y >= taylor_2_bound) - { - T y3 = y*y*y; - - // approximation by taylor series in y at 0 up to order 4 - result -= y3/static_cast(12); - } - - return(sqrt(static_cast(2))*result); - } - } -#endif /* defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) */ - } -} - -#endif /* BOOST_ACOSH_HPP */ - -